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Introduction 

The material presented in this paper is a systematic exposition of the theory of tensor 

algebras and their applications and connections with harmonic analysis. 

We shall not at tempt here in the introduction to describe or summarize the methods 

and results of this paper. We shall instead refer the reader to [13], [28] and [29] for that.  

We shall also refer the reader to [19], [23], [26], and [27] for background reading relative 

to the two main problems considered in this paper, namely, the problem of "spectral 

synthesis" and that  of "symbolic calculus". 

We would like to point out, however, that  none of the above literature is an essential 

pre-requirement for the understanding of this paper. What is needed instead is a certain 

familiarity with commutative Banach algebras and in particular regular algebras. One 

can acquire this in [2]; also we shall have to assume in this paper one or two easy but  

slightly technical points of harmonic analysis that  are very well exposed in [5]. Finally 

some knowledge of the general theory of the topological tensor product as is to be found 

in [1] is desirable but  not essential provided that  the instructions given below as to how 

this paper should be read are carefully followed. 

In  Ch. 1 we recall definitions and notations from functional analysis and prove some 

easy lemmas. 

In  Ch. 2 we define a tensor algebra in two ways: using functional analytic concepts 

in w 1 and directly in w 2. The reader who wishes to ignore functional analysis should 

start reading this paper from Ch. 2, w 2. 

In Ch. 3 we develop some of the fundamental topological techniques that  allow us 

to work with tensor algebras. There w 4 is the most crucial paragraph and also the easiest 

to read. The reader can go directly from Ch. 2, w 2 to Ch. 3, w 4 provided that  he is pre= 

pared to refer back for definitions. 
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In Ch. 4 the first link between tensor algebras and group algebras is established and 

in a first reading it suffices there to read w 1 and w 2. 

Ch. 5 is more technical and is developed only for the sake of some specific applications. 

The reader could skip it altogether in a first reading and proceed directly to Ch. 8 where 

the second essential link with harmonic analysis is established. One thing that  I should 

like to point out here is that  the presentation of the material of Ch. 8 differs from the one 

I originally gave in [12]; instead the much more elegant formulation of [13] is followed. 

The remaining chapters deal with various aspects and applications of the theory and 

are much more specialized; they can in fact be read more or less independently from one 

another. 

1. Generalities on the tensor product and Banach algebras 

w 1. The tensor product of vector spaces 

In this paragraph we shall list some notations and definitions from functional analysis 

which we intend to adopt. 

For arbi trary vector spaces El, E2 ..... E= we denote by E 1 | | -.. | their tensor 

product which is a new vector space, for {ej E Ej};~=I elements of the spaces we denote then 

by el | | | their tensor product [1]. Also for arbitrary linear mappings {T j: Ej-~Hj}~=l 

between vector spaces we denote by: 

T = Tl |174 | v E t | 1 7 4  |174174 | 

the canonically induced mapping on the tensor products. 

When the spaces {Ej; Hj}~=l are normed linear spaces and {T~6C(Ej; Hi)}51 are 

continuous linear mappings we denote by E = E l ~ E z ~ ) . . . ~ E n  the completion of 

El|174 ... | with the projective | norm; E is then a Banach space [1]. T can then 

be extended by continuity to: 

= T1QT2~)... ~T,~: E =EI~)E2~. . .  ~E, , -+HI~)H2~. . .  QHn. 

:It is then well known that  II~]I~<[]T1H I]T2H...]IT~II. Also in the case where the spaces 

El, E 2 ..... E ,  are already Banach spaces it is well known that  every element e 6 E admits 

an expansion of the form: 

(,S) e = ~ ' ( J ~ e  ,~ a ",~... | (j)',~ , e~J)6E~ ( l ~ i ~ n ;  ~'=1,2, ...) 
1=1 

s u c h  t h a t  Ya = ~ IleT'II II h')ll .- .  I1  )11 < + 
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where of course T~ depcnds on the particular expansion. We can say further that:  

the being taken ove  all possible expansions of and II ll  being the norm of 
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w 2. Approximate inverse and tensor product 

Let B and C be two Banach spaces and let T:  B ~ C  be a continuous linear mapping 

(TEs  C)). We shall say that  a family {TaEs B)}~A of linear mappings Ta:C--~B 

which is directed, in the sense tha t  the index set A is a directed set, is an approximating 

inverse of T if: 

(~) lIT41<1 V~eA 

(~) T~oT .> I~(B) forthestrongoperatortopology(i .e.T~oTx- -~ x i n B V x e B ) .  
sEA ~r 

(In general for any set X we denote by  I~(X) the identity mapping on the set X.) We 

say then that  T has an approximating inverse. 

Let  us observe then a t  once tha t  if T:  B ~ C  is a linear mapping between two Banach 

spaces of norm at  most one H TII ~< 1 that  has an approximating inverse then T is an iso- 

merry. Indeed suppose not then for some bCB we have HTbHc< Ilbl[s then we have, de- 

noting by  {T~}~eA the approximating inverse of T: 

IIT~oTblIB <~[ITb]Iz< IIbll; T~oTb ~eA  b in B 

which gives the required contradiction. 

C n  Let  us now suppose tha t  {T(J): B ~  i}j~l is a family of bounded linear mappings 

between pairs of Banach spaces each with an approximating inverse {T~J)}~Aj and let us 

also consider 

A A A A h A ~ A 

T = T (1) | T (2) |  | T (n) : B 1 | B 2 |  | Bn-~ C1 | C2 @... | Cn 

their tensor product; it is then immediate to verify tha t  the family: 

A A /~  

{T~}~,~ = .fT (1)~, | T{_2)| ... | T(:)}{ ............ ),A,x A,• ... x A, ffiA, (1.2.1) 

where A = A  1 • A 2 • . . .  • An the product space with the product order is an approximat-  

ing inverse of T. (This is an immediate consequence either of general theorems or of the 

decomposition (E) in w 1.) 
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LEMMA 1.2.1. I /  Tj:Bj-+Cj 

spaces such that 

_~. TH. Va~O~OVLOS 

F r o m  the  above  a n d  w 1 we see t h a t  

(j = 1, 2 .. . .  n) are bounded linear mappings o /Banach 

(a) 

(~) 

] ] T , [ [ ~ I ,  j = 1 , 2  . . . .  n, 

T j has an approximating inverse ./or j = 1, 2 ... .  n. 

/ x  A . , x  

Then T = T 1 | T 2 |  | T~ is an isometry. 

Le t  now aga in  B, C be two Banaeh  spaces and  le t  

B = B o ~ B I ~ . . .  ~ B ~ D . . .  N B ~ = B ~  

be a nes ted  sequence of closed subspaees  such t h a t  the  canonical  inject ions:  

i (~) : B~-~ B~_i, n = 1, 2, . . . ,  

fin) have  an  app rox ima t ing  inverse  {~ }~A,. Le t  us also denote  b y  j~ : B  n -+B the  canonical  

inject ion;  i t  is t hen  clear t h a t  the  d i rec ted  fami ly  

{ L  . . . . . . . . . . .  = i 2 , o i ( 2 - 1 ) o  . . .  i ( : )} ,  . . . . . . . . . . . .  ,0A, x A . . . . . .  ~.  

is an  app rox ima t ing  inverse of j ,  for each n = 1, 2 . . . . .  Le t  us now make  the  add i t iona l  

assumpt ion :  

(*) F o r  a n y  choice of the  sequence ~ = (oh, o~ 2 ... .  )EA = A  a • A 2 • ... t he  sequence of map-  

pings {j,,oj . . . . . . . . . . .  },%1 converges in the  s t rong opera to r  topo logy  to a mapping :  

j .  = j  ......... : B ~ B .  

I t  is t hen  clear  t h a t  I m  j ~  Boo u162 a n d  t h a t  the  f ami ly  { j ,}~a  for the  p roduc t  order  

of A =A~ • A 2 • ... is an  a p p r o x i m a t i n g  inverse of the  canonical  in jec t ion  

j~:B~--* B. 

Therefore i t  follows t h a t  under  the  hypothes i s  (*) we can iden t i fy  Bn~)C to  a d o s e d  sub- 

space of B Q C for n = 1, 2 . . . .  ~ ;  and  ob ta in  a nes ted  sequence 

B ~ ) C = B a ~ C = . . .  X~r 5 ( B , 6 C ) ~ B c r  

we claim fur the r  t h a t  X~r = B~  ~ C. I n d e e d  let  x e X~r c B(~ C a n d  e > 0 be a r b i t r a r y  

then  for a n y  choice of ~ E A we have:  
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x = [j~| (x) e B~ | 

but  for a proper choice of r q A we have [Ix--x~II .~v ~< ~ and B~r (~C being a closed sub- 

space our assertion follows. 

w 3. The role of the basis problem in tensor products 

Let  B be a Banach space. We shall say tha t  it has a basis if there exists {T~ fi s  

a directed family of linear operators on B (linear mappings from B to B) of finite rank 

(i.e. the spaces T~(B) are all of finite dimension) such tha t  

sup  IIT II < § ~ ;  T~-,ID(B) in the strong operator topology. 
~EA 

All known Banach spaces have a basis and it is an open problem whether Banach 

spaces without a basis exist. 

Let  now B be an arbi trary Banach space and let K c  B be a closed subspace and 

B-+B/K be the canonical projection, let further X be another Banach space with a basis 

and let us consider the mapping: 

73 = Ia(X)Qp : X Q B-~ X Q B/K;  

then it is immediate tha t  i f  we identify X | K to a subspaee of X Q B tha t  X | K c Ker  ~. 

We claim further tha t  X | K is dense in Ker  ~ i.e. 

X Q K  =Ker/3 .  (1.3.1) 

Indeed let {Z~6/~(X)}~eA be the operators of finite rank such tha t  

sup [[Z~[[ < + oo; Z ~ I ~ X  in the strong operator topology. 

Then if we denote by Y~= Z~QI~(B) we see tha t  

Y~-->I~(X~B) for the strong operator topology; Y ~ [ K e r ~ ] c X Q K  (1.3.2) 

the second relation holds because Z~ are of finite rank; and (1.3.2) of course implies our 

result. 

Let  now {Bj~ Kj}~:~ be Banach spaces and closed subspaces and let {pj: Bj~BJKs}'/=~ 

be the canonical projections and let us suppose tha t  all the spaces {Bj; Bj/Ks}7:~ have 

bases; let us further denote by: 

~K({ Bj~  K~}'~:I) = Kx | B~| | B,~ § B~ | K2| | Bn 

§  B~|174174174 (1.3.3) 
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a vector  subspace. Then a repeated application of (1.3.1) (or equivalent ly induction over n) 

gives at  once 
A 

:~({Bj ~ Ks}j~=~) = Ker  (p~|174 ~)Pn). (1.3.4) 

w 4. Commutative Banach algebras 

We star t  by  listing some classical notat ions on Banach algebras which we shall adopt.  

Let  R be a semisimple, regular, commuta t ive  Banach algebra with 1 and ~R as spec- 

t r u m  [2]; for a ny  rER  we shall denote then by  ?EC(~R) its Gelfand transform. Let  also 

E c  ~R be a closed subspace; we then denote by: 

~R(E) = ] (E)  = {reR; ~-'(0)~ E}, 

I~(E) = I 0 ( E ) =  (rER; ~-'(0) is a nhd. of E}, 

JR(E) = J ( E )  = Io( E ). 

I t  is then a classical theorem tha t  I (E)  is the largest ideal with E as hull, t ha t  Io(E ) is 

the smallest ideal with E as hull and tha t  J(E)  is the smallest closed ideal with E as hull. 

(For any  ideal J <~ R we define hull of J = h(J) ~ ~R 

h(J) =(ME,R; i=g}) [2] 

We also say  tha t  E is a set of spectral synthesis for the algebra R if J ( E ) =  I(E).  

Let  now R 1 and R 2 be two regular Banach algebras with ident i ty  and let O:Rv+ R 2 

be an  isometric algebraic homomorphism tha t  takes the ident i ty  of R 1 on the ident i ty  

of R2, and  identifies R 1 with a closed subalgebra of R 2. 0 then induces canonically by  

transposit ion a continuous mapping  

0 is then onto, for R~ being regular and being identified to a closed subalgebra of R 2 any  

of its maximal  ideals can be extended to a maximal  ideal of R 2. 

Let  now E 1 c ~n, be a closed subset and  let E 2 = 0-1(E~) ~ ~)~ ,  then we can verify a t  

once that :  
0-111 R2 (E2) ] = I R' (E,); O-I[jR, (E2) ] = jR,  (E~). (1.4.1) 

We have also 

LEMMA 1.4.1. Let O : RI-~ R 2 be as above and such that: 

(cr I t  has an apprvximating inverse {0~}~ A. 

(~) For any r 2 E R 2 we have 

supp [0~ (r~)] ̂  ~ eA ) 0[supp ~2]. 



T E N S O R  ALGEBRAS AND H A R M O N I C  A N A L Y S I S  57 

I n  the sense tha t /or  any  ~ open nhd. o/ O[supp ~2] in  ~R, there exists o:n E A such that 

a >/aa  ~ supp [0~ (r2)] ̂  a ~ .  

T h e n / o r  any  closed set E 1 a ~n~ as above and E 2 = O -1 (El) we have: 

0-1 ( jR,  (E2)) = j R ,  (El)" 

Proo/. Indeed from (1.4.1) we see tha t  it suffices to prove tha t  0 -1 (jR, (E~)) a jR, ( E l )  . 

So let s > 0 and x E R 1 be a rb i t ra ry  such tha t  O(x) E jR,  (E2); then there exists y~ E Io n~ (E2) 

such tha t  IlO(x) - y,l]m < e/2 .  

Also there exists a EA such t h a t  

s u p p  ^ n =0  

by  the conditions of the lemma. But  then 

O=(y~)eIo(Ex), H -0:(y:)ll 

and  ~ being arbi t rary  this proves tha t  xEJR'(E~) and completes the proof of the lemma. 

I t  follows in part icular  t ha t  if a mapping 0 : R~-+ R 2 satisfies the conditions of L e m m a  

1.4.1, and  if a closed set E I ~  ~R is not  a set of spectral synthesis for the algebra R1, then  

the set E 2 =0-~(E1) is no t  a set of spectral synthesis for the algebra R 2. 

Let  us finally introduce the following convenient  definition: 

Defini t ion 1.4.1. We shall say tha t  O:Rv-+R2, an isometric algebraic homomorphism 

between two regular Banach algebras with ident i ty  t ha t  takes the ident i ty  of R~ on the 

ident i ty  of R 2, has a local approximat ing inverse if it has an approximat ing inverse satis- 

fying the conditions of Lemma 1.4.1. 

w 5. Tensor product of Banach algebras 

The s ta tements  tha t  follow without  proof are almost  all trivial and  well known [3]. 

Let  R1, R 2 . . . .  R~ be n commuta t ive  Banach algebras with identity,  then  we can 
A A 

give on R = R I |  ... |  a canonical s t ructure  of a c o m m u t a t i v e  Banach  algebra with 

identity.  I f  fur ther  the {R~}j~I are *Banach algebras a *Banach algebra structure can 

be given on R. I f  fur ther  { p j : R j ~ R j ) 7 =  1 are continuous Banach algebra homomorphisms 

from the commuta t ive  Banach algebras R s to the commuta t ive  Banach algebras Rj  for 

j = 1, 2 . . . .  n then 

/ x  A A A A A ~ A ~ , N  A 

pl  Q p2 | . . . | p~ : R = RI | R2 | . . . | Rn ~ R = ]~l Q R 2  | . . . | R n  

is also an  algebraic homomorphism.  
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Relative to R the tensor product of the commutative Banach algebras R~, R 2 . . . .  R n the 

following facts are trivial: ~R the spectrum of R can be identified to ~R~ • ~R~ • • ~ n "  

Also if the algebras R1, R 2 ... R= are regular so is R. Further, and this is not entirely 

trivial [3], if all the algebras R l, R~ .... R n are semisimple, and if qua Banach spaces they 

satisfy the Banach approximation property (in particular if they have bases), then the 

algebra R is also semisimple. 

An important tensor product of algebras arises in group algebras, where for G~, G 2 .... G= 

compact abelian groups we can identify isometrically and canonically 

A(G 1 • G 2 • .. .  • G~) = A(G~)~) A (G~)~ . . .  Q A(G,~). 

The same is true for general locally compact abelian groups but then the algebras have 

no identity [1]. (For notations of. [5] and Ch. 8.) 

We shall prove now the following general 

THE O1r 1.5.1. Let R~, R~ . . . .  R~ be semisimple regular commutative Banach algebras 

with identity and let E s ~ ~ be clased subsets o/spectral  syr~thesis (i.e. I s = I ~j (Es)= jR~ (Ej), 

= 1, 2 . . . .  n) and let us ]urther suppose that the Banach spaces (Rs; R J I t ;  ~ = 1, 2, ... n) 

have bases. Then the set E = E  1 • E~ • ... • E ~ c  ~R is a set o/ spectral synthesis o/ the 

algebra R = R~ ~) R2 ~ . . .  Q R~. 

Proo[. Let ~ = ~( (Rj  ~ Is}J=~)~ with the notation of (1.3.3). Then ~ is an ideal of R 

and h ( 3 f ) = E  and also by the very definition of J (E)  ~ c J ( E ) .  Therefore using (1.3.4) 

we see that: 
= J (E)  = Ker (p, Q p 2 ~ . . .  ~)P~) 

(Ps : Rs-" R j I s  the canonical mapping ?" = 1, 2, ... n). From this it follows that  R / J ( E )  can 

be identified to R 1 / I 1 Q R ~ / I 2 Q  ... ~)R~/In which by what we have said above is a simi- 

simple Banach algebra; thus R / J ( E )  being semisimple it follows that  J ( E ) =  I (E)  and 

our theorem is proved. 

2. Definition of the tensor algebras 

w 1. The functional analytic approach 

Let ~={Kj}~=I be compact topological spaces and let K = K 1  • K2 • ...  • Kn and 

let us denote by  { k s E K j } ~ l  and k =  (kl, k 2, ... kn) the generic points of {Kj}7=I and K 

respectively. We then denote by C(Kj) the *Banach algebra of complex continuous func- 

tions on the space K s and 
A A A 

V = C(K1) | C(K2) |  ~) C(Kn) 
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which is then also a commutative *Banach algebra, semisimple and regular with K as 

the maximal ideal space. We call V the tensor algebra over the spaces J~= {Kj}~=i or 

simply "a tensor algebra"; we denote it as V(:~) or less accurately simply V(K) or even 

V when no confusion can arise. 

Let  nOW ~ t =  {K~}~= 1 be another family of coml:act spaces and p = {pj: Kj~K~}~=I 

a family of continuous mappings. The pj induce then, by transposition, Banach algebra 

homomorphisms 

Ps: C(K;)-~ C(Kj) 

and a homomorphism of the tensor algebras 

v /x v ~ A v  
= p . | 1 7 4  | : V(3r V(3r 

Now the vector space T = C(K1) | C(K2) | | •(Kn) can be identified to a dense subspaee 

of C(K); indeed C(K) is no other but  the completion of T for an appropriate norm on T, 

namely the injective | norm on the tensor product so that  with standard notations [1] 

we can write 

C(K) = C(K1) | C(K~) |  | C(K~). 

The projective norm | being bigger than the injective norm | it follows that  we have 

a canonical norm decreasing linear mapping 

J = J (~ )  : V(:K)--+ C(K) 

which is also (1 - 1 )  since the spaces C(Kj) satisfy the Banach approximation property [1]. 

Using then the expansion E of Ch. 1, w 1, we see that  [EIm J c  C(K) if and only if [ admits 

an expansion (E) 

/ ( k )  = ~ [~1)(~1) 1~2)(~2) " '"  //(n, (kn) VIe = (]Cl, k2, . . .  kn) e K 
t=1 

such that  /~oEC(K~), i = 1 , 2  . . . .  n; ~=1 ,2  . . . .  , ]  

T e = ~ I[f}i>ll  11/}2)11= . .  II/}n'll:  < + 
i=1 

(2.1.1) 

and that  if [ = Jv  for some v E V then 

II~llv=in/T~, 
,s 

i.e. we obtain the norm of v in V as the in /o f  Te over all possible expansions E of Jv  =[ 

as in (2.1.1). 
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I t  is also immediate that  J (~ )  can be identified to the Geifand representation of the 

algebra V = V(~) i.e. the maximal ideal space of V being identified to K we have Jv = 

VvE V. So the fact that  J is ( 1 - 1 )  is equivalent to the semisimplicity of V (el. Ch. 1, w 5). 

w 2. Elementary definition of a tensor algebra 

Here we shall give an elementary definition of a tensor algebra equivalent to the pre- 

vious one but  entirely independent from the general theory of topological tensor products. 

For the rest of the paper we shall feel free to use either of the two definitions. I t  will, 

however, be very easy for the reader to reconstruct any of our subsequent arguments 

starting from whichever definition he pleases, and in particular to read the rest of this 

paper ignoring completely the functional analytic language we use. 

We denote again as in w 1 by :~ = (Kj}~I a family of n compact spaces, 

K = K I • 2 1 5 2 1 5  

and we denote by {kjEKj}'~=I and k=(kl ,  ks, ... kn) the generic points of {Kj}~=I and K 

respectively. 

We then define V= V(:~) as the subspace of C(K) of those functions /EC(K) that  

admit a decomposition (E) 

l(k) = l ; ' (k , )  1; 2'(ks) . . .  ... ~j (kn) vk = (k,, ks, kn) EK  
J=l 

such that  [~o E C(K~), i = 1, 2 . . . .  n; j = 1, 2 . . . .  ' t (2.2.1) 

J t=1 

and then we norm the space V by setting for every 1 E V 

II111 = (2.2.2) 

the inf being taken over all possible decompositions of / as in (2.2.1). 

V then becomes an algebra of functions, and it is easy to verify that  the norm II I]v 

as defined in (2.2.2) is a complete norm i.e. that  we obtain a Banaeh algebra. With this 

definition we must now verify that  the spectrum of V(:K) can be identified to K, and 

that  V(:~) is regular, V(~) also inherits the *algebra structure of C(K) i.e. 1" = ]  the com- 

plex conjugate function. These verifications are easy. Also it is quite immediate that  this 

definition is identical to the previous one of Ch. 2, w 1. 

On the basis of this definition we can also define the homomorphism p induced by 

the mappings {p~:K~K'~}'~=I. We leave this to the reader. 
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A point  tha t  I would like to make is t ha t  in previous publications on the subject 

both  myself  and other authors have used systematical ly the nota t ion V(G)=C(G)~)C(G) 

(or even B(G)=C(G)Q C(G))where G is a compact  abelian group (or more accurately  the 

underlying topological space of such a group). The nota t ion V(G) is very  convenient  for 

tensor algebras of only two factors and  we shall use it when confusion can not  arise. For  

tensor algebras with more than  two factors it is of course quite inappropriate. A more 

accurate notat ion for V(G) in our previous notat ions is V(O) where ~ = {G~, G2} with G~, G 2 

two identical copies of G, or V(G • G). On the other hand,  the notat ion B(G) we shall 

definitely abandon.  

3. The tensor algebra homomorphisms 

w 1. The space V' and the mapping tb 

Let  us suppose tha t  ~ = {Gj}~=I is a family of n compact  abelian groups (possibly 

finite), or more accurately  the underlying spaces of such groups, which we shall also 

denote by  G,. Let  us denote by  ha, the normalized t t a a r  measures of these groups (Hh~,ll = 1 )  

and Loo(Gj) the L ~~ spaces formed with these measures, let finally ~j:C(Gj)~L~176 be 

the isometric canonical embedding (j = 1, 2 . . . .  n). We shall then consider 

V ' (0)  = L ~  (G1) 8 L  ~ (G2) 8 . . .  ~) L ~ (Gn) 

which is a Banach space. 

Jus t  as in Ch. 2, w 1, we can identify L~176 | | |176 with a subspace of 

Loo(G) where G = G 1 • G 2 x. . .  • Gn, and the projective norm on L~176 | | | 

being larger than  the norm of Z~176 we obtain a norm decreasing mapping  

J' = J ' (O)  : V'(0)-~LOO(G) 

which is (1 - 1 )  and which identifies V'(O) to a subspace of Loo(G). The fact  tha t  J '  is (1 - 1 )  

is a consequence of the Banach approximat ion proper ty  which is valid for the spaces 

Loo(Gj). Indeed for x E V'(O) x 4=0 we can then find Fj E (Loo(Gj))' = the dual  space of Loo(Gj), 

such tha t  _F 1 |  3 | | 4=0. But  the unit  ball of LI(Gj) being dense in the uni t  ball 

of (Loo(Gj))' we can also suppose tha t  Fj eLI(Gj) so tha t  F 1 |  2 @... | ELl(G), and this 

proves the result. 

Let  us also observe tha t  the space V' can be defined directly, independent ly  f rom 

the general theory  of the topological tensor product ,  in a manner  analogous to the one 

used in Ch. 2, w 2, as a subspace of Loo(G). Such a definition is based of course in the injec- 

t ion J' and  the decomposition (~) of Ch. 1, w 1. We leave the details to  the reader. 
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We now define 

05 = ~ | 1 7 4  ... |  : V(q)-~ V'(~) 

and we  see that  110511 < I1  1111  11""11 11 ~<1 (el. Ch. 1, w 1). 
Let  now H be some compact  abehan group and let us, being consistent with our 

previous notations,  denote by  ze: C (H) -*L~(H)  the canonical identification (L~176 

Z~(H, h~)). Our next  task is to show tha t  z has an approximat ing inverse and  to construct  

it explicitly. 

Let {e~ E C(H)}~A be a directed family such tha t  

OH. (3.1.1) 

The limit of the support  being taken in the sense tha t  for any  ~ nhd. of OH there exists 

~ E A such tha t  

{%}~,~A is then an approximat ing ident i ty  of LI(H) and when H is metrizable it can even 

be chosen as a sequence. 

Let  us then define: 

~r~,:L~(H)--+C(H); zt~(/) = l-)ee= VleL~~ ~EA. 

I t  is then immediate to verify tha t  {zea}~A is an  approximat ing inverse of ~r. 

Now returning to our mappings zej:C(Gj)~L~(Gj) (j = 1, 2 . . . .  n) and to 

~5 = gl |174174 

we see tha t  we can construct  an  approx imat ing  inverse of 05 using the approximat ing 

inverses of the ~j 's and (1.2.1). The approximat ing inverse {05~}~A of 05 tha t  we obtain 

tha t  way  is realized as follows: 

For  n families {e~ ) EC(Gj))~A: ( j =  1, 2, ... n) satisfying (3.1.1) we define 

O)a:L ~(G)-+C(G) (G=G l x G  2•  • 

w~(/)=/->eh~,; h,~ -'~(1)~(~)~' ~-,~(n). /EL~(G),  

where a = (~1, ~2 . . . .  an)  EA = A 1 x A 2 • • A~ with the product  order; 05~ is then defined by  

Jo05~ = o ~ o J ' ,  a E A .  (3.1.2) 

Since 05 has an  approximat ing inverse it is an isometry. 
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w 2. Tensor algebras on group spaces 

Let ~(={K,}~=I be a family of n metrizable compact spaces and let q ={G,}~=x be a 

family of n metrizable compact groups or more accurately the underlying topological 

spaces of these groups, and let further p ={pj:Kj~Gj}~=I be continuous mappings that  

are onto, they induce then as explained in Ch. 2, w 1, /~: V(~)~V(:K) an algebra homo- 

morphism. We shall show in this paragraph that  /~ has an approximating local inverse 

(Definition 1.4.1) and therefore in particular it is isometric. 

First of all we can define [4] 

p]-l:Gj-->Kj, ~=1, 2 .. . .  n, 

Borel inverses of the pj; i.e. mappings such that  

(o0 p/1 is a Borel function from Gj to Kj, 

(~) For each gEGj we have p~ opil(g) =g, 

T h e  { p ] - l } n =  1 induce then n mappings: 

15j: C(Kj)-~L~(Gj); pj(]) = / o p i l ;  

~=1,  2, ... n. 

j = 1 , 2  .. . .  n. 

V IEC(Kj), j = 1, 2 .. . .  n, 

where of course the L ~~ is taken with respect to the Haar measure of G~. We observe now 

that  the composed mappings: 

~o~j = zej: C(Gj)~L~176 j =  1, 2 .. . .  n, (3.2.1) 

are no other than the canonical identifications of C(Gj) to subspaces of L~(Gj). 

Let us now define 
A A A 

= p ~ |  |  : v ( X ) - *  t"(g) 

we deduce then from (3.2.1) that  po  ~ = c5. Let  then {cSa}=~A be the approximating inverse 

constructed in (3.1.2), then it follows that  {~= =cS=op}=~A is an approximating inverse of/~. 

I t  remains to show that  (/~=)=~A satisfies the conditions of Definition 1.4.1. Towards that  

we observe that  (/~)~ the transposed mapping of ~ is none other than 

(~)~ = P  = P l  X J02 X ... X p n : K  = K 1 X K 2 x .. .  x Kn - ' ->G = G 1 X G 2 X ...  X G n. 

I t  is also clear that  for any /EV(~K) the function J'o~(/)EL~176 is zero (i.e. zero a.e.) 

outside p[supp J(/)]. Therefore 

supp [co=oJ'o~(/)] ~ p [supp J(/)] 

by the very definition of r :But p~ =cS=op therefore Jop= = w=oJ 'op  (el. (3.1.2)) and 

from that  our assertion follows (cf. end of Ch. 2, w 1). 
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w 3. S o m e  trivial  eases  

n z n Case 1: The subspaces. Let ~K={Kj}j=I :K' ={Kj}t~I be two families of compact 

spaces such that  K j c K ~  j = 1, 2, ... n and let p = {p~: Kt-->Kj}~= 1 he the canonical injec- 

tions. Then Tj can be identified to the quotient mapping 

C(K~) ~C(KS) / I (K j )  = C(Kj); I (Kj)  = Ic(K?(Kj). 

From that  it follows that  ~ is onto, also f o r / E  V(:K') .we have J o b ( l ) = J ( / ) ] ~  the restric- 

tion on K =.K s • K 2 • • K~. So V(:~) can be identified isometrically with the quotient 

algebra and ~ with the quotient mapping 

~: V(TK') -+ V(:K')/I(K) = V(:K). 

Case 2: Finite codimension. Here we sh~ll prove a lemma which we shall need later. 

Let  X, A, B be arbitrary compact spaces and let {xj, x~ E X}~=s be 2p distinct points of X. 

We shall consider the subspaces 

A~ ={/~C(X• /(xj, ~) =/(x~, ~) V~eA, 1 < j < n }  ~ C(X• 

i ~  = {/E C(X • A) ~) C(B); J/(xj, ~, fl) = g/(x~, ~, fl), V~ E A ,  flEB, 1 ~< ] ~< n} c C ( / •  A) ~) C(B) 

for all 1 ~< n < p. Let  then 

~ : An-~C(X • A); #n =,~@(I~B)  v : A n ~ C ( B ) ~ C ( X  • A)~C(B).  

I t  is then quite clear that  Im (fin) ~ M~ for n = 1, 2 .... p. We shall in fact prove 

L~MMA 3.3.1. I m / ~  =Mn, n = l ,  2 . . . .  p. 

Proo/. We first prove the lemma for n = l .  We fix F(x)E C(X) such that  F(Xl)=0, 
F(x~) =1 but arbitrary otherwise, then every element /E C(X x A) admits a unique de- 

composition 

/ =/(1) +/(~);/(1) E A1 /(2) = F(x)  ~r (a), ~ = ~i E C(A). (3.3.1) 

I t  suffices to set Ss(a) = ](x~, ~) - ](xl ,  ~). N o w  let  ] G M 1 then we can write 

J/(x,  ~, fl) = ~ g,(x, ~) hj(fl), gj e C(X • A), hje C(B); ~ ]]gs]l~ ]lhJH :r < + ~o 
t ~ 1  J = l  

decomposing then each gj as in (3.3.1) we see that  

J/(x,  a, fl) - (1) (3.3.2) 
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and substituting x = x~, x~ in (3.3.2) and subtracting the two equations so obtained we 

obtain that  

~r hj(fl)=0 u162 u  
i=1  

and this together with (3.3.2) proves t h a t / E I m ~ t  I which is our lemma for n = l .  

Now for any n (1 <~n<~p) there exists a unique compact space X,  such that we can 

identify A~ with C(X, • X~ is the space we obtain from X by identifying xj with x; 

for 1 ~< j ~< n. Using that fact we see our lemma for arbitrary n can be proved by induction 

on n. Indeed suppose it holds for n = l ,  2, ... r - 1  < p  and l e t / E M r c M r _ l ,  the inductive 

hypothesis gives then that /=~tr_l(]' ) for some / 'EA ,_ i~ )C(B)=C(X~_I •  

since we must have J/ ' (x ,  a, fl)=J/'(x;, ~, fl) V~, fl the first part  of the proof applied to 

/ '  gives our result. 

w 4. The mapping d :  D ~  ~ T 

In  this section we shall study a particular homomorphism of tensor algebras which 

will play a central role for the rest of the theory. This section will be independent of the 

heavy Borel cross-section theorem we used in w 2. 

We fix some notations first. Let to = 1, 2, ... ~o be either a positive integer or $1 o the 

countable cardinal; for any space X we shall denote then by X ~ the cartesian product of 

X with itself w-times; in this context we shall always denote $10 simply by oo so that  we 

shall write X ~176 rather than X ~~ For any value of co it is then clear that (X~176 ~ 

since ~0w =~0, when in the future we say that we identify (X~~ ~ with X ~176 we shall mean 

that we identify the index set ~oeo with ~o in any fashion whatsoever, such an identification 

is then unique up to permutation of the index set of the product. 

Let now Z(2) be the group of two elements, let tt and T be the real line and the circle 

group (T = It (rood 2~)) and let us denote by Doo = (Z(2))~176 we have then for any ~o, D~ = Doo. 

Let us finally denote by I the unit interval [0, 1] and let 

p :  It-+T; p(r) = exp (2~rir) ET VrER 

the exponential mapping, and also: 

-~- (~ : D~o ~ I ;  (~(:r - ~J 
J=i 2 i '  

V ~ =  (~i' ~2' " ' ' )  eDoo 

the canonical mapping induced by the binary expansion of the real numbers r EI, and let 

us denote finally by d =po6:Doo-+T the composed mapping. 

5 -  672908 Acta  mathematica. 119. I m p r i m 6  le 16 n o v e m b r e  1967. 
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We see tha t  (~ and d are onto and such tha t  if we remove from Dr a countable set 

they  become (1 - 1). F rom this it follows tha t  the  Borel inverse 

d -1 : T - ~ D ~ ;  dod - I=I~T,  d -1 Borel mapping  

can be explicitly constructed and is well defined up to a countable set of points. Also we 

see tha t  d identifies the Haa r  measure of Dr to  the I t aa r  measure of T. For  any  co, d then 

induces 
do~:Doo(=D~)--+T ~ 

the cartesian produc t  mapping d • d • • d after identification of Doo with D~  = (Doo) ~ 

as explained above, d~ is then defined only up to possible permuta t ion  of the index set 

of the product  [Z(2)] ~~ which defines Doo; the properties of d~ which we shall use, however, 

will be independent  of such a permutat ion,  and thus the order of the index set can be 

fixed in any  fashion whatsoever.  

I t  follows now tha t  d~ is onto, and  tha t  its Borel inverse d~, 1 can be constructed by  

taking the cartesian produc t  eo times of d -1 ,  also d~ is ( 1 - 1 )  if we remove from D~o a set 

of Haa r  measure zero and it identifies the t t a a r  measure of Do0 to the H a a r  measure of T% 

For  a ny  n >11 we consider now ~n  = (D(~}~=I, 0", = {T~)~=I the  families t ha t  consist 

of n identical copies of Doo and  T ~ respectively and ~ - f . l  . ~ < J ) _ . ~  ~ -- t . . . . . .  J 1J=1 the family of n 

mappings identical to d~. 

I t  then follows from Ch. 3, w 2, t ha t  the tensor algebra homomorphism induced by  ~ 

~ : V(ff~) = C(T ~) Q . . .  ~) C(T ~ --+ V(O~) = C(Doo) Q . . .  Q C(D~) 

is isometric and has a local approximat ing inverse. Observe tha t  here since we know expli- 

cit ly the Borel inverse of d~ the proof of these facts becomes much simpler; the reader is 

advised to reconstruct  the proof directly observing tha t  using d o we can in fact  identify 

L~176 and L~176 For  fur ther  reference we denote by  

n _ . ~  . .  . . . .  do - d~ • d= • • do : Doo •162 • •162 -~ T ~ • T ~ • • T ~ 

d~:C(TO • To x ... • To)-~C(Doo • • ... • 

the cartesian produc t  of d~ n times and its t ransposed mapping.  

w 5. The subalgebra V(~7~) C V(~O.) 

I n  this paragraph we shall s tudy  fur ther  the mapping  d:Do~-~T and the induced 

algebra homomorphism.  

Let  us denote byJLA={p/2s; p E Z ;  sEZ} the set  of diadic rationals of R a n d F = p ( A )  = 

(tl, t~ . . . .  t, . . . .  ) their image on T denumerated  in any  manner  whatsoever.  
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Then  we have  

Card(d-~(t)) = 1 t E T ~ F ;  d-~(tn) = (t+n; t~) ED~ Vtn EF. 

Let  us then  denote for any  n 

Cn=(/eC(D~);/(t~+)=/(t:), ~ = 1 , 2  . . . .  n ) ;  

it follows tha t  we have  a nested sequence of closed subspaces 

C(D:r = C O D C 1 ~ . . .  ~ N C~ = C~ = C(T). 
n = l  

(3.5.1) 

We shall p rove  t h a t  these subspaces sat isfy the  condition (*) of Ch. 1, w 2. 

Towards  t ha t  we first  construct  a double en t ry  sequence Y = (I~.~)~.n =1 of closed arcs 

(intervals) of T of length  ~7e/2 t ha t  sat isfy the following conditions: 

(:r The center  of I~.  n is tn, and its end points  ~ F u m 

(~) u fixed n I 1  n ~ 12 n ~ ~ I . . .  . , .  , . . . .  
m 

(y) Two dist inct  arcs Ia~,a~ and  1~,~, E Y of our sequence are ei ther disjoint  or one is 

s tr ict ly contained in the other. 

Such a double sequence ~ can easily be constructed in successive steps of n ( induct ively 

on n) i.e. we first construct  (I~.1)~= 1 satisfying (~) and (~), then  (I~.~)~_1 satisfying (cr 

and  (~) and  also (y) wi th  the  a l ready constructed sequence eet. 

Using now the fami ly  Y we can define for every  n ~> 1 

i(n) m :C~-I->Cn, m = 1 , 2 , . . . ,  

b y  defining for every  ] E C(D~) a new funct ion i~)(/)E C(D~) f rom the conditions: 

(~,) [i~)(1)] ( ~ ) = / ( a )  if d(~) r  . . . .  aeDor 

(~) If  d(~)EI . . . .  [i(~)(/)] (~)=~t(d(a)) where ~teC(Im.~) and  is such t h a t / t o p  is a 

l inear funct ion on any  closed interval  of the  set  p-l(Im.n ) C R. 

I t  is then  easy  to  see t h a t  {i~)}~=1 is the required approx ima t ing  inverse of t he  

canonical injection 
i (n) : Cn "-> Cn-1  

and t h a t  it satisfies the condit ion (*) of Ch. 1, w 2, for all n/> 1. 

Le t  now A, B be two a rb i t r a ry  compac t  spaces and  let us define for each n t> 1 

A~={JEC(Dor /(t~+,a)=/(t;,e) u162 v = l , 2 , . . . n }  (3.5.2) 
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We have then again a sequence 

C(D~ x A ) = A 0 ~ A 1 D . . .  N A n = C ( T x A )  (3.5.3) 
n = l  

I t  follows then from the above considerations that  the sequence (3.5.3) also satisfies the 

condition (*) of Ch. 1, w 2. This can either be verified directly on the line of our proof 

for the sequence (3.5.1), or it can be deduced from the above as follows. For each n~>l 

there exists Xn a compact space such tha t  we can identify An with C(Xn x A) and C~ with 

C(X,), we can take as X n the space D~ after identification of C with t~ for v = 1, 2, ... n. 

Then An = Cn | C(A) and we can set as the approximating inverse of the injection 

A.-~A._I 

the family (i~)| for n = 1,2, . . .  [Ta| 2 for two mappings T j : A j ~ B j  (] = 1, 2) 

is the mapping T~|  2 extended to the completion AI| We leave the verification 

of (*) Ch. 1, w 2, to the reader. We can now prove 

T ~ O ~ E M  3.5.1. 
F- 

C(T • A)QC(B) 

C(T x A • B) 

We have I m [ J o ~ ]  = Im 0 fl I m  J .  

Let A,  B be two compact spaces, then in the diagram: 

(d  • I O A  ) v ..| ( i O B )  v = q~ 
C(D~ • A)~)C(B) 

~ J  

(d  x I O A  x I O B ) "  = 0 > C(D~ • A x B) 

Proo]. Indeed let xE C(D~ • C(B) be such that  J x E I m  O. Then using Ch. 3, w 3, 

Case 2, and our previous notations [(3.5.2) and (3.5.3)] we see tha t  xEA~(OC(B) for all 

n >11 and since the sequence (3.5.3) satisfies (*) of Ch. 1, w 2, it follows that  x E C (T • A) (~ C(B) 

[or more accurately that  there exists some x 'EC(T•  such that  x=q~x']. This 

proves our theorem. 

Now a successive application of Theorem 3.5.1 for different spaces A and B yields 

the following 

T ~ v . o ~  3.5.2. For any n >~ 1 and any compact space A in the diagram 
A A 

C(T~)| > C(D~)QC(A)= V~(A)= V~ 

An(A) r J 

,, >. C ( D : r  C(T" x A) (d, x I O A )  = 0 n 

we have Im[Jo~0~] = I m J  N Im0~. 
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Let us now for the purpose of the proof of our next  theorem introduce the following 

notation, for any compact group K and any n >/1 let us denote 

K~ ) K n ~ K ~, ~n o in=~n ,  (3.5.4) 
~n = ~n(K) ~n = ~n(K) 

(kl, k2 . . . .  ]~n-.-) - ~ n  (]~1, ]~2, " ' '  kn) r (]r ]~2, "'" ]~n, 0K, 0K, "")"  

The canonical projection, and injection of the space of the  first n coordinates of the in- 

finite product. Observe then that  ~n ) IaC(K ~176 for the strong operator topology 
n - - ->  o o  

(~n is the transposed mapping). We can now prove: 

THEOREM 3.5.3. For any cgmpact space A in the diagram 

(A~) 

A 

C(T~174 
A v 

dr162 | (IOA ) = q~ 

C(T ~ x A)  (d~r • IOA) v = 

A 

C(Doo)| = V 

C(D~ • A) = W 

we have Im [Jo ~] = I m  J fl Im 0. 

Proo/. Together with the diagram (Am) let us for every n >/1 consider the diagram 

An(A) =An of Theorem 3.5.2 with the same space A. 

Now the mapping Sn applied to T ~176 and ( D ~ ) ~ 1 7 6  or D~, ~n(T):Tn-+T ~, 

~n(Doo) : (Doo) n = D~-~ (D~) ~176 = D~) induces by  transposition a mapping from the diagram 

(A~) to the diagram (An) (i.e. from the spaces of the diagram A~ to the spaces of the 

diagram An) and conversely the mapping ~n for K = T and D~ induces a mapping back 

from (An) to (Aoo). 

So now let xEC(Dcc)~)C(A) = V be such that  J x E I m O c  W then 

xn=[~n(D~)~) ( I~A)"] (x )EVn and J x n E I m O n c W n ,  

thus an application of Theorem (3.5.2) to the diagram (An) gives that  xnE Im~n thus 

v A ~ A 

~n = [ ~n(Dcc) | (I~A ) v] (xn) = [~n(D~) | (IOA ) v] (x) E Imp.  

But  from our previous remark ~n->x, so, Im ~ being closed in C(D~)| (of. Ch. 3, w 4), 

our result follows. 

Applying Theorem (3.5.3) twice we obtain 
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THP~OR~M 3.5.4. For any co = 1, 2, ... ~ ;  in the diagram 

C(T~)(~C(T ~) ~ C(D~)(~C(D~) 

C(T ~ •  ~) - - +  C(DooxD~r v 2 
d ~  

v~ I m  d~. we have I m  [Jo ~ ]  = I m  J n 

We have, for simplicity, in all the preceding considerations restricted our at tention 

to the tensor product of only two factors, but  of course Theorem 3.5.4, for instance, can 

be generalized to any number  of factors, using a simple inductive technique. We shall, 

however, have no use for theorems of the above type for more than two factors. 

4. The embedding of a tensor algebra in a group algebra 

w 1. Definitions and classical results 

Let G be a locally compact abelian group and let G be its character group. We shall 

introduce here a number of definitions and well-known propositions. 

(i) K c  G a compact set is called a Kronecker set if for any  ]EC(K) with ]/] =1 and 

e > 0 we can find g E G such that  sup k ~K[/(k)-;~(k) [ < s  

(ii) K c G  a compact subset is called a K v set for p~>2 some natural  prime if: 

{zl xe } = {tee(K); 

i.e. the restrictions of the characters on K coincides with all the Z(p)(cC(T))  valued 

continuous functions on K. 

(iii) A set K c  G that  is either a Kronecker or a Kv set for some prime p will be called 

a :K-set of G. 

(iv) A subset K c G is called independent (resp. p-independent for p some natural  

prime) if for any choice of {kse g}]=l and {nje Z}]=I we have 

Y 

~ . n j k j = O a ~ n j = O  ( r e s p . % - - 0 ( m o d p ) ) ,  ] ' = 1 , 2 , . . . , J .  
1=1 

(v) I t  is well known and trivial that  a Kronecker set of G is independent and a Kp 

subset of G is p-independent; and tha t  for all g E K = a Kp set of G we have ord g =p .  

(vi) Let  G be an arbi t rary locally compact non discrete abelian group, then there 

exists K a Cantor subset of G which is either a Kronecker set or a K v set for some prime. 

_Note: Cantor set means tha t  it is perfect metrizable and totally disconnected i.e. 

topologically homeomorphic to D~. 
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Now quite generally for E any closed subset of G a locally compact group, we denote 

by A(E)~  C(E) the algebra of restrictions of functions lEA(G) on the set E. A(E) can 

then be identified to A(G)/I(E) and as such is assigned canonically with a norm and a 

*Banach algebra structure. I t  will always be considered as a Banach algebra with the 

above canonical quotient norm. 

(vii) We say tha t  E c  G a compact subset of the locally compact group G is a Helson 

set if A(E)=C(E). 

(viii) Let  G be a compact group and K a Kroneeker set of G then A(K)=C(K) isomet- 

rically i.e. II IIA(K)=ll lie(K). 
(ix) Let G be a compact group and K a Kp set for some prime p, then A(K)=C(K) 

and II/IIA(K><k II/I[r for all/eCJ(K), where 1 <~kv<~2. 

For proofs and comments on the above definitions we refer the reader to the standard 

literature on abstract  harmonic analysis e.g. [5]. 

The rest of this chapter, and indeed the whole motivation of tensor algebras, rests 

on the following simple observation. 

Let G~, G~ be two compact groups and E I ~  GI, Ez~  G z two compact Helson subsets 

i.e. A(E~) = C(Ej) (j = 1, 2). Let also E = E 1 • Ez~  G 1 • G z then we have 

A ( E) = A ( EI) ~) A ( E~) = (~(E~) ~) C(E2). 

In  other words A(E) is a tensor algebra. We leave the verification of this to the reader 

(observe that  A(G)=A(G1)QA(G2) Chapter 1, w 5) since in the next paragraph we shall 

examine in detail a much more general ease of the above phenomenon. 

w 2. The basic embedding theorem 

Let HI, H 2 . . . .  , H~ be arbi t rary compact subsets of the compact abelian group G, 

and let us denote by  

s:H = H  1 xH~ x . . .  x H~-~n  = H I + H ~ + . . . + H ~ G  (4.2.1) 

s(hl, h2 ..... h~) = h 1 +h~ + ... +h~ 

the group addition mapping, and let us also make the technical hypothesis: 

(~): The algebra A(H) = A (HI) ~) A (Hz) Q i.. ~ A (Hn) is semisimple. 

We have already observed [Chapter 1, w 5] tha t  (~) is satisfied in particular when the 

Banaeh spaces A(Hj) ( j = l ,  2 ... . .  n) satisfy the Banaeh approximation property,  so (:H) 
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is certainly verified when A(Hj)=C(Hj) which is the only case we shall need for applica- 

tions. 

When the hypothesis (~/) is verified we can identify `4(H) to an algebra of functions 

on H the carrier space of .4. So under the hypothesis (:H) we can define a linear norm 

decreasing mapping: 

2:A(G)-~ .4(H) 

by defining for all Z E Q 

2(Z) =z(hl)g(h~).'. z(h=), hjEHs, j = l ,  2 ..... n, 

and extending by linearity. I t  is then clear that  with the identification , 4 (H)c  C(H) we 

have for all ]EA(G) (]] ff)os=2(/) which shows that  ;t(I(/~)) and that  ;t induces 

]:A(i~)-*`4(H) 

a norm decreasing ( 1 - 1 )  algebraic homomorphism which, of course, is no other than the 

one defined by (~)~ =s  [cf. Chapter 1, w 4]. 

We shall now study conditions under which 

~t is isometric and onto (4.2.2) 

and it identifies the two algebras ,4(H) and A(/~). Towards that  let K,, K~, ... KncG 

be disjoined compact sets such that  K*=K I U K~U... U K n is a ~-set  of G, let also 

rz, r 2 ..... r ,  be positive integers and let us suppose that  the sets {H~)~I satisfy 

Hj~{=~=le=k=; ~== • 1, k=EKj}. (4.2.3) 

We claim then that  (4.2.2) is satisfied. 

Indeed let us introduce the notation 

/(J) = (1 | | | @... @1) EA(H); u j = 1, 2, ... n, 

where 1 is the function identically equal to 1 and / is placed on the ]th place of the product; 

and let us also denote by B and B the unit balls of the Banach spaces A(/7) and A(H) 

respectively. 

To show now that  )~ is isometric and onto it suffices to show: 

~(B) = Y; (4.2.4) 

where the bar indicates of course the topological closure in ,4(H). 

Taking now into account the way the elements of the form/(J) (lEA(Hi); j= 1, 2, ... n) 
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generate the algebra A(H) we see that  (4.2.4) will follow if we show that  for any e >0  

any ] = 1, 2, ... n and any /EA(Hr there exists ](])CA(G) such that  

III~'IIA(o, < Illll~(,,, + e; II1 (1) - ~(l~'))ll~,,~ < ~. (4.2.5) 

Towards that let  l ,  E A(G)  be such that  II1,11~(~ < II111~,",, + ~ 1,1", = 1 then  

1, = z: ~ , x ;  5 I~,1 = II/.11,,,o,. 
ze0 ~e~ 

Let us then form ],., = ~ z ~  axZ, where Z, e ~ is arbitrary subject only to the conditions 

sup[Z(k)-Z,(k)]~<~;  s u p ] l - Z , ( k ) ] < ~ ,  i # i ;  
k e K t  k e K t  

we can always choose a Z, for an arbitrary Z and ~ by the hypothesis on K*. I t  is then 

quite clear from (4.2.3) that  for a small enough ~ if we set/(]) =]~., our condition (4.2.5) 

is satisfied (observe that  for any E = $ c  G and e >0  these exists ~ >0  such that  for all 

Z, ~ve4 we have ilxl~-~l~ll~<,7~llzl~-wl~ll~,~,<e (of. (5.1.4) and [12], (1)).) We have 

in fact proved the fundamental 

THEOREM 4.2.1. Let G be any compact abelian group and K1, K S ..... Kn C G compact 

disjoined subsets such that K 1 U K S U ... U Kn is a :K-set o/G; let rl, r~ ..... r n be positive integers 

and H i c  r t (KI -K j )  arbitrary compact subsets. Then we can identi/y canonically and isomet- 

rically the algebra A(H1) 6 . . .  6 A(Hn) with the algebra A(H 1 + H s +... + Hn) provided that 

the hypothesis (~) holds. 

We can now deduce a series of important corollaries. 

THEORE~ 4.2.2. Let G be a compact abelian group and let ~ = { K t c  G}~=I be compact 

disioint subsets o /G  and let us denote 

K*= 6 K , ;  K = ~ K t =  k , ; k ,  e K  t, i = 1 : 2  . . . .  ,n  c O .  
i = 1  t = 1  t 

Then: 

(cr I[ K* is a Kronecker set o/ G the algebra A = A(K)  can be identi/ied canonically 

and isometrically with the algebra V (~).  

(~) I /  K* is a K v set o/ G the algebra A=A(_K) can be identi/ied canonically and 

topologically with the algebra V = V(~)  so that we have: 

2=ll Ilv > II IIA >~ II l[ 

/or the A-norm and the V.norm o/two identi/ied elements. 

I t  suffices to apply Theorem 4.2.1 and [Chapter 4, w 1, (viii), (ix)]. 
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THEOREM 4.2.3. For any in/inite compact abelian group O there exists E a compact 

subset such that we can identi/y topologically and algebraically A(E) to the algebra V ( D J .  

Indeed it suffices to observe tha t  if K ~  G is a ~K-Cantor set of G and if we split it 

into two disjoint relatively open subsets K x, K z and set E = K  x + K  s we have 

A (E) ~ CCK~) ~) C(K~) ~ C(D~) ~) C(D~) = V(Dcr 

Then a ny  identification of K 1 with Doo and  of K s with Doo fixes the identification of A(E) 

with V(D~) and  the transposed identification of E = K  1 + K 2 with D~o • D:o. 

From tha t  identification of E =K1 + K s  with D~o • Doo it follows at  once tha t  if 

~ c D ~ •  is a compact  subset which is not  of spectral synthesis for V ( D J  it cor- 

responds to E c  E ~  G a subset which is not  of spectral synthesis for A(E) and thus a 

fortiori is no t  a set of spectral synthesis for A(G), i.e. is not  a set of spectral synthesis of 

the group G. 

w 3. The embedding i -  P + (2 

I n  this paragraph  we shall give a slightly less canonical condition under  which we 

can identify M(H) and A(//) .  (We preserve all the notat ions of the previous paragraph.)  

To simplify our writing we shall suppose tha t  n = 2. Let  us introduce the following 

Definition 4.3.1. Let  H 1, H2~G be two compact  disjoined subsets of the compact  

group G; and  let m I, m2 be two elements of the set (2, 3 . . . . .  n . . . . .  oo) where oo is a "new" 

symbol.  We shall then say  t h a t / f i C ( H  1 U H2) is an  {m 1, m2}-function if we have ]"~(h,)= 1 

Vh, eH~ (i = 1, 2), where we interpret  /~ = [/(x) l conventionally.  We shall also say tha t  

the pair  {/ t  1, H~} is an  {m~, m2} pair  if for every / e C ( H  x OH,) {rex, m~}-function and 

every e > 0 we can find some ;~ 6 ~ such tha t  I[(h)-z(h)l <~s for all h e H  1 [J H~. 

We shall now prove (with the notat ions of the preceding paragraph)  

T t r r o R ~ M  4.3.1. I[ n = 2  and {Hx, H2} is an {m 1, m,} pair/or some m~ and m 2 then 

is onto and identi/ies A(H 1 + H~) with C(H1)| C(H~) topologically. 

Proo/. Indeed  it is well known tha t  under  our hypothesis  A(H~)=C(Hi) (i = 1, 2) [5]. 

Also it is clear by  definition 4.3.1 tha t  the mapping  s (4.2.1) is ( 1 - 1 )  and tha t  it identifies 

H = H 1 • H 2 w i t h / : / =  H 1 + H s- 

To prove the theorem we first observe tha t  for any  / ,6C(H,) such that/m~(h~)=l 

u ( i = 1 , 2 )  (with the same convention /~176 as in definition 4.3.1), and 

a ny  e > 0  there exists ~v6A(/t) such tha t  

II/1 1. 
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I n d e e d  b y  our def ini t ion of an  (ml,  mz} pa i r  we can set y~ =Z] ~ for some Z E G. The 

theorem then  follows upon  observing t h a t  for a n y  ]EfJ(H1)~fJ(H2)=A(H ) we have  an  

expansion:  

i=1,2,  :r . . . .  

~=i ~--i 

Rela t ive  to  {rex, ms} pai rs  we shall  p rove  the  following 

T H E O R E M 4.3.2. Let Px, P~ c G be two arbitrary per/ect subsets o/the compact metrizable 

abelian group G, then we can lind two Cantor sets H 1, H~ and gl, g2 E G two points such that 

HxCgl +P1; H2cg2+P2 

aud s~eh that {H.  H~} is an { m .  ~ }  pair/or some ~ and ~ .  

Prool. F o r  i = 1, 2, le t  us define m~ as the  smal les t  posi t ive  integer  m, if such an  integer  

exists ,  such t h a t  for P ' c P ~  some perfect  subset  a n d  gEG some po in t  we have  mp'=g  

Yp' EP ' .  I f  such an  integer  does no t  exis t  set  mi = + c~. 

L e t  also when m i <  + c r  p~ be some Cantor  set  such t h a t  P[~g~+Pt  for  some gtEG 

and  m~p; =0 vp;eP;, such a P~ exis ts  b y  the  def ini t ion of m~; when m~= + ~ set  P[ =P~ 

(i = 1, 2). 

I t  t hen  follows b y  the  def ini t ion of m~ a n d  P~' tha t :  

For arbitrary {X~) ~ D')N~ . IV(2) C ~)')N, ~ ' - l l J ' g = l ~  (zx~ ~ 2)r 

perlect subsets and arbitrary 

{ - -  m 1 < T~(ar 1) < /1}N=I 1 { - -  m 2 < m ~  ) < ~ / 2 } N i l  

integers that are not all zero we can lind points 

x(~ ) E X(~ ~ i = 1, 2, a = 1, 2 . . . . .  N~, 

N1 Ns 
such  that  ~ "~--(i)~(1)'va =~= ~ "~ 

~=1 ~=1 

(when m~ = ~ we set  of course convent iona l ly  - m i  = - ~ ) -  I t  is also ev iden t  t h a t  for each  

xEP~ the  order  of x ( o r d ) x  divides  mi (with an  obvious convent ion  or m l = c ~  ). 

Using now the  s t a n d a r d  technique  of cons t ruc t ing  an  independen t  a n d  a :~-set  in a 

compac t  group [5; 5.2.4] a n d  s t ay ing  well inside P~ and  P~, which we can do because of 

the  i ta l ic ized s t a t e m e n t  above,  we see t h a t  we can cons t ruc t  our  two sets H 1 a n d  H~ 

sa t i s fy ing  the  condi t ions of Theorem 4.3.2 as  the  in tersect ion of a decreas ing sequence 

of open sets wi th  P~ and  P~ respect ively .  
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Combining now Theorem 4.3.1 and Theorem 4.3.2 and taking into account the fact 

that  for arbi trary E = E c G and ~ E G we have A (~ + E)-----A (E) we see that  we have proved 

THEOREM 4.3.3. Let P1, P2 ~ G be two arbitrary per/ect subsets o~ the compact metrizable 

group G, then we can f ind two subsets E 1 c  P 1 and E 2 c  P2 such that the algebra A (  EI + E~) 

is topologically isomorphic to V( D~). 

w 4. The embedding of V in A and the problem of spectral synthesis 

We star t  with some trivial remarks, and we preserve all the notations introduced up 

t o  n o w .  

Let E ~  G be a compact subset of spectral synthesis of the compact group (7, and let 

E 1 c  E c G  be a compact subset of E then the following two assertions (:r and (~) below 

are trivially equivalent 

(~) E 1 is a subset of spectral synthesis of G, i.e. a set of spectral synthesis of the 

algebra A(G). 

(~) E 1 identified to a subset of the spectrum A(E) ,  which is E, is a set of spectral 

synthesis of the algebra A(E) .  

We shall also need the  following trivial consequence of the definition of a K-set. 

Let K =  G be a compact Kronecher (resp. K~) subset o/ the compact group G, and let 

u : K-> H be a continuous mapping where H is a compact group isomorphic to T ~ (resp. [Z(p)] ~) 

with s some cardinal number. T h e n / o r  any W c H nhd. o/ OK the zero element o / H ,  there 

exists h = h w. ~ : G->H a continuous homomorphism such that 

~ ( k ) - h ( k ) e  W V k e K  

(p is o/ course some natural prime). 

Let now G be some compact group and let (mjEZ}~.I be n mutually prime non zero 

integers ((ml, m 2 .. . . .  mn) = 1) and let us denote by  

fl : G n = G • G • ... • G ~ G; fl(gl, g2 . . . .  , gn) = ~ mjg~ (4.4.1) 
t=1  

a group homomorphism. Let  us also denote by  in:G-+G n ( p = l ,  2 . . . . .  n) the canonical 

injection of G in G n that  identifies G to the p th  component of the product. W e  shall now 

prove the: 

L ~ M A  4.4.1. The mapping/~ splits, i.e. there exists L e G  ~ a compact subgroup such 

that, 
G n = L @ K e r  [~; L ~ G ;  K e r p ~ - G n - l = G  • ... • G. 
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Proo/. Let  M = (m~ ~ Z)~ n t-1 be a square, integer entries, matr ix  such tha t  det  (M) = 1, 

and m u = m ~  ( ] = I , 2  . . . .  ,n)  bu t  a rb i t ra ry  otherwise, by  our hypothesis  i t  is easy to  

verify tha t  such a matr ix  exists, and set: 

n 

#~:G~-~G; #~(q~,g~ . . . .  , g , ) = ~ m u g ~ ;  i = l , 2 , . . . , n  
~=1 

and also 
#* :G"-~Gn; #*(g*) = (#l(g*), -.., #,(g*)) e G"; vg* e G". 

Then by  our hypothesis  on #, #* is an automorphism of G ~, and also #1=z lo /~  *, where 

g~ is the projection of G n on its first component  group; since #1 = #  our Lemma follows. 

Le t  us denote then  by  #L =#IT. which is then an isomorphism from L to  G. Note  t h a t  

L, and  therefore #~ also, is not  uniquely determined by  the Lemma.  

Let  us now suppose tha t  G = T  ~ (resp. [Z(p)] ~ with p some natural  prime) where 

is some cardinal number,  and let K1, K 2 . . . . .  K n be disjoint compact  subsets such t h a t  

K* = K 1 0 K s U ... U K~ is a Kronecker  set (resp. a K~ set) of G. And let us suppose tha t  

we choose the (mjeZ}?_l such tha t  m j =  _+1 ( j = l ,  2, ..., n) but  arbi t rary  otherwise, and  

let us define # by  (4.4.1); and let us apply  our Lemma and let us fix a decomposit ion 

G n = L G K e r #  and a #L as in Lemma 4.4.1. We see then tha t  # K = # 1 ~  (/z restricted to  

the set K) where K = K  1 • K s • ... • K ~ c  G ~ is (1 - 1) and has an inverse [cf. ch. 4, w 1, (iv)]: 

#~r~:K = mflcj; kjEKj j=l ,2 , . . . ,n  ~K. 
J 

Let  now [ E I A(c~ (/s then ] o #  = ~([) E I A(a"~ (K),  and since K,  being a cartesian product  of 

sets of spectral synthesis, is a set of spectral synthesis [Th. 1.5.1; [12]]. I t  follows tha t  

for a ny  e > 0 there exists [~ E Ig (a"~ (K) with 

II1 - < 
Let now: 

~ :K* -~Ker  #; defined by ~(/~j) = loi j (mjkj)  Vk jEK j  ( j = l ,  2, ..., n), 

where l denotes the projection of G n on the direct summand  Ker/~ defined by  the decom- 

position G n = L |  #.  Since then Ker  # ~ G  '~-1, applying our  remark  a t  the  beginning 

of this paragraph  we see tha t  for W any  nhd. of zero of the group Ker  # we can find 

h = h w : G ~ K e r #  a continuous homomorphism such tha t  u(/c)-h(/c)E W u  let us 

then denote b y  

h *  : G-~ G" = L@ Ker  #; h*(g) = (#7.~(g), hw(g)) 

We have then trivially #oh*w = I~G for all W and  also if W' is any  nhd. of K we can choose 

W such tha t  h * ( / ~ ) c  W'; f rom these facts we deduce tha t  
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oh* E IA(G)/K ~ and being arbitrary,  we see tha t  we have, in fact, and that  for someW/s  w 0 ~ j, e 

proved tha t  K is a set of spectral synthesis of G. We can thus state: 

T~I]~OREM 4.4.1. Let G be an arbitrary compact abelian group, let {ej = __+ }j=l be a 

choice o/ +_ 1, and K1, K 2 . . . .  , K ,  compact disjoint subsets o/ G such that K* = K 1 U K 2 U 

... U Kn is a ~-set  o /G.  Then the set K = ~ = l e j K ] c G  is a set o/spectral synthesis o /G.  

Proo/. The case G arbitrary and K* a Kronecker set can be deduced from what we 

have already said by embedding G topologically and algebraically in T a for ~ some appro- 

priate cardinal. The case K* a Kv set for p some prime also follows from what we have 

done upon observing that  Gp(K*)_~[Z(p)] ~" where ~ '  is again some cardinal number [6]. 

:From Theorems 4.4.1 and 4.2.3 and the remarks at  the end of Chapter 4, w 2 as well 

as by the introductory remark of this paragraph about  the equivalence of (~) and (~) 

we deduce 

T ~ E O R ~  4.4.2. For any infinite compact abelian group G group there exists E c G  
A 

a compact subset such that A(E)~V(Doo)=C(Doo)| and in such a way that E I C E  

a closed subset o / E  is a set o/spectral synthesis o /G  i /and  only i /E~  c Doo x Doo the set that 

corresponds to E 1 in the above identification is a set o/spectral synthesis o/ V(Doo). 

5. Some metric lemmas for a group algebra 

As it was pointed out in the introduction, the material of this chapter is technical and 

out of line with the rest of the paper; it is only inserted here to introduce some classical nota- 

tions and to clarify a few isolated points. 

w 1. Metric properties of the group algebras and preliminary results 

(A) For the calculations and formulas that  follow we shall use the letters C (resp. 

C~.#...) for an absolute constant (resp. a constant depending only on the parameters  

:r fl . . . .  ) and these C and C~.#... will not be the same in all the formulae they appear. 

We shall preserve this notation till the end of the paper. 

We s tar t  now with some standard definitions and notations. Let M be a metric space 

whose metric we denote by  d, and le t /EC(M);  we set then 

sup [l(x)-l(x')l, 
d ( x ,  x')<~ ~ 
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We then denote by A~(M) (resp. ~ta(M)) for ~ any real number 0 < :r ~< 1 the space of those 

functions l E C(M) for which 

cW(6 ) = O(dt~) (resp. wi-(5 ) = o(~)) 

2~ is then always a subspace of A~. For alI/EA~(M) we denote by 

]] 1][~ = inf {k; ros(~ ) < k(~ ~ u >~ 0} 

and by II111~== Illll~§ IIllb xt is then trivial and well known that  A~ with II IIA= is a Banach 

algebra and that  2~ is a closed subalgebra. 

We shall consider A~(T) for the natural Euclidean metric of T, then the group trans- 

lation is a continuous operation on ~t=(T) for any 0 < a < 1 i.e. the mapping t '+/t(x) = / ( x  + t) 

for a n y  fixed /Eit~ is continuous from T to ~ .  Thus the principle of regularization by  

convolution applies to 2~. 

In the case M = R  then FEA~(R) if and only if 

F(x) = l(t) dt + F(0); l(t) e L ~ (It) 

and then ]]F[]I = ]]/]]oo and F ' ( t )=/( t )  a.e. for the Lebesgue measure in t. 

(B) Observe now that  for 0 < ~ </3 ~< 1 and M again a general metric space we always 

have 

2 p c A p c 2 ~ c A ~ .  

Let now 0 ~<~<y </3 ~< 1 be real numbers, and let us adopt the convention A0(M ) =C(M) 

and IIll[0 =2lllll~ for all l e & ,  and let us suppose that  l eA p  and therefore a l s o / e a ~  rl A,. 

Let  x, x' E M be two points of the space and let 6 > 0 be an arbitrary real number, 

we have then 

d(x, . ' )>a  = II(x)-1(~') l < Illll=~=-r(d( z, ~'))~ 

(observe t,hat the convention 11/llo=21lltl~, is d e s i g n e d  to make the above inequality work 

with a =0), also 

d(~, z ' )<a  ~ l l ( * ) - l ( x ' ) l  -< IIl lbOe-'(d( x, x'))r. 

Thus we obtain that  for any ~ > 0 

II111,-< II/ll=a ~-~ + II111~ r  

Thus ~or ~ -~=  Illll=/llllb we obtain the interpolation 

.<: (/3 ~,)/(,8 ~) 
Ilttb ~ 211111=- - �9 llllI~ "-= ' '~-=,  

provided that II111=" l l l lb*O. IV] 
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(C) Let us now denote by  A~(T)=A(T)N2~(T) for all 0 < ~ < 1  and for any  [ E A ~ ( T )  

let us denote by  II]]]a =ll/lla+]]]ll~; A ~ ( T )  becomes then a Banach algebra with that  

norm. Also let us for any  ~ > 0 denote by ,4~(T) the algebra of functions [(t) E C(T) such tha t  

/(t)=Y.a.,,e'"' with Ill l l,u= y. 

II ]]~ is then a norm and ~ ( T )  is also a Banach algebra with tha t  norm, and we have 

for 0 < ~ < 1 the dense topological inclusions ~(T) c ~ (T) c A,  (T). These inclusions allow 

us to identify 

( A ~ ( T ) ) ' = P M ~ ( T )  and (,~(T))'=P~'M~(T) 

the dual spaces with spaces of distributions; the dual norms on these spaces are then 
denoted by  II II~M~ and I] [ l ~  respectively. 

Relative to the above definitions we recall the following well-known theorem [7]: 

I f  [EA~(T) for some 0 < ~ < 1  and if ] is of bounded variation then [ E A ( T )  and 

II/ll  < c411/111' v(/) + IlYll ] 

where V(]) denotes the total  variation of [ on [0, 2ze]. 

(D) Let now 0<e<ze/2  and let us denote by  ~ a continuous complex function on 

the real line periodic with period 2~z and such that:  

Z~(x)  = 1 - e  ~ - e < x < e ;  ~ , ( x )  is linear on the interval [e, 2 ~ - e ] .  

The conditions above completely determine ~ .  We can compute easily the Fourier series 

of ~ and we see at  once tha t  for all ~ ( 0 < ~ < 1 )  we have: 

Let now m, n be two integers; K c T  a compact subset and S E P M ~ { T )  such tha t  

supp S c K ;  let further e, a be two positive numbers such tha t  0 <  e <  •/2 0 <  ~ <  1 

satisfying 

sup la - e"m-"'t  [ -- sup I e ' ~ ' ' -  e'"t I < e/2. (5.1.1) 
t e K  t e K  

then: 

I t  then follows tha t  if we denote by  

= e ( ( n  - m )  O, 

~(t) = e 'mr -- e 'nt -- ~(t) = e'mt[1 -- e '(n-m) t --  ~ e  ((n -- m)t)] 
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with l= max {I m I, I n I}, also ~(t) is zero on some neighbourhood of K therefore (~, S ) =  0, 

thus 
(dm' ,  S )  - (e% S~ = (~, S)  

and I(e 'mr, s )  - <e'% s)  l < c 3 ~  '-~ II~ll~; (5.1.2) 

If  in the above considerations, we make the stronger hypothesis  S E PM(K)  (i.e. S is an  

ordinary pseudomeasure supported by  K) and if we observe tha t  11 ~ ]la = ]] 5~ IIA ~< 115, IIA'~ 

we see tha t  (5.1.2) can be sharpened to 

](e 'm' - e '~', S)[  < C~ ~'-~ IIsll~. (5.1.3) 

Let  us now consider A~ ( K ) =  A , , ( T ) / I ( K ) ~  fJ(K) which is a Banaeh algebra of functions 

on K, its norm being simply the quotient  norm. Then we can deduce from (5 .1 .2)and 

(5.1.3) t ha t  if K, m, n, e, ~ satisfy (5.1.1) then we have 

where again t = max (I ml, In I) 

6. The dual of  a tensor algebra and the 11-Sidon sets 

w 1. Definitions and trivial remarks 

Let  :K = {Kj)p_I be compact  spaces and  let V(~) be the tensor algebra over these 

spaces. We shall denote by  B M ( ~ ) =  (V(~)) '  the dual space of V(~) and we shall denote 

by  I] IIBM the dual norm on this space, also following the s tandard  terminology [8] we 

shall call B M ( ~ )  the space of bimeasures on K = K 1 • Ku • • K n .  

Since the algebra V(~) is a regular algebra we can define for every SE BM(SK) supp S 

the support  of S as the smallest closed subset of K outside which S reduces to zero. 

I n  the part icular  case where Kj  = TmJ mj/> 1 (j = 1, 2 .... n) are finite dimensional torus 

we can identify BM(SK) to  a space of distributions on T M, M = m 1 + m 2 + ... + mn BM(~K)c 
~'(TM). 

I n  general it is always true tha t  M ( K ) ~  BM(SK) t ha t  is t ha t  we can identify the space 

of Radon  measures of K to a space of bimeasures on K; and tha t  for every be E M(K) we 

have Ilbell.~< IIbell~ 
Let  now E c K  be a compact  subset. We then denote V(E)=V(~)/IV(X)(E) which 

is a Banaeh algebra and can be identified to an algebra of complex functions on E,  namely  

the restrictions on E of the functions of V(~)%(~(K), so tha t  we have a dense norm de- 

creasing inclusion V ( E ) ~  C(E). 

6 - 672908 Acta  mathematica. 119. I m p r l m 6  le 16 n o v e m b r e  1967. 
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We then say tha t  E ~  K, a closed subset, is a V-Helson set for the algebra V(:~), or 

s imply a V-YIelson set if V(E)=C(E) as algebras of functions. A V-Helson set t ha t  is 

countable we call a V-Sidon set. I t  is then clear tha t  E ~ K  is a V-Helson set if and  only 

if there exists C > 0 such tha t  

<Clllll+<:) v/e V(E). 

Further ,  since every/~ EM(E) can be identified to fi E (V(E))' an element of the dual 

of V(E), and II/~ll(v(s)).= [[/~llsM, we see using the dual i ty  theory  of Banach spaces tha t  

E ~  K a closed subset is a V-Helson set if and only if there exists C* > 0  such tha t  

I t  is immediate  t ha t  if we identify topologically V(~) to an  algebra A(E) for some 

compact  subset E~G of a compact  abelian group G as in Ch. 4, w 2, 3; then BM(:X) is 

identified topologically to (A(E))' i.e. to  the space of pseudomeasures of the group G 

whose support  lies in E,  and which are synthetizable in E; so tha t  if in addit ion (Ch. 4, 

w 4) E is a set of spectral synthesis of the group G then BM(~) is in fact  identified to 

PM(E) = {SEPM(G); supp S~  E} [9]. 

I f  fur ther  the identification between V(:~) and A(E) is isometric then the identification 

~ ween BM(:K) and the space of pseudomeasures is isometric (for the norm of pseudo.  

measures IFII  = I1 11 ) 
I t  is also clear t h a t  in an identification of V(:K) with A(E),  Q~K a subset of K is 

V-Helson if and only if its corresponding subset r  E is a Helson set of the group (Ch. 4, 

w 

w 2. Norm of the embedding V(~)  ~ C(K) for finite spaces 

Let  us suppose here tha t  :~ = {Ks}~= 1 are n finite spaces, let us denote as usual 

K = Kz • K2 •  • g , ,  and let us enumerate  once and  for all each Kj = {k], k~ . . . .  , k~J} 

(pj = Card Kj) and so obtain a coordinate system for 

g = {(#~', k~', r . .  ~" = 1, 2, n}. .... k~),  l < r j ~ < p j  ..., 

Fo r  any  /~ E M(K) let us then denote by  

Fr=F({k~ ' ,k~, . . . ,k~*}) ;  r=(q,r~,. . . ,r,)  l<<.rj<~pj, / = l , 2 , . . . , n  

and  also denote once and for all 
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R = ( r  = (rz r2, .. ., rn); l < rj <. pj ,  j = l ,  2, . . . ,  n} .  

Then the tensor (fr)ren completely determines f .  Relative to these tensors we shall 

adopt the summation convention for upper and lower repeated indices; so tha t  for 

u~ = (u~, up,..~, up) (u~ E C; 1 <. i < pj ,  j = 1, 2 . . . . .  n )  n vectors we shall write 

f r  . . . . . . . . . .  , u I '  u: '  . . .  u b  = ~ f r  . . . . . . . . .  , ,U: '  U:' . . .  U,~". 
r E R  

We see then tha t  by  the definition of the dual norm on B M ( : ~ )  we have 

]]fI[,M= sup fr, .r  ........ U: 'U: ' . . .U ,% (6.2.1) 
Ir~J I< : 

where the norms of the u 's  are defined by 

I lu j l l=  sup  I-;I ] = 1 , 2  . . . . .  . .  
l ~ < r ~ < p  i 

From (6.2.1) we deduce, taking the sup first w.r.t, u,  and then w.r.t, u ,  u~ . . . .  , un-~ that:  

Ilfl[~= sup ~ If, .......... . _ , , ~ u : , u : , . . . . - 1  ] (6.2.2) 
! u j [ k < l  r =  

(summation convention for the r, 's), from (6.2.2) we deduce also 

I[fl[B~ < 2"-~ sup f . . . . . . . . .  :.rU:'Ur~ ~ U~, -~ (6.2.3) 
- . . ,  " ' "  n - 1  

$ r 

w h e r e  S = {11 ~,  II < 1, ~;~ is real; 1 < r, < p,,  ] = 1, 2 . . . .  , ~ -  1}. 

We shall now carry out a probabilistic estimation. We suppose tha t  # =MR(K)  is 

real measure (fir; r ER are all real) and we consider 

{ X ~ ; l < ~ r < ~ p j  1 ~<j~<n} 

a double entry family of independent, normalized normal random variables i.e. all equi- 

distributed with some random variable X E~(0 ,  1) ( E X = 0  a2X = 1)[10]. 

For any a > 0 positive number  we denote then by: 

{X: if [X~]<~a .  X ( a ) = { :  if ,X]~<a 
X ~ ( a ) = .  if I X ~ l > a '  . if IXl>a 

the truncated variables for (l<<.r<~pr ] = 1 , 2 ,  ..., n). L e t  us also denote by 
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x , =  (x~,  x [ , . . . ,  x~,)  0"= 1, 2 . . . .  , ~) 

random vectors.  :Now since the random vectors Xj (j = 1, 2, . . . ,  n) are independent  t hey  

induce an identification of ~ the underlying probabi l i ty  space with 

~ = ~ 1 | 1 7 4  ... | 

where ~ j  is the  probabi l i ty  space on which X s is defined ( j - -1 ,  2, . . . ,  n). Le t  us also 

deno t e  by  eoj E ~ j  the generic point  of the  space, and let  us adopt  the usual nota t ion  

Eq,.q ...... q Z = Ex~ .xq ..... xq, Z = f z(col, ms , . . . ,  wn) dP(coq,) ... dP(coq,) 

with 1 ~< q~ < q~ < ... qs ~< n, the conditional expectat ion of the random variable Z w.r.t. 

the variables {X~;, X~; . . . .  , i ~ ; }  where {q;, q~,... ,  q~} = E~.~C... nl {q`' q~ . . . . .  q,}. We still pre- 

serve the  summat ion  convent ion for upper  and lower indices and we denote: 

(a) =/~r~ ......... , X~' (a) X~' Ca) ... Xn r~ Ca); 

we proceed to  obtain an est imate of E[v(a) l .  Le t  us denote  for f ixed r ( 1 <~r<~pn ) 

~r(a)=,Ur,.r . . . . .  1. rX'~l(a).X~'(a) X r'-I (a). 
. . . .  " ' "  n - - 1  

We have then: 

E Iv(a)I =E,.2 . . . . .  n - 1  Enl vr (a)Xrn(a)l 

El. 2 ...... -1 (En [~'r (a) Xrn] -- E n Iv r (a) (irn - X r (a))]); (6.2.4) 

" ' ~ l "  d 0  and since v~(a) Xrn for o~1, o~ , . .  oJ~-I f ixed is a normal variable of L a w ~ ( 0 ,  ~ 

I vT (a)is), using the formula E IX  b I= ] /~ /~ )  b valid for every  random variab]e Xb E ~(0,  b2), 

we see that :  

En]vr(a) Xrn[ = ~ / !  Iv"  '�89 (r~l]VrCa)t ') C 6.2.5) 

we have also: 

[En I vr(a) (X~ - xrn (a))]]3 < En [vr (a) (X;  - X r (a))] s 
P n  P n  

= X Ivy(a) [~ q2 ( X , _ X i ( a ) ) = a u ~  ( X - X ( a ) )  X [vr (a)[ ~. C 6.2.6) 
r ~ l  r = l  

Thus  combining (6.2.4), (6.2.5) and (6.2.6) we obtain 

E ] v ( a ) I ~ [ ~ - - ( ~ ( X - - . X C a ) ) ] E 1 . 2  ..... n_l {r~l]Vr (a)]S}�89 (6.2.7) 

and  this together  with H61der's inequal i ty  gives then  
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E[v(a)[>~[~/~_t~(X_X(a))] 1 P" (6.2.8) 

(observe tha t  v~ depends only on (.Ol, o)2, . . . , ( D n _  1 ( r = l , 2 ,  ...,p=)). Now repeating the 

above process and applying (6.2.7) and (6.2.8) for the evaluation of each Elvr(a)] in 

(6.2.8) and so on n - 1  times we finally obtain: 

El~,(a)l >~ [ V ~ -  ,~(X- X(a))] ~ 

where ql is defined by: 

1 ] 
, - r r Y r  I~r12 
V P2 P3".. Pn "' ,"" 

- (y (X-X(a))  ]/PlPz...Pn ~ I.~1 , 

ql = sup [Card {r;ct ......... ~.#O}]<pl .  
r l, r s . . . . .  r n  

(6.2.9) 

The reason why we introduced ql is that  in practice often q~ < <  p~. Now from (6.2.3) 

and (6.2.9) we deduce tha t  for every a > 0  large enough we have: 

II~ll~ >1 a~-~ r~ ~ El~r(a)l/> C= I/q~w ... P=-, ~ I~[ 

Vql p2 ... p~-i Vplp2... p=-l' 
(6.2.10) 

where Cn is a constant depending only on n (cf. Ch. 5, w 1) and where (6.2.9) is ac- 

tually applied for the evaluation of each Elvr(a)[ ( r = l , 2 ,  ..., p~). Observe that  when 

p~=p2=.. .=pn=p (6.2.10) gives; 

II ~ I1~ -< Q q~g"-2~2 [I ~ I[,~ -< c.  r II ~ II ~ .  (6.2.11) 

Inequalities (6.2.10) and (6.9.11) can in some cases be improved if extra information 

on supp /x is given; let us illustrate the method by  supposing that  n = 2 ~ = {K 1, K2} 
and r e = C a r d  (supp g). Then for every integer m l =  1,2, . . . ,p~ let us decompose K z 

into two disjoint subsets J =Jm, oK2 and C Jm, c K2 defined by  

keJml "~ Card {heK1; /x({h, k})#0}  ~ml. 

I t  is then clear tha t  m 1 Card Jm, ~<m. Let  then ~jE C(K2) be the characteristic func- 
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t ion of J ,  then  1 | ~ e V(K 1 • K2) and [[ 1 | ~j ][ v ~< 1 thus  if we decompose /~ =/~1 +/23 

b y  set t ing / ~ l = ( l |  we see t h a t  

Bu t  we can app ly  (6.2.10) to #.~ with ql=ml ,  and we can also app ly  (2.2.10) to #1 

with  ql = Card Jm, <~m/ml (reverse the order of K1, Ks) so t h a t  we finally obta in  

3 II ~ I1~/> II ~,  II~M + II ~ II,M 1> C[(m/ml)- ~ II ~1 II~ + ml~ II ~ IIM] 

and  if we set  m 1 = [l/m] and  suppose t h a t  m/> 2 we obta in  

II ~ IIM ~< Cm~ II ~ I1~ = V (Card supp #)~ II ~ ll.M. (6.2.12) 

All our  es t imat ions  were carried out  for real measures  of MR(K). This was done 

because we did not  wish to introduce complex r andom variables.  Bu t  of course f rom 

(6.2.10), (6.2.11), and (6.2.12) we can pass to the analogous inequalities val id for ar- 

b i t r a ry  (complex) measures  of M(K) by  observing t h a t  a n y  /~E M(K) can be decom- 

posed # = ~/~ + i~#  with }~/~, J~u E MR(K) and  

1 
(11~11~ § II:1~11~) < I1~11~ ~ II~IIM + I1:~11~ 

v ~ ( l l ~ l l ~  + I1:1~11~)~ I1~11~ < I1~11~ § I1:~11~. 

w 3. The "best possible" of the estimates in w 2 

Let  here again ~ = { K j ) 7 _  1 be n finite spaces (Card K j = p s <  §  j = l , 2  . . . .  ,n)  

and  let all the  nota t ions  of the preceding pa rag raph  be preserved.  We shall prove  

the  following converse of (6.2.10). 

T H E O R E ~  6.3.1. For E c  K = K I  • K~• ... • Kn there exists /~EM(E) a measure 

with support in E such that /Zr ~- + 1 or 0 /or all r E R and such that: 

II/~ ][SM ~< C]/'log n . ]E[  . P ,  

where C is a numerical constant, [E I ~ Card E, and P = P l  +P2 + ... + P~. 

Proo/. Let  for r =  (rl, r~ . . . .  , r~) 6r be defined by: 

{ lo i f  (k~',k[',.. k,~')EE 
~ r  ~ ~ 

otherwise 

and  let us set: 
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T = T[(t~ E It); 1 < r ~< pj, ~ = 1, 2 . . . .  , n] = ~ (~r exp [27d(trl ~ + t~ ~ +. . .  + t~')] 
reR 

which is a t r igonometric  polynomial  of P variables [(t~- ); 1 ~< r ~< pj j = 1, 2 . . . . .  n] and of 

joined degree n. Using then a well-known theorem [9; XI ,  no. 6] we see tha t  there 

exists a choice of + 1 such that :  

II ~E +~rexp[2zd( t~+t~ '+. . .+t~)]H~c<~CVlogn ' lE]  "P" (6.3.1) 
rGR 

To satisfy the conditions of our theorem it suffices then  to set /~r = _  Or with the 

above choice of + 1, for then the left-hand side of (6.3.1)is equal to ]I#]IBM- Theorem 

(6.3.1) shows tha t  (6.2.10) is, in some sense, best possible. Indeed  let us consider n 

as fixed in Theorem 6.3.1 and suppose wi thout  loss of generali ty t h a t  p n = m a x  

{Pl P2, .. . ,  Pn} then we obtain from Theorem 6.3.1 with E = K  t ha t  there exists I~EMR(K) 

such tha t  

II ~ IIB~ <~ c W  1-qog ~ ~ IEI = cnp~Vp~p~,., pn-i 

= cn p~ P~"" p~ c~ II ~ I[~ (6.3.2) 
Vpl p~... Pn- 1 I/Pl P2"." Pn- "~" 

The proof of Theorem (6.3.1) was based on the existence of a choice of _ 1 tha t  satisfy 

(6.3.1), and  tha t  is in tu rn  established in [9] by  a probabilistic method;  thus it is of interest 

to  give an  explicit construct ion of a measure satisfying the inequali ty (6.3.2). This we 

shall now do in the part icular  case n=2,  Pl=P~=P, E = K = K 1  • Towards tha t  let 

# E M ( K )  be such tha t  the square matr ix  M=(/~t.j)~Pj=~ is un i ta ry  and  ]/~.~] = l / V p  i, i =  

1, 2 . . . .  P =T1 =P2- Such a matr ix  always exists; e.g. it suffices to set as entries of its col- 

umns  the values of the p distinct characters of G~ tha t  are mutual ly  orthogonal  divided 

b y  Vp, where G~ is a finite group of order p,  observe also tha t  when p = 2 q for some q then 

the above construct ion can give us a real matrix.  For  this # E M(K) we then have I[~ I[M =pal2, 

also using (6.2.2) we see tha t  

p 

I1~]1,~= sup ~](Mz),[ ,  (6.3.3) 
IIzll~< 1 tffil 

where z = (z 1, z 2 . . . .  , %)r and II z II = supl<,~<~ Iz, I and where Mz is the matr ix  product  

of M with the column vector  z having (Mz)~ as i th  coordinate. Bu t  M being un i t a ry  

we have for all z with IIz]l ~< 1 

p p 

5 I(Mz),l ~ = ,-~11Ztl2 ~ p  (6 .3~  
i=l  .= 
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thus  combining (6.3.3) and (6.3.4) we obtain: 

I Iz] l<l  i=l 

So finally /z satisfies inequali ty (6.3.2) for our part icular  values of the parameters:  

II~[I.M ~< 1 /VpI I~I I : .  

w 4. The V-Sidon sets 

Let  ~=(Kj} ' /=I  be arbi t rary  compact  spaces and  let E c K = K  1 •215 x K  n be 

any  subset, let also 2 be some positive number,  then we shall say tha t  E is an  S~ subset 

of K if for every choice of finite subsets F j =  Kj  of the same number  of elements 

C a r d / V j = m  (?'=1, 2 . . . .  n) we have Card (E N F 1 • F 2 • ... • F,)  ~<2m. 

Let  us now denote by  (I)=(I)(:~) the free abelian group generated by  the disjoint 

union K 1 U K s U ...  U K n. One way  to realize concretely (I) is to  identify Kj  with / ~ j c  (7 

(?" = 1, 2, ... n), where G is some fixed compact  group, so tha t  /~p N/~q = O  p ~:q and so 

tha t  /~1 U k s U ... U K n = K *  is a Kronecker  set and thus independent;  (P(:~) is then iso. 

morphic to Gp(K*)c G. 

We can now identify K = K 1 • K s • • Kn canonically to a subset of (I) by  identifying 

k=(k l ,  ks . . . .  kn) with the point  k l + k s + . . .  +knE(I). When  we identify then (I) to  Gp(K*) 

as above K c ~ p  is identified to/~=/~1 ~-/~2 ~-.., 2Fkn c G in the way  already explained in 

Ch. 4, w 2. We shall say tha t  X ~ K  a subset of K is free if in the above identification o f  

K c  qb X becomes an independent  subset of (I). Let  us now suppose tha t  E =  K is a compact  

V-Helson subset then using Theorem 6.3.1 we see tha t  it must  be an S~ subset of K for 

some positive number  2. Indeed  suppose that ,  then for a > 0 arbitrari ly large we can find 

F j = K j  finite subsets such tha t  Card Fs=m>~l ( j = l ,  2, ... n) and 

( E' = E n Fl  X Fs x ... x Fn) >~ o:m. 

But  then by  Theorem 6.3.1 we can cons t ruc t /~EMR(E ' )  such tha t  II~llM=Card E '  and 

II~II.~CVmIE'I so that II~ll.~/ll~ll~<c~-+ 

and  a being arbitrari ly large this contradicts  the fact  tha t  E is V-Helson. 

Let  us now suppose tha t  E is a countable set and t h a t  there exists 1/> 1 a posi- 

t ive integer such tha t  every F c E  finite subset can be decomposed 
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l 

F = U Fj; 
t = 1  

Fj  free j = 1, 2, . . . ,  1 

as the finite union of 1 free subsets,  we shall call such a set  a loca l ly / - f ree  set. We 

shall now show t h a t  for every  1 ~> 1 every  locally /-free countable  compac t  set  of K is a 

V-Sidon set. 

To prove  this we m a y  suppose wi thout  loss of general i ty  t h a t  each K s (?'=1, 2 . . . .  n) 

is countable,  indeed it suffices to consider the project ion of E on each Kj  which is count-  

able. Wi th  t ha t  hypothesis  let us realize V(:~) in the  group algebra A(T); more  explici t ly 

let _Kj be compac t  disjoint subsets of T /~j topologically homeomorphie  to K j  (] = 1, 2 ... .  n) 

and  such t ha t  K* = K1 U / ~  U... U Kn is a Kronecker  set of T; as we have  a l ready poin ted  

out  (I)(:K) is then  realized as G p ( K * ) c  T and  K is then  identified t o / ~  =/~1 +/~s  + ... +/~n- 

E is then  identified to ~' a compact  subset  o f / ~ c  T which is loca l ly / - independent  i.e. such 

t h a t  every  finite subset  / ~ c  g can be wr i t ten  as the  finite union o f / - i ndependen t  subsets  

of the  group T; our assert ion then  follows f rom the well-known fact  t h a t  such a subset  

of T is a Helson set of T, i.e. A(E)=C( /~) .  More explicit ly wha t  is well known (el. [5]) 

is t h a t  for every  l ~> 1 posit ive integer there exists Cz a constant  depending only on I such 

t h a t  for a rb i t r a ry  countable  independent  subsets of T A 1, A s . . . .  At and  a rb i t r a ry  # 6 M ( A )  

A = A  1U A s U ... U A~ we have  [[~][M~CI[[/AI[pM , and ~hus t h a t  A is a Helson set. To deduce 

the result  assuming only the local p rope r ty  we app rox ima te  any  /~fiM(E) by  some 

/~F6M(R) with /~ some finite subset  of E so t ha t  we have  [[#p[[M<<-C~HI~F]]eM and let t ing 

~uF t end  to /~ (for the  ][ JIM norm) we obtain  the  same inequal i ty  HtZHM<<.ClI[lzl[eM . We 

are now in a posit ion to prove  

T H E OR ~,M 6.4.1. Let E c K be a countable compact set then the/ollowing three conditions 

on E are equivalent: 

(i) E is a V-Sidon set. 

(ii) E is an Sx subset/or some ~t>0. 

(iii) E is a locally 1-/ree subset/or some l >~ 1. 

Proo/. We have  a l ready seen t ha t  (iii) ~(i)  ~(ii) .  Thus  it suffices to show tha t  (ii) ~(iii) .  

This we now do in the following 

LE•MA. Let ~ = {Kj}j~I be n / in i t e  sets with Card K j = N  ] = 1 , 2  . . . .  n; and let E c  K =  

K 1 • K 2 • • K n be an Sa subset/or some integer ~ >~ 1. Then E is a locally n,~-/ree subset o / K .  

Proo/o / the  lemma. The proof is done b y  induct ion on N.  The  induction s tar ts  tr ivially,  

so let  us suppose t h a t  the  l emma holds when N ~< M -  1 with some M/> 2, and  let us prove  
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it for N = M .  Using the definition of an S~ subset with Fj=Kr ( j = l ,  2 . . . .  n) we see tha t  

Card E ~<nl; thus for j = 1, 2, ... n there exists a k(j)EKj such tha t  if we denote by:  

Rj = {k = (k~, k a . . . . .  k.) e K: k s = k(i)} ?" = 1, 2 . . . . .  n 

we have: Card (E 13 Rj) ~<;t j = 1, 2 . . . .  , n. (6.4.1) 

Let  us then  denote b y  ~'={K~ =CKj{k(j)}={K~k(j)}'~=l and  K '  = K ;  x K~ x ... x K', 
and identify K' to a subset of K,  and let us denote E' =E ~ K'. Now Card K~' = M -  1 

( j =  1, 2 . . . . .  n) thus by  the inductive hypothesis  the lemma applies to  ~ '  and E' so 

we can decompose 
n)~ 

E ' =  O ~ j ;  F~ c E '  free subsets j = l , 2 ,  ..., n)l. (6.4.2) 
j = l  

Let  us now consider E\E', if it is e m p t y  ( =  O) then (6.4.2) gives us the required decom- 

position of E and proves the inductive step. So suppose tha t  E~E'= 0 and let us enu- 

merate  its elements in a ny  fashion whatsoever E~E'= {e 1, e 2 .. . . .  era} and  observe tha t  

by  the definition of E '  and  (6.4.1) we have m < n t ;  let us also set 

$ ' , = P : U e ,  (i<v<m); F,=F:Uem (m<~v<n,~). 

We have then, of course, 
n~ 

E = U F, ;  (6.4.3) 
~=1 

we claim tha t  (6.4.3) gives us the required decomposit ion of E, i.e. t ha t  F ,  is a free subset 

of K ( v = l , 2 , . . . , n l ) .  Thus we have to prove tha t  for any  v = l , 2  . . . .  , n t  we have 

n v ~ = 0  in (P(~), nvEZ ~ n v = 0  V ~ E F , .  (6.4.4) 
r~Fv 

But  for any  v there exists )" ( l < j ~ n )  and ~ , E F ,  such tha t  

Thus  ~,~rnr~-=O implies t ha t  nr=O and tha t  ~r~F;nrT=O and F :  being free b y  our 

hypothesis  (6.4.4) follows and  the inductive step is proved. This completes the proof 

of the lemma and of the Theorem 6.4.1. 

Theorem 6.4.2 gives a complete characterization of F-Sidon sets. I t  proves in 

part icular  tha t  they  are stable by  union i.e. the union of two V-Sidon sets is a V- 

Sidon set. 
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7. The metric theory of tensor algebras 

w 1. The Bernstein type theorem for tensor algebras 

I n  th is  p a r a g r a p h  we shall  prove  the  following 

T H E O R E ~  7.1.1. Let m>~l be a positive inteqer and o: a real number such that 
/ x  

1/2 < ~ ~< 1 then A~(T ~ x T) c C ( T  m)| Conversely /or every ~E [0, 1/2] there exists 

/ e A ~ ( T  •  such that /~C(T)~)C(T).  

F o r  our t heo ry  we shall  assign a canonical  t r ans la t ion  inva r i an t  me t r i c  A on the  

space of the  group D ~  def ined b y  

or 
A ( 0 , ~ ) = ~ j / 2 J ,  V a = ( ~ l ~ , . . . ) ;  g r  j = l , 2  . . . . .  

J=l  

I n  genera l  now for M~, M2, . . . ,  M~ f in i te ly  m a n y  met r ic  spaces wi th  metr ics  ~j[(Mj, Oj), 

= 1, 2, . . . ,  k] one defines on M = M 1 x M 2 x . . .  • Mk the  p roduc t  me t r i c  ~ = (~l x (~2 

x .. .  • (~k by:  

k 
~( m(i,, m(2)) = ~ ~i ( / (1) ,  m~2)); m(i) = (m(li), Tg/(i) . . .  m ~ ' )  e M ,  i = 1, 2. 

t=1 

W e  shall  t hen  define for a n y  f ini te  eo = 1, 2, . . . ,  A ~ the  p roduc t  me t r i c  of A wi th  i t -  

self ~o t imes  on (D~)% I t  is wi th  respect  to  A ~ t h a t  all  the  classes A , ( D ~ )  will  al- 

ways  be considered (0~<a~<l) .  F r o m  our  def ini t ions  of d : D ~ - , T  in Ch. 3, w a n d  

A i t  follows t h a t  for eve ry  f ini te  oJ = 1, 2 . . . . .  d~ : (D~)~ ~ T ~ is a ma pp ing  t h a t  belongs 

to  A1 i.e. if we denote  b y  [tl-t2[o~ the  Euc l idean  met r ic  on T ~ for t~,t~eT ~ we have:  

I d~(el) - d~(e~)1~ < CA ~' (el, e2) el, e z E (D~)~, (7.1.1) 

where C denotes  as a lways  an  abso lu te  cons tan t .  

Not ice  t h a t  in considera t ions  involv ing  A~ we canno t  iden t i fy  (D~) ~ to  D ~  as 

we d id  in Ch. 3, w 4, for such an  ident i f ica t ion  does no t  preserve  the  metr ic .  

Le t  us now consider  Dr = [Z(2)] r for r =  1, 2 . . . .  a n d  iden t i fy  Dr to  the  space of 

the  r f i rs t  coordinates  of D ~  so t h a t  we have  the  canonical  p ro jec t ion  (3.5.4) D ~  Dr. 

This m a p p i n g  induces  then  for  o~, o~l,~o ~ pos i t ive  integers  and  r~>l :  

~ : ( D , ) ' - ~ ( D r ) ~ ;  ~ :(3(D~)-~C(D~) 

~, 6 ~7,: C(DT') 6 c(nT') ~ C(D~) 6 C(D~') 
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and ~ 7 , ~ ' 6 ~ '  are isomet~o (el. eh.  3, w It is also clear that for every ,=1,2,  . . .  

and  every  x ED7 the  d i a m e t e r  of the  set 

z,(x)  = {t e D~;  ~ (t) -- x} c D~ 

is equal  to  w2  -r  and  f rom this  i t  follows t h a t  if /eAJD~) for some ae[0,1) a n d  

some posi t ive  in teger  co, and  if we define 

~,(/)=/T(X)=2"f /(t)dteC(DT); u r = l , 2  . . . .  (7.1.2) 
J zr(x) 

(dr = H a a r  measure  of D ~ )  then  we have  

II ~'  (It) -- ll]~ < ~ 2 -~" II tll.,: II/.11,~ < II lll~; , = 1, 2 , . . . .  (7.1.3)  

This is j u s t  a consequence of the  Lipsehi tz  charac te r  of 1. A r epea t ed  app l i ca t ion  of 

(7.1.3) shows then  t h a t  for a n y  0 <  a ~< 1 and  a n y  w = 1, 2, . . .  a n d  a n y / E A ~ ( D ~ )  there  

exists  a sequence /jE C(D~) ] = 1, 2 . . . .  such tha t :  

1 = ~ ~(1~); II1,11~ j~=~o(2 -~'') v , , ' < ~  (7.1.4) 
/ f f i l  

Le t  now co~ ~> o~ >~ .. .  ~o~ >~ l be posi t ive  in tegers  a n d  set  co~ + ~o~ + . . .  + eo~ = eo and  le t  

us consider  for r = 1, 2 . . . .  ~ a pos i t ive  in teger  of ~ ,  the  a lgebra  

V, = C(D~')~)C(DT') @ . . .  ~ C(D~,) ~C(DT)  (7.1.5) 

Then for eve ry  f ini te  r V,=C(D~')  b u t  for eve ry  /eVr II/llv, and  II/lloo are  no t  a lways  

equal.  Using (6.2.10) we see in fact  t h a t  for eve ry  f ini te  r 

II111,,,= sup I<1,~>1< sup I</,,,,>1 
.u ~ M(D~r ) I~ ~. M(D~r ) 

IMI V r _ < l  []PllM<_C~2rl2(a~-wD (7.1.6) 

<c,2~'('~.+~'.++~',)11111~; v ie  VT- 

L e t  us now a p p l y  (7.1.6) wi th  s = 2  a n d  w 2 = l  to  (7.1.4) (co=COl+l ) ;  we see then  

t h a t  for eve ry  / E A ~ ( D ~ )  wi th  a >  1/2 a n d  eve ry  ~ ' < ~  we have:  

j~l J (7.1.7) 
h e C ( D p ) 6 C ( D s ) = L ;  11/1[~=0(2(1'~-~") as ~ ' ~  
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and since for every /i e V~ J = 1, 2, ..., we have ~ (/j) = ~ ' ~  ~ 0r we see tha t  for each 

It of (7.1.7) 

~:~/(/j)EC(D~I)QC(D:c)=V~; ]]~'(/s)IIv=O(2 ('~2-~')j) as j ~ o o .  

So the series ~ i ~ ' ( / j )  converges in V~o as soon as a ' > l / 2  and thus /EV~o. 

We are now in a position to prove the first par t  of our theorem (7.1.1). Indeed let 

/EAa(T re+i) for some ~ ( 1 / 2 < ~ < 1 )  (A~ is taken for the usual I ]m+i euclidean metric 

of course). Then if we denote by  [=/o(dm x d)EC(Do~ • Doo) we see t h a t / E A a ( D ~  +1) (7.1.1) 

so from our considerations above with a ) l = m  it follows tha t  [EC(D~)~)C(Doo); and this 

together with Theorem 3.5.2 implies tha t  /EC(T m) (~C(T) and proves the first par t  of our 

theorem. To prove the second par t  of the theorem it suffices to show that  for every 

fie [0, 1/2] there exists/EAB(I~ ) such that/~EC(I) ~ C ( I ) =  V(I ~) where I = [0, 1] is the unit 

interval with the euclidean metric, for such an interval can be embedded as a closed 

subset of T and the existence of the above / and (Ch. 3, w 3, Case 1) imply then our result. 

Towards tha t  it suffices to show that  for any  A/> 0 positive number arbitrarily large there 

exists /EA~(I 2) such that  ]]/]]h~<l and ]][]]v(i,)~A, for if A~(I2)~ V(I ~) for some fl, then 

by  the closed graph theorem the canonical injection must  be continuous. 

To do this we consider for n~> 1 a positive integer the finite set I n = [ 0 ;  l/n; 

2/n;. . .  n -  l/n; 1] c I  and I n x I ,~cI  x I and denote by  Vn = C(In)| and define 

# E BM(I~) = M(I~) by: 

]#({x})l = 1 VxE fn; (C=abs .  constant) (7.1.8) 

(cf. Ch. 6, w Let  us also define /EC(I  ~) by: 

l(x) 1 v x e I n  x In 

and such tha t  for every p, q = 0, 1, 2 . . . .  , n - 1 the function /(x) coincides with a linear 

function (of two variables) when x lies in the triangle Tp+.q and it coincides with an- 

other linear function when x E T~.q. The two triangles T~.q c I x I are defined by  their 

vertices: 

I t  is then clear tha t  II111~<1, Illll~,<a~ therefore by  Ch. 5, w we deduce tha t  

for any f E [0, 1] we have H/Hh~ ~< Cn~; it is also clear tha t  

II1.11  < II111 {,,) 
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bu t  also by  (7.1.8) we have:  

C 

and pu t t ing  all this together  we see t ha t  if we define ]=//n~(flE[O, 1]) we have: 

and  so ] gives us the required funct ion as soon as n is large enough prov ided  t h a t  

f l < l ] 2 .  The  critical case /~=112 we shall set t le in the nex t  chapter  using harmonic  

analysis.  

w 2. The Beurling-Pollard type of theorems for tensor algebras 

In  this pa rag raph  we preserve all the  nota t ions  of the  preceding paragraph .  I n  

par t icular  let us fix once and  for all 0)~ i> o) 2/> ...  0)8 posit ive integers and  let  us denote  

by  Vr (r a posi t ive integer or oo ) the algebra defined in (7.1.5), and  let 0) = (2) 1 + (2) 2 + . . .  + 0)s; 

let also zeT:C(D~)--~C(DT)(r>~I) be the  linear mapp ing  defined in (7.1.2), and  let us 

denote  by  z~r = gr [voo : V~o -~ Vr the  res t r ic ted mapp ing  (observe Vr162 c C(D~)). I t  is then  

easy  to ver i fy  t ha t  [[z~r[[<l (r~>l) (for the  V-norms). 

Le t  us observe now t h a t  ~ 'ozir  tends  to the ident i ty  of Voo as r ~ oo in the s t rong 

opera tor  topology (~7' can be considered as an  isometric  mapp ing  Vr-+Voo) i.e. 
vo) . ~r o z ~ r ( / ) r - - ~  / in Vcc(V/EV~). Let  us observe also t h a t  if we denote  b y  ~Tr:BMoo = 

(V:c)'~BMr= (Vr)' the dual  mapp ing  of ~ we have  ]]~r[] ~< 1 and  supp 0hS)  c ~  (supp S) 

VSEBMoo ( r = l , 2  . . . .  ). Le t  now EcD~o be a closed s e t / E l V C C ( E ) ~  Voo be such tha t  

[/(x)[<~C[A~176176 VxED~, some ~)~>0. (7.2.1) 
e E E  

Let  also SEBM~c(E) i.e. SEBMcr and such tha t  supp S c E ,  and let us consider 

a - -  </, S) .  We have  then  

( ~ ' o / ~ ( / ) ,  S~ =a~. > a (7.2.2) 
r --)- ~ 

and also a~=(~r( / ) ,~TrS ~ with supp (~]rS) c ~ ( E ) ,  so b y  (7.2,1) we see t h a t  

sup ]~rl(x) l < C 2 -~ .  (7.2.3) 
x E S u p p  ( ~ r  S )  

Also using (6.2.10) we obta in  t h a t  

II ,SlIM < < §176 SlI M" . (7.2 4) 
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So finally combining (7.2.2), (7.2.3), and (7.2.4) we obtain  tha t :  

-< c 2  + II sl I  

and t h a t  if �89 a + . . . + o o s ) < ~  we have a~ -> 0 = a .  :Now since S above was 
r - + o o  

chosen arb i t rary  in BMooiE) and since the orthogonal  in V~ of BM:o(E) is jvoo (E) 

what  we have shown can be s ta ted  in the following 

T~EORE~I 7.2.1. I] O)2+wa+ . . .  + w s < 2 ~  and i/ /ElVoo(E) satis/ies (7.2.1) then 
/EJVr 

Observe tha t  often if we know the shape of E we can use sharper estimates 

[(6.2.10), (6.2.12)] in (7.2.4) and improve Theorem 7.2.1 in an  obvious way. We shall 

illustrate t ha t  idea a t  the end of this paragraph.  

Le t  us now for co 1 7> e% >~ ... >/ws and  co = e% + e% + ... + ws positive integers as 

above consider 

Vr = C(T ~') ~) C(T ~') ~)... ~) C(T ~') ~ C(T ~ ) 

and let E c T  ~ be a closed set and /EIVT(E) c VT be such that :  

I/(t)l <clt-El =c[ sup It-clot; Y t e T  ~, some 0~>O (7.2.5) 
e e E  

(It -t l  i s  a s  iu 7.1.1). Let  us set then ]=do,(/)=/od,,eV~o and  ~ '=d/o l (E) ,  using 

(7.1.1) we see then  tha t  I](t)I<~C[A~162 thus  f rom Theorem 7.2.1 i t  

follows t h a t  ]Ejv~($) as soon as w 2 + w a + . . . + w s < 2  ~. F rom this, using L e m m a  

1.4.1 and Ch. 3, w 4, we see tha t  /EJVr(E). So we have proved 

T~EOREM 7.2.2. I/ O)~-kO)a+...-t-C0s<2 Q and i/ /EIV~(E) satis/ies (7.2.5) then 
/ e jv~ (E). 

Let  us finish this paragraph by  illustrating how part icular  information on t h e  

shape of E allows us to  improve Theorem 7.2.2. Towards tha t  let us suppose tha t  

~Ol = w2 = . . .  =a) ,  = 1 and tha t  E is the surface of a small sphere in T ~ i.e. t ha t  E is 

the image of the surface of the  sphere S ~ = { x e R ~ ;  Ixl~=x21+x~+ ... + x ~ = a }  (for some 

0 < ~ < ~t) b y  the exponential  mapping  e(x) = (e ~x', e ~x~, .. . ,  e ~,) E T ~ V x E R ~. We  then 

assert t ha t  the conclusion of the Theorem 7.2.2 holds for any  ~ > ( s - 2 ) / 2 .  

Indeed  preserving the notat ions of the proof of the theorem let us consider 

$=d[~(E), then for a ny  SEBMoo($) we can apply  (6.2.10) with ql=C an absolute 

constant  (to do tha t  we have to decompose the surface of the sphere into zones 

using a bounded par t i t ion of unity,  and apply (6.2.10) separately to each zone choosing 
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each time the axis x 1 appropriately) and obtain ]] ~IrS]]M ~< 2 �89 r(~-2)]] SII.M  (r >- 1) instead 

of the coarser (7.2.4). So as soon as Q > (s - 2)/2 and / E I TM (E) and ]/(t) ] ~ C It - E ]~ Vt E T ~ 

we have (7~r],~]~S) ) 0 and (], S ) =  0. From there we finish the proof as above and 
r-->Oo 

obtain [ E jv~. (E). 

The interest of the above example will be seen later when we compare it with L. 

Schwartz's example of failure of spectral synthesis in A(R ~) [11]. 

8. A ( G )  as a subalgebra of V(G) 

We shall denote throughout in this chapter by  G a compact abelian group, by  V(G) = 

C(G) ~)C(G) and as it is customary by  A(G)= :~LI(G), G being the dual group, also using 

J we shall always identify V(G) to a dense subalgebra of C(G • G) (cf. Ch. 2, w 1 and w 2). 

The main fact from harmonic analysis which we shall use is that  if /1,/2EL2(G) then 

/t-)e/2EA(G ) a n d  H/1-)~']2HA ~ H/1HL.]]/21[L~ which is an immediate consequence of Plancherel's 

theorem; the space L~(G) is of course taken with respect to the normalized I-Iaar measure 

of G which we shall simply denote throughout as dx (x E G). 

As it was pointed out in the introduction the formulation of the results of w 1 below 

is not the one I originally gave in [12]; I follow C. S. Herz in introducing the mappings 

M and P [13] and in arguing directly on the algebra rather than on the dual space. This 

brings out the ideas much more neatly. 

Also we should like to point out that  the results of this chapter differ essentially from 

what was presented up to now in the fact that  here the global group structure of G on 

which the tensor algebra is considered is essentially used. When in Ch. 3, w 2, we considered 

tensor algebras over group spaces we only used the local regularization that  is provided 

by  convolving with an approximating identity, i.e., we used the group structure in a far 

less fundamental  way. 

w 1. The mappings M and P 

Let us define two linear mappings 2]I and 

C(G) • C(G • G) ~ C(G) 
by  setting M P 

.M/(x, y) =/(x + y); .P.F(x) = Ja F(x - z, z) dz; / e C(G), F e C(G • G); x, y e G. 

I t  is then clear tha t  PoM=I~(C(G)) .  Let us also identifying A(G) to a sabalgebra 

of C(G) and V(G) to a subalgebra of C(G • G) define: 

M =M[~(a):A(G)-+C(G • G); P=Plv(a): V(G)~C(G). 
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Let  now XEG be a character of G which we can identify to ZEA(G), we have then 

MZ(x, y) = X(x + y) = Z(x) Z(y) (x, y E G) so tha t  MZ E V(G) and ]J MZ [[ v ~< 1. From this it 

follows by  linearity tha t  for all /EA(G) we have 

M/e  V(G); []Mll]v<~ ][1[[~. (8.1.1) 

Similarly let ], g e C(G) and let ~p =/|  g E V(G) it is then clear tha t  P~o(x)=/-~ g(x) (x fi G) 

and therefore P~o E A(G) and II P~o II. < I l l  IlL, II g IlL, < I I / l l="  II g II = < II ~ II.- From this i t  
follows again by linearity tha t  for any F E V(G) we have: 

PFeA(G), [[PF]Ja~< IIF]]v. (8.1.2) 

So combining (8.1.1) and (8.1.2) we obtain 

A(G) ~ V(G) -~ A(G) 

two linear mappings such that  

I I / l l  < 1, IlPll ~< 1, PoM=IO(A(G)). (8.1.3) 

The norms of M and P are the operator norms for the ]1 ]]a and ]1 IJ v norms of the 

spaces. From (8.1.3) it follows at  once that  M is an isometry, and also by  the definition 

of M it follows that  M is a unitary algebra homomorphism which identifies A(G) to A*(G) 

a closed subalgebra of V(G). We shall prove now tha t  A*(G) is equal to 

V,~ = (FE V; F(x +g, y - g )  = F(x, y) x, y, gEG} 

V~ is the subalgebra of functions of V(G) that  respect the equivalence relation whose 

classes are the fibers A~ parallel to the antidiagonal of G • G: 

Ag={(x ,y )EG•  gEG 

Indeed by  the very definition of/]~ we have A * c  V~. Also for any FE  Vr we have 

PF(x)  = f / ( x -  z, z) dz = F(x, O) Vx E G 

M o PF(x, y) = F(x + y, O) = F(x, y) Vx, y fi G 

so tha t  EEA*, and therefore A * =  Vr The identification of A(G) with the closed sub- 

algebra A*= V~c V(G) will prove a powerful tool for the s tudy of tensor algebras as we 

shall illustrate in the next paragraph. 

7 - -672908  Acta mathematica. 119. I m p r i m 6  le 17 n o v e m b r e  1967. 
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w V(C) 

We shall prove here that the algebra homomorphism M:A(G)~V(G)  satisfies the 

conditions of Lemma 1.4.1. 

Indeed the mapping P :  V(G)->A(G) is by (8.1.3) an inverse of M. Also for ill the 

transposed mapping of M we have: 

2~I :G • G-+G; ~i(x, y) = x +yEG 

so that for any FE V(G) we have supp (PF)~2~(supp F) which is no other than the con- 

dition of Lemma 1.4.1 with an approximating inverse that reduces to the single mapping 

P, a situation that  is in fact much simpler than the one considered there. 

We can therefore draw the conclusions of Lemma 1.4.1 and denoting for any subset 

E ~ G  
E* = ffl-~(E) = ((x, y)EG • G; x +yEE}  

we have 

THEOREM 8.2.1. For any closed set E c  G we have 

M-t(IV(E*)) = IA(E); M-I(JV(E*)) = JA(E). 

In  particular i/ E is not a set o/ spectral synthesis o/ the group G and In(E)~-JA(E) then 

IV(E *) ~:JV( E*). 

The above theorem has a converse that was first pointed out to me verbally by 

C, S. Herz, namely 

TI~OREM 8.2.2. I /  E ~ G  is a set o/spectral synthesis /or the algebra A(G) then E* 

is a set o/spectral synthesis/or the algebra V(G). 

We shall give a proof of Theorem 8.2.2 for the sake of completeness, although we 

shall not actually have the opportunity to use this theorem later. 

Proo/ o/ Theorem 8.2.2. First observe that  for every fixed FE V(G) if we define 

Fg(x, y) = 2'(x + g, y - g) (x, y, g E G) the mapping G-~ V(G) : g ~ Fg is continuous. Thus we 

can define the convolution of any FE V(G) with any ~ EC(G) by setting: 

I t  is then clear that  if FEIV(E *) for some E c G  then F~EIV(E *) also, for all ~6C(G), 

Also  if g 6 G( c C(G)) we have for all x, y, g E G: 

F x ( x + g , y - g ) = 2 ( g ) F z ( x , y ) .  
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In  other words we have: 

Fz(x,y)=2(x)Px(x,y); ~xeA*(G); VFEV(G),ZeO; x, yEG. (8.2.1) 

So now let us choose {~0~EC(G)}~s a directed family of functions such that:  

fo  (x)ex=l; fo  ,70 (8.2.2) 

for all ~ open nbd. of OGE G, and such tha t  each q~ is a trigonometric polynomial 

of G (i.e. q ~ = ~ z ~ 5 7 x Z  a finite sum) such ~ always exist. I t  follows then from 

(8.2.1) that  if FfiIV(E *) then for every flEB we have: 

F~=Fr ~ ZF~.x (finite sum); F~.~EA*(G) N IV(E*); Vfl, X. 
zeal 

So using the identification of A*(G) and A(G) and Theorem 8.2.1 we see tha t  for 

every ~ E B and Z E G F~. z can be identified to an element of IA(E)=JA(E)and from 

this it follows tha t  F~.zEJV(E *) and therefore F~EJV(E*). From this our theorem 

follows since by condition (8.2.2) F~ z ~ ) F  in the algebra V. 

Let  us give here finally one illustration of the homomorphism M by  settling the 

question we left open at the end of Ch. 7, w 1, and completing the proof of Theorem 7.1.1 

for the critical case fl = 1/2. Indeed towards that  it suffices to consider some 

/EA�89  C(T) [7] 

and set F=.I~/EC(T ~) we have then F e A ~ ( T  2) but  Fr 

9. The radial theory 

In  this chapter we shall base the study of the problem of spectral synthesis and  

symbolic calculus both for tensor algebras and group algebras on the theory of radial 

functions of A(R,'), and we start  by  recalling the definitions and main results of that, 

theory. 

w 1. The radial functions 

Let us for any x, y E R = (n >~ 1) denote x = (x 1, x 2 . . . .  , x,') the coordinates of x, and  

< x , y > = ~ = l x ~ y ~  the scalar product of x and y and also Ixl=<x,x>�89 the Euclidean 

norm of x. Let  us also denote by  SO,, the n dimensional rotation group of R = and  
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for any x E t t  ~ and a E SOn let ax be the image of the vector x after rotation through a. 

We shall also denote by  P ~ c R "  the positive quadrant  i.e. 

Pn={xER~;  x~>~O ] = 1 , 2  . . . .  ,n} .  

Let us now for nl, nz, . . . ,nr  positive integers denote 

R . . . . . . . . . . . .  = { le  Co(P~); l ( Ix" ' l ,  Ix(~)l . . . . .  [ x C ' ) l ) e A ( a n ,  • R ~. • . . .  • R-r) 

x (z E R ' J  j = 1, 2, . . . ,  r} 

an algebra of functions on pr  which we can also identify to a subalgebra of func- 

tions of A(Rn'•  R n ' •  • R nr) the algebra of multiradial functions. We shall norm 

Rn ........... with the norm it inherits as a closed subalgebra of A; it becomes then a 

Banaeh algebra and it is easy to verify that  it is a regular semisimple *symmetric 

algebra whose spectrum can be identified to PL We shall adopt  the abusive notation 

/ (x ,  1,, x, 2, . . . .  , x , ' , )  = / ( I x ,  l, I, f x, 2, f . . . . .  I x,, ,  I) e A ( a  ~ • R ~, •  • R'r); 

x (j~ e R nj ?" = 1, 2 . . . .  , r 

for every / E Rn,. ~ ........ . When r = 1 and nl = n we obtain R,  c A (R ") the classical radial 

algebra tha t  has been studied by  m a n y  authors [14, 15, 16]. 

We shall summarize now some of the most  important  properties of the radial 

algebras. 

Le t  /E R ~ c A ( R  ~) (n >~ 1) then / = ~  for some "radial"  g e  LI(R~), more explicitly 

there exists g(0)=gI(Q) ~E p1 a Borel function of ~/> 1 such that  

/ ( x ) =  fRdc~'~'>9,([Yl)dY; ][/[l~ = f R  [g,(lyl)[  dy  (9.1.1) 

factorizing then the integration of (9.1.1) as an integration along the radius vector 

and one over the surface of the unit sphere Sn we obtain [16]: 

/(~) = o~t(n_2) gi(~)~'~Jj( ._2)(o~)d~; a E P  1 a:t:O 

(9.1.2) 
2~�89 

Illll~=w~-~ Ig~(e)len-~e;w~-~ r(�89 surface area of S~, 

where J~(t) denotes the Bessel function of the first kind of order ~ (~E 0). Relative to 

these functions we recall the formula [I7]: 

d(t2)s~, ta / =  - -~ .s  ; e>~I,2E(~. (9.1.3) 
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Applying (9.1.3) to (9.1.2) and  differentiat ing under  the  integral  sign we obta in  

t ha t  for all k~>l  and  n = 2 k + 2  and ~ > 0  we have  

dk ( -  1) ~2ztk+l ~'~ n - 1  ] d(~)  ~'/(~ oc ~k Jo g1(~) ~ J2k (~)) d~; dk/(~ F ( k + l )  - -  d (~ ' ) ' i  ~ IIflIA. (9.1.4) 

Now for any  a = ((rl, . . . ,  at) E SO = SO,, x ... x SO~, (nj >/1 ~" = 1, 2 . . . . .  r; r ~> 1) and  

any  /(x (1), . . . ,  x (r)) e A(R n' • ... • R n') = A (xCJ) e R nJ, ~ = 1, 2, . . . ,  r) let us define 

a/(x'~) . . . .  , x")) = / ( ~ x % . . . ,  a ,x"))  

and also for any  f i e  M(SO) let us define: 

~ * l ( x ( 1 ) ,  . . . ,  x(')) = ["  ~ / ( x %  . . . ,  x(')) d~(~) .  
JS 0 

I t  is clear then t h a t  hso~e/ER~ ........ ( lEA)  and  also hso~e]=] for all / E R  ......... 

hso denotes the normal ized H a a r  measure  of SO. 

Now as we pointed  out  in Chapter  1, w 5 we can ident i fy  A = A ( R  ~" x ... x R n') 

wi th  A(R~,)(~ ...  @A(R ~') so taking into account  our previous  r emarks  and  the  fact  t ha t  

for every  [ = /1  |  | [~ e A (]j e A (R~0, ~ = 1, 2 . . . .  , r) we have  hso -~ ] = (hso,~ ~/1)  |  | 

(hso,,-~ ]~) we obta in  a canonical isometric identif icat ion 

R ....... n ,=R, , |  ... | (9.1.5) 

An immedia te  appl icat ion of (9.1.4) to (9.1.5) with n 1 =n~ = ... = n r = 4  k =  1 gives 

\ a ( ~ ) ,  . . . ,  a(.~)/~, = . . . . . .  ~ 1 

Let  now again [In be the  uni t  sphere in R n, and  let tin be the  ro ta t ion  invar ian t  

(uniform) measure  on S~ of to ta l  mass  1. Then  either b y  direct  computa t ion  of the  

Fourier  t rans form [11], or b y  dualizing (9.1.4) and the  analogous result  for n = 2 k + l  

( = o d d ) ,  we see t h a t  the dis t r ibut ion (8s/t~)/~r 8, the radial  der iva t ive  of order s of / t~,  

is a pseudomeasure  (i.e. has bounded  Fourier  t ransform) for s=  1, 2 . . . .  [ ( n - 1 ) [ 2 ]  = 

m =  integer pa r t  of ( n - l ) / 2 .  F r o m  this it  follows t h a t  i f / f i R ~ c A ( R ~ ) = A , / ( 1 ) = 0 ,  

f ( 1 ) # 0  then  [14, 18] 

IEIA(S,); / m C J A ( S ~ ) , m = [ P - ~ ] .  (9.1.7) 

F r o m  (9.1.7) it  follows in par t icular  t h a t  S ~ c R  ~ is not  a set of spectral  synthesis  of 

the  group R n (n>~ 3). F r o m  this using the fact  t ha t  the  two groups R ~ and  T ~ are 
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locally isomorphic it follows that  a small sphere S~ in T n (cf. end of Chapter 7, w 2) 

is not a set of spectral synthesis for n ~> 3. In  this context taking into account tha t  

T n is a real analytic manifold (Lie group) we can rewrite (9.1.7) as follows: :For all 

n/--3 and ~ < z  there exists /E O(T n) c A(T n) = A  which is real analytic in some open 

nhd. of S~ c T n and such that  

/EIA(S:); ]m~JA(S~); m= ] ~ - ~ ] .  (9.1.8) 
L ~ ]  

w 2. The problem of spectral synthesis for tensor algebras and group algebras 

We shall say here that  spectral synthesis fails in a commutat ive regular semisimple 

Banach algebra R if there exists E c  ~ a closed subset tha t  is not a set of spectral syn- 

thesis. 

We have seen in the previous paragraph that  spectral synthesis fails in A(T3). This 

together with Theorem 8.2.1 shows tha t  spectral synthesis fails in V(T3), from this using 

Lemma 1.4.1 and Chapter 3, w 4 we obtain 

T~EOREM 9.2.1. Spectral synthesis/ails in the algebra V ( Doo). 

Now Theorem 9.2.1 together with Theorem 4.2.3 provides us with a new proof of 

the following classical theorem which is due to P. Malliavin [19]. 

TH]~O~EM 9.2.2. Spectral synthesis /ails in A(G) /or every infinite compact abelian 

group G. 

Let us now introduce the following 

De]inition (P. Malliavin [19]). Let G be any compact abelian group, then we say that  

E c  G a closed subset is a set of spectral resolution if every closed subset E 1 c  E is a set 

of spectral synthesis. 

Taking then into account Theorem 9.2.1 and Theorem 4.3.3 we see that  we have 

THEOREM 9.2.3. Let G be any compact metrizable abelian group and let P, Q~ G be two 

per/ect subsets o/ G. Then the set P + Q c G is not a set o/ spectral resolution. 

I t  is very easy to suppress the condition of metrizability of G from Theorem 9.2.3 

by  considering metrizable quotients; we leave this to the reader. 

w 3. The problem of symbolic calculus 

Let K be a compact space and let R c  C(K) be a symmetric (under complex conjuga- 

tion), unitary regular Banach algebra of functions on K, whose spectrum can be identified 
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with K,  and  let fur ther  r E R be a real e lement  (i.e. a real valued funct ion on K).  We then  set  

[r] n = ((I) I~; (I) E C(R), (I) o r E R~ c C(I) 

[ R ] =  N [r] R~C( / ) ,  
r(K) C I 

where I th roughout  in this pa rag raph  will denote  the in terval  [ -  1, 1]. 

Le t  now ~ =  ( s ~ > 0 } ~ % 1 ( ~ 1 s # <  + c~) be a summable  sequence of posi t ive num-  

bers, and  let us denote  by  ~ ( I )  the  ~ -d i f fe ren t i ab le  funct ions on I (including the  

end points) and  let 

C ~ = ( / e ~ 0 ( I ) ;  sup ]s,s~,.. . ,s~/(~)(x)[~/~< + o o }  

We shall now prove  using the  theory  of radial  functions the  following 

L ] ~ A  9.3.1. Let e > 0  and let a = ( s ~ > 0 ) ~  be a positive summable sequence 

(s -- ~=~:r s~ < + ~ ) we can then f ind / =/~. ~ G A(T ~) = A a real /unct ion such that [/]A ~ Ca 

and such that [I /Ha< 1 -t-~. 

Proo]. Towards  t h a t  let us denote  by  y = p  • p • p •  ~ the  canonical 

project ion ( p : R ~ T , p ( r ) = e ~ r E T ,  V r E R )  and let us fix once and  for all ~ , h e R 4  two 

real funct ions such tha t :  

[0; 2] c (~; h(~) = 1} c supp h c [0, 3] 

~ ( 0 ) = c p ( 1 ) = 0 ; s u p p ~ 0 c [ 0 , 2 ] ,  d ~ ( ~ ) - I  a t  ~ = 1  
d(~ ~) 

~0 and  h can then  be identified to  funct ions of A(R 4) whose suppor t  is contained in 

(xER4;  I x j l < 3 ,  1 < i < 4  }. Le t  us then  denote  by  0 E A ( T  4) the  funct ion t h a t  is de- 

fined b y  0 o 7 ( x ) = ~ ( x )  V ( x e R a ;  [xjl <z~, 1 < i < 4 } .  Le t  also {0j~Ra}~ffil and  {Gt~T'}~I 
be two infinite sequences of groups isomorphic to R 4 and T 4 respectively,  and  let {yj}, 

{(~% hi)} and  {0j} the  sequences t h a t  correspond to y, (~, h) on 0 respect ively  in the  

identif ication of Gj with R e and  Gj with T 4. Le t  us finally denote  b y  G = T  x G 1 • 

G~ • ... ~ T :r and let us fix ~ an  a rb i t r a ry  posi t ive n u m b e r  and  let us set: 

oo 

/(g) = sin t +  ~ ~ sjOj(gj); g = (t, g~, g~, . . .)  e G. 
i = l  

I t  is then  clear t ha t  /CA(G)  and [[/]]A<I+$s]IO[[ A. Let  now C e C ( R )  be such t h a t  

F = ~ p o / E A ( G )  and let us also set  for every  t e T  and  k>~l 

/t.k(gl . . . . .  gk) = / ( t ,  gl, . . . ,  g~, 0k+l, 0k+2, ... ); Ft.k(gl, . . . ,  qk) = F(t ,  gl . . . . .  gk, 0k+l, 0k+~, ... ); 

(gl . . . . .  gk) E G 1 •  • Gk; Ok is the zero of Gk. 
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I t  is then  clear t ha t  

/t.k, Ft .kEA(G, • ... • Ok); F t . k =  (I) o/t.k; [[Ft, klla ~ HFIIa. (9.3.1) 

Le t  us finally set: 

A ~ t , k =  [ F L k  O (~1 X , , .  X ~2k) ] (h l (x  ~ . . .  (~ h k )  E A ( 0 ,  x . . .  x Ok); 

then  since for all (~51, . . . ,  Ok) E supp (h, |  | hk) c 01 X . , .  X O k we have: 

k 
[ l~ .~o(y I x . . .  x ~ ) ]  (~1 . . . .  , ~ k ) = s i n  t + ~  Z ss~j(~j) 

t=1 

i t  follows tha t :  
~ .  k ~ R4.4 .... .; II ~ , .  k II~ -< II F, .  k II" II h I] ~ (9.3.2) 

and  t h a t  when (~,, 32, .-., ~g) lies in a small  enough nhd.  of {1}k=(1,  1, . . . ,  1) in pk 

w e  h a v e  
k 

~t.k(O~,, " " ,  gk) = (P(sin t +  ( ~. sjq~j(gs) ). (9.3.3) 
iffil 

Thus  apply ing  (9.1.6) on (9.3.3) and  using (9.3.1) and (9.3.2) we see t h a t  

Is,, s~ . . . .  , s~ r  t) l ~< II hll~ r  li F L .  (9.3.4) 

So if we set  ~=e/(sl]O[[A) and take  into account  t h a t  r a n d  k in (9 .3 .4)are  a rb i t r a ry  

we obta in  
snp i~r . . .  ski"k < + ~ ,  II/Jl "< 1 + e  

x ~ I; k>~l 

in other  words / above provides the  required funct ion /,.~ of our lemma.  

Now qui~e general ly for any  compac t  group G using the identification of A(G) 

with A*(G)cV(G)  of Chapter  8, w 1 we see t ha t  for any  lEA(G) we have  

[111/] v(c)  = E/]~(a);  I1111/11~ = 11/114. (9.3.5) 

Final ly  using Theorem 3.5.4 with ~o = r162 we see t ha t  for any  F EV(T ~) if we set  

P = d ~ Q  d ~ ( F ) ~ V ( D ~ )  we have: 

So combining L e m m a  9.3.1 and  (9.3.5) and  (9.3.6) we can s ta te  

T ~ o a ] ~  9.3.1. For any e > 0  and any p~sitive summable sequence 

o o  

~={s~>0}j~, ( Z sj< + oo) 
j f f i l  

we can lind f=fo.~EV(Doo)such that [ f lY-Co and Illll,<l+~ 
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As an immediate  corollary of Theorem 9.3.1 we shall now obtain an improve- 

ment  of P. Malliavin's maximal  individual symbolic calculus theorem [20]; namely  

T H E O R E ~  9.3.2. Let a = ( s j > 0 } ~ l  ~e an arbitrary pgsitive summable seTuence 

(~r  + ~ )  and let e>O be some positive number, then: 

(i) For every cgmpact abelian group G that contains a per]ect Kronecker set we can 

] i nd]  = ],,.~ G A(G) such that []]a c C~ and II ][Ia ~< 1 + e. 

(ii) Err every compact abelian group G that contains a per/ect K~ set (p some 

natural prince) we can /ind ]=/ , ,~eA(G) such that []]AcC~ and ]l/]lA<ap{-e, where a n 

is a constant depending only on p such that 1 <~ ap <~ 4 ]or all p. 

Proo]. From Theorem 4.2.1 (~) we can find E c  G a compact  subset such tha t  A(E)  

is isometrically isomorphic to V(D~). Our theorem is then  a corollary of Theorem 9.3.1. 

(ii) In  case (ii) we can find E ~  G a compact  subset such tha t  A(E)  can be identified 

topologically to V(Do~ ) with the inequali ty on the norms [] Ila ~<411 IIv, thus Theorem 9.3.1 

implies tha t  we can find ] = ]r E A(G) such tha t  

= co; li/11 <4+  (9.3.7) 

and this proves our result. 

Observe tha t  every  infinite compact  group falls in one of the two cases (i) or (ii) 

above (cf. Chapter  4, w 1 (vi)). 

Observe also tha t  contrary  to what  was s ta ted  in [12] Theorem 9.3.2 (ii) is best possible 

in the sense tha t  the bound for II/11~ c a b o t  be improved to 1 +e. 

The exact  value of % is in fact: 

a n = inf ]eA([Z(P)]~176 l ( [Z(p)]~)~ [ - 1 ,  1]} 

and ap > 1 for p 42 .  To prove this we may  suppose, taking if need be a subgroup of G 

[cf. Chapter  4, w 1, (v)], tha t  G=[Z(p ) ]% Let  then  /IEA(G) be such tha t  ][/~Ha<a~+e, 

] I (G)D[--1 ,  1]; and with / satisfying (9.3.7) and C some positive number  let us consider 

(P = (~C(gl, g) = / l (g l )  + C/(g) EA(G x G); (gl, g) E G  x G 

We have then  I[~~ = H/IH "4-CH/H < a o + e + 5 C .  (9.3.8) 

Also for every  fixed glEG and every (I)EC(R) we have v2(g)=r ) as 

soon as (I)o~ E A (G x G); so tha t  if we set (I)g~. ~(t) = (I)[]l(gl) + St], t e I we have Cg,. ~(t) E []]a(a) 

and therefore q)g,.~EC~; and since this holds for a rb i t ra ry  gl we see from our choice of 
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/1 tha t  (I)ECr and this is valid for a rb i t rary  ~>0 .  So taking into account  (9.3.8) and the 

fact  tha t  G • G~_[Z(p)] ~ = G  we see tha t  ~ gives us the required funct ion as soon as ~ is 

sufficiently small. 

Relative to the classes of oo-differentiable functions tha t  we considered in Theorems 

9.3.1 and 9.3.2 we would like to observe tha t  we essentially obtain all non quasi-analytic 

classes, in the sense tha t  given C c  O(I )  a non quasi-analytic class we can find a summable 

sequence ~ =  {sj>O}~=l such tha t  C ~  C [21]. Also if we denote by: 

A ( I )  = {/cO(I); / analytic on ( - 1 ,  1)} 

we have A ( I ) ~  fi r the intersection being taken over all positive summable sequences 

[22]. 

Using the above remarks we see tha t  we have proved the following 

T H ~ O R E ~  9.3.3. (i) [ V ( D ~ ) ] ~ 4 ( I )  

(ii) [A(G)]~ A ( I ) / o r  every compact group G. 

Theorem 9.3.3 (ii) above is due to Y. Katznelson [23]. Let  us finally introduce the  

Definition. A compact  set E c  G of the compact  abelian group G is called a set of 

analyt ic i ty  if [ A ( E ) ] c  A(I ) .  

Then we see tha t  we have actual ly  proved the following [cf. Theorems 4.3.3 and 

9.3.3 (i)]: 

THEOREM 9.3.4. Let G be a compact metrizable abelian group and let P, Q c G  be two 

per/ect subsets. Then the set P + Q ~ G is a set o/analyticity. 

In  fact  a theorem more general than  Theorems 9.3.3 and 9.3.4 holds. We state it 

here wi thout  proof. 

T ~ E O R ]~ M 9.3.5. (i) Let K1, K 2 be two infinite compact spaces then [C(K1) (~ C(K~)] c •(I) .  

(ii) Let G be a compact abelian group and E c  G a closed subset such that/or any N >~ 1 

we can find X = (x 1, x 2 . . . .  , x~} c G, Y = (YI, Y~ ..... YN) c G two/amilies o / N  distinct points 

each such that X + Y c  E. Then E is a set o/analyticity. 

The proof is based on a classical a rgument  [24] of evaluations of exponentials which 

deliberately we wish to avoid in this paper. The proof of (i) above is to be found in [12]. 

The proof of (ii) has never been published but  it is an easy a l though slightly technical 

exercise in harmonic analysis and par t  (i) of the theorem. 
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w 4. The best possible of some Beurling-Pollard constants of Chapter 7, w 2 

Let  us now for n~>3 and some sufficiently small positive ~ denote by  S ~ = E c T  '~ 

the sphere of radius ~ in T n [cf. (9.1.8)], and let us choose /EA(T  n) = A  which is real analyt ic  

in some nhd. of E c  T ~ and such that :  

IEIA(E) N ~(Tn); /m~ jA(E ) m =  [ ~ - ] .  (9.4.1) 

Using then the notat ions of Chapter  8, w 2 we see tha t  F = M I E V ( T  n) = V is analyt ic  

in some nhd. of E* in T 2n and also 

FEIV(E*) N O(T~n); F'n~.JV(E*); m = [ ~ - ~ - ~ ] .  (9.4.2) 

Le t  us now construct  for r ~ n  and e > 0  arb i t ra ry  

0 : Tr-~T~; 

a continuous mapping such tha t  

O(t) = (O~(t) . . . . .  0n(t)); t E T  ~ (9.4.3) 

j = l , 2  . . . .  ,n;  0(T ~ )=T  ~. (9.4.4) 

This can be done using a modification of the classical construct ion of a Peano 

curve. We can in fact  choose our 0 in (9.4.3) so tha t  in addit ion to (9.4.4) we have 

Oj(tl, . . . , tr)= ~ a .. . . . . . . .  exp [2gi(nlt ,  §  §  ~ I 
n ......... z l (9.4.5) 

........ I ( l + l u ,  

To satisfy (9.4.5) is less trivial. We do not  give the proof, however, since much 

sharper results than  those obtained from (9.4.5) can be given. 

Le t  now 0 satisfy (9.4.3) and F satisfy (9.4.2) and let us consider the induced 

mapping: 0 ~) 0 :V(T n) -+ V(Tr). Then  denoting by  ~ = (0 • 0) -1 (E*) c T 2~ we have 

Z = 0 ~ 0(F)  = F  o (0 • 0) E A(rl~)-~ (T 2r) N V(T r) N I(~') (9.4.6) 

and also by  Lemma 1.4.1 and Chapter  3, w 2 z 'n (~ jV(E)(m=[(n-1) /2] ) ,  also (9.4.6) 

implies tha t  
Iz~(x) I ~ c ~-~ E 2~((~r)/~)-~ (cf. 7.2.5). 

So lett ing r be fixed and n-+c~ we have m/n-~l/2 so that ,  e being arbi t rary,  we obtain 

T~EOR~M 9.4.1. For any r>~l and ~<r/2 we can find ]~cT  2~ a closed subset and 

hE V(T~)=V such that: hEIV(J~)~gv(J~); Ih(x)] <<.Cix-EI~ ~. In  other words Theorem 

7.2.2 with s =2 is best possible. 
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Let us now suppose tha t  0 actually satisfies (9.4.5). Then since F is analytic in some 

nhd. of E* and since T 2n (with the canonical embedding) is analytically embedded in R 4" 

it follows tha t  Z defined again as before from (9.4.6) coincides with some ~ EA(T 2r) c V(T r) 

in some nhd. of ~'. So letting again r be fixed and n-+ co we obtain 

THv, OREM 9.4.2. For  r~>l and a < r / 2 = g  o we can find J~cT ~ a closet subset and 

/EA(T ~r) such that /EI~($J)~JA(~),  [/(x)I < C ] x - ~ ' [ ~ .  

Proo[. What  we actually obtain by  the process described above is some function h 

satisfying the conclusion of Theorem 9.4.1 and being such that  h EA  in some nhd. of ~.  

From this our theorem follows since A ~ V. 

Comparing this last theorem with the classical Beurling-PoUard estimations [9], we 

see tha t  we are very far from the critical constant which is ~0 = r and not ~0 = r/2. Sharp 

results in that  direction have been obtained by  J.-P.  Kahane [25], [30]. 

10. The symplectic form and applications to the problem of spectral synthesis 

Let R c  C(K) be a unitary regular *symmetric Banach algebra of functions on the 

compact space K whose spectrum can be identified to K, let further O##EM+(K)  be a 

positive Radon measure fixed once and for all and let also ] E R c  C(K) be a real valued 

function of R. 

We now consider for every u E R  the element of R'  ( = t h e  dual of R) defined by  

Fu = etU~d/x i.e, the functional F u E R'  defined by  

<F=, r> = f Ke r(k) d/x (k), Vr E R 

and we denote by Ile'=ql'= IIF=II~. the norm of F= as an element of R'.  We can state the 

following theorem which is due to P. Malliavin [19]. 

THrO~EM. I /  / f iR  a real /unction is such that/or some positive integer p>~l: 

f+ l I II II U V e~UY ' d u  < + c o  
- - o 0  

then there exists a E R a real number such that 

( / - a )  EIR(/-a(a)); (/--a)V~JR(/-i(a)). 

We shall now exploit the above theorem to obtain information on the problem of 

spectral synthesis for tensor algebras. 
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w 1. The evaluation of the exponential of the symplectie form 

Let  us consider for n >71 

V~ = C(I) @ C(I) 8 . . .  ~ C(I); I = [0, 1] 

the produc t  being taken n times, and  let us denote by  I s = I  • I x ... x I; for every  x GI n 

let x= (x l ,  x 2 . . . .  xn) ( x j E I ; ] = l ,  2 . . . .  n) be its coordinates, let also dx=dx 1 x...  • be 

the Lebesgue measure volume element on I n. The spaces Lz(I) and L~176 which we shall 

consider in this paragraph are of course taken with respect to the Lebesgue measure of I. 

Let  us finally denote by:  

n--1 
O'n=O'n(X)= ~ xix;+IEVn~C(In), (n~>2); 

3=1 

which for obvious reasons we shall call the symplectic form; we shall also set convention- 

ally a l - -0 .  

We now consider Tn( )=lle'U nll'=lle'U nll  . ~ t h  the notations introduced at  the 

introduct ion of this chapter  with R =  Vu, K = I  n, R '  = (Vn)' =BMn, /=a , ,  d# =dx.  We shall 

prove the following 

TH]COR]~ 10.1.1. T~(u)<<_ (n>~l, uER) .  

This theorem is an immediate corollary of the following more general 

TrIEOR]C~ 10.1.2. Let us/or/1, /2 .... ,/n_IEL~176 (n~>l) and gELS(I) denote by: 

Zu(fl, Is ,"  ",/n-l; g) = f e'U~"/l!xl) /~.(x~) ... In-1 (xn-1) g (x,) dx. 

Then for all n >fl g and /j ( ] = 1 , 2  . . . . .  n - l )  as above we have: 

I~=(f,,l~ . . . . .  / n - ~ . a ) l < l u l - " - ' ) ' ~ ' l l / l l l  . . . .  II /n-l l l~ Ilall~,. 

Proof. 

(10.1.1) 

The proof is done by induct ion on n; for n = 1 the  set o f / ' s  is vacuous and 

ILu(g)l = f e'~~ < Ilgll,, 

holds and the  induct ion starts. So let us suppose tha t  (10.1.1) holds with so (10.1.1) 

n replaced by  n - 1  and  all choices of /1,/~, . . . , /n-2;  g. 

Let  us now for/1,  ]2 , . . . , /n- l ;  g, as in the theorem define/*-1 G/~r ( R ) a n d  g*E L2(R)by:  

/n*-l(t) ={  fn-l(t); t e I  Ig(t);  t e I  
0 ;tr  g*(t)=[O ; t r  
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We have then identifying a~- lEVn-1  to a funct ion on I n 

f:fo Ln(/1 . . . . .  /n-l; g) = ... e* . . . .  1/1(xl) .../n-~(xn-2) g~(x~-l)dxl ... dxn-1; 
(lO.L2) 

gu(t)=/n-l(t) e'~t*g(~)dT=/n_l(t)g (ut), tE I ;  

where ^ as usual denotes the Fourier  transform. Bu t  then Plancherel 's  theorem gives us 

Hgu(t)[[~*(I) = f+~* I/*-~(t)O*(ut)]2dt2 �9 , - ,  ' ,  } (10.1.3) 

< IIl.-,ll bl- llg II/n-,ll5 Ilgll= 

So using (10.1.3) and applying the inductive hypothesis  on the second member  of (10.1.2) 

we obtain the inductive step and complete the proof of the theorem. 

w 2. A best possible constant in the Beurling-Pollard theory 

Let  us now use P. Malliavin's theorem of the introduct ion to  this chapter  on R = 

Vn~C(In) , /=an  and d/x=dx with the notat ions of our previous paragraph.  We obtain  

then taking into account  Theorem 10.1.1 

T H e O r e M  10.2.1. For all n>~6 there exists anER a real number such that: 

a~ -- an E i v . ( ~ ) ;  (an -- an) TM ~ JV'(~n); Y-n = a~ 1 (a~), 

where rn is the largest integer strictly smaller than ( n -  3)/2.  

I f  now with an, ~n and rn as in the theorem we denote by  ~% = ( a n -  an) TM we see 

t h a t  
9nelV'(Yn)~JV*(Yn);  9n(X) <C[d(x,  Y n)] TM, Vxe ln ;  (10.2.1) 

where d denotes the euclidean distance on I n. So if we embed I as a closed arc in T and  

take into account  Ch. 3, w 3, Case 1, and if we let n ~  in (10.2.1) we see tha t  rn~n/2 

and thus  tha t  Theorem 7.2.2 is best possible asymptot ical ly  at  least as s-+ ~ for 

( 0  2 ~ O )  3 ~ . . .  ~ 0 )  s ~ 1 o  

References 

[1]. SCHWARTZ, L. (Sdminaire), 1)roduits tensoriels topologiques d'espaces vectoriels topo- 
logiques. Espaces vectoriels topologiques nucldaires. Applications. (1953-1954), Faeult6 
des Sciences de Paris. (Especially numbers 1 to 8.) 



TENSOR ALGEBRAS AND HARMONIC ANALYSIS 111 

[2]. NAIMA~K, M., Normed rings. Groningen (1959). (Especially Chapter I I I  and in part icular  
w 15.) 

[3]. MALLIOS, A., Tensor products and harmonic analysis. Math. Ann. ,  158 (1965), 46-54. 
[4]. BOU~BAKL N., Topologie ggndrale, Ch. 9; w 6; No. 6, 7. Hermann,  Paris; A.S.I. 1045, 

Nouvelle ddition. 
[5]. RUDIN, W., Fourier analysis on groups. Interscienee No. 12. (Especially Ch. 5, w167 1, 2, 6, 7.) 
[6]. KUROS~, A. G., The theory o] groups (translated in English). Chelsea, 1955. Vol. 1, w 24. 
[7]. ZYGMVND, A., Trigonometric series, Vol. 1. Cambridge U. P., 1959. 

1) p. 70; example 2. 
2) Ch. VI; Theorem 3.6. 
3) Ch. V; Theorem 4.2. 

[8]. MORSE, M,, Bimeasures and their integral extensions. Ann.  Mat. Pura Appl. ,  (4) 39 (1955), 
345-356. 

[9]. KAHANE, J .-P.  & SALEM, R., Ensembles par]airs et sgries trigonom~triques. Hermann,  
Paris; A.S.I. 1301. Especially: 

1) Appendiee I I .  
2) Ch. XI ,  No. 6. 
3) Ch. IX,  No. 6. 
L o i r E ,  M., Probability theory. Van Nostrand,  1955, Ch. VI. 
SCHWARTZ, L., Sur une propridtd de syathbse spectrale dans les gToupes non compacts 

C. R. Acad. Sci. Paris, 227 (1948), 424-426. 
VA~OPOULOS, N. TH., Sur les ensembles parfaits  et les sdries trigonomdtriques etc. 
1) C. R. Acad. Sci. Paris, 260 (1965), 3831-3834. (We show there tha t  every Kronecker 

set is a set of spectral synthesis.) 
2) C. R. Acad. Sci. Paris, 260 (1965), 4668-4670; 5165-5168; 5997-6000. (The main 

ideas appear  in these notes.) 
3) C. R. Acad. Sci. Paris, 262 (A), 384-387; 447-449; 263(A), 785-787, 834-836. (More 

results are given in these notes.) 
[13]. HERZ, C. S., 

1) Sur la note prdcddente de M. Varopoulos. C. R. Acad. Sci. Paris, 260 (1965), 6001-6004. 
2) Math. Reviews, 31 (1966), 2567. 
REIT~R, H. J . ,  Contributions to harmonic analysis IV. Math. Ann. ,  135 (1958), 467-476. 
GATESOUPE, ~r Sur les /onctions radiales. To appear.  
BOeHNER, S. & CHA~DRASEKHAI~, K.,  Fourier trans]orms. Princeton U.P. (1949), Ch. 

n , w  
COURANT, R. & HILBERT, D., Methods o] mathematical physics. Interscienee (1953), Vol. 

I,  Ch. VII ,  No. 7. 
V~moPovLos, N. TH., Spectral synthesis on spheres. Proc. Cambridge Philos. Soc., 62 

(1966), 379-387. 
MALLIAVIlV, P., 
I) Impossibilit6 do la synth~se spectrale sur les groupes abdliens non compacts. Inst. 

Hautes t~tudes Sci. Publ. Math., 1959, 85-92. 
2) Ensembles de rdsolution spectrale. Proc. I .C.M.  Stockholm, 1963, 368-378. 

[20]. - - - -  Calcul symbolique et sous-alg~bres de LI(G ). Bull. Soc. Math. France, 87 (1959), 
181-190. 

[21]. MANDELBROJT, S., Sgries adhdrentes, rggularisation des suites, applications. Gauthier- 
Villars, Paris (1952) (Ch. IV). 

[22]. RODIN, W., Division in algebras of infinitely differentiable functions. J.  Math. Mech., 
11 (1962), 797-809. 

[10]. 
[11].. 

[12]. 

[14]. 
[15]. 
[16]. 

[17]. 

[18]. 

[19]. 



112 N. Tm VAROPOULOS 

[23]. I~TZ~VELSON, Y., Sur le calcul symbolique dans quelques alg~bres de Banach. Ann. Sci. 
J~cole Norm. Sup., 76 (1959), 83-124. 

[24]. KA~ANE, J . -P.  & KATZ~LSO~, Y., Contribution ~ deux probl~mes concernant les fonc- 
tions de la classe A. Israel J. Math., 1 (1963), 110-131. 

[25]. KAHA~E, J.-P., Sur le th~or~me de Bcurl ing-Pollard.  Math. Scand., 20 (1967). 
[26]. ]-IERz, C. S., The spectral theory of bounded functions. Trans. Amer. Math. Soe., 94 (1960), 

181-232. 
[27]. HELSO~, H ,  KAm~NE, J.-P. ,  KATZNELSON, Y. & RUDI~, W., The functions which operate 

on Fourier  transforms. Acta Math., 102 (1959), 135-157. 
[28]. K A m ~ ,  J.-P., Alg~bres tensvrielles et aaalyse harmonique. Seminaire Bourbaki, May, 

1965. 
[29]. VAROPOU~OS, N. Tin, Summer school on topological algebra theory; September 6-16, 1966, 

Bruges; Presses Universitaires de Bruxelles. 
[30]. KAHANE, J.-P. ,  Sur la synth~se harmonique darts l ~176 An. Acad. Brasil Ci., 32 (1960), 

179-189. 

Received May 23, 1967 


