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Introduction

The material presented in this paper is a systematic exposition of the theory of tensor
algebras and their applications and connections with harmonic analysis.

We shall not attempt here in the introduction to describe or summarize the methods
and results of this paper. We shall instead refer the reader to [13], [28] and [29] for that.
We shall also refer the reader to [19], [23], [26], and [27] for background reading relative
to the two main problems considered in this paper, namely, the problem of “spectral
synthesis” and that of “symbolic calculus”.

We would like to point out, however, that none of the above literature is an essential
pre-requirement for the understanding of this paper. What is needed instead is a certain
familiarity with commutative Banach algebras and in particular regular algebras. One
can acquire this in [2]; also we shall have to assume in this paper one or two easy but
slightly technical points of harmonic analysis that are very well exposed in [5]. Finally
some knowledge of the general theory of the topological tensor product as is to be found
in [1] is desirable but not essential provided that the instructions given below as to how
this paper should be read are carefully followed.

In Ch. 1 we recall definitions and notations from functional analysis and prove some
easy lemmas.

In Ch. 2 we define a tensor algebra in two ways: using functional analytic concepts
in §1 and directly in §2. The reader who wishes to ignore functional analysis should
start reading this paper from Ch. 2, § 2.

In Ch. 3 we develop some of the fundamental topological techniques that allow us
to work with tensor algebras. There § 4 is the most crucial paragraph and also the easiest
to read. The reader can go directly from Ch. 2, § 2 to Ch. 3, § 4 provided that he is pre-

pared to refer back for definitions.
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In Ch. 4 the first link between tensor algebras and group algebras is established and
in a first reading it suffices there to read § 1 and § 2.

Ch. 5 is more technical and is developed only for the sake of some specific applications.
The reader could skip it altogether in a first reading and proceed directly to Ch. 8 where
the second essential link with harmonic analysis is established. One thing that I should
like to point out here is that the presentation of the material of Ch. 8 differs from the one
I originally gave in [12]; instead the much more elegant formulation of [13] is followed.

The remaining chapters deal with various aspects and applications of the theory and
are much more specialized; they can in fact be read more or less independently from one

another.

1. Generalities on the tensor product and Banach algebras
§ 1. The tensor product of vector spaces
In this paragraph we shall list some notations and definitions from functional analysis
which we intend to adopt.
For arbitrary vector spaces E,, E,, ..., E, we denote by E; ®E,®... ®F, their tensor
product which is a new vector space, for {e,€ E,}, elements of the spaces we denote then
by e, ®e, ® ... ®e, their tensor product [1]. Also for arbitrary linear mappings {7;: E,~H,}",

between vector spaces we denote by:
T=T,8T,®..T,:E,QF,Q .. FE,~H, ®H,®... ®H,

the canonically induced mapping on the tensor products.
When the spaces {E,; H})!, are normed linear spaces and {T;€L(E; H,)}]., are

continuous linear mappings we denote by E =E1(,>:)E'2(>/<\) éEn the completion of
E,®E,®...®F, with the projective ®, norm; ¥ is then a Banach space [1]. 7' can then
be extended by continuity to:

P=T7,8T,8...0T,  E=E,RE,8...0F,~H,8H,®...8H,,.

It is then well known that || 7] <[ 7] || Tell---]| Tul|- Also in the case where the spaces
E,, E,, ..., E, are already Banach spaces it is well known that every element ¢€ F admits
an expansion of the form:

(&) e=> e’ Rel’®...QeP; & €E, (1<i<n; j=1,2,...)
=1

such that To=S ] lle]] ... lle]l < + oo,
j=1
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where of course 7'; depends on the particular expansion. We can say further that:

llellz = inf 7,
&

the inf being taken over all possible expansions of e and ||e]|z being the norm of € E.

§ 2. Approximate inverse and tensor product

Let B and C be two Banach spaces and let 7': B—C be a continuous linear mapping
(T €L(B; C)). We shall say that a family {7',€L(C; B)},es of linear mappings T,:C~B
which is directed, in the sense that the index set A4 is a directed set, is an approximating

inverse of T if:

(@) [|IT.j <1 Vae4

(B) TyoT e 19(B) for the strong operator topology (i.e. T,0Tx s ¥ B VYxzeB).

(In general for any set X we denote by I9(X) the identity mapping on the set X.) We
say then that 7' has an approximating inverse.

Let us observe then at once that if 7: B—C is a linear mapping between two Banach
spaces of norm at most one ||7']| <1 that has an approximating inverse then T is an iso-
metry. Indeed suppose not then for some b€ B we have ||Tb||o<||b|5 then we have, de-
noting by {7,}.c4 the approximating inverse of 7'

|70 Toll s <[ TBllc< [IB; T.0Tb ——> bin B

which gives the required contradiction.
Let us now suppose that {T?:B,~C;}I, is a family of bounded linear mappings
between pairs of Banach spaces each with an approximating inverse {7 }xc4; and let us

also consider
T=TOET®E... 8T : B,®B,®...8B,~0,80,8...80,
their tensor produet; it is then immediate to verify that the family:

{sz}o:EA = {Till) éTg)é e (;BT:‘:)}(a,.a,, v dn) €Ay X Ay X oo x Ap= A, (121)

where A=4, x4, % ...x A4, the product space with the product order is an approximat-
ing inverse of T'. (This is an immediate consequence either of general theorems or of the

decomposition (€) in § 1.)
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From the above and § 1 we see that

LeMmwma 12.1. If T,;:B,~0C,; (j=1,2, ... n) are bounded linear mappings of Banach
spaces such that

() IT1<1, §=1,2,..n.

() T, has an approximating tnverse for j=1, 2, ... n.
Then T=T, ® Tzé L.® T, ts an isometry.
Let now again B, C be two Banach spaces and let

B=B,o>B,>...2B,>...N B,=B,

be a nested sequence of closed subspaces such that the canonical injections:
i :B,~B,;, n=12,...,

have an approximating inverse {i{"}sc4,. Let us also denote by j,: B, B the canonical

injection; it is then clear that the directed family

= ;Mg (n—1) (1
{7“1,12. e n ’l/an OOL”_ 1 o... 7/“1) }(ax,az,. v @) €Ay X Ag X .o X Ap

is an approximating inverse of j, for each n=1, 2, ... . Let us now make the additional
assumption:

(*) For any choice of the sequence a=(x;, oy, ...) €4 =4, x 4, x ... the sequence of map-

pings {7',,07'“1, e an}f .1 converges in the strong operator topology to a mapping:
ja = 7.&1. oz ees :B—B.

It is then clear that Im j,= B, Va€A4 and that the family {j,}.c4 for the product order

of A=4, x A, x ... is an approximating inverse of the canonical injection
Joo: B B.

Therefore it follows that under the hypothesis (*) we can identify Bn®0 to a closed sub-

space of B&C for n=1, 2, ... co; and obtain a nested sequence

BOCSB,®C>... X= N (B,BC)2B..BC

n=1

we claim further that X = B, &C. Indeed let z€ X w< B é C and £>0 be arbitrary

then for any choice of ¢ € 4 we have:
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z =[j.®16(C)] (x) € B O C;

but for a proper choice of a€ 4 we have ||z —2,]|zg ¢ <& and B, ®C being a closed sub-
space our assertion follows.

§ 3. The role of the basis problem in tensor products

Let B be a Banach space. We shall say that it has a basis if there exists {T, € £(B)}ses
a directed family of linear operators on B (linear mappings from B to B) of finite rank
(i.e. the spaces T',(B) are all of finite dimension) such that

sup [|T.]] < + oo; T,~I18(B) in the strong operator topology.
el
All known Banach spaces have a basis and it is an open problem whether Banach
spaces without a basis exist.
Let now B be an arbitrary Banach space and let K< B be a closed subspace and

B— B/K be the canonical projection, let further X be another Banach space with a basis

and let us consider the mapping:
F=I19X)®p: X®B~>X®B/K;

then it is immediate that if we identify X® K to a subspace of X ® B that X® K = Ker P.
We claim further that X® K is dense in Ker § i.e.

X®K =Ker j. (1.3.1)
Indeed let {Z,€ £(X)}«es be the operators of finite rank such that

sup ||Z,|| < + oo; Z,—> 16X in the strong operator topology.
xed

Then if we denote by Y, = Z,® I9(B) we see that
Y, IoX @B) for the strong operator topology; Y,[Ker ] X® K (1.3.2)

the second relation holds because Z, are of finite rank; and (1.3.2) of course implies our
result.

Let now {B;> K,}}-, be Banach spaces and closed subspaces and let {p;: B, B;/K,}}-,

be the canonical projections and let us suppose that all the spaces {B;; B;/K,}}-; have
bases; let us further denote by:

HK({B,> K} 1)=K,®B,®...0B, +B,OK,®...®B,

+...B,®B,®...®B, ,®K,<B,®B,®...8B, (1.3.3)
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a vector subspace. Then a repeated application of (1.3.1) (or equivalently induction over =)
gives at once

K{B,5 K} =Ker (9,80,8...®p,). (1.3.4)

§ 4. Commutative Banach algebras

We start by listing some classical notations on Banach algebras which we shall adopt.

Let R be a semisimple, regular, commutative Banach algebra with 1 and %, as spec-
trum [2]; for any r € R we shall denote then by #€C(I;) its Gelfand transform. Let also
E <N be a closed subspace; we then denote by:

I¥E) = I(E) = {r€R; #(0)> £},
I§(E) =1,(E)= {r€R; #1(0) is a nhd. of E},

JEE)=J(E)=1yE).

It is then a classical theorem that I(E) is the largest ideal with E as hull, that I (F) is
the smallest ideal with E as hull and that J(E) is the smallest closed ideal with ¥ as hull.
(For any ideal J <1 R we define hull of J =h{J)= N,

W) = {MERy M>JT)) [2]

We also say that E is a set of spectral synthesis for the algebra R if J(E)=I(E).

Let now R, and R, be two regular Banach algebras with identity and let 6: B, —~ R,
be an isometric algebraic homomorphism that takes the identity of R; on the identity
of R,, and identifies R, with a closed subalgebra of R,. § then induces canonically by
transposition a continuous mapping -

6 : %Rg_)%}gl;

6 is then onto, for R, being regular and being identified to a closed subalgebra of R, any
of its maximal ideals can be extended to a maximal ideal of R,.
Let now E, <Ny, be a closed subset and let E,=0"1(E;) <Ny, then we can verify at

once that:
O IR (B ) =1 (B,); 07 '[J(E,)]=>J™(E,). (1.4.1)

We have also

Lemma 1.4.1. Let 0: R, —~ R, be as above and such that:

() It has an approzimating inverse {0, }xca-
(B) For any ry€ B, we have
supp [0 (r,)]” ——> Olsuppy).
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In the sense that for any Q open nhd. of O[supp #,] in Np, there exists an € A such that
o= ag = supp [0, ()] < Q.
Then for any closed set By =Ny, as above and E,=071(E,) we have:
61 (TP (B,)) = T*(By).

Proof. Indeed from (1.4.1) we see that it suffices to prove that 67 (J*(E,)) = J ™ (&,).
So let £¢>0 and € R, be arbitrary such that 6(x) € J* (E,); then there exists y, € I5* (E,)
such that [|6(z) — y.||z, <e/2.
Also there exists « €4 such that

|0, 08(x) —2|| 5, <&/2; supp [0,(y:)]" N E, =9

by the conditions of the lemma. But then

Ga(ye) GIO(EI)’ ”x —ea(ys)" <eg,

and ¢ being arbitrary this proves that x€J®(E,) and completes the proof of the lemma.

It follows in particular that if a mapping 6: R, — R, satisfies the conditions of Lemma
1.4.1, and if a closed set E; <N is not a set of spectral synthesis for the algebra R,, then
the set B,=0-1(X,) is not a set of spectral synthesis for the algebra R,.

Let us finally introduce the following convenient definition:

Definition 1.4.1. We shall say that 0: R,— R,, an isometric algebraic homomorphism
between two regular Banach algebras with identity that takes the identity of R, on the
identity of R,, has a local approximating inverse if it has an approximating inverse satis-
fying the conditions of Lemma 1.4.1.

§ 5. Tensor product of Banach algebras

The statements that follow without proof are almost all trivial and well known [3].

Let Ry, BR,, ... B, be n commutative Banach algebras with identity, then we can

give on R=R1® @Rn a canonical structure of a.commutative Banach algebra with
identity. If further the {R;}j-, are *Banach algebras a *Banach algebra structure can
be given on R. If further {p,: R,~ E,}I.; are continuous Banach algebra homomorphisms
from the commutative Banach algebras R; to the commutative Banach algebras R, for
7=1,2, ... n then

2,800,®...0p,: R=R,OR,®...0R,~E-EF,6F,8...0R,

is also an algebraic homomorphism.
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Relative to R the tensor product of the commutative Banach algebras B,, R,, ... R, the
following facts are trivial: ¢, the spectrum of R can be identified to N, x Rp, X ... x Ny,
Also if the algebras R,, R, ... R, are regular so is R. Further, and this is not entirely
trivial [3], if all the algebras R,, R,, ... R, are semisimple, and if qua Banach spaces they
satisfy the Banach approximation property (in particular if they have bases), then the
algebra R is also semisimple.

An important tensor product of algebras arises in group algebras, where for Gy, Gy, ... &,

compact abelian groups we can identify isometrically and canonically
AGy % Gy x .. x G) = A(G)B A(G1) D ... B A(@,).
The same is true for general locally compact abelian groups but then the algebras have

no identity [1]. (For notations cf. [5] and Ch. 8.)

We shall prove now the following general

TuroreM 1.5.1. Let B;, R,, ... R, be semisimple regular commutative Banach algebras
with identity and let E; <Nz, be closed subsets of speciral synthesis (i.e. I;=I%(E;) =J%(E,),
i=1,2,...n) and let us further suppose that the Banach spaces (R;; R;/I;; j=1,2,...n)
have bases. Then the set E=E, x Eyx ... x E,= RNy is a set of spectral synthesis of the
algebra R = RléRz@) @)Rn

Proof. Let X=X({R,>1I}",) with the notation of (1.3.3). Then X is an ideal of R
and k(X)=E and also by the very definition of J(E) X <J(E). Therefore using (1.3.4)
we see that: 3

KX=J(E)=Ker (p,®0,®...0p,)
(p;: R,~ R;/I, the canonical mapping j=1, 2, ... n). From this it follows that R/J(E) can

be identified to RI/II®R2/12@... éRn/I,L which by what we have said above is a simi-
simple Banach algebra; thus R/J(E) being semisimple it follows that J(&)=I(¥) and
our theorem is proved.

2. Definition of the tensor algebras
§ 1. The functional analytic approach

Let X ={K}}-; be compact topological spaces and let K =K; x K, x ... x K, and
let us denote by {k,€ K}, and k= (k,, &y, ... k,) the generic points of {K;}}.; and K
respectively. We then denote by C(K;) the *Banach algebra of complex continuous fune-

tions on the space K, and

V=CK)BCK,)S ... OC(K,)
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which is then also a commutative *Banach algebra, semisimple and regular with K as
the maximal ideal space. We call ¥V the tensor algebra over the spaces X ={K,}j-; or
simply “a tensor algebra”; we denote it as V(X) or less accurately simply V(K) or even
V when no confusion can arise.

Let now X' ={K;}}.1 be another family of comract spaces and p ={p,: K,~ K;}7-;
a family of continuous mappings. The p, induce then, by transposition, Banach algebra

homomorphisms
p;: C(Kj)~>C(K))

and a homomorphism of the tensor algebras
P=p®p®...0p,: V(X')>V(X).

Now the vector space T =C(K,) ® ((K,) ®... ® ¢(K,) can be identified to a dense subspace
of C(K); indeed C(K) is no other but the completion of T for an appropriate norm on 7,
namely the injective ®, norm on the tensor product so that with standard notations [1]

we can write

C(K) = C(K,) D 0(K) 8 ... 50(K,).

The projective norm ®, being bigger than the injective norm ®, it follows that we have

a canonical norm decreasing linear mapping
J =J(H): V(K)~C(K)

which is also (1 —1) since the spaces C(K ) satisfy the Banach approximation property [1].
Using then the expansion £ of Ch. 1, § 1, we see that f€Im J < C(K) if and only if f admits
an expansion (&)

(k) =j§1fi(l) (ky) 1(2)(1"2) J(n)(kn) Vik=(k,, kz’ k)€K

such that P eCK,), i=1,2,...m; j=1,2,...,

5 (1) (2) (n) (2.1.1)
Te= 2 [7lea 1Moo - 15l oo < + 00

and that if f=Jv for some v €V then

llvlly = inf T,
&

“i.e. we obtain the norm of v in V as the inf of T, over all possible expansions & of Jv=f
as in (2.1.1).
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It is also immediate that J(X) can be identified to the Gelfand representation of the
algebra V =V(X) i.e. the maximal ideal space of V being identified to K we have Jv =74
Vv€ V. So the fact that J is (1 —1) is equivalent to the semisimplicity of V (cf. Ch. 1, § 5).

§ 2. Elementary definition of a tensor algebra

Here we shall give an elementary definition of a tensor algebra equivalent to the pre-
vious one but entirely independent from the general theory of topological tensor products.
For the rest of the paper we shall feel free to use either of the two definitions. It will,
however, be very easy for the reader to reconstruct any of our subsequent arguments
starting from whichever definition he pleases, and in particular to read the rest of this
paper ignoring completely the functional analytic language we use.

We denote again as in § 1 by X={K,}j-; a family of » compact spaces,

K=K, xK,x..xK,

and we denote by {k,EK,}, and k=(ky, ks, ... k,) the generic points of {K,}7_; and K
respectively.

We then define V=V(X) as the subspace of C(K) of those functions f€C(K) that
admit a decomposition (&)

1= 3 1) 12 (ks) e () Vo= (e By .. ) €K

such that ®e(K), i=12,...m; §=1,2,...,
<L 2) (n) 2-2.1)
Te= 2 17 New 1P lleo - Wl < + e
and then we norm the space V by setting for every f€V
Iflly = int T; (2.2.2)

the inf being taken over all possible decompositions of f as in (2.2.1).

V then becomes an algebra of functions, and it is easy to verify that the norm || |,
as defined in (2.2.2) is a complete norm i.e. that we obtain a Banach algebra. With this
definition we must now verify that the spectrum of V(X) can be identified to K, and
that V(X)) is regular, V(X) also inherits the *algebra structure of C(K) i.e. f*= f the com-
plex conjugate function. These verifications are easy. Also it is quite immediate that this
definition is identical to the previous one of Ch. 2, § 1.

On the basis of this definition we can also define the homomorphism p induced by
the mappings {p;: K,~K;}}-;. We leave this to the reader.
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A point that I would like to make is that in previous publications on the subject
both myself and other authors have used systematically the notation V(G)=C(G’)(§C(G)
(or even B(G) =C(G)é C(@)) where G is a compact abelian group (or more accurately the
underlying topological space of such a group). The notation V(@) is very convenient for
tensor algebras of only two factors and we shall use it when confusion can not arise. For
tensor algebras with more than two factors it is of course quite inappropriate. A more
accurate notation for V(@) in our previous notations is V(G) where G ={@,, G;} with G,,G,
two identical copies of G, or V(G x(@). On the other hand, the notation B(G) we shall
definitely abandon.

3. The tensor algebra homomorphisms
§ 1. The space V' and the mapping &

Let us suppose that G={G,};{ is a family of n compact abelian groups (possibly
finite), or more accurately the underlying spaces of such groups, which we shall also
denote by G;. Let us denote by k¢, the normalized Haar measures of these groups (| f|| =1)
and L®(G/;) the L® spaces formed with these measures, let finally n;:C(G;)—~L>(G,) be
the isometric canonical embedding (j=1, 2, ... #). We shall then consider

V'(G)=L*(G)O L (G)®...0 L™ (G,)

which is a Banach space.
Just as in Ch. 2, § 1, we can identify L®(G,) ®L*((,) ®... ®L®(G,) with a subspace of
Lo(G) where G=0G, x Gy x ... x G,, and the projective norm on L®(G,) ® LX(G,) ®... ®L®(G,,)

being larger than the norm of L®(G) we obtain a norm decreasing mapping
I =J(G):V'(§)~>L~()

which is (1 —1) and which identifies V'(§) to a subspace of L*(@). The fact that J' is (1 —1)
is a consequence of the Banach approximation property which is valid for the spaces
L>(@;). Indeed for € V'(G) x =0 we can then find F,€(L*(@,))’ =the dual space of L*(G,),
such that F; ®F,®... ®F,(x) 0. But the unit ball of LY(G,) being dense in the unit ball
of (L®(G,))" we can also suppose that F,€LY(@)) so that F, ®F,®...QF,€LYR), and this
proves the result.

Let us also observe that the space V' can be defined directly, independently from
the general theory of the topological tensor product, in a manner analogous to the one
used in Ch. 2, § 2, as a subspace of L®(G). Such a definition is based of course in the injec-
tion J' and the decomposition (£) of Ch. 1, § 1. We leave the details to the reader.
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We now define
&= Bm,®...0m,: V(G)~V'(G)

and we see that ||@|| < ||| 7))l <1 (cf. Ch. 1, § 1).

Let now H be some compact abelian group and let us, being consistent with our
previous notations, denote by z:C(H)-L*®(H) the canonical identification (L®(H) =
L®(H, hy)). Our next task is to show that 7 has an approximating inverse and to construct
it explicitly.

Let {¢,€C(H)},e4 be a directed family such that

e, 2 0; ”e,,”Ll=fHe“th=1, supp ez ——> On- (3.1.1)

The limit of the support being taken in the sense that for any Q nhd. of 04 there exists
on €4 such that
o ot = supp e, < .

{€a}uca is then an approximating identity of L*(H) and when H is metrizable it can even
be chosen as a sequence.
Let us then define:

7y Lo(H)~>C(H); m,(f) =f%e, VfEL®H), x€A.

It is then immediate to verify that {m,}.c is an approximating inverse of 7.

Now returning to our mappings 7;: C(G,)~>L*(G,) (j=1, 2, ... n) and to
@ =n1®n2®...(§>nn

we see that we can construct an approximating inverse of & using the approximating
inverses of the z;’s and (1.2.1). The approximating inverse {@,}scs 0f @ that we obtain
that way is realized as follows:

For n families {¢ €C(@))}sea. (=1, 2, ... n) satisfying (3.1.1) we define

W L7 (G)~C(@) (=G xGyx...xXG,)
0u(f) = [ % by he=e3®€XD...B€); fEL?(G),
where & = (0, &g, ... ;) €A = A, X A, % ... x A, with the product order; @, is then defined by
Jod, =wz0J’, a€A. (3.1.2)

Since @ has an approximating inverse it is an isometry.
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§ 2. Tensor algebras on group spaces

Let X={K,}j_: be a family of » metrizable compact spaces and let G={G,}]-1 be a
family of n metrizable compact groups or more accurately the underlying topological
spaces of these groups, and let further p={p;: K,~G,}}-; be continuous mappings that
are onto, they induce then as explained in Ch. 2, §1, p:V(G)—V(X) an algebra homo-
morphism. We shall show in this paragraph that p has an approximating local inverse
(Definition 1.4.1) and therefore in particular it is isometric.

First of all we can define [4]

phG~K, j=1,2,..n,

Borel inverses of the p;; i.e. mappings such that
(#)  pj'isa Borel function from @, to K;,, j=1,2,..n.
() For each g€G, we have p,0op; (g)=g, j=1,2,..7n
The {p; '}/, induce then » mappings:
Py (K ) ~L™(G)); Bf) =fopi s VIEC(K)), j=1,2,..m,

where of course the L*® is taken with respect to the Haar measure of ;. We observe now

that the eomposed mappings:
B,0p, =m,: C(G)~L™@,), j=1,2,..n, (3.2.1)
are no other than the canonical identifications of C(@,) to subspaces of L®(G)).
Let us now define
p=H®0®...05,: V(X)~V'(G)
we deduce then from (3.2.1) that pop=d. Let then {&,}xcs be the approximating inverse
constructed in (3.1.2), then it follows that {p,=@,0 }xe is an approximating inverse of p.

It remains to show that {p,}.c4 satisfies the conditions of Definition 1.4.1. Towards that
we observe that (p)” the transposed mapping of p is none other than

(p) =p=p1 XD X . X P K =K, x Ky x ... x K, =~ G =G x Gy x ... x Gy

It is also clear that for any f€ V(X)) the function J op(f)€L®(() is zero (i.e. zero a.e.)
outside p[supp J(f)]. Therefore

supp [w.0J 0p(f)] ——> plsuppJ(/)]

by the very definition of w,. But p,=d,0p therefore Jop,=w,0f op {cf. (3.1.2)) and

from that our assertion follows (cf. end of Ch. 2, §1).
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§ 3. Some trivial cases

Case 1: The subspaces. Let X ={K,}j-y X ={K;}}-1 be two families of compact
spaces such that K,cK;j=1,2,...n and let p={p,;: K,~ K;}}-1 be the canonical injec-
tions. Then p, can be identified to the quotient mapping

C(K))~C(K))/I(K)=C(K,); I(K,)=I""V(K,).

From that it follows that p is onto, also for f€ V(X’') we have Jop(f) =J(f)| ¢ the restric-
tion on K=K, x K, x...xK,. So V(X)) can be identified isometrically with the quotient
algebra and p with the quotient mapping

p: V()= V(K I(K) = V(K.

Case 2: Finite codimension. Here we shall prove a lemma which we shall need later.
Let X, A, B be arbitrary compact spaces and let {z;, z; € X}/_; be 2p distinct points of X.
We shall consider the subspaces

A, ={feC(XxA); f(z;, )=z}, @) Va€A,1<j<n}cC(XxA),
M, ={feC(X x A)®C(B); JH(x,, o, f) = Jf(z}, o, B), Ya € A, BEB, 1 <j<n} = C(X x 4)®C(B)
for all 1 <n <p. Let then
Ao i Ay C(X % AY; py =1 ®(18B)” : A, OC(B)~C(X x 4)BC(B).
It is then quite clear that Im (u,)= M, for n=1, 2, ... p. We shall in fact prove
LEmma 3.3.1. Imu,=M, =»n=1,2, .. p

Proof. We first prove the lemma for n=1. We fix F(x)€ C(X) such that F(z,)=0,
F(z{)=1 but arbitrary otherwise, then every element f€ C(X x 4) admits a unique de-
composition

f=1P+[® [PeA [P =F(z) @), {={E€CA) (3.3.1)
It suffices to set {y(a) = f(x1, ) — {2y, «). Now let f€ M, then we can write
T1(@ 0 )= 5 g,(2, 3) b (B), 91 € (X x A), By €C(B) 3 gl o< + 0
decomposing then each g; as in (3.3.1) we see that

THe, 2 8) = 3 95" (2, ) () = F(@) 3 L) () (332)
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and substituting ==, #; in (3.3.2) and subtracting the two equations so obtained we
obtain that

_gé‘w((x)h;‘(ﬂ)=0 Ya€A VﬁEB

and this together with (3.3.2) proves that f€Im u, which is our lemma for n=1.

Now for any n (1 <n<p) there exists a unique compact space X, such that we can
identify A, with C(X, x 4), X, is the space we obtain from X by identifying x, with =,
for 1 <j<n. Using that fact we see our lemma for arbitrary » can be proved by induction
on n. Indeed suppose it holds for n=1, 2, ... r —1 <p and let f€e M < M,_,, the inductive
hypothesis gives then that f=pu,_ ,(f) for some f' €A, (%C(B)=C(X,_1 ><A)(;<5 C(B) and
since we must have Jf'(z,, «, B} =Jf(z,, «, B) Ya, p the first part of the proof applied to

f’ gives our result.

§ 4. The mapping d: D, - T

In this section we shall study a particular homomorphism of tensor algebras which
will play a central role for the rest of the theory. This section will be independent of the
heavy Borel eross-section theorem we used in § 2.

We fix some notations first. Let w=1, 2, ... 8, be either a positive integer or ¥, the
countable cardinal; for any space X we shall denote then by X® the cartesian product of
X with itself o-times; in this context we shall always denote ¥, simply by oo so that we
shall write X* rather than X*. For any value of it is then clear that (X©)» = X** = X
since Xy =¥,, when in the future we say that we identify (X*)¢ with X© we shall mean
that we identify the index set ¥y» with ¥, in any fashion whatsoever, such an identification
is then unique up to permutation of the index set of the product.

Let now Z(2) be the group of two elements, let R and T be the real line and the circle
group (T =R (mod 27)) and let us denote by D, =(Z(2))®; we have then for any w, D% =D,
Let us finally denote by I the unit interval [0, 1] and let

p:R—=T; p(r) =exp (2nir)ET VreER

the exponential mapping, and also:

0 Do —1; 6(ct) = 2, 02%, Vo= (o, og, -.-)EDy
=1

the canonical mapping induced by the binary expansion of the real numbers r €I, and let
us denote finally by d =pod: DT the composed mapping.
5~ 672908 Acta mathematica. 119. Imprimé le 16 novembre 1967.
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We see that 6 and d are onto and such that if we remove from D, a countable set

they become (1 —1). From this it follows that the Borel inverse
d:T>D,; dod'=I8T, d ! Borel mapping

can be explicitly constructed and is well defined up to a countable set of points. Also we
see that d identifies the Haar measure of D,, to the Haar measure of T. For any w, d then
induces
do: Do(=Dg)—>T"

the cartesian product mapping d xd x... xd after identification of D, with D =(D,)®
as explained above. d, is then defined only up to possible permutation of the index set
of the product [Z(2)]™ which defines D; the properties of d, which we shall use, however,
will be independent of such a permutation, and thus the order of the index set can be
fixed in any fashion whatsoever.

It follows now that d,, is onto, and that its Borel inverse d,! can be constructed by
taking the cartesian product w times of d-1, also d, is (1 1) if we remove from D, a set
of Haar measure zero and it identifies the Haar measure of D, to the Haar measure of Te.

For any n>1 we consider now D,={D2}};, T, ={T}}-1 the families that consist
of n identical copies of D, and T respectively and 85 ={d,,: DS -~ Ty}, the family of n
mappings identical to d..

It then follows from Ch. 3, § 2, that the tensor algebra homomorphism induced by &z

o5 V(T,) = C(T*) & ... 8 C(T*) > V(D,) = €(De) ® ... ©C(D,.)

is isometric and has a local approximating inverse. Observe that here since we know expli-
citly the Borel inverse of d, the proof of these facts becomes much simpler; the reader is
advised to reconstruct the proof directly observing that using d, we can in fact identify
Lo(D,) and L*(T¢). For further reference we denote by

A=Ay XdyX ... Xdy: D X Do X voo X Do >T® x T x ... x T
@2 C(T® x T° x ... x T%) > C(Deo X Do % ... X Do)

the cartesian product of d, »n times and its transposed mapping.

§ 5. The subalgebra ¥ (J,) C ¥(D.)

In this paragraph we shall study further the mapping d:D—T and the induced
algebra homomorphism.
Let us denote by]A ={p/2°%; p€Z; s€Z} the set of diadic rationals of Rand I'=p(A)=

(£, 85, ... 1, ...) their image on T denumerated in any manner whatsoever.
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Then we have
Card(d™'(t))=1 ¢teT\TI; d7'¢t,)={t};t,}€D,, Vi, €.
Let us then denote for any »
C,={f€C(Ds); [t =f(t7), »=1,2,... n};

it follows that we have a nested sequence of closed subspaces
[

(D) =0y>C,>...5 N Cp=Coo = C(T). (3.5.1)

n=1

We shall prove that these subspaces satisfy the condition (*) of Ch. 1, § 2.
Towards that we first construct a double entry sequence J = {Ipn}mn-1 of closed ares

(intervals) of T of length <z/2 that satisfy the following conditions:
(«) The center of I, , is #,, and its end points ¢I" Vn, m
B Viixedn I, 213,72 ...2 1,37 ...2 Q I, . ={t.}

{(y) Two distinet ares I, and Ip 4,€J of our sequence are either disjoint or one is

strictly contained in the other.

Such a double sequence J can easily be constructed in successive steps of n (inductively
on n) i.e. we first construct {1, ,}_; satisfying («) and (B), then {I,, ,}m-1 satisfying («)
and () and also {y) with the already constructed sequence ect.

Using now the family J we can define for every n>1
1 :C >0, m=1,2,...,
by defining for every f€ C(D,) a new function ¢3’(f) € C(D,,) from the conditions:

(v) GR(H) (@) =fle) if d(ex) ¢ I,y *€ Do.
() If d{a) €L, [49°(H](x) =A(d(x)) where A€C(I, ,) and is such that lop is a

linear function on any closed interval of the set p~*(I,, ,) <R.

It is then easy to see that {4{’}m.; is the required approximating inverse of the

canonical injection
1™ C>Cy

and that it satisfies the condition (*) of Ch. 1, §2, for all n>1.

Let now A4, B be two arbitrary compact spaces and let us define for each n>1

A, ={f€C(De x A); f(,0)=f(ty,a) Ya€d, »=1,2,...n} (3.5.2)
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We have then again a sequence

C(Dow x A)=Ag> A, > ... FiAn=C(T><A) (3.5.3)

It follows then from the above considerations that the sequence (3.5.3) also satisfies the
condition (*) of Ch. 1, § 2. This can either be verified directly on the line of our proof
for the sequence (3.5.1), or it can be deduced from the above as follows. For each n=>1
there exists X, a compact space such that we can identify A, with C(X, x 4) and C, with

C(X,), we can take as X, the space D, after identification of ¢, with ¢, for v=1,2, ... n.
Then A,L=0nCQ)C(A) and we can set as the approximating inverse of the injection
An_)A'n—l

the family {i®®@I10C(4)}2_, forn=1,2,... [T,®T, for two mappings T;: 4,~ B, (j=1,2)
is the mapping 7,®7, extended to the completion AléAz]. We leave the verification
of (*) Ch. 1, §2, to the reader. We can now prove

TEEOREM 3.5.1. Let A, B be two compact spaces, then in the diagram:

C(T x A)®C(B) _ ¢(D., x 4)®C(B)
(dx124) ®(IoB) = ¢
' VJ
C(TxAxB) C(D,, x A x B)

(dx o4 x IoB)” =0

We have Im[Jop]=Im 6 N Im J.

Proof. Indeed let 2€ C(D,, xA)@ C(B) be such that Jr€Im 0. Then using Ch. 3, § 3,
Case 2, and our previous notations [(3.5.2) and (3.5.3)] we see that xGAn@) C(B) for all
721 and since the sequence (3.5.3) satisfies (*) of Ch. 1, § 2, it follows that 2 € C{T x 4) ® C(B)
[or more accurately that there exists some z’'€ C(TxA)@C(B) such that x=gz']. This
proves our theorem.

Now a successive application of Theorem 3.5.1 for different spaces 4 and B yields
the following

TaEOREM 3.5.2. For any n>1 and any compact space 4 in the diagram

O(T)®C(4) ———— C(De)OC(A) =V, (4)=7,
4,8 (104) =@,
A, (4) VJ
C(T" x A) C(Dw x A)=W,(4)=W,

—_—_—
(d, x To4)” =0,

we have Im[Jog,]=ImJ N Im@,.
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Let us now for the purpose of the proof of our next theorem introduce the following
notation, for any compact group K and any n>1 let us denote

K* K" > = 5.4
€y =En(K) otk B BT (3.5.4)

(kpy gy oo o o..) ——> (y, bo, ... b)) —— (K, Koy, ... kn, Og, O, ...

The canonical projection, and injection of the space of the first n coordinates of the in-
finite product. Observe then that 7, e I2C(K*) for the strong operator topology
n—>

(1, is the transposed mapping). We can now prove:

THEOREM 3.5.3. For any compact space A in the diagram

CT*)®C(4) —— C(D..)®CUA)=V
doo®(IaA)V=tp
(Aw) l J
C(T* x A) C(Dyx A)=W

—— >
(doo x 12A4)” =0

we have Im[Jo¢p]=ImJ NIm86.

Proof. Together with the diagram (A_) let us for every n>1 consider the diagram
A, (4)=A, of Theorem 3.5.2 with the same space 4.

Now the mapping {, applied to T® and (D, )®= D (K=T or D, ,(T):T*~T=>,
Ca(D): (Dg)* = D= (Do) = D) induces by transposition a mapping from the diagram
(Ap) to the diagram (A,) (i.e. from the spaces of the diagram A, to the spaces of the
diagram A,) and conversely the mapping &, for K =T and D, induces a mapping back
from (A,) to (A).

So now let 2 € C(D.,) ®C(4) = V be such that Jz€ Im6< W then

2, =[(Do)®(104) 1 (x)€V, and Jz,€Imb,<W,,
thus an application of Theorem (3.5.2) to the diagram (A,) gives that z,€Im ¢, thus
%,= [£2(Der) ® (164)1 () = [71(Doe) 8 (104) "] (2) € I .

But from our previous remark %,-z, so, Im ¢ being closed in C(Dw)é(](/l) (cf. Ch. 3, § 4),
our result follows.

Applying Theorem (3.5.3) twice we obtain
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THEOREM 3.5.4. For any w=1,2, ... co; in the diagram

O(T*)®C(1°) —3 C(D.)®C(D,,)

Ow l J
C(T* xT®) — ©O(Dx x D)

V2
@

we have Tm [Jo 33]=Im J n Im d2.

We have, for simplicity, in all the preceding considerations restricted our attention
to the tensor product of only two factors, but of course Theorem 3.5.4, for instance, can
be generalized to any number of factors, using a simple inductive technique. We shall,

however, have no use for theorems of the above type for more than two factors.

4. The embedding of a tensor algebra in a group algebra
§ 1. Definitions and classical results

Let G be a locally compact abelian group and let @ be its character group. We shall

introduce here a number of definitions and well-known propositions.

(i) K< @ a compact set is called a Kronecker set if for any f€C(K) with |f| =1 and
£>0 we can find y €@ such that supy ex | f(k) —x (k)| <e
(i) K< @ a compact subset is called a K, set for p>2 some natural prime if:

{1 21 €G} = {{€C(K); =1}

i.e. the restrictions of the characters on K coincides with all the Z(p)(<C(T)) valued
continuous functions on K.

(iii) A set K <@ that is either a Kronecker or a K, set for some prime p will be called
a X-set of G.

(iv) A subset K <@ is called independent (resp. p-independent for p some natural
prime) if for any choice of {k;€ K}{., and {n;E€Z}/_; we have

M«

nk;=0g<n;=0 (resp. ;=0 (mod p)), j=1,2,...,J.

j=1

(v) It is well known and trivial that a Kronecker set of G is independent and a K,
subset of G is p-independent; and that for all g€ K =a K, set of G we have ord g=p.

(vi) Let G be an arbitrary locally compact non discrete abelian group, then there
exists K a Cantor subset of G which is either a Kronecker set or a K, set for some prime.

Note: Cantor set means that it is perfect metrizable and totally disconnected i.e.
topologically homeomorphie to D,
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Now quite generally for E any closed subset of ¢ a locally compact group, we denote
by A(E)< C(E) the algebra of restrictions of functions f€A(G) on the set E. A(E) can
then be identified to A(G)/I(E) and as such is assigned canonically with a norm and a
*Banach algebra structure. It will always be considered as a Banach algebra with the
above canonical quotient norm.

(vii) We gay that < @ a compact subset of the locally compact group @ is a Helson
set if A(K)=C(E).

(viii) Let G be a compact group and K a Kronecker set of G then A(K)=C(K) isomet-

rically ie. || ||aco =] e
(ix) Let G be a compact group and K a K, set for some prime p, then A(K)=C(K)
and ||/l ax) <kEp||f|lecx) for all fEC(K), where 1<k, <2.

For proofs and comments on the above definitions we refer the reader to the standard
literature on abstract harmonic analysis e.g. [5].

The rest of this chapter, and indeed the whole motivation of tensor algebras, rests
on the following simple observation.

Let Gy, G, be two compact groups and E,<G,, E,<G, two compact Helson subsets
ie. A(E;)=C(E) (=1, 2). Let also E=E, x E,= G, x G, then we have

A(E) = A(E,)® A(E,) = C(E,) & C(Ey).

In other words A(E) is a tensor algebra. We leave the verification of this to the reader
(observe that A(G)=A(G1)®A(G2) Chapter 1, § 5) since in the next paragraph we shall

examine in detail a much more general case of the above phenomenon.

§ 2. The basic embedding theorem

Let H,, H,, ..., H, be arbitrary compact subsets of the compact abelian group G,
‘and let us denote by

s:H=H xHyx..xH,~»H =~H +H,+...+ H,=G (4.2.1)
8(hy, hgy oy By) =Ry +hy+ ...+ R,
the group addition mapping, and let us also make the technical hypothesis:

(H): The algebra A(H) — A(H)® A(H,)®...8 A(H,) is semisimple.

We have already observed [Chapter 1, § 5] that () is satisfied in particular when the
Banach spaces A(H,) (j=1, 2, ..., n) satisfy the Banach approximation property, so ()
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is certainly verified when A(H,)=C(H,) which is the only case we shall need for applica-
tions.

When the hypothesis () is verified we can identify 4(H) to an algebra of functions
on H the carrier space of 4. So under the hypothesis (#) we can define a linear norm
decreasing mapping:

A:A(G)~ A(H)
by defining for all y €4

A(l) =X(h1)l(h2) L X(hn)7 hiEHﬁ j=15 2: “evy n,

and extending by linearity. It is then clear that with the identification A(H)< C(H) we
have for all f€A(G) (f| #)os=A(f) which shows that A(/ (H)) and that A induces

A A(H)~ AH)

a norm decreasing (1 —1) algebraic homomorphism which, of course, is no other than the
one defined by (};)~ =¢ [cf. Chapter 1, § 4].
We shall now study conditions under which

A is isometric and onto (4.2.2)

and it identifies the two algebras 4(H) and A(H). Towards that let K,, K,, ... K,<@
be disjoined compact sets such that K*=K UK,U..UK, is a K-set of G, let also

71, Tgs -y T, bE positive integers and let us suppose that the sets {H}.; satisfy

73
Hjc{zsuku; g.=11, kaEKj}- (4.2.3)
1

We claim then that (4.2.2) is satisfied.
Indeed let us introduce the notation
P =10..010f®1R...Q1)€ 4(H);, VI€A(H,), j=1,2, ... n,
where 1 is the function identically equal to 1 and f is placed on the jth place of the product;
and let us also denote by B and B the unit balls of the Banach spaces A(H) and A(H)

respectively.

To show now that A is isometric and onto it suffices to show:
M(B)=B; (4.2.4)

where the bar indicates of course the topological closure in 4(H).
Taking now into account the way the elements of the form ¥ (f€A(H,); j=1,2, ... n)
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generate the algebra A4(H) we see that (4.2.4) will follow if we show that for any £>0
any j=1, 2, ...n and any fEA(H,) there exists { € 4(G) such that

7 acer < Wllacemp + &5 1 = AP aer < e (4.2.5)
Towards that let f. € A(G) be such that ||follae < |fllacp +& feluy=F then
fo= ZA“;:?U ZAI“xl =|Ifellsco>-

xeG XeG
Let us then form f,, =>4 «,X, where X, € G is arbitrary subject only to the conditions
sup | (k) — X, (B)|<7m; sup|l—2,(k)| <%, i%7j;
keK; keEK;

we can always choose a y, for an arbitrary y and % by the hypothesis on K*. It is then
quite clear from (4.2.3) that for a small enough 7 if we set f’=f,, our condition (4.2.5)
is satisfied (observe that for any £=E<G@ and ¢>0 these exists >0 such that for all
2 E€G we have |jx|z~v|zllo<n=|x|e—¥|zllam <& (cf. (5.1.4) and [12], (1)).) We have
in fact proved the fundamental

THEOREM 4.2.1. Let G be any compact abelian group and K,, K,, ..., K, <G compact
disjoined subsets such that K, U K, U ... U K, is a X-set of G; let r,, 75, ..., 7, be positive integers
and H,=r(K;—K,) arbitrary compact subsets. Then we can identify canonically and isomet-
rically the algebra A(H1)® (QDA(Hn) with the algebra A(H,+-Hy+ ...+ H),) provided that
the hypothesis () holds.

We can now deduce a series of important corollaries.

THEOREM 4.2.2. Let G be a compact abelian group and let X = {K,<= G}}-1 be compact
disjoint subsets of G and let us denote

n . n n
K*=UK,; K=ZK1={Zk,; k€K, j=1,2,...,n}cG.
j=1 =1 i=1
Then:

(o) If K* is a Kronecker set of G the algebra A =A(k) can be identified canonically
and isometrically with the algebra V(X).
(B) If K* is a K, set of Q the algebra A=A(K) can be identified canonically and
topologically with the algebra V =V (JX) so that we have:
2 =1 =1 il

for the A-norm and the V-norm of two identified elements.

It suffices to apply Theorem 4.2.1 and [Chapter 4, § 1, (viii), (ix)].
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THEOREM 4.2.3. For any infinite compact abelian group G there exists B a compact
subset such that we can identify topologically and algebraically A(E) to the algebra V(D).

Indeed it suffices to observe that if K< G is a X-Cantor set of G and if we split it
into two disjoint relatively open subsets K,, K, and set £ =K, + K, we have

A(B)=C(K) B C(Ky) 2 C(D o) ® €(Dn) = V(D).

Then any identification of K, with D and of K, with D, fixes the identification of A(X)
with V(D,) and the transposed identification of E =K, + K, with D, x D,

From that identification of E=K,+K, with D, x D, it follows at once that if
DebD xD, is a compact subset which is not of spectral synthesis for V(D) it cor-
responds to < Ec@ a subset which is not of spectral synthesis for A(£) and thus a
fortiori is not a set of spectral synthesis for 4(@), i.e. is not a set of spectral synthesis of
the group G.

§ 3. The embedding in P+ Q

In this paragraph we shall give a slightly less canonical condition under which we
can identify 4(H) and A(H). (We preserve all the notations of the previous paragraph.)

To simplify our writing we shall suppose that n=2. Let us introduce the following

Definition 4.3.1. Let H,;, H,=G be two compact disjoined subsets of the compact
group ; and let m,, m, be two elements of the set (2, 3, ..., %, ..., o0} where oo is a “new”
symbol. We shall then say that f€C(H, U H,) is an {m,, m,}-function if we have f™i(h;)=1
Vh,€H,(i=1,2), where we interpret f®(z)=|f(z)| conventionally. We shall also say that
the pair {Hy, H,} is an {my, m,} pair if for every f€C(H,U H,) {m,, m,}-function and
every ¢>0 we can find some y €@ such that |f(h)—y(h)| <e for all hE€H, U H,.

We shall now prove (with the notations of the preceding paragraph)

TurEoREM 4.3.1. If n=2 and {H,, H,} is an {m, m,} pair for some m, and m, then i
18 onto and identifies A(H,+ H,) with C(H,) @)C(Hz) topologically.

Proof. Indeed it is well known that under our hypothesis A(H,)=C(H,) (i=1, 2) [5].
Also it is clear by definition 4.3.1 that the mapping s (4.2.1) is (1 —1) and that it identifies
H<H,xH, with H=H, + H,.

To prove the theorem we first observe that for any f,€C(H,;) such that f™i(h;)=1
Vh,€H, (i=1,2) (with the same convention f®(z)=|f(x)| as in definition 4.3.1), and
any &> 0 there exists € A(H) such that

Ih&k-iwla<e Iwllam<1.
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Indeed by our definition of an {m,, m,} pair we can set y=y| 5 for some y€G. The
theorem then follows upon observing that for any f€C(H1)®C(H2)=A(H ) we have an

expansion:
f= leaf‘l“@fg"); DAl <4 fllacery (P R)™=1, i=1,2, a=1,2,....
a= =1

Relative to {m,, m,} pairs we shall prove the following

THEOREM 4.3.2. Let P,, P,= @ be two arbitrary perfect subsets of the compact metrizable
abelian group G, then we can find two Cantor sets H,, H, and g,, g,€G two points such that

H,=g,+Py; Hy<g,+P,
and such that {H,, H,} is an {m;, m,} pair for some m, and m,.

Proof. For i=1, 2, let us define m, as the smallest positive integer m, if such an integer
exists, such that for P’'<P; some perfect subset and g€G some point we have mp' =g
Vp'€P’. H such an integer does not exist set m;= + oco.

Let also when m; < + oo P; be some Cantor set such that P;<g,+ P, for some ¢,€G
and m;p; =0 Vp; EP;, such a P; exists by the definition of m,; when m;= + oo set P; =P,
(=1, 2).

It then follows by the definition of m; and P; that:

For arbitrary XL Py {XP P,
perfect subsets and arbitrary
{- my <m’ < ml}alyil {- my < m$ < mz}gil
integers that are not all zero we can find points

2@eX®, i=1,2, «=1,2,...,N,,

Ny Ns
such that mPaxL + > mP 2P
a=1 a=1
(when m;=co we set of course conventionally —m;= — o). It is also evident that for each

xz€P; the order of x (ord) x divides m; (with an obvious convention or m;=co).

Using now the standard technique of constructing an independent and a X-set in a
compact group [5; 5.2.4] and staying well inside P; and P;, which we can do because of
the italicized statement above, we see that we can construct our two sets H,; and H,
satisfying the conditions of Theorem 4.3.2 as the intersection of a decreasing sequence
of open sets with P, and P; respectively.
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Combining now Theorem 4.3.1 and Theorem 4.3.2 and taking into account the fact
that for arbitrary £ =E< G and y € @ we have A(y + E)~A(E) we see that we have proved

TaeoREM 4.3.3. Let P,, P,< @ be two arbitrary perfect subsets of the compact metrizable
group G, then we can find two subsets B, <P, and Ey,<P, such that the algebra A(E,+ E,)
1s topologically isomorphic to V(D).

§ 4. The embedding of ¥ in 4 and the problem of spectral synthesis

We start with some trivial remarks, and we preserve all the notations introduced up
to now.

Let E< @ be a compact subset of spectral synthesis of the compact group @, and let
E,c Ec@ be a compact subset of F then the following two assertions («) and (8) below

are trivially equivalent

(x) E, is a subset of spectral synthesis of @, i.e. a set of spectral synthesis of the
algebra A(G).

() E, identified to a subset of the spectrum A(E), which is E, is a set of spectral
synthesis of the algebra A(FE).

We shall also need the following trivial consequence of the definition of a J-set.

Let K< @G be a compact Kronecker (resp. K,) subset of the compact group G, and let
%: K~ H be a continuous mapping where H is a compact group isomorphic to T (resp. [Z(p)]?)
with Q some cardinal number. Then for any W< H nhd. of Oy the zero element of H, there
exists h=hy ,:G—>H a continuous homomorphism such that

n(k)—h(k)EW VEEK

(p is of course some natural prime).
Let now G be some compact group and let {m;€Z}., be » mutually prime non zero
integers ((my, my, ..., m,)=1) and let us denote by

p:@"=GxGx..xG>G; ulgy, go --+>9n) =jglm,-g, (4.4.1)

a group homomorphism. Let us also denote by ¢,:G—+G" (p=1,2, ..., n) the canonical
injection of @ in G” that identifies @ to the pth component of the product. We shall now
prove the:

Levma 4.4.1. The mapping u splits, i.e. there exists L< Q" a compact subgroup such
that,
G"=LO®Keryu; L=@; Keru=G@"'=GFx ... xG.
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Proof. Let M = (my;€ L) ;_; be a square, integer entries, matrix such that det(#) =1,
and mqy;=m; (j=1,2,...,n) but arbitrary otherwise, by our hypothesis it is easy to
verify that such a matrix exists, and set:

n
f"i:Gn»G; }ui(gl’ ga2» “-:gn)= Zmi.fgl; 7'=1v 2, ERETN (4
=1

and also ]
wr G =G wHg*) = (uy(g®), .., palg*)) EG™; Yg*€G™.

Then by our hypothesis on u, u* is an automorphism of G", and also u, =m,ou*, where
m, is the projection of G" on its first component group; since y, =x our Lemma follows.

Let us denote then by g, =u|, which is then an isomorphism from L to G. Note that
L, and therefore y;, also, is not uniquely determined by the Lemma.

Let us now suppose that G =T (resp. [Z(p)]? with p some natural prime) where Q
is some cardinal number, and let K;, K,, ..., K,, be disjoint compact subsets such that
K*=K,UK,U..UK, is a Kronecker set (resp. a K, set) of G. And let us suppose that
we choose the {m,€Z}} { such that m;=+1 (j=1, 2, ..., n) but arbitrary otherwise, and
let us define u by (4.4.1); and let us apply our Lemma and let us fix a decomposition
G"=L®Ker y and a y; as in Lemma 4.4.1. We see then that ux=p|x ( restricted to
the set K) where K =K, x K, x... x K,=G"is (1 —1) and has an inverse [cf. ch. 4, § 1, (iv)]:

y,}l:i{={j§1m,k,; k,EeK; j=1,2,...,n}—>K.

Let now f€ 4@ (I~{ ) then fou = u(f) € I (K), and since K, being a cartesian product of
sets of spectral synthesis, is a set of spectral synthesis [Th. 1.5.1; [12]]. It follows that
for any &> 0 there exists f, € I3 (K) with

”fs ~ foulaem <e.
Let now:

»: K*—>Ker u; defined by x(k,) =loi m;k;) VE,€K; (=1, 2, ..., n),

where ! denotes the projection of G* on the direct summand Ker y defined by the decom-
position " =L @Ker u. Since then Ker u~G*-, applying our remark at the beginning
of this paragraph we see that for W any nhd. of zero of the group Keru we can find
h=hg:G—XKer u a continuous homomorphism such that x»(k)—h(k)EW VYEEK™; let us
then denote by

Wy: GG =LOKer y; Ky(g)=(uz'(g), hwlg))

We have then trivially yok’} = I0G for all W and also if W’ is any nhd. of K we can choose
W such that A%(K)< W'; from these facts we deduce that
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”f - feohtV”A(G) < ”/O,u - fa”A(G") <e YW

and that for some W f.0h%, € I§‘®(K), and ¢ being arbitrary, we see that we have, in fact,

proved that K is a set of spectral synthesis of ¢. We can thus state:

TaEOREM 4.4.1. Let G be an arbitrary compact abelian group, let {e,= +1}}-, be a
choice of +1, and K, K,, ..., K, compact disjoint subsets of G such that K* =K, U K, U
UK, is a K-set of G. Then the set K = 2118 K,< G is a set of spectral synthesis of G.

Proof. The case G arbitrary and K* a Kronecker set can be deduced from what we
have already said by embedding G topologically and algebraically in T for Q some appro-
priate cardinal. The case K* a K, set for p some prime also follows from what we have
done upon observing that Gp(K*)~[Z(p)]* where ' is again some cardinal number [6].

From Theorems 4.4.1 and 4.2.3 and the remarks at the end of Chapter 4, § 2 as well
as by the introductory remark of this paragraph about the equivalence of () and (B)

we deduce

TrrEOREM 4.4.2. For any infinite compact abelian group G group there exists E— @G
a compact subset such that A(B)>~V(D,)=C(D) @C(Dw) and in such a way that B, E
a closed subset of E is a set of spectral synthesis of G if and only if Bi< D, x D, the set that

corresponds to E; in the above identification is a set of spectral synthesis of V(D).

5. Some metric lemmas for a group algebra

As it was pointed out in the introduction, the material of this chapter is technical and
out of line with the rest of the paper; it is only inserted here to introduce some classical nota-

tions and to clarify a few isolated points.

§ 1. Metric properties of the group algebras and preliminary results

(A) For the calculations and formulas that follow we shall use the letters C (resp.
C.p..) for an absolute constant (resp. a constant depending only on the parameters
o, f,..) and these C' and (g will not be the same in all the formulae they appear.
We shall preserve this notation till the end of the paper.

We start now with some standard definitions and notations. Let M be a metric space
whose metric we denote by d, and let f€C(M); we set then

w(d)= sup |{(z)~f)], 8>0.

d(r, <0
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We then denote by A (M) (resp. A,(M)) for « any real number 0 <ax <1 the space of those
functions f€C(M) for which

w.(0) = O(6%) (resp. wH{d) = o(6%))

A, is then always a subspace of A,. For all f€A (M) we denote by
I#]l = inf {k; w,(8) <kd* V5>0}

and by |||, =lf{loo+ [|flla- It is then trivial and well known that A, with || [z, is a Banach
algebra and that 1, is a closed subalgebra.

We shall consider A,(T) for the natural Euclidean metric of T, then the group trans-
lation is a continuous operation on 4,(T) for any 0 <« <1 i.e. the mapping t—f(x)=f(x +1)
for any fixed f€4, is continuous from T to A,. Thus the principle of regularization by
convolution applies to 2,.

In the case M =R then F €A, (R) if and only if

Fla)= fo f&)di+F(0); f(t)€ L™ (R)

and then || F||, =||f||o and F'(t)=f(t) a.e. for the Lebesgue measure in £.
(B) Observe now that for 0<<a<f<1 and M again a general metric space we always

have

A5 AgCa,C A,

Let now 0 <a<y<f<1 be real numbers, and let us adopt the convention Aq(M)=C(M)
and [|f||o=2|/f||o for all f€ A,, and let us suppose that f€ A 5 and therefore also fEA, N A,.
Let z, 2’ € M be two points of the space and let §>0 be an arbitrary real number,

we have then

d(w, &) 20 = | f(x) - f(2)| < |[f[|02-7(d(=, =)y

(observe that the convention [|f{l,=2]/f||. is designed to make the above inequality work
with «=0), also
d(w, ') <0 = | {(z) —{(')| <||f{l 56" "(d(z, "))

Thus we obtain that for any § >0
171l < et + 1]l °.
Thus for °~*=||f]|./||f|| s we obtain the interpolation
I, < 2ly-r-=- g o=

provided that ||f||.[|/]| s +0- [7]
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(C) Let us now denote by A4,(T)=A(T)NA,(T) for all 0<a<1 and for any f€A4(T)
let us denote by [|f||ls,=Iflla+||fllsi 4«(T) becomes then a Banach algebra with that
norm. Also let us for any «>0 denote by 4,(T) the algebra of functions f(t) € C(T) such that

+ o0 + %0
f(t)=_Zoc,,eM with "f”,;a= =Zwloc,,|(l+|v|)a< + oo,

Il i, is then a norm and A,(T) is also a Banach algebra with that norm, and we have
for 0<a< 1 the dense topological inclusions D(T) < 4, (T) < 4.(T). These inclusions allow
us to identify

(4a(T)) = PM,(T) and (A, (T)) = PH,(T)

the dual spaces with spaces of distributions; the dual norms on these spaces are then
denoted by || |lpa, and || [|5, respectively.

Relative to the above definitions we recall the following well-known theorem [7]:
If f€A(T) for some 0 <x<1 and if f is of bounded variation then € A(T) and

IAlla < Calll A=V + [Ifll o]

where V(f) denotes the total variation of f on [0, 27].
(D) Let now 0<¢<z/2 and let us denote by >, a continuous complex function on

the real line periodic with period 2z and such that:
%) =1—€% —g<x<g; >,(z) is linear on the interval [, 27 —¢].

The conditions above completely determine »,. We can compute easily the Fourier series

of 2, and we see at once that for all « (0<a<1) we have:
D €A, (M); [1Zla, <08 O<a<l.

Let now m, n be two integers; K<T a compact subset and SePM «(T) such that
supp S K; let further ¢, « be two positive numbers such that 0<e<n/2 0<a<1
satisfying

supll——e“'"‘"”|=suple"'"‘—e""t|<e/2. (5.1.1)
tek tek

It then follows that if we denote by
L) =e"™ 2 ((n—m)t),
E(t) — eimt . eint _ C(t) — eimt[l _ ei(n—m)t — Ze ((n — m) t)]

then: () €Ay; |2, <Culm|+|n))*[ 2.l z, <C.l#et~%;
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with I =max {|m|, |n]}, also &(t) is zero on some neighbourhood of K therefore (£, S> =0,
thus

<e™, 8y —<e™, 8y =L, 8>
and |<et™, 85— Ce™, 83| <l e |18l g5, (5.1.2)

If in the above considerations, we make the stronger hypothesis S€ PM(K) (i.e. 8 is an
ordinary pseudomeasure supported by K) and if we observe that [|C]la=] ]l <] 2.l
we see that (5.1.2) can be sharpened to

[<e™ — e, 85| < Cp et (18]l 7 e (5.1.3)

Let us now consider 4, (K)=A4,(T)/I(K)< C(K) which is a Banach algebra of functions
on K, its norm being siraply the quotient norm. Then we can deduce from (5.1.2) and
(6.1.3) that if K, m,n, ¢, a satisfy (5.1.1) then we have

”eimth_ einth”[“ < Oalugl—u; ” eimt |K _einth”A < C‘zel-u, (5'1.4)

where again [ =max{|m|, |n[}.

6. The dual of a tensor algebra and the V-Sidon sets

§ 1. Definitions and trivial remarks

Let X ={K;}/"1 be compact spaces and let V(X) be the tensor algebra over these
spaces. We shall denote by BM(J)=(V(X))' the dual space of V()) and we shall denote
by || ||zs the dual norm on this space, also following the standard terminology [8] we
shall call BM(X) the space of bimeasures on K=K, x K, x ... x K,,.

Since the algebra V(X) is a regular algebra we can define for every S € BM(X) supp S
the support of S as the smallest closed subset of K outside which S reduces to zero.

In the particular case where K;=T"i m;>1 (j=1,2, ... n) are finite dimensional torus
we can identify BM(X) to a space of distributions on TV, M =m, +my+ ... +m, BM(X)<
D(T).

In general it is always true that M(K)< BM(X) that is that we can identify the space
of Radon measures of K to a space of bimeasures on K; and that for every u€M(K) we
have [juf e < e

Let now E<K be a compact subset. We then denote V(E)=V(X)/I'*(E) which
is a Banach algebra and can be identified to an algebra of complex functions on E, namely
the restrictions on & of the functions of V(X)<C((K), so that we have a dense norm de-
creasing inclusion V(Z)<C(E).

6 — 672908 Acta mathematica. 119. Imprimé le 16 novembre 1967.
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We then say that E< K, a closed subset, is a V-Helson set for the algebra V(X), or
simply a V-Helson set if V(E)=C(E) as algebras of functions. A V-Helson set that is
countable we call a V-Sidon set. It is then clear that < K is a V-Helson set if and only
if there exigts C'>0 such that

Wllvey <Cllflley VIEV(E).

Further, since every u € M(E) can be identified to g €(V(Z))' an element of the dual
of V(E), and ||g||(vy = ||u|lzs> We see using the duality theory of Banach spaces that
E< K a closed subset is a V-Helson set if and only if there exists C*>0 such that

el <C*llullsae Yu€M(E).

It is immediate that if we identify topologically V(X) to an algebra A(E) for some
compact subset E< (@ of a compact abelian group @ as in Ch. 4, § 2, 3; then BM(X) is
identified topologically to (A(E))’ i.e. to the space of pseudomeasures of the group ¢
whose support lies in ¥, and which are synthetizable in Z; so that if in addition (Ch. 4,
§4) E is a set of spectral synthesis of the group G then BM(X) is in fact identified to

PM(E) = {S€PM(G); supp S< E} [9].

If further the identification between V(X) and A(E) is isometric then the identification
evween BM(X) and the space of pseudomeasures is isometric (for the norm of pseudo-

measures [|8]|py = ||S]|)-
It is also clear that in an identification of V(X)) with 4A(K), Q<K a subset of K is
V-Helson if and only if its corresponding subset QC E is a Helson set of the group (Ch. 4,

§1).

§ 2. Norm of the embedding ¥V (X) C C(K) for finite spaces

Let us suppose here that X={K,}/.; are n finite spaces, let us denote as usual
K=K, xKyx...xK,, and let us enumerate once and for all each K,={kj, k%, ..., kf’}

(p;=Card K;) and so obtain a coordinate system for
K={(F, K, .0 ki), 1<r,<p;, j=1,2,...,n}.
For any yEM (K) let us then denote by
ur=p({E kS, o ko), r=(ry, 1y e t) 1<r<p, =120

and also denote once and for all
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R={r=(r,75....,1,); 1<r,<p,j=1,2,...,n}.

Then the tensor (ur)rer completely determines u. Relative to these tensors we shall
adopt the summation convention for upper and lower repeated indices; so that for

wp=(u,uf, ..., ul) (W€C; 1<i<p,, j=1,2,...,n) n vectors we shall write

r r T — T r T
Hry,ran e, rnull U’ o Uy = z M, rg,....rnull U’ ... Up"
YER

We see then that by the definition of the dual norm on BM(X) we have

Nl 21| e =”S}ﬁgll,un.r,, UG ], (6.2.1)
léign

where the norms of the u’s are defined by

llu,| = sup |uf] j=1,2,...,n.
1<r<w;

From (6.2.1) we deduce, taking the sup first w.r.t. u, and then w.r.t. u;, u,, ..., ,_; that:

Dn
lllz = sup ( quuzul) (6.2.2)
Iyl \r=1 ’
igign-1

(summation convention for the r,’s), from (6.2.2) we deduce also

Pn
e llzar < 2" sup (2 7S A ) , (6.2.3)
where S={llu|| <1,47 isreal; 1<r,<p,j=1,2,...,n—1}.

We shall now carry out a probabilistic estimation. We suppose that y=Mg(K) is a

real measure (ur; T€ R are all real) and we consider
{X];1<r<p; 1<j<n}

a double entry family of independent, normalized normal random variables i.e. all equi-
distributed with some random variable X€N(0,1) (EX=0 ¢2X=1)[10].
For any a>0 positive number we denote then by:
. X; if |X]|<a X if |X|<a
Xj (a) = . , ; = .
0 if |Xj|>a 0 if |X|>a

the truncated variables for (1<r<p;§=1,2,...,n). Let us also denote by
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X1=(X},X,2,,ij7) (j=1,2,...,n)

random vectors. Now since the random vectors X, (j=1,2, ..., n) are independent they
induce an identification of Q the underlying probability space with

Q=000 ... Q,,

where €); is the probability space on which X; is defined (j=1,2,...,n). Let us also
denote by w, €Q, the generic point of the space, and let us adopt the usual notation

1

Bo 0.0, Z=Ex, Sy X, Z = JZ(wl, B, .., 0,) AP(wy,) ... dP(wg)

with 1<¢,<g,< ...¢,<n, the conditional expectation of the random variable Z w.r.t.

the variables {X,, X, ..., X} where {q],¢:,....2:}= 0 {¢1, s ---.9:}- We still pre-
* 2 [1.2, ... n]

serve the summation convention for upper and lower indices and we denote:

@)= fhy,ro, ... r, X7 (@) X5 (0) ... X7 (a);

we proceed to obtain an estimate of E|»(a)|. Let us denote for fixed r (1<r<p,)
V(@) =ty po, ... 7y, X1 (@) X3 (@) ... X7 ().
We have then:
E|v(a)|=En.s, ....n-1 Byl v, (@) X} (a)]
>-El. 2, .., -1 (En l’”r(a) X:LI _.En]vr(a’) (X:t _X:l (a’))l)’ (624)
and since »,(z) X, for w,,w,,...,w,-1 fixed is a normal variable of Law (0, f;‘o

|, (a)[?), using the formula E|X,|=V(2/)b valid for every random variable X, € 9}(0, b?),
we see that:

5 Dn ¥
E,|v,(a) X} = l/g (21 [v.(a) F) (6.2.5)

7
we have also:

(B, (@) (X5 = X (@) [ < B o, (@) (X5, — Xra) P
= 3 (@ ¢*(Xh — Xe@) = o (X~ X(@) S @, (6.2
Thus combining (6.2.4), (6.2.5) and (6.2.6) we obtain
2 Da 1
E|v(a)| > []/—— o(X —X(a))]EL N { > ]v,(a)]z} (6.2.7)
T r=1

and this together with Hélder’s inequality gives then
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L 3 B

E|v(a)| > D/%— o(X — X(a))] I/gT 2

(6.2.8)

(observe that v, depends only on wy, g, ..., ws-1 (r=1,2,...,9,)). Now repeating the
above process and applying (6.2.7) and (6.2.8) for the evaluation of each E|v(a)| in
(6.2.8) and so on n—1 times we finally obtain:

- . ;
Elva)|> l/;—a(X—X(a)) —Vp—Tl—_p_r > [Zlmlz]
» 2 Pg - - n 2173 e LEY
2 "1 1
> -0(X-X _—— ,)
e N s P
_ .
>V =—0(X—X(a) ~——(2 ,), (6.2.9)
-Vﬂ 1 Vpipyeepn "RI”]

where ¢, is defined by:

.= sup [Card {r; prr, ..ra=0}]<py.

T2, Tgs ves Tn

The reason why we introduced ¢, is that in practice often ¢, << p,. Now from (6.2.3)

and (6.2.9) we deduce that for every a>0 large enough we have:

2"l 1
Il 2 3, Bl 00 e (5 )
=1 Q1P -ee Pn-1 FER
22 e ll 2 lae
>0, — W o A8IM (6.2.10)
nl%Pz <o Pn-1 anﬂ’z---pn-l

where C, is a constant depending only on = (cf. Ch. 5, § 1) and where (6.2.9) is ac-
tually applied for the evaluation of each E|v(a)| (r=1,2,..., p,). Observe that when

Pr=P;=...=p,=7p (6.2.10) gives;

oellar < Cogd o™ 22 || ol mae < Co ™ 22| el 522 (6.2.11)

Inequalities (6.2.10) and (6.9.11) can in some cases be improved if extra information
on supp u is given; let us illustrate the method by supposing that n =2 X ={K,, K,}
and m=Card (supp p). Then for every integer m;=1,2,...,p, let us decompose K,
into two disjoint subsets J=J, <K, and ( J,, <K, defined by

k€J,, < Card {h€ Ky; u({h,k})+0}=>m,.

It is then clear that m, Card J,, <m. Let then £ €C(K,) be the characteristic func-
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tion of J, then 1®&€EV(K, x K,) and [[1®&|l,<1 thus if we decompose u=u,+ u,
by setting u;, =(1®%,) - u we see that

leanllne <N palloes Nl aallne < 2 || pell o

But we can apply (6.2.10) to u, with ¢, =m,, and we can also apply (2.2.10) to u,
with ¢, =Card J,,, <m/m, (reverse the order of K,, K,) so that we finally obtain

Bl aellone = 1 g ll o+ 1l gL e = CLOm/ma) ™ [ g lag +mx* || 0]
and if we set m;= [Vm] and suppose that m>2 we obtain
llllas < Cm || el e = € (Card supp p)? || el - (6.2.12)

All our estimations were carried out for real measures of Mgr(K). This was done
because we did not wish to introduce complex random variables. But of course from
(6.2.10), (6.2.11), and (6.2.12) we can pass to the analogous inequalities valid for ar-
bitrary (complex) measures of M(K) by observing that any pu€ M(K) can be decom-
posed u=Ru+iJu with Ru, Ju€ Mg(K) and

1

V2
ColllRullzar + 1Tl 530) <l pall e < IRl 22r + || Tpell e

(R aallae + 1| Fpallse) < Ml pallae < R gellae + || Tiall e

§ 3. The “best possible” of the estimates in § 2

Let here again X ={K,}]., be n finite spaces (Card K,=p;< + o0 j=1,2,...,n)
and let all the notations of the preceding paragraph be preserved. We shall prove
the following converse of (6.2.10).

THEOREM 6.3.1. For EcK=K;x K, x...x K, there exists u€ M(E) a measure
with support in E such that py.= t1 or O for all r€ER and such that:

| llose < CVlog n - |E| - P,
where C is a numerical constant, |E|=Card E, and P=p,+p,+... +p,.
Proof. Let for v=(r,r,,...,r,) 6r be defined by:

5 1af (kY k..., k") EER
" 10 otherwise

and let us set:
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T=T[teER);1<r<p;,j=1,2,...,n}= > O exp [2mi(i]* + 15+ ... + ;)]

TE€ER

which is a trigonometric polynomial of P variables [(#]);1<r<p; j=1,2,...,n] and of
joined degree ». Using then a well-known theorem [9; XI, no. 6] we see that there

exists a choice of +1 such that:

IS + 6 exp [27ui (ft + 8+ ... +£I0)][|o <CVlog n - | B] - P. (6.3.1)
TER

To satisfy the conditions of our theorem it suffices then to set pr= +0r with the
above choice of +1, for then the left-hand side of (6.3.1) is equal to || #||zs. Theorem
(6.3.1) shows that (6.2.10) is, in some sense, best possible. Indeed let us consider =»
as fixed in Theorem 6.3.1 and suppose without loss of generality that p,=max
{py Dy, ..., .} then we obtain from Theorem 6.3.1 with £ = K that there exists BE Mg(K)
such that

Il ellese <OV log m Vp, |E| = CopoV Py pa ... Pas

_o, BB Hellor (6.3.2)
Vplpzu-pn—l Vplp2"’-p”'1

The proof of Theorem (6.3.1) was based on the existence of a choice of +1 that satisfy
(6.3.1), and that is in turn established in [9] by a probabilistic method; thus it is of interest
to give an explicit construction of a measure satisfying the inequality (6.3.2). This we
shall now do in the particular case n=2, p,=p,=p, E=K =K, x K,. Towards that let
U€EM(K) be such that the square matrix M =(u,;)7;-: is unitary and |u,,| =1/Vp i, j=
1,2, .. p=p, =p,. Such a matrix always exists; e.g. it suffices to set as entries of its col-
umns the values of the p distinet characters of G, that are mutually orthogonal divided
by V;o, where G, is a finite group of order p, observe also that when p =27 for some ¢ then
the above construction can give us a real matrix. For this u € M(K) we then have ||u| ,=p*?,

also using (6.2.2) we see that

‘ ¥4
| pelloae= sup > |(Maz)il, (6.3.3)
la<1 151

where z=(z,2,...,2,)" and ||z|| =supicicp|2| and where Mz is the matrix product
of M with the column vector z having (Mz); as ith coordinate. But M being unitary

we have for all z with ||z]| <1

13

=Zpl |(Mz),*= é |z P <p (6.3.4)
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thus combining (6.3.3) and (6.3.4) we obtain:

— (P El
i< sup Vo ( 3 | 0ta)F) <5
lizli<1 i=1
So finally u satisfies inequality (6.3.2) for our particular values of the parameters:

Nl eellae <1/ Vel

§ 4. The V-Sidon sets

Let X={K,}}.1 be arbitrary compact spaces and let Ec K=K, xK,x...xK, be
any subset, let also 4 be some positive number, then we shall say that ¥ is an S, subset
of K if for every choice of finite subsets F,< K, of the same number of elements

Card F,=m (j=1,2,...n) wehave Card (ENF,x Fyx...x F,)<im.

Let us now denote by ®=0(J)) the free abelian group generated by the disjoint
union K, UK,U..UK,. One way to realize concretely @ is to identify K, with K ayes
(7=1,2,...n), where G is some fixed compact group, so that Izpnlfq=® p=+q and so
that Ifl U I~{2 U..u Kn=K* is a Kronecker set and thus independent; ®(X) is then iso-
morphic to Gp(K*)<@.

We can now identify K =K, x K, x ... x K, canonically to a subset of ® by identifying
k=(ky, kg, ... k,) with the point &, +k,+...+k,€D. When we identify then @ to Gp(K*)
as above K ® is identified to K =IEI+I€2+ .+ K,=G in the way already explained in
Ch. 4, § 2. We shall say that X< K a subset of K is free if in the above identification -of
K< ® X becomes an independent subset of ®. Let us now suppose that £< K is a compact
V-Helson subset then using Theorem 6.3.1 we see that it must be an §; subset of K for
some positive number A. Indeed suppose that, then for «>0 arbitrarily large we can find
F,= K, finite subsets such that Card F,=m>1 (j=1,2, ... n) and

(B'=ENF, xFyx..xF)=am.

But then by Theorem 6.3.1 we can construct u€Mg(E’) such that |ul,—=Card E and

lellow<CVm|E’| so that || pllam/llpllae < Co”

and o« being arbitrarily large this contradicts the fact that E is V-Helson.
Let us now suppose that E is a countable set and that there exists [>1 a posi-

tive integer such thai every Fc E finite subset can be decomposed
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1
F= leF,; F; free j=1,2,...,1

as the finite union of I free subsets, we shall call such a set a locally l-free set. We
shall now show that for every 1>1 every locally l-free countable compact set of K is a
V-Sidon set.

To prove this we may suppose without loss of generality that each K; (j=1, 2, ... n)
is countable, indeed it suffices to consider the projection of E on each K; which is count-
able. With that hypothesis let us realize V(J) in the group algebra A(T); more explicitly
let K ; be compact disjoint subsets of T K ; topologically homeomorphic to K, (j=1,2, ... n)
and such that K* =I~{1 U Kz u..u I~{,L is a Kronecker set of T; as we have already pointed
out O(X) is then realized as Gp(K*)<T and K is then identified to I€=I~(1 +K~2+ ot K,
E is then identified to £ a compact subset of K<T which is locally l-independent i.e. such
that every finite subset < £ can be written as the finite union of l-independent subsets
of the group T; our assertion then follows from the well-known fact that such a subset
of T is a Helson set of T, i.e. A(&)=C(%). More explicitly what is well known (cf. [5])
is that for every I>>1 positive integer there exists (', a constant depending only on I such
that for arbitrary countable independent subsets of T A, 4,, ... 4,and arbitrary g€ M(4)
A=A4,UA4,U...UA, we have ||ulls <O x| su> and thus that 4 is a Helson set. To deduce
the result assuming only the local property we approximate any u€M(E) by some
ur€M(F) with F some finite subset of £ so that we have ||uz||u <C)||¢r| rs and letting
pr tend to u (for the || ||, norm) we obtain the same inequality ||u||x<C.|lullru- We
are now in a position to prove

THEOREM 6.4.1. Let E< K be a countable compact set then the following three conditions
on E are equivalent:

(iy E isa V-Sidon set.

(ii) E ts an S, subset for some A>0.

(iii) E s a locally l-free subset for some [>1.

Proof. We have already seen that (iii) = (i) = (ii). Thus it suffices to show that (ii) = (iii).
This we now do in the following

Lemma. Let X ={K,}}-1 be n finite sets with Card K;=N j=1,2, ... n; and let EC K =
K, x K, x...x K, be an S, subset for some integer 4 =>1. Then E is a locally nA-free subset of K.

Proof of the lemma. The proof is done by induction on N. The induction starts trivially,
so let us suppose that the lemma holds when N <M —1 with some M =2, and let us prove
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it for N =M. Using the definition of an 8§, subset with F;=K, (j=1, 2, ... n) we see that
Card E <n}; thus for j=1, 2, ... n there exists a k(j) € K, such that if we denote by:

Ry={k=(ky, by, ..., k) EK: k;=k(§)} §=1,2,...,n
we have: Card (ENR)<A j=1,2,...,n. (6.4.1)

Let us then denote by X ={K; =0, {k(j)}={K\k(j)}-1 and K'=K{x K;x ... x K,
and identify K’ to a subset of K, and let us denote £'=E N K'. Now Card K; =M —1
(=1,2,...,n) thus by the inductive hypothesis the lemma applies to X' and E’ so

we can decompose

ni
E' =\ Fj; F] cE free subsets j=1,2, ..., nd. (6.4.2)
j=1

Let us now consider E\E', if it is empty (=) then (6.4.2) gives us the required decom-
position of E and proves the inductive step. So suppose that B\ £’ =@ and let us enu-
merate its elements in any fashion whatsoever E\ E’'={e,, €,, ..., ¢,} and observe that

by the definition of E’ and (6.4.1) we have m <ni; let us also set

F,=F,ye, (i<v<m); F,=F,Ue, (m<v<nl).
We have then, of course, E=UF, (6.4.3)

we claim that (6.4.3) gives us the required decomposition of E, i.e. that F, is a free subset
of K (v=1,2,...,n1). Thus we have to prove that for any »=1,2,...,nl we have

> nyy=0in ®XK), n,€Z=>mn,=0 Vy€EF,. (6.4.4)

yeF,
But for any » there exists j (1<j<n) and y,€F, such that
‘}/,,ER;, Fanlz'}’w Fv=Fi:U')/V

Thus J,cr, 7,y =0 implies that n, =0 and that X, r;n,y =0 and F, being free by our
hypothesis (6.4.4) follows and the inductive step is proved. This completes the proof
of the lemma and of the Theorem 6.4.1.

Theorem 6.4.2 gives a complete characterization of V-Sidon sets. It proves in
particular that they are stable by union i.e. the union of two V-Sidon sets is a V-
Sidon set.
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7. The metric theory of tensor algebras
§ 1. The Bernstein type theorem for tensor algebras

In this paragraph we shall prove the following

TuEOREM 7.1.1. Left m=1 be a positive inteqger and a« a real number such that
1/2<a<1 then Aa(T’"xT)cC(T’”)@C(T). Conversely for every B€[0,1/2] there exists
FEAHT XT) such that f¢C(T)DC(T).

For our theory we shall assign a canonical translation invariant metric A on the
space of the group D, defined by

=]

A, x)= 2 /2, Ya= (g 05,...); ,=0,1; j=1,2,....
3=1
In general now for M, M,, ..., M, finitely many metric spaces with metrics §,((#,, J,),
j=1,2,..., k] one defines on M =M, x Myx ... x M; the product metric 6 =235, x d,
X ... X 8, by:
K
Im®, m®)= 3 8,(m®, m®); m® =mP,mP ...mP"YeM, i=1,2.
5=1
We shall then define for any finite w=1,2,..., A” the product metric of A with it-
gelf w times on (D). It is with respect to A® that all the classes A, (D%) will al-
ways be considered (0<ax<1). From our definitions of d:D,—T in Ch. 3, §4, and
A it follows that for every finite w=1,2,...,d,:(D,)"—>T" is a mapping that belongs
to A, ie. if we denote by |, —f,|, the Euclidean metric on T* for ¢,,¢,€ T* we have:

|duler) = dules) |l <CA(er,€)) €, €€ (Do), (.L1)

where C' denotes as always an absolute constant.

Notice that in considerations involving A, we cannot identify (D,)” to D, as
we did in Ch. 3, § 4, for such an identification does not preserve the metric.

Let us now consider D,=[Z{2)]" for r=1,2,... and identify D, to the space of
the r first coordinates of D, so that we have the canonical projection (3.5.4) D, s D,.

7
This mapping induces then for w, o, w, positive integers and r>1:

E2: (D)= (D)% E: C(D®)>C(D%)

En® Ex: O(D2) ® O(DP) » C(D%) & C(D2)
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and Z-";’, v;”‘éé . are isometric (cf. Ch. 3, §2). It is also clear that for every r=1,2, ...

and every x€D; the diameter of the set

Z(x)={teD%; & (t)=2}<Dy
is equal to w27 and from this it follows that if f€ A,(D%) for some « €[0,1) and
some positive integer w, and if we define

n,(f)=f,(x)==2“”f f(t) dtEC(D?); Vz€D® r=1,2, ... (7.1.2)
Z(T)

(dt =Haar measure of D) then we have

1€2G) = flloo <027 N Fllas Wolloo <N Fllos 7=1,2, ... (7.1.3)

This is just a consequence of the Lipschitz character of f. A repeated application of
(7.1.3) shows then that for any 0<a<1 and any w=1, 2, ... and any f€ A, (D) there
exists a sequence f,€C(D{)j=1,2,... such that:

=280 Ihlle ;5,007 Yol <a. (7.1.4)

i=1

Let now w,>w,>...w,=1 be positive integers and set w, +wy,+... tw;=w and let

us consider for r=1,2,... oo a positive integer of oo, the algebra
V,=CD2)®CD™) & ... @ C(DP) 2 C(DY) (7.1.5)

Then for every finite » V,=C(D?) but for every f€V, ||f|v, and [|f]l. are not always
equal. Using (6.2.10) we see in fact that for every finite »

Ifllv.= sup Kfppl< — sup [, @)l
peMD) pneMD?)
Hell vest Il g 2T 2@~ oD (7.1.6)
<032}r(w,+w,+...+w,)”f"w; er Vr-
Let us now apply (7.1.6) with s=2 and wy,=1 to (7.1.4) (w=w;+1); we see then
that for every f€A.(D%) with «>1/2 and every «' <o we have:

1= 3 &)
ECDPOOD,) =T |flly=0@427) as j-»oo

(1.1.7)
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and since for every f,€V, j=1,2,..., we have é}"(]‘,-)=é}‘"(§.§} (f) we see that for each
f; of (7.1.7)

E (1) €C(D2)®C(Dw0) = Voo ||E(f)lv,, = 0(2U29) ag j—>oo.

So the series Z;’ilé}"(f,) converges in V, as soon as a’ >1/2 and thus f€V..

We are now in a position to prove the first part of our theorem (7.1.1). Indeed let
fEALT™) for some « (1/2<a<1) (A, is taken for the usual | |,,, euclidean metric
of course). Then if we denote by f=fo(d,, xd)€C(DX x D) we see that fEA,(D2*) (7.1.1)
so from our considerations above with w,=m it follows that f€ C(DZ},)@C(DQO); and this
together with Theorem 3.5.2 implies that fEC(T"‘)@C(T) and proves the first part of our
theorem. To prove the second part of the theorem it suffices to show that for every
BE[0, 1/2] there exists f€A4I2) such that f¢C(I)@)C(I) =V (I?) where I=[0, 1] is the unit
interval with the euclidean metrie, for such an interval can be embedded as a closed
subset of T and the existence of the above f and (Ch. 3, § 3, Case 1) imply then our result.
Towards that it suffices to show that for any 4 >0 positive number arbitrarily large there
exists f€A,(I?) such that ||f||la,<1 and ||f]|vay> A4, for if A4(I?)< V(I?) for some B, then
by the closed graph theorem the canonical injection must be continuous.

To do this we consider for n>1 a positive integer the finite set I, =[0; 1/n;
2/n;...n—1jn; 1]<I and I,xI,<IxI and denote by ¥, =C(In)®C(I,,) and define
w€BM(I2) = M(I%) by:

ludx})| =1 Va€ I2; || ullaw<Cn? (C=abs. constant) (7.1.8)

(cf. Ch. 6, §3). Let us also define f€C(I%) by:
f() u({a}) =1 Vel x I,

and such that for every p,¢=0,1,2,...,n—1 the function f(z) coincides with a linear
function (of two variables) when x lies in the triangle T , and it coincides with an-
other linear function when x €7, ,. The two triangles 7% ,<I x I are defined by their

vertices:

+ P g\ (pt1 ¢\ (ptl g+1 - P g). (p ¢+1\ (pt1l ¢+l
qu= — 5 s ) ) 5 qu= = 11 5 ’ .
n n n ' n n n n n non n n

It is then clear that ||f||. <1, ||f]ls, <Or therefore by Ch. 5, §1(B), we deduce that
for any B€[0,1] we have Hf||Aﬁ<0nﬁ; it is also clear that

fn=flln><ln€Vn; ”fn”Vn< ”f”V(P)
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but also by (7.1.8) we have:
C
Ilfnllvn>n~§|<fn,u>|=01/£

and putting all this together we see that if we define f=1/n* (BE€[0,1]) We have:
”i”Aﬁ <C, ||fllvay=Cn*2#

and so f gives us the required function as soon as n is large enough provided that
f<1/2. The critical case §=1/2 we shall settle in the next chapter using harmonic

analysis.

§ 2. The Beurling-Pollard type of theorems for tensor algebras

In this paragraph we preserve all the notations of the preceding paragraph. In
particular let us fix once and for all w; > w,> ... w, positive integers and let us denote
by V,(r a positive integer or co) the algebra defined in (7.1.5), and let w = w; + wy + ... + w,;
let also z,:0(D%)—>C(Dy) (r>1) be the linear mapping defined in (7.1.2), and let us
denote by 7, =7, |ye: Voo — V, the restricted mapping (observe V< C(D%)). It is then
easy to verify that [|s,]]<1 (r>1) (for the V-norms).

Let us observe now that & osi, tends to the identity of V. as r—cc in the strong

operator topology (é;” can be considered as an isometric mapping V,—~V,) ie.

é?’og’zr (fy ——f in Vo (Yf€EV,). Let us observe also that if we denote by #,:BM .=
y—> 0

(Vo) ~BM,=(V,) the dual mapping of & we have ||5,]| <1 and supp (5, 8) < & (supp S)
VSEBM,, (r=1,2,...). Let now E<D2 be a closed set €I ®(E)< Vo, be such that

[f(=)| < C[A® (=, B)J* = OEierzf A®(x, €))% Yx€ D%, some o=>0. (7.2.1)

Let also SEBM,(E) ie. SEBM, and such that supp S, and let us consider
a=<{f,8>. We have then
Eon(f), Sy =a,—=a (7.2.2)

and also a,= (7, (f), 5,8> with supp (1,8) <&’ (E), so by (7.2.1) we see that

sup @ fl@)|<C27m (7.2.3)

x € Supp (7,5

Also using (6.2.10) we obtain that

” an”M < 024} T(Watwgt - - Wp) ” ﬂrS”BMr < O2§ r(wy+-- ,+w,)" S”BMOO' (724)
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So finally combining (7.2.2), (7.2.3), and (7.2.4) we obtain that:
Iarl <027[§(m2+w3+4--+ws)—g] "S“

—~ 0=a. Now since 8 above was
7 > 00

and that if }(w,+ws+... +w,)<p we have a,

chosen arbitrary in BM . (E) and since the orthogonal in V,, of BM,(E) is J'= (&)
what we have shown can be stated in the following

TueoreM 7.21. If wytwy+... ;<20 and if f€IV=(E) satisfies (7.2.1) then
f€JV= (E).

Observe that often if we know the shape of F we can use sharper estimates
[(6.2.10), (6.2.12)] in (7.2.4) and improve Theorem 7.2.1 in an obvious way. We shall
illustrate that idea at the end of this paragraph.

Let us now for w,Zw,>... 2w, and w=w,+w,+... +w, positive integers as

above consider
' Ve=CI*) BT ®... ®C(T*) < ¢(T*)
and let £<T” be a closed set and f€I'7(E)< V, be such that:

|/(t)|<0|t—E|ﬁ,=C’[§1:§|t-—e|w]g; V€T, some >0 (7.2.5)

(|t;~ts|w is as in 7.1.1). Let us set then f=d,(f)=fod,€V., and E=d;!(E), using
(7.1.1) we see then that |f(t)|<C[A®(z, E)° (Vx€DS), thus from Theorem 7.2.1 it
follows that feJVe(H) as soon as w,+ws+...+w,< 2p. From this, using Lemma
14.1 and Ch. 3, § 4, we see that fEJV?(E). So we have proved

TureorEM 7.2.2. If wy;+ws+...+tw, <20 and if f€EIVT(E) satisfies (7.2.5) then
feJVI(E).

Let us finish this paragraph by illustrating how particular information on -the
shape of E allows us to improve Theorem 7.2.2. Towards that let us suppose that
W, =wy=...=w;=1 and that E is the surface of a small sphere in T® i.e. that E is
the image of the surface of the sphere 8;={x€R*; |z[*=a}+2a}+ ... +al=a} (for some
O<a<m) by the exponential mapping e(x)= (e, e, ...,e™)eT" VXER'. We then
assert that the conclusion of the Theorem 7.2.2 holds for any p > (s—2)/2.

Indeed preserving the notations of the proof of the theorem let us consider
E=d;"(E), then for any S€BM(E) we can apply (6.2.10) with g, =C an absolute
constant (to do that we have to decompose the surface of the sphere into zones

using a bounded partition of unity, and apply (6.2.10) separately to each zone choosing
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each time the axis %, appropriately) and obtain ||7,S [l <28"¢"®||8]|pu,, (r>1) instead
of the coarser (7.2.4). So as soon as g > (s —2)/2 and f€ I"7(E) and |f(t)] <C|¢ — B[} VtET*
we have (i, f,9,8) pone 0 and <}, S>=0. From there we finish the proof as above and
obtain fe€JVT(E).

The interest of the above example will be seen later when we compare it with L.

Schwartz’s example of failure of spectral synthesis in 4(R*) [11].

8. A(G) as a subalgebra of V(G)

We shall denote throughout in this chapter by & a compact abelian group, by V(G)=
C(G)CQ)C(G) and as it is customary by A4(@)=FLYG), G being the dual group, also using
J we shall always identify V(@) to a dense subalgebra of €(G x @) (cf. Ch. 2, §1 and § 2).
The main fact from harmonic analysis which we shall use is that if f;, f,€L%G) then
fi* [, € A(G) and ||f, % fo|| s <||f1]| || /2]| 2 Which is an immediate consequence of Plancherel’s
theorem; the space L*(Q) is of course taken with respect to the normalized Haar measure
of ¢ which we shall simply denote throughout as dx (x€G).

As it was pointed out in the introduction the formulation of the results of § 1 below
is not the one I originally gave in [12]; I follow C. S. Herz in introducing the mappings
M and P [13] and in arguing directly on the algebra rather than on the dual space. This
brings out the ideas much more neatly.

Also we should like to point out that the results of this chapter differ essentially from
what was presented up to now in the fact that here the global group structure of G' on
which the tensor algebra is considered is essentially used. When in Ch. 3, § 2, we considered
tensor algebras over group spaces we only used the local regularization that is provided
by convolving with an approximating identity, i.e., we used the group structure in a far
less fundamental way.

§ 1. The mappings M and P
Let us define two linear mappings M and P

C(H=€(Gx Q)= C(G)
by setting M ol

Mf(z,y)=fx+y); PF(x) =f Flx—2,2)dz; [ECG), FECG@ X A); z,yEG.
¢
It is then clear that PoM =I9(C(()). Let us also identifying A(G) to a subalgebra
of C(G) and V(G) to a subalgebra of C(G'x @) define:
M =M | y6): A(G)>C(G x G); P=Plyy: V(@)= C(G).
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Let now X€G be a character of G which we can identify to Y€ A(G), we have then
My(x, y)=X(x-+y)=2) X(y) (x, y€G) so that M€ V(G) and || M|, <1. From this it
follows by linearity that for all f€ A(G) we have

Mfev@y | Ml </l 6.11)

Similarly let f,g€C(G) and let y =f®g€ V(G) it is then clear that Py(x)=f* g{(z) (x€ G)
and therefore Py€ A(G) and ||Pylla<lfllzlgllz<Ifllo llglle<lwly. From this it
follows again by linearity that for any F€V(G) we have:

PFeA@), | PF|.<|F]. (5.2
So combining (8.1.1) and (8.1.2) we obtain
AG)3 V(&) 3 4@
two linear mappings such that
|M|<1, |P]|<1, PoM=I3A(G)). (8.1.3)

The norms of M and P are the operator norms for the || ||, and || ||y norms of the
spaces. From (8.1.3) it follows at once that M is an isometry, and also by the definition
of M it follows that M is a unitary algebra homomorphism which identifies 4(&) to A*(&)
a closed subalgebra of V(). We shall prove now that A*(@) is equal to

Vo={F€V; Fx+g,y—g) = Flz,y) =, y,g€G}

V; is the subalgebra of functions of V(() that respect the equivalence relation whose
classes are the fibers A, parallel to the antidiagonal of G x G:

A, ={(x, 9)€EGxG; z+y—g} gEG

Indeed by the very definition of M we have A*< V,. Also for any F€V, we have

PF(zx)= f Flx—z,2)dz=F(z,0) Yz€@

G

Mo PF(x,y)=F(x+y,0)=F(z,y) Vz,y€EQR

so that F€A4* and therefore 4*=V¥,. The identification of A(G) with the closed sub-
algebra A*=V < V(G) will prove a powerful tool for the study of tensor algebras as we
shall illustrate in the next paragraph.

7 — 672908 Acta mathematica. 119, Imprimé le 17 novembre 1967.
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§ 2. The subalgebra A(G)=A*(G) < V(G)

We shall prove here that the algebra homomorphism M:A4(G)—+V(Q) satisfies the
conditions of Lemma 1.4.1.

Indeed the mapping P: V(G)—A(G) is by (8.1.3) an inverse of M. Also for M the
transposed mapping of M we have:

M:GxG—~G; M(x, Y)=x2+y€Q

so that for any F € V(G) we have supp (PF)CM {(supp F) which is no other than the con-
dition of Lemma 1.4.1 with an approximating inverse that reduces to the single mapping
P, a situation that is in fact much simpler than the one considered there.

We can therefore draw the conclusions of Lemma 1.4.1 and denoting for any subset
Ecqd

E* = M~\(E) = {(, y)) €EG X G; x+yEE}

we have

TrEOREM 8.2.1. For any closed set E< G we have

M-IV(E*) = IAE); M(JY(EY)=JAE).

In particular if E is not a set of spectral synthesis of the group G and I*(E)+J4(E) then
IV(E*) +JV(B*).

The above theorem has a converse that was first pointed out to me verbally by
C. S. Herz, namely

TEEOREM 8.2.2. If E<G is a set of spectral synthesis for the algebra A(G) then E*
15 @ set of spectral synthesis for the algebra V(Q).

We shall give a proof of Theorem 8.2.2 for the sake of completeness, although we

shall not actually have the opportunity to use this theorem later.

Proof of Theorem 8.2.2. First observe that for every fixed F€V(G) if we define
Fyx,y)=F(r-+g,y—g) (z,y, g€G) the mapping G~ V(G):g—~F, is continuous. Thus we
can define the convolution of any F € V(@) with any ¢ € C(G) by setting:

Fop= LF” @(g) dg € V(@Q).

It is then clear that if F€I"(E*) for some E <@ then F,€IV(E*) also, for all p € C(G).
“Also if 21€G(<=C(@)) we have for all z,y,g€G:

Flatg,y—g9)=7@9) Fylz, )
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In other words we have:
F,(@,y)=7(0) Fy (2, y); F,€ 4%6); VFEV(G),1€6; 2,y€G. (8.2.1)

So now let us choose {99,36 C(N}gep a directed family of functions such that:

s =0, fG(pﬁ(x) dxe=1, fG\Q(pﬂ(x) dy e 0 (8.2.2)

for all Q open nbd. of 0z€G, and such that each ¢; is a trigonometric polynomial
of G (i.e. =2 ,céy,X a finite sum) such ¢z always exist. It follows then from
(8.2.1) that if FeI"(E*) then for every S€B we have:

Fp=Fp= Zd XFs , (finite sum); Fy ,€AYG) NIV(E*); VB, X.
x€
So using the identification of 4*(@) and A(G) and Theorem 8.2.1 we see that for
every fEB and X€G@ F;, can be identified to an element of I4(E)=J4(E) and from
this it follows that Fs,€JY(E*) and therefore Fz€JV(E*). From this our theorem
follows since by condition (8.2.2) Fﬁ??F in the algebra V.

Let us give here finally one illustration of the homomorphism M by settling the
question we left open at the end of Ch. 7, § 1, and completing the proof of Theorem 7.1.1

for the critical case §=1/2. Indeed towards that it suffices to consider some
FEALTNAM) = C(T) [7]

and set ¥ —Mf€C(T?) we have then F €A, (T?) but F ¢ C(T)® C(T).

9. The radial theory

In this chapter we shall base the study of the problem of spectral synthesis and
symbolic calculus both for tensor algebras and group algebras on the theory of radial
functions of A(R"), and we start by recalling the definitions and main results of that
theory.

§ 1. The radial functions

Let us for any x,y€ER" (n>1) denote x = (2}, 2y, ..., %,) the coordinates of x, and
X, ¥) =2 %y, the scalar product of x and y and also |x]|=<x, x> the Euclidean
norm of X. Let us also denote by SO, the n dimensional rotation group of R* and
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for any x€R” and €80, let ox be the image of the vector x after rotation through ¢.
We shall also denote by P*cR” the positive quadrant i.e.

Pr={x€R% 2,20 j=1,2,...,n}.
Let us now for ny,n,, ...,n, positive integers denote

Rusno o, ={fEC(PT); HIX®], |X®],...,|x?]) € A(R™ x R™ X ... x R™)
xPeRY j=1,2,...,r)

an algebra of functions on P* which we can also identify to a subalgebra of func-
tions of A(R™xR™x ... xR™) the algebra of multiradial functions. We shall norm
Rn,ns...n, with the norm it inherits as a closed subalgebra of A; it becomes then a
Banach algebra and it is easy to verify that it is a regular semisimple *symmetric
algebra whose spectrum can be identified to P'. We shall adopt the abusive notation

fx®, x@, L xN) =f(|xV], x|, ..., [ x"]) € AR™ x R™ x ... x R™);

xXVERM{=1,2,...,r

for every f€ Ru, n...n,. When r=1 and n, =n we obtain R, < A(R") the classical radial
algebra that has been studied by many authors [14, 15, 16].

We shall summarize now some of the most important properties of the radial
algebras.

Let fER, < A(R")(n>1) then f=¢§ for some “radial” g€ L'(R"), more explicitly
there exists g(p) =g,(0) o€ P' a Borel function of ¢>1 such that

o= [ g yhas 1ile= [ loishlay @11

factorizing then the integration of (9.1.1) as an integration along the radius vector
and one over the surface of the unit sphere S, we obtain [16]:

Q2m)* > in .
) ="im | grle)e Jyn-2(xg) do; «€ P a+0

& ©0.12)
— n-17.. = — £,
I Flla=wn-s fo lgs(0)] " *do; wn-1 (g Siriace area of S,,

where J3(¢) denotes the Bessel function of the first kind of order A (A€ C). Relative to
these functions we recall the formula [17]:

a  (Ja(t) . _—_1 3J‘A+.~=(t),
d(t2)s (T)_( 2 ) grs 2 82]-:160- (913)
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Applying (9.1.3) to (9.1.2) and differentiating under the integral sign we obtain
that for all £>1 and #=2%k+2 and «>0 we have

dlc (__l)kznkﬂ

] dk
day /= fo Q) " o (w) g5 |

i) T+l
o

)
o e (9.1.4)

Now for any ¢=(0y,...,0,)€ES80=80, % ... x 80y, (n,21 §j=1,2,...,r3r>1) and
any f(xV, ..., x")€AR" x ... xR")=4 (xNeRY,j=1,2,...,7) let us define

of (xV, ..., x") = f(o, XV, ..., 0,X")

and also for any p€ M(SO) let us define:

3 fx, ...,x‘”)=f of (XD, ..., x) dp (o).

S0

It is clear then that hg*fE€ER,, .. n (f€EA) and also hso¥f=f for all fERn, .. a
hso denotes the normalized Haar measure of SO.

Now as we pointed out in Chapter 1, § 5 we can identify 4 =A(R™ x ... x R™)
with A(R"l)&) @A(R“’) so taking into account our previous remarks and the fact that
for every f=/,® ... ®f,€ 4 (f,€A (R"),j=1,2, ...,r) we have hgy % f=(hso, ¥ /})® ... ®

(hso,, * f;) we obtain a canonical isometric identification

Ruy .y R0® ... ® Ry, 9.1.5)

An immediate application of (9.1.4) to (9.1.5) with n, =n,=...=n,=4 k=1 gives
0 flany n0) _

T <l #].: . 16

~(6(ac%),... 2@ are o caper| M6 VI€Rea ®-19

Let now again S, be the unit sphere in R", and let p, be the rotation invariant
(uniform) measure on 8, of total mass 1. Then either by direct computation of the
Fourier transform [11], or by dualizing (9.1.4) and the analogous result for n=2%k+1
(=odd), we see that the distribution (&°u,) /or*, the radial derivative of order s of y,,
is a pseudomeasure (i.e. has bounded Fourier transform) for s=1,2,...[(n—1)/2]=
m= integer part of (n—1)/2. From this it follows that if f€ B, < A(R")=4, f(1)=0,
f(1)==0 then [14, 18]

FEINS):  [meT4S,), m= [”—‘2‘1] ©.17)

From (9.1.7) it follows in particular that S, cR" is not a set of spectral synthesis of
the group R” (n>3). From this using the fact that the two groups R” and T" are
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locally isomorphic it follows that a small sphere S5 in T" (cf. end of Chapter 7, § 2)
is not a set of spectral synthesis for n>3. In this context taking into account that
T" is a real analytic manifold (Lie group) we can rewrite (9.1.7) as follows: For all
n>3 and a<s there exists f€ D(T") = A(T*)=A which is real analytic in some open
nhd. of 85 <T" and such that

FEIHST); [m&THS); m= ["—;—1] (9.1.8)

§ 2. The problem of spectral synthesis for tensor algebras and group algebras

We shall say here that spectral synthesis fails in a commutative regular semisimple
Banach algebra R if there exists E< N, a closed subset that is not a set of spectral syn-
thesis.

We have seen in the previous paragraph that spectral synthesis fails in A(T®). This
together with Theorem 8.2.1 shows that spectral synthesis fails in V(T®), from this using
Lemma 1.4.1 and Chapter 3, § 4 we obtain

THEOREM 9.2.1. Spectral synthesis fails in the algebra V(D).

Now Theorem 9.2.1 together with Theorem 4.2.3 provides us with a new proof of
the following classical theorem which is due to P. Malliavin [19].

TuroreM 9.2.2. Spectral synthesis fails in A(Q) for every infinite compact abelian
group G.

Let us now introduce the following

Definition (P. Malliavin [19]). Let G be any compact abelian group, then we say that
E< @ a closed subset is a set of spectral resolution if every closed subset E,< ¥ is a set

of spectral synthesis.
Taking then into account Theorem 9.2.1 and Theorem 4.3.3 we see that we have

TueoreM 9.2.3. Let G be any compact metrizable abelian group and let P, Q<G be two
perfect subsets of G. Then the set P+Q< G is not a set of spectral resolution.

It is very easy to suppress the condition of metrizability of G from Theorem 9.2.3

by considering metrizable quotients; we leave this to the reader.

§ 3. The problem of symbolic calculus

Let K be a compact space and let B< C(K) be a symmetric (under complex conjuga-

tion), unitary regular Banach algebra of functions on K, whose spectrum can be identified
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with K, and let further » € R be a real element (i.e. a real valued function on K). We then set
[r]F={®|; ®eCR), ®oreR}<¢(l)
[Rl= N [F*<Cd),
r(Kycl

where I throughout in this paragraph will denote the interval [—1, 1].

Let now o=1{s;>0}72; (3{218< + o) be a summable sequence of positive num-
bers, and let us denote by D(I) the oo-differentiable functions on I (including the
end points) and let

Co={/eDU); sup |s8,,...,5,f™ (x)|'" < + o0}
zel,n>l
We shall now prove using the theory of radial functions the following

Lemma 93.1. Let £>0 and let o’={8,->0},-°21 be a positive summable sequence
(s=27218< + o) we can then find f=f, .€ A(T®)=A4 a real function such that [f}* < C,
and such that ||flla<1+e.

Proof. Towards that let us denote by y=pxpxpxp:R*—>T* the canonical
projection (p:R—~T, p(r)=€"€T,VreR) and let us fix once and for all ¢, hER, two

real functions such that:
[0; 2] < {a; h(a) =1} < supp h<[0, 3]

p(0)=p(1)=0; supp p<[0,2], PPyt a=1
d(e”)
@ and h can then be identified to functions of A(R%) whose support is contained in
{x€R%; |2;| <3, 1<j<4}. Let us then denote by 6€A(T) the function that is de-
fined by 6o y(x)=g(x) V{X€R? |2,|<m, 1 <j<4}. Let also {G,>RY;2, and {G,=T*};2,
be two infinite sequences of groups isomorphic to R* and T* respectively, and let {y,},
{(p;,)} and {0,} the sequences that correspond to y, (@, k) on 0 respectively in the
identification of é,- with R* and G; with T%. Let us finally denote by G=T x &, x

Gy x ... 2T* and let us fix { an arbitrary positive number and let us set:

f{g) =sin t+CjZISj6i(gj); 9= g1, 9 ---) EG.

It is then clear that f€ 4(@) and |f||la<1+(s||6|ls. Let now ®EC(R) be such that
F=®ofecA(F) and let us also set for every t€T and k>1

ft.k(gl’ cees ) = F & G155 s Ons Oy o0 )3 Fylgy -5 9) =F & 015 oo s Gy Ok, Op 25 - %
(G1s -+r gx) € Gy % ... X Gy; 0y is the zero of G,.
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It is then clear that

Froaw Fer€AG % ... xGi); Fuy=®0f, 1 | Forlla<||F| (9.3.1)
Let us finally set:

For=F 0% x 9] (1@ ... @ k) €AG, x ... x G);

then since for all (§,,...,d;)Esupp (A ®...® h) <@, x ... x G, we have:

13
(oo yr X oo Xy (Grs -5 Go) =sin £+ nglsl(P](gj)

it follows that:
For€Ryy o | Foslla<|Feill - 2]l (9-3.2)

and that when (o, s, ..., o) lies in a small enough nhd. of {1}*=(1,1,...,1) in P*

we have .
Folon, -onr ) = Dsin £+ 3 5,,(0;). (9.3.3)

Thus applying (9.1.6) on (9.3.3) and using (9.3.1) and (9.3.2) we see that
lsl, Sg5 +--y 8, DX (sin t)l< N2lls o % || Fl.. {9.3.4)
So if we set {=¢/(s]|8]l4) and take into account that ¢ and k in (9.3.4) are arbitrary

we obtain

sup |OP(x) s, 8,y ... [ < + oo, |flI<1+e
Tel k=1

in other words f above provides the required function f,. of our lemma.
Now quite generally for any compact group G using the identification of A(G)
with A*(G)<= V(G) of Chapter 8, § 1 we see that for any f€A(G) we have

[MAYD =T14P; | MFlly =1l (9.3.5)
Finally using Theorem 3.5.4 with w=cc we see that for any F€V(T*) if we set
F=d.® do(F) €V (D) we have:

[F]7 P = [F]"T; || Flly =] |ly- (9:3.6)
So combining Lemma 9.3.1 and (9.3.5) and (9.3.6) we can state
TarEorEM 9.3.1. For any e>0 and any positive summable sequence
o={s;>0}i% (_lej< + o)
72

we can find f=f, . €V(Dy) such that [fI'<Cs and [[flly<1+e.



TENSOR ALGEBRAS AND HARMONIC ANALYSIS 105

As an immediate corollary of Theorem 9.3.1 we shall now obtain an improve-

ment of P. Malliavin’s maximal individual symbolic caleculus theorem [20]; namely

TaEOREM 9.3.2. Let o={s;>0}2, Le an arbitrary positive summable sequence

(C218;< + o) and let £>0 be some positive number, then:

(i) For every compact abelian group G that contains a perfect Kronecker set we can
find f={f,.€ A(Q) such that [f*<Cy and |flla<1+e.

(i) For every compact abelian group @ that contains a perfect K, set (p some
natural prime) we can find f=f, € A(Q) such that [fI*<Cs and ||f|la<a,+e, where a,

is @ constant depending only on p such that 1<a,<4 for all p.

Proof. From Theorem 4.2.1 () we can find E< @ a compact subset such that A(E)
is isometrically isomorphic to V(D). Our theorem is then a corollary of Theorem 9.3.1.

(ii) In case (ii) we can find E< G a compact subset such that A(E) can be identified
topologically to V(D) with the inequality on the norms || || ,<4|| ||y, thus Theorem 9.3.1
implies that we can find f=f, ,€ A(G) such that

[PeCo [Iflla<d+e ' (9.37)

and this proves our result.

Observe that every infinite compact group falls in one of the two cases (i) or (ii)
above (cf. Chapter 4, § 1 (vi)).

Observe also that contrary to what was stated in [12] Theorem 9.3.2 (ii) is best possible
in the sense that the bound for ||f||, cannot be improved to 1 +e.

The exact value of a, is in fact:
a, = int {||f||.; f€ A(Z(P)); (IZ(p)I")=[~1, 1]}

and a,>1 for p+2. To prove this we may suppose, taking if need be a subgroup of @
[cf. Chapter 4, §1, (v)], that G'=[Z(p)]*. Let then f,€A(G) be such that ||f,]|4<a,+e¢,
f(&)>[—1,1]; and with f satisfying (9.3.7) and { some positive number let us consider

® =91, 9) = f(g1) +Lf(g) EA(G x G); (91, 9) EG X G
We have then llella = Nl + CIFl <ap+e+5¢. (9.3.8)
Also for every fixed g,€G and every ®€C(R) we have y(g) =D[f,(g,) + Lf(9)]€A(G) as

soon as ®og € A(G x @); so that if we set @, ((¢) =®[f,(g,) + (t],t€ I we have @, () E[f]4®
and therefore @, ;€C,; and since this holds for arbitrary g, we see from our choice of
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f, that ® €C, and this is valid for arbitrary {>0. So taking into account (9.3.8) and the
fact that G x G~[Z(p)]® =G we see that @; gives us the required function as soon as { is
sufficiently small.

Relative to the classes of oo-differentiable functions that we considered in Theorems
9.3.1 and 9.3.2 we would like to observe that we essentially obtain all non quasi-analytic
classes, in the sense that given C< D(J) a non quasi-analytic class we can find a summable

sequence ¢ = {s,>0};_; such that C,<C [21]. Also if we denote by:
A(I) ={{€D(); f analytic on (-1, 1)}

we have A(I)> N,C, the intersection being taken over all positive summable sequences
o [22].

Using the above remarks we see that we have proved the following

TaEOREM 9.3.3. (i) [V(D)]< A(l)
(ii) [A(GY]<= A(L) for every compact group G.

Theorem 9.3.3 (ii) above is due to Y. Katznelson [23]. Let us finally introduce the

Definition. A compact set E<G@ of the compact abelian group G is called a set of
analyticity if [A(E)]< A(l).

Then we see that we have actually proved the following [cf. Theorems 4.3.3 and
9.3.3 ()I:

THEOREM 9.3.4. Let @ be a compact melrizable abelian group and let P, Q<G be two
perfect subsets. Then the set P+Q< @ is a set of analyticity.

In fact a theorem more general than Theorems 9.3.3 and 9.3.4 holds. We state it

here without proof.

THEOREM 9.3.5. (i) Let K,, K, be two infinite compact spaces then [C(K,) ) C(K,) 1< A(I).

(i) Let G be a compact abelian group and E< G a closed subset such that for any N >1
we can find X ={x,, 2y, ..., ax} <@, Y ={y,, ys, ..., yn} < G two families of N distinct points
each such that X + Y < E. Then E is a set of analyticity.

The proof is based on a classical argument [24] of evaluations of exponentials which
deliberately we wish to avoid in this paper. The proof of (i) above is to be found in [12].
The proof of (ii) has never been published but it is an easy although slightly technical

exercise in harmonic analysis and part (i) of the theorem.
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§ 4. The best possible of some Beurling-Pollard constants of Chapter 7, § 2

Let us now for >3 and some sufficiently small positive o denote by 85 =E<T"
the sphere of radius « in T" [cf. (9.1.8)], and let us choose f € A(T") =A which is real analytic
in some nhd. of Z<T" and such that:

fET4E) N D(T™); "¢ J4E) m= [”—;1] . 9.4.1)

Using then the notations of Chapter 8, § 2 we see that F=MfeV(T") =V is analytic
in some nhd. of E* in T°" and also

FeI'(B* n D(I*"); Fm¢J"(E*); m— [?'2'—1] . (9.4.2)

Let us now construct for r<n and ¢>0 arbitrary
0:T" =T 0() = (0,(8), ..., 0,(2)); €T (9.4.3)
a continuous mapping such that
0,€ Ayimy-e 7=1,2,...,nm; O(T")=T". (9.4.4)
This can be done using a modification of the classical construction of a Peano
curve. We can in fact choose our 0 in (9.4.3) so that in addition to (9.4.4) we have

O;(ts, - st)= O Gnu..n, €Xp [27i(ngt, - ... +10,8)]ET<C=R?

s oos Nr€Z

* (9.4.5)
Slans cnn,| (L [0y + oo + ], )T < 4005 §=1,2,...,0.

To satisfy (9.4.5) is less trivial. We do not give the proof, however, since much
sharper results than those obtained from (9.4.5) can be given.
Let now 0 satisfy (9.4.3) and F satisfy (9.4.2) and let us consider the induced

mapping: é@é:V(T") -V (T"). Then denoting by £ = (0 x 0)"' (E*)<=T* we have
X=0680(F)=Fo(0x0)€Agm-.(T7) 0 V(T') n I(E) (9.4.6)

and also by Lemma 1.4.1 and Chapter 3, § 2 ¥"¢JV(£) (m=[(n—1)/2]), also (9.4.6)
implies that _
|2m(@)| <Clw— Blsmom-me  (cf. 7.2.5).

So letting » be fixed and n—co we have m/n~->1/2 so that, ¢ being arbitrary, we obtain

TueorEM 9.4.1. For any r>1 and a<r/2 we can find E<T* a closed subset and
REV(T) =V such that: h€IV(E)NJV(E); |h(z)| <C|x—E|3. In other words Theorem
7.2.2 with s =2 1is best possible.
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Let us now suppose that 0 actually satisfies (9.4.5). Then since F is analytic in some
nhd. of E* and since T*" (with the canonical embedding) is analytically embedded in R*"
it follows that y defined again as before from (9.4.6) coincides with some y €EA(T* < V(T
in some nhd. of E. So letting again r be fixed and n—co we obtain

TrEOREM 94.2. For r>1 and a<r/2=oy we can find E<T* a closet subset and
fEA(T™) such that f€ I E)\J4(E), |f(x)] <C|x—E|3.

Proof. What we actually obtain by the process described above is some function %
satisfying the conclusion of Theorem 9.4.1 and being such that 2€4 in some nhd. of £
From this our theorem follows since A< V.

Comparing this last theorem with the classical Beurling—Pollard estimations [9], we
see that we are very far from the critical constant which is o =7 and not «g=r/2. Sharp
results in that direction have been obtained by J.-P. Kahane [25], [30].

10. The symplectic form and applications to the problem of spectral synthesis

Let R<€(K) be a unitary regular *symmetric Banach algebra of functions on the
compact space K whose spectrum can be identified to K, let further 0=u€M+(K) be a
positive Radon measure fixed once and for all and let also f€ R<C(K) be a real valued
function of R.

We now consider for every #€R the element of R’ (=the dual of R) defined by
F,=e"dyu i.e. the functional F,€ R’ defined by

(Fy,1ry= f ¢ ® k) du k), VreER
K

and we denote by ||e"||’=]||F,| s the norm of F, as an element of R’. We can state the
following theorem which is due to P. Malliavin [19].

THEOREM. If fER a real function is such that for some positive integer p=>1:

+00
[ e dus + o

then there exists a € R a real number such that
(f —a) EI¥(f~Y(a)); (f—a) ¢J*(f~*(a)).

We shall now exploit the above theorem to obtain information on the problem of

spectral synthesis for tensor algebras.



TENSOR ALGEBRAS AND HARMONIC ANALYSIS 109

§ 1. The evaluation of the exponential of the symplectic form

Let us consider for n>1
V,=C)® e ®... 5 ¢); 1=[0,1]

the product being taken n times, and let us denote by I"=IxIx... xI; for every z€I*
let x=(z, 25, ... 7,) (x,€L;5=1,2,...n) be its coordinates, let also dx=dx, x... xdz, be
the Lebesgue measure volume element on I". The spaces L*I) and L*(I) which we shall
consider in this paragraph are of course taken with respect to the Lebesgue measure of I.
Let us finally denote by:

n-1
O'n = O'n(X) = jg:l xj xj+l e Vn S C(In)’ (n > 2)’

which for obvious reasons we shall call the symplectic form; we shall also set convention-
ally o, =0.

We now consider T'(u)=||e!“**|| =||e'“#||pp,, With the notations introduced at the
introduction of this chapter with R=V,, K=I* R'=(V,) =BM,, =0y, du =dx. We shall
prove the following

TurEorEM 10.1.1. T w)<|u] " P2 (n>1,u€R).

This theorem is an immediate corollary of the following more general

TueoREM 10.1.2. Let us for fy, fa, .-y fo EL®(I) (n=1) and g € L) denote by:
La(.fl, fz, cers fn—l; g) = feiuanfl(xl) fz(xz) ree fn—l(xn—l) g(xn) dx.

Then for all n=1 g and f, (j=1,2,...,n—1) as above we have:
| (s fas oo famns I <L 7P fillo ool famalloo [ 2o (10.1.1)

Proof. The proof is done by induction on »; for n=1 the set of f's is vacuous and

J:[ eiuﬂx g dxl

so (10.1.1) holds and the induction starts. So let us suppose that (10.1.1) holds with
n replaced by n—1 and all choices of f,, /s, ..., fn_2; 9.
Let us now for fy, fs,..-,fn_1; g, s in the theorem define f; _, € L*(R) and g*€ L}[R) by:

fr-1(t); tE€I () = {g(t); tel
0 ;it¢l =10 s t¢l.

| L. ()] =

<[lgllz

fa-1(t) ={
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We have then identifying ¢, 1€V, ; to a function on I*

1 1

L,(f1se-esfn-13 9) =f f eI (21) oo fo2 (®n—2) Gu(@n1) d2y ... d2y 13
Lo (10.1.2)

g (2) =fn~1(t)f0 e g(v) dr=fo_1(t) *(ut), tEL

where ~ ag usual denotes the Fourier transform. But then Plancherel’s theorem gives us
o0

lg. @12 =f7w |20 §*(ut) [ dt (10.1.3)

< |-l ol g* 12 oy = I faa I3 gl co-

So using (10.1.3) and applying the inductive hypothesis on the second member of (10.1.2)
we obtain the inductive step and complete the proof of the theorem.

§ 2. A best possible constant in the Beurling-Pollard theory

Let us now use P. Malliavin’s theorem of the introduction to this chapter on B =
V,cC{I"), f=0, and du=dx with the notations of our previous paragraph. We obtain
then taking into account Theorem 10.1.1

THEOREM 10.2.1. For all n=>6 there exists a,€ER a real number such that:

On— @, € Ivn(zn); (dn - an)rn ¢ JV”(Zn): zn = 0'7_;1 (an)’
where 1, s the largest integer strictly smaller than (n—3)/2.

If now with a,, 2, and 7, as in the theorem we denote by @, = (¢, —a,)™ we see

that
P €I INI™(2,); (%) <CA(X, 2,)]™, VXETY (10.2.1)

where d denotes the euclidean distance on I*. So if we embed I as a closed arc in T and
take into account Ch. 3, § 3, Case 1, and if we let n—co in (10.2.1) we see that r,~n/2
and thus that Theorem 7.2.2 is best possible asymptotically at least as s—co for

Wy =W3=...=0W,=1.
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