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1. Intreduction and some results

Several diverse theorems concerning the zeros of (*)(s), the kth derivative, of the
Riemann zeta function will be presented. Relationships with existing results, [1], [6-9],
will be discussed.

THEOREM 1. Let N~(T) be the number of zeros of {(s) in R: 0<t<T, 0<g <} where
s=c-+it. Let Ny (T) be the number of zeros of {'(s) in R. Then

N{(T)y=N~(T)+O(log T). (1.1)
Unless N=(T)>T|2 for all large T there exists a sequence {T,}, T;~ o0 as j— oo such that
Ni(T)y=N~(T). (1.2)

Theorem 1 can be regarded as stating that {(s) and (’(s) have the same number of
zeros in 0 <¢ <}. The following is essentially due to Speiser [5].

CoROLLARY TO THEOREM 1. The Riemann Hypothesis is equivalent to {'(s) having
no zeros in 0 <o <4,

One half of the above, namely RH = >{’(s) is zero-free in 0 <o <} was rediscovered
by Spira [9].

Let N, (T') be the number of non-real zeros of {*(s) for 0 <t <7'. Then it was shown by
Berndt [1], and will also be a by-product of the proof of Theorem 2, that for £>1
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T( 'T
N(T)=- (loga —~ 1) +0(log T). (1.3)
TuEOREM 2. Denote the number of non-real zeros of L®(s) in 0<t<T,o<cby N;(c, T)

and the number for 6 >¢ by Ni (¢, T). Then, for given k, uniformly for 6=>0

Ni(3+6, T)+N;(3—6, T)<6-1T log log T.
In view of (1.3)
N (T) loglog T

Hence most of the zeros of {*(s) are clustered around ¢ =4}. It was proved by Spira [8]
that most of the zeros of {*)(s) lie in 0 <o <} +6 for §>0.

In proving Theorem 2 it will also be seen that the corresponding result is valid in
T <t<T+U where U> T2 A consequence of this is that if w(f)~ o as {— oo, then most
of the zeros of ®(s) lie in

[o—3] <w(t) log log t/log ¢.

Let o =p+dy denote the non-real zeros of {(s) as usual. Let o’ =f’+14y’ denote those
of {'(s). Let o) =B% +43 denote the non-real zeros of {¥)(s), k=1 (so that ¢’ and o»
are equivalent).

THEOREM 3. For O< U< T

2z Y (B —~3)=kU loglog §T—7—I+ U(3 log 2~k log log 2)

T<y‘n<1‘+ U

+O(U?(T log T))+ O(log 7). (1.4)
THEOREM 4. Let U >log T. Then

A=F)<__3 (=F)+O0).

T<y'<T+U
<1/2 p<1/2

CoroLLARY. By Selberg [3], if U>T* a>1}, then

#-p=0(),
T<y<T+U
B<1/2
and so it follows that
2 (3-B)=0().
T<y'<T+U
pr<1/2

THEOREM 5. For U>T% a>}

12 o tog I
B —%)—-27! log log 2n+0(U)' (1.5)

T<y'<T+U
Br>1/2
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THEOREM 6. Let 1<a<1. Let § >Cflog T where C is large (but independent of T
and a). Let U=T" Then

> (3-0-p)<(l+dlog UYU@-tan, (1.6)
iz

Also there exists U; j=1,2 such that Ul4< U,;<U[2

1
(#—B")<log - (B—3).
P Uy <y <T+Us O 1-U,<y<T+Us
#<1/2-26 B>1/2+6

CoroLLARY. If =w(T)/log T where w(T)—> co as T— oo then
Ni(3—6,T+U)—Ni(3-6,T)<w’(T)exp{— (2a—1)w(t)/4} U log T. (1.7
Thus most of the complex zeros of {’(s) lie to the right of o =4} —w(t)/log ¢ if w(t)—> .

THEOREM 7. Let m=0. If ('™(s) has only a finite number of non-real zeros in ¢ <%,

then £™*9)(s) has the same property for =1,

COoROLLARY. The R.H. implies that {*)(s) has at most a finite number of non-real

zeros in ¢ <} for k=>1.
THEOREM 8. The R.H. implies that

2> (/3""—1/2)=kT10glog%—2nk Li (QT,—,)

0<yp<T
gE>1/2
+ 7T'(} log 2 - k log log 2) + O(log T').
Here Li(z) is [§dv/log v.

2. Proof of Theorem 1

With {¢} the zeros of { in the critical strip

' 1 r 1
Re%(s)=——Re;j+§logn—%ReF(§+1)+Rezq. 2.1

From the functional equation if p=pf+14y, f<}, then 1 -g=1—p+1y is also a zero.
With f< }

Re(l __L_)=h_m%_@a~yf+w—%f~@—ﬂﬁ

s—ots-itg [s—oF]s—1+of

YU %Gr [s—effls—1+gP s=in|s—el®
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1
Then I=Rezs——e= —~{(}—o0) 1, 2.3)
~s—

The Euler-Maclaurin sum formula for I/T" easily leads to

r 1 1
— = [ —— <=3
I,(w) log w 2w+R’ | R 10]

o |w|>2,4>0,

where w =1+ iv. Hence for |s|>3,0>0,

Re % (§+ 1) =log
Using standard explicit estimates on N(T'), the number of zeros of {(s) in 0 <o <1, 0<¢<T,
and the fact that $=1 for |y| <1 000 it is easy to verify from (2.1), (2.2), (2.3) and (2.4)
that Re {'/{ <0 for t=10, 0<o<1.

For ¢=0, it is obvious from (2.2) since 0 <f <1}, that all terms in I, are positive for
6=0. Hence 7 <0 on ¢=0. From (2.4) and (2.1) it then follows easily that Re '/l <0 on
a=0 for t>10. On o=14, except at zeros of {(}+it), it is evident that 1=0. Let g,=
Bo+iy, be a zero with S,=3%. Then the single term |s—gy|~2 can be made arbitrarily

145l_et2
ls+2[?

5 + Ry, |By| <

(2.4)

__2
Bls+ 2]

large for |s—g,| small. Hence on a small semi-circle with center at g, and ¢<}, I; >0
and so I<0. Thus on such a semi-circle Re £’/ <0. Hence on an appropriately indented
contour on ¢=%, Re(’/{<0 for t>10. Suppose next that there is a sequence {T';},
T,— oo as j— oo, such that Re £’/ <0 on =T, for 0 <o <}. Then on the closed indented
contour with vertices at 104, 1+10s, 3 +T,¢, T,4, Re {'/f <0 and so the change in arg
{’'/¢ is O on the contour. Thus the number of zeros of {’ and ¢ aré the same inside the
contour proving (1.2). v

Next suppose no such sequence {7',} exists. Then for sufficiently large {, Re {'/{ is
non-negative for some ¢, 0 <¢<}. This canr happen only where I, <0. But I; <0 only
if at least one term in I, is negative. Hence for some § <1/2

e R R 1
which implies |t —y| <}. In particular if ¢ is taken as an integer n, then there is at least
one zero ¢ with <} and |y —=| <1/2. Thus in this case N~(T)>T +0(1).

Finally, to prove (1.1), by a standard use of Jensen’s theorem it can be shown that
the change in arg {(c +it) and arg {'(o+it) from 6=1 to 6 =0 for large ¢ is O (log i). This
with the previoils fact that Re C’/C(s}<0 on ¢=0, t>10, 0<o<1, t=10, and on the in-
dented line 6 =14, £ 10 proves (1.1) and completes the proof of the theorem.

It was proved by Spira {8] that for ]sl’> 165 and ¢ <0, {’(s) has only real zeros and

exactly onein (—1—2n, 1 — 2')1). The following is an easy consequence of (2.1).
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THEOREM 9. For n=2 there is a unique solution of {'(s)=0 in the interval (—2n,

—2n+2) and there are no other zeros of '(s) in ¢ <0.

Proof of Theorem 9. By direct consideration of £’(it) and {(it), or what is equivalent
by the functional equation, of {'(1 +4t) and (1 +1#) it follows that arg ['/[(it) changes by
approximately — 2z from —6.25¢ to 6.25¢. On the remainder of the boundary of the rec-
tangle with vertices at —2N —1+¢N, 4N it follows from (2.1) that Re {'/{(s) <0. Since
(s} has N real zeros in the rectangle, {'(s) must have at least N —1 real zeros by Rolle’s
theorem and by the change in argument of — 2z it does indeed have exactly N —1 and so
all of these are real.

A consequence of Theorems 1 and 9 is that RH <-{’(s) hasno non-real zeros for g <1/2 [5].

Remark on the numerical location of zeros of {(s) off of ¢ =}: From the functional
equation it is easy to show, as will be seen in § 4, that {’(s) and J(1 —s) have the same zeros
for 0 <o <1 where from (4.1).

’ ’ -1
T6) =200+ £ + I
Here A(s)=n%2'(s/2). In view of Theorem 1 the number of zeros of J(s) in 1>g>4$ is
equal to that of {(s). It follows easily from the fact that Re (’/{ <0 on o=}, except at
zeros of ((s), that {’(}+it) can be zero only where (1 +if) is zero. Hence except at
multiple zeros of [(s), {’(s) and so J(s) does not vanish on ¢ =4. Thus because J(s) might
be expected to vanish seldom if at all on 6=}, the determination of the number of zeros
of {(s) in 0>} can be conveniently ascertained from the variation of arg J(} +1t).

The calculation of J (3 +it) and hence arg J (3 +4t) can be based on the asymptotic
Riemann-Siegel formula for {(s). Indeed since ’(s) can be expressed in terms of {(s) by
the Cauchy integral formula, differentiation of the asymptotic series is justified and re-
presents {’'(s) asymptotically.

For &'[h the standard Stirling formulas are available.

3. Proofs of Theorems 2 and 3
Here Littlewood’s lemma is used in a familiar way [10, Chap. 9]. For 6>1
{®(s) = (1) 2 (log n)/n’.
Let Zy(s) = (—1)“2°(log 2)7¢*)(s),

so that Z,(s)—~>1 as ¢— 0. Z, is real on t=0 and (s —1)¥+1Z,(s) is entire.

It was shown by Spira [7] that the non-real zeros of (%*)(s) lie in a vertical strip
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—b, <o <a. This will also be evident below. Littlewood’s lemma will be applied on the
rectangle with vertices at a +14, a +4T, —b+1T, —b+1i where a=a, and b=b,. It gives

T T
f log | Z,(—b +t)| dt — f log | Z, (a + it)| dt
1 1

a

—f arg Z, (o + i)d0+f
b

\ arg Z,(c+iT)da=2n> (b+ ) (3.1)
where the zeros of Z,(s) in the rectangle are designated by o =% +iy®. As will be seen
it is an easy consequence of the functional equation and Stirling’s formula for log I'(s)
that as ¢ increases the zeros of Z,(s) lie in 0 > —4 for  >0.

The arg Z,(s) in (3.1) is obtained by continuation of log Z,(s) leftward from the value
0 at g =roo. (If Z,(s) has a zero on £ =1 the lower vertices of the rectangle should be moved
a little.) The third integral in (3.1) is independent of 7' and so is O(1). The fourth integral
is handled in a familiar way by getting a bound on the number of zeros of Re Z(¢ +¢T)
by use of Jensen’s theorem. Since {¥)(s) can be represented in terms of {(s) be Cauchy’s
integral formula the standard bounds on {(s) give - as a bound on Z,(s) for use here and
leads to O (log T') as a bound on the fourth integral.

The second integral in (3.1) is also easy to deal with. Indeed if a =a, is chosen so that

00 Iog n k(g)alz
Ea:(log 2) n) = L2

then for ¢ >a | Z(s)— 1]< 3(3)°2 (3.2)

Hence log Z,(s) is analytic for ¢ >a. By Cauchy’s theorem

a+Ti o0 o0
f long(s)d8=f logZ,,(a+i)dcr—f log Z,(6+iT)do.

a+i a a

By (3.2) the two integrals on the right are bounded independent of 7'. Thus (3.1) becomes

2xYy(b+p%=1I+0(log T), (3.3)
T
where I= f log|Z,(—b+it)|dt. ' (3.4)
1
On the line 6= —b use is made of the functional equation

L(s)=F(s) L(1 —s); F(s)=2°n1** sin% I'(L —s).

Using Stirling’s formula for I'(s), we find
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F(s)=exp (%z_ 1 +f(s))

where the analytic function
—(1_ (1—s)i 1)
f8)=(}—8)log o +s+ 0(s , (3.5)

in the sector |arg s — 7/2| < @/4 and

¥ (s) = —log (A=s)i_ 0(}) ,

27 s
. (3.6)
e-0(5a) iz
Hence F ()= F(s) (fV (s))! { +0 (t_lolg_zt)}
From the functional equation
6 = PO 02 =)= () P2 00201 -0+ (F) B0 g1 -o) -
Hence for ¢{—~4, 6> 0,
&)= Fo) (0 e =) {140 ;o)
LIP(-g) 1
<1 (1) oo G, (1+0 (rres)
2{®(1—-9) 1
+ (o) e 5 (140 () +
= F (M @ye - Fo) (140 () ).
e A I (1—s)
where Fuo)= 31 (E) oy G, 3)

and Fy(s)=1+0(1/log T) for 6 < —6 and s in the sector.

(Remark. A result valid for |arg s —n| <n/2 follows if sinns/2 is kept as a separate
factor on the right of F(s) in the above analysis and leads easily to the existence of b,.)
Hence

Z, ()= (—1)2°(log 2)"% exp (n—f -1 +f(s)) (FA(8))* L(1 — 8) Fo(s) (1 +0 (“ L )) . (3.8)

From the asymptotic behavior of f, f¥ and of F), as t—> oo it is clear that the zeros of £#)(s)
must lie to the right of o= ~4 for 6>0. From (3.8)
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log|Z,(—b+it)|=—blog2—kloglog2—1
+Re f(—b+it) + k log | fV (—b+it)]

. . 1
+10g|€(1+b—lt)|+10gle(—b"r’bt)l'FO(t—l“)gz—t). (3.9)

t
Let Li@g)= f dvflog v.
2
Then using (3.5} and (3.6) I in (3.4) can be computed from (3.9) to give
T T
I=(1 = =
(3+ b)Tlog2n+kT loglogzn

~T(3+b+blog 2+ kloglog 2) — 27k Li (%) +0(log T)+ I, + I, (3.10)

T T
where I, = f log |L(L+b—it)|dt, I,= f log | F\.(—b+1t)| dt.
1 1
Proceeding much as below (3.2), but more simply, I, =0(1).
To treat I, use is made of (3.7) to get
F (o +1t) =1+0(27), (3.11)

for —o large and 3n/4 > arg s >n/2. Using Cauchy’s theorem on log F(s) on the triangle
with vertices at —b+14b, —T +1T, —b+:iT, it follows from (3.11) that I,=0(1). Hence
from (3.3) and (3.10) now follows

Lemma 3.1,

2 > (b+p*)=(3+b)Tlog éTy—t+kT log log %

l<y,<T
T
~T(}+b+blog 2+ kloglog 2)— 27k Li (%) +0(log T). (3.12)

If N /(T) is the number ofvnon-real of {®(s) with 0<¢<T then increasing b to b+1 in
(3.12) and subtracting the case b from b+1 gives [1]

T .
N (T)= % (]og 5,1~ log 2) +0(log T). (3.13)

A familiar approximate formula for {(s), [10, 4.11], using Cauchy’s integral formula
for £® in terms of { gives

E®(s) =2 (—log n)fn~+0 {(log )t 7},
where X is for » <t. In a standard way this leads to
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T
f [E% (4 +it)|Pdt = O(T log®*T),
1
which in turn yields

T
f log |£® (3 + it)| dt = O(T loglog T').
1

By Littlewood’s lemma this in turn yields

(k'z (B* —1)=0(T loglog T). (8.14)
1ﬁ< y(;k)l</2T

Subtracting (3.14) from (3.12) gives
' T T
> b+ > (b-l—%):(%—l—b)%log %+O(TloglogT).

<1/ PN

1<y(k)<T 1<y(k)<T

Denote the number of zeros of {*)(s) in 0 <¢ < T and o <c¢ by N; (¢, T') and the number
of zeros in 0 <¢<T and ¢ >¢ by N*(c, T'). The above yields for any §>0

b+3—)N:(3—6,T)+(b+ 1 (N (T)=N: (3—6,T))
=2 (3+0b) % log %+O(T loglog T').
Using (3.13) with the above yields
ON; (3 —6,T)=0(T loglog T).
From (3.14) follows, for é >0,
0N (3+6, T)=0(T loglog T,

and these two results prove Theorem 2. A more refined result than the above can be ob-
tained which justifies the statement below Theorem 2 concerning 7' <t <7 + U. Using the
approximate functional equation for (®)(s) which, by Cauchy’s integral formula for {®
in terms of {, follows from that for {(s) gives in crude form

,login
S g

|C‘k)(%+it)| < 7_21/2—it

, logh n
2 nl;g:Jrit +loght 2,
i<k

+0(ttlogh 1),
where X' is for 2 < (¢/27)"2. For U > T"? this leads to
T+U
f £ (3 +6) P dt = O(U log™*** T,
T

which then yields results in (T, T+ U).
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If 27(b+ }) N, (T), given in (3.13), is subtracted from (3.12) then we obtain.

THEOREM 10.
T T
k) — 1) = = il —
27‘0<g<r(ﬂ $)=kT loglog o 2xk Li (Zn)
+ T'(} log 2 — k log log 2) +- O(log T'), (3.15)
and this yields Theorem 3 because

+U—lo o —TL—I 1+ log(l+U/T)) U 0( U? )
n | & 08g, =08 log T2n ) Tlog T2m '~ \T*logT)’

J (T+U\ .. (T U @z ] 1),
an L’( 27 )_L‘ (%)=2nlog1’/2n_f,,2,, (logT/2n_logx) x

U U?
" 27 log T/2n+ O(T log® T) ’

log log T

4. Proofs of Theorems 4 and 5

By the functional equation

h(1—
e =G et o),

where %(s) is defined near the end of §2. Hence

o B=8) [(W() WA=s8)\,
o= (59 +h=g) ca-a+cu-of.

By Stirling’s formula

Wis) K(l—s) . & (1
he) T MI—s) 08 2n+0(t)’

in |¢|< 2 and so has no zeros in the strip for large |¢|. Thus if

k' (s) h(l—s) -1,
7 =ty + [ LB T, @1

then the complex zeros of {’(s) and J(1 —s) coincide at least for large |¢|. Hence using
Littlewood’s lemma to the right of o =3 gives

S

, U
= > (12-8)- Mgrw(ﬁ ~-1/2) +0(iog_T) +O(log 7). 4.2)

T<y'<T+U
p<t

J(1/2+u)

8| zarT| “

B>1
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Since |1+z|<1+[z|<exp (|2]*?)
I<—217ILM %(1}+it)—l .
By (4.1) l%—1l<ﬁ%l%|,
and so I<}t (To—g% f:w % (3 +it) . (4.3)

As is well known [10, 9.6] for |t—n|<1 and 0< o<1

1
z_ (8) + |,,_§|<2:—9+0(10g t).

If now X is for |y —n|< 2 then

| g e n+i 1 12 12
[ o] as [ gy arowosn™
<P, +2Q,+0((log m)'™), (.4)
n+e 1 |2 n+2 1 172
where pP,= fn—Z iSi—y dt, @ = L_z ,32} t—y+i3—p) a.

Now the following lemma is required [2, Chap. 4].
LeMMA 4.1, Let ~2<a;<2,b,20,¢,>0 and let

Gy
x—a;+ b,

fle)=2

where X 18 o finite sum. Suppose 0<p<1. Then

2
8
z)|Pdx < |7
[ apas< 2154
The proof is given below.

If X is now again for |y —n|< 2, then using the lemma above,
8 3}
P ( 3,1) =owogm,
et V=2

since the number of poles of ¢'/{(s) in |y—n|< 2 is O(log n). A similar result holds for @,.
Hence by (4.4)
T+U C'
[

Therefore 1= 0O(U) and by (4.2) Theorem 4 is proved.

3+ z‘t)rdt = U O((iog T)"'3). (4.5)
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Proof of Lemma 4.1. Let

He) =i —
Then ReH(z)=Zrz~%>0, y>0.
So |arg H(z)| < /2 for y >0 and so
|H )P < Re (H(2))” _Re (H(Z))p‘ (4.6)

cosmpl2  1-p

Let ¢ >0 be small. Integrating H”(z) around the rectangle with vertices — 2+ ig, 3+ i¢,
341, —3+1, shows

3
f (H(x+1e)) dx
3

<8(2¢).

Using (4.6), this gives
2
f [H(x+ ig)[Pdz< 8 XN 2
—2 1 - p

Letting £~ 0 now yields the result.

Proof of Theorem 5. From Theorem 3 with k=1

T
we get 2 Y  (f'—3)=Uloglog—+8,+0O(U),
T<Yy'<ST+U 2n
B>il2
where §,=2zn > ({F-8)
ST

By the corollary to Theorem 4, §; = O(U) and so Theorem 5 is proved.

5. Proof of Theorem 6

By the symmetry of the roots of £(s), (2.2) and (2.3) can be written as

I=Rezs—1—z=(a—§)ll, (5.1)

(t_7)2+ (0—%)2— (lg_%)2 1 (5.2)

where I,=2 — + T3>
Y %Se Js—efls—1+gf piirls—el®

and so from (2.1) and (2.4)

Re S (5)= (0— 4 L~} log

o) e
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By (4.1) and the formula above it, for ¢ positive

Joo .17 1
=1 g £ (S)(H O(tlogt))’

where it will be recalled that '(s) and J(1 — s) have their complex zeros for large |¢| in
common. For — 1< o< 2, [10, 9.6]

¢ 1
2~ (s)=O(logt) + —_,
C() (logt) |t~%|<18_@

and so if min |s —p|>1/(10¢), since the number of zeros in |t —y[< 1 is O(log¢),

l%’(s) <tlogt.
J, 1 ¢ L
Therefore T (8)‘_ 1 +10g t2m & (s) + O(IOg t) .

Thus by (5.3), for [s —o|>1/(10%)

J o—1/2 (1
Rel(s)=4+ 22 ).
© C(s) 2+10gt/27z11“H)(logt)

Fix T and let 7/2<¢<37T/2. By Selberg [4, Lemma 8] if H = 7°10,3<a<1,6>0

(5.4)

0
_ %_ el <H1—(2~1!a)5/8.

t-H<p<t+H 2
B>1/2+46/2

Since f—3<3(B—1—16) for =} +6—1/T and 6 >1/log T
(ﬂ_ %)<H1—(2-lla)6/8,

t—H<y<t+H
B>1/2+6-1/T

and so if 6 >Clog 7', C sufficiently large

H
: - —. 5.5
f—H<p<t+H (B=1< 20 (5.5)
B>1/2+6-1/T

For each 8>} let B, be the open box <o <B-+1/T, |¢—y|<f—}. Note that by
(6.2) 1,20 if s is-not inside of any box and 0=>}. Let s be inside of no box and let
o—3>6>1flog T. Then |s—p| >1/T and so by (5.4)

J
¢
Consider next only those boxes which protrude to the right of §+4. A chain consists

of a sequence of protruding boxes each of which has points in common with such a box

Re = (s)>1; 8¢ B, a=}+6. (5.6)
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above it except for the last which is separated from the next protruding box above it.
Moreover there is a lowest box in a chain which is separated from the next protruding
box below it. The sum of the heights of the boxes in a chain is at most 2X(8 —3) for
f—%>6—1/T and so by (5.5) with ¢=T+3U/8, where U=1T4, a chain must terminate
in the interval (T'+ Uj4, T+ U/2) say at T + U, where U4 <U,<U/2 (unless that interval
has no protruding boxes). Similarly a chain must commence at 7' — U, where U/4< U, < U/2.

Next consider a chain, if there is one, in (T~ U,, T+ U,) consisting of the boxes
B, B, ..., B, where y,; <y, <...<y;. For 1<j<k let

O =max (f,—3)+1/T,
and let t,=miny,—(8,+13); t,=max (y,+8,—}).

Apply Littlewood’s lemma [10, Chap. 9] to J/{ in the rectangle with vertices at J + ¢,
O Tity, 0 +ity, 0,,+it,. By (5.6), |arg J/{| <m/2 on the upper and lower sides of the rec-
tangle. On the right side, by (5.6),

—log |J/¢| < —log |Re J/|Z| <log 3.
Moreover since 6>1/log T, §,,~6<max (8;,—4). Hence the contribution of these three
sides of the rectangle to the integrals in Littlewood’s lemma is at most

2 max (;—$)w/2+ (t;—t) log 3< 10 2 (B,—3)

1<igk

because #,~¢, <2X(8;,—1). Summing over the three sides of the rectangles associated
with the several chains, the total is dominated by

T-U<y<T+U,
g>12i6-uT’

For the left side of the rectangle the contribution is, for integer M,

1@ M)

S (3+0+it) dt, (5.8)

h
f log J
4

¢

because |1+z| <1+ |z| <exp (2M |z|V®M), since (2M)*>(2M)!. Denoting the sum of
the left side of (5.8) over the left sides of the rectangles for the chains in (T—U,, T+ U,)
by @ and denoting the left sides themselves by L.S.

ts
-~
43

J
71

LeMm
dt

®= ZfL.s.log

g(%+6+it)

dt< 2M2f l%— 1
L.8,

T+ | g |2 \UM
<2M (f 7 1 dt) (2 length of L.S.)! 1™,
T-U,
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Since -g— 1’< 2 ‘% flog t the procedure below (4.3) which yields (4.5) now gives, since
U,+U,<U,
(D<MUIIM(2 Z (ﬁ %) 1 IIM (59)
ﬁ>l{l2<r§Tl-‘;T

By [4, Lemma 8], if ¢ >0, H=T"/2, it follows easily that

-@- —o)l4

(B—3—6+e)<H"C lay6-oit
T-H<y<T+H
F>1/218 e~ 1/T

because log H/T < 1. For =} +8—1/T,e=1/log H,f—3<(1+d/e) (B—%— 0+ ¢), and so

(B—3)<(1+ dfe) H}~@- V@9l (5.10)
T-H<y<T+H ‘
8>1/24+6-1/T

Note H=U/2. With ¢=1/log H, the above in (5.9) gives
' D< M(1+ 6 log U) UV ([1-@-twoikyi-1n
< M(1+6log U) Ul-@-1wdt  pe-lmadm
Let M =[6 log U], where [x] represents the integer part of z, to get
d<(1+ dlog U)? Ut-G-1mdn, (5.11)

By (5.6) there are no zeros of J(s) in T'—U,<t<T+U,, 6>1/2+0, except in the
several rectangles. Hence applying Littlewood’s lemma, recalling that the zeros of J(1 —s)
and {'(s) coincide, and using (5.7) on the three sides of the rectangles and (5.11) on the left
side

(3—-0-8)- 2 (B—%1-0)

T-Uy<y’<T+U: T-U,<y<T+U,
B'<1/2-08 ﬂ>1/2+6
< 2 lg ~3)+(1+dlog U)z Ul—(2-lla)6l4’ (5.12)
T~Uy<y<T+U.
ﬂ>1/2+6 llT

and by (5.10), with ¢=1/log H,

(,l_ -0 ’3’)< (1 -4 log U)z Ul—(2—1/a)6l4.
i S

Several applications of the above yields the first result of Theorem 6.
To get the second result in Theorem 6 the procedure in (5.8) is changed. Now use is

1z
f log dt)
¢

made of
iy

—(%+6+zt)

dt<2t,

§+6+n
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Since by (4.1) and the formula above it, for large ¢,

172 vz e 12
- > (1 ;
‘ (3 +0+it) \1+(logt/2n) C(g+6+zt) ,
the procedure in (4.4) that led to (4.5) here gives
ts J 12
J; lz(%+6+it) di<<(ty,—t)+1,

and so, since {, — ¢, > 2(f,— 1/2) >4 for a protruding box,

ty
J‘ log J
t

c(%+6+it)

<(t,—t,) log 1/6

< > (B;,—1/2) log 1/6.

1<j<k

Adding this for the left sides of the several rectangles and using it instead of @ on the
right side of (5.12) leads to

3-o-0)< 2 (-1 logl/s,
T-Ur<y'<T+U: T-U;<y<T+Us
p<1/2-6 B>1i2+6-1/T

from which the second result of Theorem 6 follows by first replacing 6 by 6+ 1/T' and

then using
(1-0-7-8) >30-prtor i~ 520
Proof of the Corollary to Theorem 6.
Replace 6 in (1.6) by 6 —1/log U to get
Ni(3—8,T+U)—Ni(3—8,T)<(1+dlog U)*(Ulog U) U ® 1%,

Now let §=w(T)/log T. Then since log U =a log T' (1.7) is proved. Because N,(7'-+U)—
N(T)~27U log T the statement below (1.7) follows.

6. Proofs of Theorems 7 and 8

For fixed m denote the real zeros of {™(s) by —a;. Spira [7] showed that a;=2j+O(1).
It was also shown [7] that there exists an A, such that £*'(s) has no non-real zeros for
|o| > A4,. Denote the non-real zeros of {™(s) by p;+ig;, ¢;>0. Then

Sidnl z( i i )+o( )+$( 1) 6.1
+ — 4 . --) .
gm (6)=c S—p;— g S—pteg; |8_ | sta; aj (6.1)

where ¢ is a constant (and the second sum is modified if an a, is zero). Hence
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(m+1)

{ ] ( 1 )
Re>Z—(s)=c¢+2 —+0
I R P i B 1

c— ct+a 1
+2Z2ls P |2+Z(| ]lz'*_)

. >
—P;— sta;”

where 2, is for p;>} and X, is for p;<}. The hypothesis is that X, is a finite sum. For
—A4,<o<} it follows that X, is negative. If furthermore ¢ is large, X, is bounded.

Therefore
(m+1)
Re F"T (S) < 0(1) + Jl’
where J,, the last sum in (6.1), is given by
1 1
Ji=—[sf>

a;|s+ a,-|2_a"‘ |s+ a,*

Since —4,,< 0< 1/2 the last sum above is O(1) for large ¢. For |a;|< |s|/2, |s+a;| < 3]|s]|/2,

and so

Ji < —4 L oq.

1 Elslyz
Since a,= 27+ 0(1), J; < — 2(log | s|)/9+ O(1).

(m+1)

Thus Re “Fom (8)< —%log |s|+0(1),

which means {"+1(s)4=0 for ¢ large and ¢ <}. This proves the theorem for j=1 and the

rest follows by induction.

Proof of Theorem 8. Theorem 8 follows from (3.15) and the corollary to Theorem 7
which shows that the number of % <1 is finite.
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