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1. Introduction 

This paper is devoted to tile extension, to certain commutative topological semi- 

groups, of the fundamental approximation theorem for almost periodic functions on 

groups. Several definitions are necessary before we are able to state our results. 

If  S is a commutative topological semigroup,(~) we shall denote by C (S) the 

Banach algebra of all bounded continuous complex Valued functions on S supplied 

with the norm II'll defined by 

I I /11 = s u p  
o'eS 

For each a in S and / in C(S), the translated function a /  in C(S) is defined by 

~/(~)=/(~+~) ,  ~eS.  

A function / in C (S) is called almost periodic if the set {a / : a E S} of translates 

of ] is conditionally compact(a) in C (S). We shall denote by A (S) the collection of 

all almost periodic functions on S. I t  is simple to check that  A (S ) i s  a closed 

translation invariant subalgebra of C (S). 

(1) Th i s  work  was  suppor t ed  in pa r t  b y  the  Un i t ed  S ta tes  Air  Force Office of Scientific Research .  
(3) W e  call S a commutative topological semigroup if i t  is a c o m m u t a t i v e  s emig roup  h a v i n g  a n  

iden t i t y  e lement ,  suppl ied  wi th  a topology in wh ich  t he  m a p  (a, ~)~>(~+T f rom S •  to S is con- 

t inuous .  I n  t he  t e rmino logy  of [6], S w o u l d  be  a c o m m u t a t i v e  topological  s emig roup  w i th  jo in t ly  
con t inuous  addi t ion .  Subsemig roups  need  net have  ident i t ies .  

(3) C (S) will a lways  be considered t o  be topologized w i th  t he  n o r m  topology,  t h a t  is, t h e  topo-  
logy of u n i f o r m  convergence .  W e  shall  use  "cond i t iona l ly  c o m p a c t "  to m e a n  " h a v i n g  c o m p a c t  c losure" .  
Our def in i t ion  of a h n o s t  per iodici ty  is weaker  t h a n  t h a t  u sed  by  Maak  in [11] a n d  our  resu l t s  are  
d is jo in t  f rom his.  
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A function Z in C (S) is called a semicharacter if 

and 

Z(cr+-c)=Z6r)X(r) ,  , r e S , - ~ e S ,  

Iz(ol l<l ,  o s. 

Each semicharacter of S is almost periodic; for Z is a semicharacter, then 

crZ =Z(cr) Z, a e S ,  

so {r  r  is contained in the compact subset {2Z: 121~<1} of C(S). Note that  

the set of semieharacters of S is dosed under complex conjugation. 

We shall say that  the approximation theorem holds for S if linear combinations 

of semicharacters of S are dense in A (S); that  is, if each function in A (S) can be 

approximated uniformly on S by linear combinations of semicharacters of S. That 

the approximation theorem holds if S is a commutative topological group is the 

fundamental result of the theory of almost periodic functions on commutative groups 

(see Chapter 7 of [10]). We show in the next section that  the approximation theorem 

does not hold in general for commutative semigroups, and that  it may fail even for a 

subsemigroup of a discrete group. 

The remainder of the paper is devoted to establishing the approximation theorem 

for certain classes of topological semigroups. The most important of these are 

1. Cones in finite dimensional Euclidean spaces in the usual topology. 

2. Finitely generated subsemigroups of commutative groups in the discrete topology. 

3. Semigroups consisting of the non-negative elements of a totally ordered com- 

mutative group in any "reasonable" topology. 

We also show that  the class of commutative topological semigroups for which 

the approximation theorem holds is closed under the formation of products. 

The main tool that  we use is the almost periodic eompaetification introduced 

in [6]. For groups the approximation theorem is an immediate consequence (see 

Chapter 7 of [10]) of the existence of a compactifieation and the Peter-Weyl theorem. 

No such direct method is available for semigroups, as there is no analogue of the 

Peter-Weyl theorem for compact commutative semigroups. On the contrary, such 

semigroups may have few semieharacters, as the first example of the next section 

shows. For this reason we are forced to carry out a detailed analysis of the structure 

of the eompaetification in each of the cases that we consider. 

Some comments on notation: In  the following, the letters S and T (with or 

without subscript or superscripts) will be used to denote commutative topological 
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semigroups. If c f : S - + T  is a continuous mapping, we shah always denote by ~ the 

induced mapping (f : C (T)--~C (S) defined by 

~(/)=/o~, /eC(T). 

If X and Y are any sets, 

{x: x in X, x not in Y} 

is denoted by X \Y .  

The results that  follow were announced in part in Section 4 of [5]. 

2. Some Examples 

The approximation theorem may fail for a variety of reasons, some of which 

become apparent in the following examples. 

Let S be the commutative topological senfigroup formed by the closed unit 

interval supplied with the usual topology and the composition 

(a, ~)-+sup (a, ~). 

[t  is simple to check that  each function in C (S) is almost periodic. Nevertheless the 

only semicharacters of S are the constant functions equal to 0 and to 1. 

Even with many semicharacters, indeed sufficiently many to separate points, 

approximation may fail due to the lack of homogeneity in topological semigroups. 

For let S be the non-negative reals under addition, supplied with the usual topology 

on [1, ~ ]  but  with the discrete topology on [0, 1]. If / is a character of the discrete 

reals and 

h ( a ) = {  0,1-a' 0<a<ll~a, 

the / h  is in A (S). However, the only semicharacters of S are exponentials and a 

pair of functions equal to 0 for all a >  0, so the approximation theorem fails for S. 

Another possible reason for the failure of the approximation theorem is tha t  a 

non-trivial function may have only trivial translates. For let S be the semigroup of 

lattice points 

{(re, n):  m > 0  or r e = n = 0 }  

in the plane. Then if f is any function in C (S) that  satisfies /(m, n ) =  0 for m >  1, 

{a / :  a ES }  consists only of / and functions that  are zero except at (0, 0), so / is 
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almost  periodic. On the other hand, the semicharacters of S, with two exceptions, 

are of the form 

Z (m, n) = e ~m+~t'n, 

where ju is real and Re (~)~< 0, so the approximat ion theorem fails for S. Note  tha t  

S is not  a finitely generated subsemigroup of the lattice point  group;  because of 

Theorem 10.1 no finitely generated example can be found. 

3. The Compactification 

The following lemma lists three of the basic properties of almost  periodic func- 

t ions tha t  we shall need. The results are simple to establish and are contained in 

Theorems 5.1 and 6.1 and Lemma 5.2 of [6]. 

LEMMA 3.1. Let S and T be commutative topological semigroups. 

(i) I f  ~ :  S--> T is a continuous homomorphism, then the induced map (f : C (T)-->C (S) 

satisfies ~ (A (T)) c A (S). 

(ii) I f  T is compact, then A (T)= C (T). 

(iii) I /  / is in A (S), the map a->a/  o/ S into A (S) is continuous. 

Note  tha t  as a consequence of (i) and (ii) if S is a commutat ive  topological 

semigroup, ~0: S-->T a continuous homomorphism of S into a compact commuta t ive  

topological semigroup T and / a function in C (T), then the composite ] o q0 is a lmost  

periodic on S. As we shall see in Lemma 3.2, all of A ( S ) c a n  be obtained in 

this way.  

The main  tool in our s tudy  of the space A (S) of almost  periodic functions on a 

commuta t ive  topological semigroup S is an associated compact commuta t ive  topological 

semigroup S ~ and a mapping  Is: S-->S ~. S a was introduced in [6] and called the 

almost periodic compacti/ication (1) of S. I t  is defined to  be the closure in the strong 

operator topology of the semigroup {R, : ~ E S} of operators on A (S), where Ro is 

the t ranslat ion operator 

R~(/)=(~/, l E A ( S ) ;  

Is: S-->S ~ is defined by  

Is ( (~)=R, ,  ( ;6S .  

(1) If S is a group, S a is of course isomorphic to the usual almost periodic compactification, for 
which see Chapter 7 of [10]. 
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For our purposes these definitions have no relevance; we shall need only those facts 

about the compactifieution tha t  are listed in the following three lemmas (see Sec- 

tion 6 of [6]). 

The first describes the basic property of the compaetification, the second shows 

that  this property characterizes the compactification, while the third states the 

existence of induced homomorphisms for compactifications. 

LEMMA 3.2. Let S be a commutative topological semigroup. Then Is :  S--->S a is a 

continuous homomorphism with Is (S) dense in S ~. The induced mapping i s :  C (Sa)-~C (S) 

is an isometry and an algebra isomorphism o/ C (S ~) onto A (S). 

LE~VIA 3.3. Let S and S* be commutative topological semigroups with S* compact. 

Suppose that q~ : S ~ S *  is a continuous homomorphism, with q~ (S) dense in S*, which 

is such that the induced map ~ : C (S*)-->C (S) satis/ies A (S) = 9  (C (S*)). Then there 

is a topological isomorphism y; : S~--~S * so that the diagram 

j"7 S* 

S ~ y; 

IS "\" ~ \  

~" vS  a 

is commutative, i.e. ~ o l s = ~ .  

LEMMA 3.4. Let S and T be commutative topological semigroups. I] q): S--~T is a 

continuous homomorphisr~, then there is an associated continuous homomorphism q)~: S~--> T ~ 

which is such that the diagram 

S -> T 

V ~a V 

S ~ > T ~ 

is commutative, i.e. cf a o Is = I r  o q% 

Let S be a commutative topological semigroup. If  / is in A (S), by  Lemma 3.2 

there is a unique function h in C (S a) tha t  satisfies / =  h o Is. We shall denote this 

function h by  ]. 
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Thus if ] is an almost periodic function on S, f is its "extension" to the com- 

pactification S a. The mapping (1) ]._>f of A (S) onto C (S a) is inverse of the isomorphism 

is  of Lemma 3.2. 

The following is an immediate consequence of Lemma 3.2 and the fact that  

semieharacters are almost periodic and "extend" so as to remain multiplicativc. 

LEMMA 3.5. Let S be a commutative topological semigroup. Then Z - - ~  is a 1 -  1 

correspondence between the semicharacters o/ S and the semicharacters o/ S ~. 

This leads to the following result, which reduces the approximation problem for 

A (S) to a question about the existence of semicharacters of S ~. 

THEOREM 3.6. Let S be a commutative topological semigroup. Then the/ollowing 

are equivalent : 

(i) The approximation theorem holds /or S. 

(ii) S ~ has su//iciently many semicharacters to separate points, i.e. i / x  and y are 

distinct elements o/ S a, then there is a semicharacter X o] S ~ that satis/ies Z ( x ) 4 Z  (y). 

Proo/. (i) implies (ii). For if linear combinations of scmieharacters of S are 

dense in A (S), then by Lemmas 3.2 and 3.5, linear combinations of semicharacters 

of S a are dense in C (S~), so there must be sufficiently many to separate points of S ~. 

(ii) implies (i). For if S a has sufficiently many semicharacters, by  the Stone-Weier- 

strass Theorem, linear combinations of these semicharacters are dense in C (sa), so by 

Lemmas 3.2 and 3.5, linear combinations of semicharacters of S are dense in A (S). 

In  what follows we shall, in many cases, be dealing with commutative topo- 

logical semigroups S which have sufficiently many almost periodic functions to sepa- 

rate points. In  these situations the map I s :  S---~S ~ is 1 -  1 and we shall identify S 

with its image in S ~. For each f in A (S), / will then simply be the unique conti- 

nuous extension of f to S ~. And the restriction of a function in C (S ~) to S will be 

a function in A (S), 

If S is identified with its image in S ~ and Q is a subset of S, we shall denote 

by Q- the closure of Q in S a (and not the closure of Q in S). 

4. The Product Theorem 

Let S and T be commutative topological semigroups. Then the product semi- 

group S •  is defined to have coordinatewise addition 

(1) ]__>] is the Gelfand representation of A (S), in the sense of Chapter IV of [10]. 
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(al,  ~1) + (a2, 32) = (al  + a2, ~1 + v2) 

and the product topology. If {Sr},E+ is any collection of commutative topological 

semigroups, the product semigroup I~ S, is defined in the same manner. 

We establish in this section the isomorphism (~) 

(I~ Sr)a~I-I S~ (4.1) 
yeY y~J 

and obtain as a consequence the fact that  the approximation theorem holds f o r  

I~S~ if and only if it holds for each of the S,. This result is used later in an in- 
yeJ 

duction step in our proof of the approximation theorem for cones. 

LEMMA i~.l. Let S be a commutative topological semigroup and Q a dense subset 

o/ S. Let [ be a /unction in C(S) with {a l:  a eQ} conditionally compact. Then 

{a I: a e S} is conditionally compact, i.e. / is almost periodic. 

Proo/. I t  suffices to show that  the map a - ~ a /  from S to C(S) is continuous. 

For if it is continuous, then { a / :  a E S} is contained in the closure of the condi- 

tionally compact set {or/: a C Q} and is thus itself conditionally compact. As a first 

step we show that  if T is any element of S, the map a-->a/ is continuous when 

restricted to Q u {~}. {a l: a c Q u {T}} is a conditionally compact subset of C (S)and  

thus its topology, which is the topology of uniform convergence on S, coincides with 

the topology of poinbwise convergence on S. But since / is continuous, the mapping 

a - > a /  is continuous from S to C (S) supplied with the topology of pointwise con- 

vergence on S. Thus a->a/ is continuous when restricted to Q U {~} as was claimed. 

Suppose now that the mapping a--->a/ h'om S to C (S) is not continuous. Then there 

is a a 0 in S, an e > 0 ,  and, for each neighborhood U of a 0, an element au in U with 

II au/-  a0/II > 2 ~. Furthermore, for each neighborhood U of a 0, since a-->a / is conti- 

nuous on QU{av}, there is a r z  in QNU with and thns with 

II   /-a0/JJ But this contradicts the continuity of a - + a /  on Q u {ao}, so that  

our assumption that a - + a /  is not continuous on S is false and the proof is complete. 

If  h is a function defined on a produkt S x T  and a is in S we denote by ho 

the function defined on T by 

ho(T)=h(a, ~), ~e~'.  

(1) The corresponding result for the weakly almost periodic eompactification introduced in [6] 
is false. 
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LEMMA 4.2. Let S and T be commutative topological semigroups, and/a/unct ion  

in A (SxT) .  Then 
{~ (/~) : a 6 S, ~ 6 T} (4.2) 

is a conditionally compact subset o~ C (T). Furthermore, the map a-->/, ~tom S to C (T) 

is continuous. 

Proo/. Let e be the identity element of S and define (I): S ( S x T ) - > C ( T )  by 

~P(h)=h~, h e C ( S x T ) .  

Then (I) ((a, ~)/) = T (/,), a 6 S, T 6 T, 

so (4.2) is the image under the continuous map (]) of the conditionally compact subset 

{(a, ~) /: (a, ~) 6 S x T }  of C ( S x T )  and must thus itself be conditionally compact. 

Since / is continuous on S • T, the map a-->/, is continuous from S to C (T) supplied 

with the topology of pointwise convergence. But  since T has an identity element, 

{/~: a 6 S} is contained in (4.2) and is thus conditionally compact, so its topology 

must  agree with that  of pointwise convergence. Therefore a-->/, is continuous and the 

proof is complete. 

LEMMA 4.3. Let S and T be commutative topological semigroups, and 

9:  SxT-+SxT~ 
be defined by 

9 ( a , z ) = ( a ,  IT(z)); (a, T) e S x T .  

Then the induced mapping 

~ : C (SxTa)->C (SxT)  

satis/ies 5; (A (S x Ta)) = A (S • T). 

Proo/. 9 is a continuous homomorphism, so by  (i) of Lemma 3.1 it  suffices to 

show tha t  A ( S x T ) c ~  (A (SxT~)). Let  / be any function in A (SxT) .  By Lemma 4.2, 

for each a in S, / ,  is in A (T) and thus f,  is a function in C(T~). Define the func- 

tion h on S x T  ~ by  

h(a,x)=f~(x) ,  a e Z ,  x e T  ~. 

h has been defined so tha t  i t  satisfies 

h (9 (a, ~))= / (a, T), (a, ~) 6 S x T .  

Thus if it could be shown that  h is in A ( S x T a ) ,  / would be ~(h)  and the proof 

would be complete. 
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First we show that h is in C (S• By Lemma 4.2, a-->/o is continuous from 

S to A (T), so because of Lemma 3.2, a-->f, is continuous from S to C (Ta). If (a, x) 

is an element of S •  ~ and (T,y) in S x T  a is chosen so that  IIfo-f~i[<�89 and 

(x) - / o  (y) l < �89 then 

lh (o, y) l=lto(x)-f=(y) l  lfo(x)- fo(y) l l 

But since ~-+]o is continuous and ]~ is in C (T~), this shows that h is in C (S• Ta). 

We now complete the proof by showing that h is in A (S• I t  is simple to 

check that  

9 (~(a, ~)h) =(a, ~)/, (a,~)6SxT. 

Thus since S~: C ( S • 2 1 5  is an isometry and 

{(0, ~)/: (~, ~)eS• 

is conditionally compact in C (S• 

{~(~, ~)h: (~, ~) e S •  

is conditionally compact in C(SxT~) .  9 ( S •  is a dense subset of S •  ~, so by 

Lemma 4.1 applied to h, S •  a and ~ ( S •  h is in A(S•  

We can now establish the isomorphism (4.1) for the case of two factors. 

C O R O L L A ~  4.4. Let S and T be commutative topological semigroups. Then there 

is a topological isomorphism between (S• T) ~ and S~• T% 

Proo/. Using Lemma 4.3 on the map (q,T)-->(a, IT(Z)) of S x T  into S •  ~ and 

also on the map ((~, x)-->(Is((~), x) of S x T  ~ into S a x T  a, w e  see that if 9:  S•215 

is their composite, i.e. 

cf((~, 7:)=(Is((~), IT(Z)), (~, '~)ES•  

then the induced map ~ : C (S a • T a)-> C (S • T) satisfies ~ (A (S a • T~)) = A (S • T). Thus 

by Lemma 3.3 and (ii) of Lemma 3.1, Sa•  a is topologically isomorphic to (S•  ~. 

By Lemma 4.4 and induction, the isomorphism (4.1) holds for any finite number 

of factors. We now proceed to show that  it holds in general. 

Let (Sy},~j be a collection of commutative topological semigroups, e, the identity 

element of S,, S = ]-[ S~, S* = [ I  S~, and ~ : S---->S* the homomorphism induced by the 
yeJ yeJ 

lzr:Sr---->S~. If  ~ is an element of S, its coordinate in S r will be denoted by ~r. 

Let K be a finite subset of J.  We denote by AK (S) the subspace of A (S) consisting 
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of those / tha t  depend only on the coordinates in K, i.e. tha t  satisfy / ( a ) = / ( T )  

whenever a r = ~ r  for all y in K. 

LEMMA 4.5. Let ~)." C (S*)--+C (S) be the mapping induced by q)--+S--+S*. I] K is 

any /inite subset of J, then AK(S)c( f  (C (S*)). 

Proo/. Let SI=]-~S~, $2= ]-I Sr and FK: S--->$1• be the homomorphism 
yEK ~'EJ\K' 

induced by  the Isr  for Y in K and the identity mappings for y in J \ K. By successive 

application of Lemma 4.3, we see tha t  the induced mapping qK: C(SI• 

satisfies ~(A (SlxS2))=A(S).  Now let / be any function in AK(S) and let (?K(h)=/. 

Since / is in AK (S), 

h(x,a)=h(x,T),  x E S  1, a E S  2, TES 2. 

Let S 3= 1-I S~ and define k on S * = S  1• 3 by 
7 r  

k(x ,y )=h(x ,a) ,  x e S  1, y E S  3, 

where a is any element of S~. I t  is clear that  k is in C(S*) and tha t  / = ~  (k), so 

since / was an arbi trary function in AK (S), the lemma is proved. 

LEMMA 4.6. Let F be the collection o/ all finite subsets o/ J. Then (.J AK(S) is 
K~F 

dense in ~4 (S). 

Proo/. Let / be a function in A (S). By (iii) of Lemma 3.1 the map a - + a /  of 

S into A (S) is continuous. Thus there is a neighborhood U of the identity element 

of S which is such tha t  

a e v .  (4.3) 

As a consequence of the definition of the product topology, there is a finite subset 

K of J so tha t  any a in S, with a v = e  r for all y in K, will be in U. Let  ~o:S--+S 

be the homomorphism defined by  

= / Tv' Y E K 
(9 (~)), 

L e,, y E J \ K .  

Then for each z in S there is a a in U with z = ~ + ~ ( z )  (we need only set a~=z~  

for y C J \ K ,  a~=e  7 for y E K ) ;  thus 

= I < 

by (4.3), and t l / - ~ / l l  <~. But  by (i) of Lemma 3.1, v~/ is in A (S), and therefore 

clearly in AK (S). This completes the proof. 

We can now finally establish the isomorphism (4.1). 
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THEOREM 4.7. Let (Sr}~j be a collection o/ commutative topological semigroups. 

Then I~ S~ and (I-I St) ~ are topologically isomorphic. 

Proo/. We use the notation introduced before Lemma 4.5. The mapping 

~: C(S*)->C(S) induced by q~:S-->S* is an isometry since ~(S) is dense in S*. 

Thus (f (C (S*)) is a c]osed linear subspace of C (S), which is contained in A (S) by 

(i) of Lemma 3.1. But by Lemmas 4.5 and 4.6 it must be all of A (S), so our resuIt 

follows from Lemma 3.3. 

LEMMA 4.8. Let {T~)r~s be a collection o/ commutative topological semigroups. 

Then I-[ T~ has su//iciently many semicharacters to separate points i/ and only if each 

T 7 has su//iciently many semicharacters to separate points. 

Proo/. If ~ E J0 there is a natural isomorphism of T~ into 1-[ T,, so T~ will have 

sufficiently many semieharacters if I-i T~, does. Conversely if T~ has sufficiently many 
y E J  

semicharacters, any two elements of ]-I T~, having different coordinates in T~ can be 

separated by the natural projection I~ T~-~T~ followed by some semicharactcr of T~. 
~ ' E J  

__ g The following is now an immediate consequence of Lemma 4.8, applied to T~, -S t ,  

Theorem 3.6 and Theorem 4.7. 

T~EOR~M 4.9. Let {Sv}r~ : be a collection o/ commutative topological semigroups. 

Then the approximation theorem holds /or I-I S r i/ and only i / i t  holds for each o/the S r. 
y e l  

5. The Kernel 

Let S be a commutative semigroup. In  all that  follows we shall use the standard 

notation 

a + U = { a + ~ :  ~ e U } ,  

U + V = { a + ~ :  a ~ U ,  ~ V } ,  

if U and V arc subsets of S and a is an element of S. If  T is a subset of S, T i s  

called a subsemigroup if T §  and is called an ideal if it is non-empty and 

S + T ~ T .  The kernel of S is defined to be A ( a + S )  and denoted b y K ( S ) .  If  non- 
ar  

empty, it is clearly the smallest ideal of S. 

The following will be useful later. 
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LV~MMA 5.1. Let S be a compact commutative topological semigroup. I /  Q is a 

dense subset o[ S, then 
N ( ~ + s )  (5.1) 

aeQ 

is identical with the kernel K (S). 

Proo[. Let T be an element of (5.1). Choose any  a in S and let {at} be a net 

in Q with av-->a. Since T is in (5.1), for each },, there is some ~/v in S with ( ~ v + ~ = T .  

By the compactness of S, the net (~]y} has a cluster point ~, which satisfies a + ~  = T 

since the multiplication of S is jointly continuous. But  a was an arbi trary element 

of S, so T is in f l ( a + S ) = K ( S ) .  

The next  lemma, which is well known (see [8] or w 1 of [13]) is the basic result 

concerning the kernel. 

L~MMA 5.2. Let S be a commutative semigroup with a compact topology in which 

addition is jointly continuous.(1) Then the kernel K (S) is non-empty and is a compact 

topological group. 

As a consequence we obtain the fact tha t  a compact commutat ive topological 

semigroup always has sufficiently many  semicharacters to separate points of the kernel. 

COROLLARY 5.3. Let S be a compact commutative topological semigroup. Suppose 

that a and ~ are distinct elements o/ the kernel K (S). Then there is a semicharacter Z 

o/ S satis/ying Z (a) ~: g (T). 

Proo/. By Lemma 5.2, K (S) is a compact  commutat ive topological group, so by  

the Peter-Weyl  Theorem, there is a character Z0 of K (S) with Z0 (a)4Z0 (T). Let  e 

be the identity element of K (S). Then the function Z defined on S by  

Z(a)=Zo(a+e) ,  a E S ,  

is a semicharacter of S and satisfies 

Z (a) = Zo (a) + Zo (T) = Z (T). 

6. The Half-line and Half-integers 

The proof of the approximation theorem for cones which we give in Section 9 

proceeds by induction on dimension. In  dimension 1 a cone is either the full line, 

the half-line [0, oo) or the isomorphic half-line ( -  co, 0]. The approximation theorem 

(1) I n  part icular ,  S muy  be a compact  subsemigroup of a commuta t ive  topological semigroup.  
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is known for the full line. I n  this section we obtain, as a relatively simple consequence 

of the results established thus far, the val idi ty of the approximat ion theorem for the 

half-line. The same proof shows tha t  the approximat ion theorem holds for the half- 

integers {n: n = 0, l, 2 . . . .  }. 

T~]~OR~M 6.1. The approximation theorem holds /or 

(i) The semigroup o/ the hall-line [0, ~ )  under addition with the usual topology. 

(ii) The semigroup o/ the hal/-integers {n: n = O, 1, 2 . . . .  } under addition with the 

discrete topology. 

Proo/. Let  S be either of the semigroups described. The function Z defined on 

S by  

Z ( a ) = e  -~, a E S ,  (6.1) 

is a semicharacter  and separates points of S. Thus Is: S - * S  ~ is 1 - 1 and we identify 

S with its image in S ~. 

We show first tha t  S a = S  U K( sa ) .  Let  x be a point  o f  S a not  in S. For  each 

a in S, {~: , ES, 0 ~ v ~ < a }  is closed in S = since it is compact  in the topology of S 

and Is: S---~S ~ is continuous. Thus, since S is dense in S a, x must  be in 

{ , : , E S ,  v > a } - = ( a + S ) - = a + S  ~ 

for each a in S, so x is in ['1 ( a+Sa) ,  which by  Lemma 5.1 is the kernel K ( s a ) .  
aES  

To complete the proof, because of Theorem 3.6, it is only necessary to show 

tha t  two distinct points x and y of S ~ can be separated by  a semicharacter of S ~. 

We have shown tha t  S a = S U K (S~), so there are the following three cases to consider. 

Case I.  x and y in S. I f  Z is defined by  (6.1), then :~ is a semieharacter of S a 

and satisfies 

:~ (x) = Z (x) # X (y) = Z (y). 

Case I I .  

by  (6.1), then 

x in S, y in K (Sa). For  each a E S, K (S a) c a + S a, SO if Z is defined 

I Z {Y) I ~< inf 12 {a) l=O.  
(~ES 

On the other hand, ~ (x) = Z (x) =~ 0, so :~ (x) =t= 2 (y). 

Case H I .  x and y in K (S:). Corollary 5.3 guarantees t ha t  in this ease there 

will be a semicharacter of S ~ separating x and y. This completes the proof of 

Theorem 6.1. 
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I f  S is the half-line, it is simple to show using Theorem 6.1 tha t  A (S) consists 

of all / in C (S) of the form /1 +/2, where /1 is the restriction of a function almost 

periodic on the full line and /2 satisfies lira/2 (0)=0.  This is slightly stronger than a 

result in [7]. 

Theorem 6.1 together with Theorem 4.9 shows that  the approximation theorem 

holds for certain cones; in particular it holds for closed sectors in the plane. Thus a 

function on a close sector is almost periodic if and only if it can be approximated 

uniformly by  linear combinations of the semicharacters of the sector, which will be 

exponential functions. I t  can further be shown tha t  if such a function is analytic at  

interior points of the sector, approximation by linear combinations of analytic ex- 

ponential functions is possible. When the sector is a half-plane, this is the approxi- 

mation theorem of [1]. 

Finally let us point out tha t  the approximation theorem for the discrete half- 

line cannot be obtained as simply as Theorem 6.1. The result is contained in 

Theorem 11.1. 

7. The Main L e m m a  

In  this section we isolate a technical lemma tha t  will be used later in sections 9, 

10 and 12. 

Let  G be a commutat ive topological group and S a subsemigroup of G containing 

its identity element. S supplied with the topology induced by  G is a commutat ive 

topological semigroup and the lemma we prove concerns the separation by  semi- 

characters of points in the compactification S ~. 

We assume that S itself has sufficiently many  semicharacters to separate points 

so tha t  Is: S -+S a is 1 -  1 and as before, we can identify S with its image in S ~. 

Let Q be a subsemigroup of S and Q- its closure in S ~. Q- is a subsemigroup of S a 

and we shall denote its kernel K (Q-) simply by  K. The subgroup { a - v :  a EQ, T E Q} 

of G generated by  Q will be denoted by H. We assume tha t  H is a closed subgroup 

of G. The image of S under the natural  projection G-->G/H is a subsemigroup of 

G / H  which will be denoted by  T. T is a topological semigroup if supplied with the 

topology induced by  the quotient topology on G/H. 

LEMMA 7.1. Let x and y be distinct elements o/ S a. Suppose that x and y are in 

e + S ~, where e is the identity element o/ K.  

(i) I f  (x + K) n (y + K) is non-empty and i] in addition each character (1) of Q 

extends to a semicharacter o/ S, then x and y can be separated by a semicharacter o /S% 

(1) A character is a semicharacter that is of modulus one everywhere. 
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(if) I /  (x+ K) ~ ( y + K )  is empty and i/ in addition the approximation theorem 

holds /or T, then x and y ban be separated by a semicharacter o/ S ~. 

Proo/ o/ (i). Let  x + u = y + v  for u and v in K. By Lemma 5.2, K is a compact 

commutat ive topological group, so by  the Peter -Weyl  Theorem, there is a character 

Z1 of K with Z1 (u):~=~1 (V). The function Z2 defined on Q- by 

z~ (w) = Z~ (e + w), w r Q-,  

is a character of Q-. Let Z.a be the restriction of Z2 to Q. Since the injection map 

of S into S ~ is continuous, Z3 is continuous in the topology of Q and is thus a 

character of Q. By hypothesis, Za extends to a semicharacter Za of S, i.e. there is a 

semicharacter Z4 of S tha t  satisfies 

Z~ (~)=Z~ (G), a ~ q .  

We will show tha t  the semieharacter Z4 of S ~ satisfies 24 (x)=~24 (Y). By its defini- 

tion, Z4 when restricted to Q agrees with Z2 and since both Za and Z2 are continuous 

on Q-, they agree on u and v. Thus 

2~ (u) - Z~ (u) = Zl (e + u) = Xl (u) ~: Zl (v) = Xl (e + v) = Z~ (v) - ;~ (v) 

and as a consequence, since x § u = y § v, 

~4 (x § u) -- Z4 (Y § v) 
2~ (x) 2~ (u) ~ ~ ~ )  = z~ (y). 

This completes the proof of (i). 

Proo/ o/ (if). The natural  projection G---~G/H when restricted to S yields the 

continuous homomorphism ~: S---~T defined by  

~ ( ~ ) = ~ + H ,  ~CS.  

By Lemma 3.4, ~ induces a continuous homomorphism ~a: S~_~T~ tha t  satisfies 

q~ (a) = I r  (~ (a)), a E S, (7.1) 

since S has been identified with its image in S ~. Suppose tha t  we could show tha t  

q)a (X) and ~ (y) were distinct. Then, since we have assumed tha t  the approximation 

theorem holds for T, by  Theorem 3.6 there would be a semicharacter Z of T a with 

Z(qJ~(x))#Z (q)a(y)) and thus the composite Z o ~a would be a semicharacter of S a 

separating x and y. So to complete the proof of (if) it suffices to show tha t  ~a (X) ~= ~a (y).  

Since x §  and y + K  are disjoint compact subsets of S a, there is a function / in 

C (S a) satisfying 

8 -- 60173047. Acta mathematica. 105. Imprim6 le 20 mars 1961 
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O, u E x + K  (7.2) 
/ ( u ) =  1, u E y + K .  

Let  /~ be normalized Haa r  measure on K. By  Lemma 3.1 the map  v-->v/ of S a into 

C (S ~) is continuous, so the vector  valued integral(1) 

f v/d/a(v) 
K 

exists and represents a funct ion h in C (S~). Because of (7.2), h ( x ) = 0  and h (y )=  1. 

Furthermore,  because of the invariance of p,  v h =  h for all v in K and thus since 

e + Q - c K ,  
u h = u ( e h ) = ( u + e ) h = h ,  u E Q - .  (7.3) 

Let  /c be the restriction of h to S, so tha t  k is in A (S) and h = $ .  Because of (7.3), 

k(a+T)=k(a), ~ S ,  ~ Q ,  

and as a Consequence, if ~ (al)=~0 ((~), then k ( a l )=  k (a2). Thus  we can define the 

funct ion g on T by  

g (~0 (a)) = ]c (a), a E S. (7.4) 

I t  is simple to  

by  ? :  S-->T. Because of (7.4), ~ (g)=]c .  

Fur thermore,  ~ (~ (a) g)) = a/c, 

so ~ maps {~g: ~ e  T} 

into {a~: a~S}. 

check tha t  g is in C(T) .  Let  ~:  C(T)- -~C(S)  be the map  induced 

~ E S ,  

(7.5) 

(7.6) 

But  since ~0 is onto, ~ is an  isometry and  thus (7.5) mus t  be conditionally compact  

since (7.6) is condit ionally compact .  As a consequence g is in A (T). For  each a in S, 

because of (7.1), 

(qS ~ ((~)) = ~ (IT (~ (a)) = g (of (a)) = k ((~) = h (a). 

Thus since S is dense in S a, 

~(c fa(u)) -  h(u) ,  u E S  a, 

so in part icular  ~ (~a (x)) = h (x) = 0 4:1 = h (y) = ~ (~0 a (y)). 

Bu t  this shows tha t  ~ (x)=~0 a (y) SO the proof of (ii) is complete. 

(1) We shall use the standard properties of vector valued integration found for example in [3]. 
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8. More L e m m a s  

In  this section we establish several lemmas for later use. Most of the results are 

of little independent interest and occur here simply because they will be used more 

than once in the following. 

Unti l  Lemma 8.5 we assume tha t  any semigroup S which is discussed has 

sufficiently many almost periodic functions to separate points. In  these cases the 

map Is :  S-->S a is 1 -  1 and we identify S with its image in S a. 

LEMMA 8.1. Let G be a commutative group, S a subsemigroup and H a subgroup, 

with H ~ S c G. Let T be the image o/ S under the natural projection G->G/H. I f  the 

approximation theorem holds /or T supplied with the discrete topology, then the approxi- 

mation theorem holds /or S supplied with the discrete topology. 

Proof. We apply Lemma 7.1, taking Q to be the subgroup H and the topology 

of G to be discrete. Since Q is a group, ~ + Q = Q for all a in Q, a + Q- = (o + Q)- = Q-, 

and so the kernel K of Q- is N ( a + Q - ) = Q -  by Lemma 5.1. Thus Q - = K  is a 
aEO 

group. In  particular,  the ident i ty  element e of K is the ident i ty  element of G, so 

e + S a= S a. Since G is a discrete group, any character of Q extends to a character 

of G and thus of S. Furthermore,  we have assumed tha t  the approximation theorem 

holds for T. Thus the hypotheses of Lemma 7.1 are satisfied, so if x and y are two 

distinct  elements of S a, there is a semicharacter g of S ~ with Z (x)~=Z (y). That  the 

approximation theorem holds for S is then a consequence of Theorem 3.6. 

LEMMA 8.2. Let S be a locally compact commutative topological semigroup. Suppose 

that S has a semicharacter Z that is nowhere zero and vanishes at infinity. Then 

S={x:  ~ 

Furthermore, S is an open subsemigroup o/ S ~ whose complement S ~ \ S  is an ideal. 

Proo/. Since Z vanishes at  infinity, for each e > 0 

is compact in the topology of S and thus in the topology of S a. As a consequence, 

any x in s a \ s  must be in the closure of each 

and thus satisfy ~ ( x ) = 0 .  On the other hand, if x e S ,  then ~ ( x ) = Z ( x ) 4 0 .  This 

8* -- 6 0 1 7 3 0 4 7  
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establ ishes the  f irst  asser t ion of the  lemma.  The  second is immed ia t e  since ~ is a 

semicharac te r  of S a. 

LEMMA 8.3. Let S be a commutative topological semigroup. Suppose that T is an 

open and closed subsemigroup o/ S whose complement S \  T is an ideal. Then the closure 

T -  o/ T in S ~ is an open and closed subsemigroup o] S ~, whose complement S~\ T-  is 

an ideal o/ S a. Furthermore, i / j :  T-+S is the injection mapping, the induced homo- 

morphism (1) j~: T~__>S~ is a homeomorphism o/ T a onto T- .  

Proo/. Le t  Z be the  charac ter i s t ic  func t ion  of T in S, i.e. 

1, a E T  

~r 0, a e S \ T .  

Z is a semicharac te r  of S. The  semicharac te r  ~ of S ~ satisfies 

1, x 6 T -  

:~(x)= O, x e S a \ T  -, 

so T has  the  proper t ies  claimed. Because of the  c o m m u t a t i v i t y  of the  d i ag ram in 

L e m m a  3.4, T is a dense subse t  of j~ (T~). F u r t h e r m o r e  ]a (T a) is compact ,  since T a 

is compac t  and  ]~ cont inuous,  so j~ (T ~) = T - .  I t  r emains  on ly  to  show t h a t  j~ is 1 - 1. 

L e t  x and  y be d i s t inc t  e lements  of T ~. Choose / in A (T) so t h a t  f ( x ) 4 ] ( y )  and  

def ine h on S b y  

h ( a ) = { / ( a ) ,  aET 

O, a 6 S \ T .  

I t  is s imple to  check t h a t  h is in A (S). Moreover,  for a in  T, 

( j~  (~))  = ~ ( j  (~))  = h (~) = / (~)  = / (~), 

so t h a t  ~( j~(x ) )=[(x )~ / (y )=h( j '~ (y ) ) ,  and  ja(x)+j~(y).  Thus  ja is 1 - 1  and  the  

proof  is complete .  

Le t  S be a c o m m u t a t i v e  semigroup and  T a subsemigroup of S. A col lect ion W 

of subsets  of T is called an  initial /amily for T if i t  satisfies the  following condit ions.  

(i) W does no t  con ta in  the  e m p t y  set. 

(ii) I f  U and  V are in W, then  UN V is in W. 

(iii) F o r  each U in W, there  is a V in W wi th  V + V c U .  

(iv) F o r  each T in T there  is a U in W so t h a t  T 6 a + S for each a in U. 

(1) The induced homomorphism ja is that given by Lemma 3.4. 
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LwMMA 8.4. Let S be a commutative semigroup supplied with the discrete topology. 

Suppose that T is a subsemigroup of S and W an initial family for T. Then(1) 

H = N U -  
U e W  

is a compact topological group whose identity is an identity /or T - .  

Proof. Because W satisfies condi t ions  (i) and  (ii), a n y  f ini te  number  of the  U - ,  

for U in W, have  a non-vo id  intersect ion.  Thus  b y  the  compac tness  of S a, H is 

compac t  and  non-empty .  I t  is a subsemigroup of S a because  W satisfies condi t ion  (iii). 

The kernel  K (H) is a compac t  topologica l  group b y  L c m m a  5.2. Le t  e be i ts  i d e n t i t y  

e lement  a n d  le t  ~ be a n y  e lement  of T. By  condi t ion  (iv) there  is a U in W so t h a t  

E a t s  for each a in U. Since e is in H,  there  is a ne t  {av) in U wi th  (~r-->e. I f  

(~,} is chosen so t h a t  T = a , + ~  for each y,  t h e n  T = e + x ,  where x is a n y  cluster  

po in t  of the  ne t  (~v} in  S ~. As a consequence, e + ~ = e + ( e + x ) = e §  and  since 

was an a r b i t r a r y  e lement  of T, e is an  i d e n t i t y  e lement  for T - .  I n  par t i cu la r ,  

e + H = H.  B u t  since e is the  i d e n t i t y  e lement  of K (H), e + H = K (H), so H = K (H), 

which is a compac t  topologica l  group.  

I f  S is a subse t  of a c o m m u t a t i v e  topologica l  group G, a complex  va lued  func- 

t ion  f def ined on S will be called uniformly continuous if i t  is un i fo rmly  cont inuous  

wi th  respect  to  the  un i form s t ruc ture  on S induced  b y  t h a t  of G, i.e. if for each 

e > 0 there  is a ne ighborhood  U of the  i d e n t i t y  e lement  0 in G so t h a t  I / ( a  4 3 ) -  

- / ( a )  l < e  if a and  a + ~  are  in S and  ~ is in U. W e  shall  need the  following 

"one-s ided"  cr i ter ion for un i form cont inu i ty .  

LEMMA 8.5. Let G be a commutative topological group and S a subsemigroup of G 

containing O. Suppose that the interior T o/ S is dense in S. L e t / b e  a complex valued 

function on S /or which, /or each e>O, there is a neighborhood U of 0 in G so that 

I / ( a + ~ ) - / ( a ) l < ~ ,  (~ES, T E U  n T .  

Then f is uniformly continuous on S. 

Proof. Choose a ne ighborhood  V of 0 in  G so t h a t  

I/(o'+~')-/(~')]<�89 ~'es, ~ 'eVnT.  (8.1) 

V N T is n o n - e m p t y  since 0 is a l imi t  po in t  of T. Choose an  e lement  ~ of V A T and  

a symmet r i c  ne ighborhood  U of 0 in G so t h a t  ~ + U ~ V N T .  Le t  a and  a + v  be 

(1) Recall that - means closure in S a. 
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elements  of S wi th  v in U. W e  shall  complete  the  proof  b y  showing t h a t  

Since ~ §  U c  V N T and  U is symmetr ic ,  ~ - 3  is in V N T. Then  b y  (8.1), 

LEMMA 8.6. Let G be a commutative topological group and S a subsemigroup o/ 

G containing 0 whose interior is dense in S. Let S~ be the semigroup S supplied with 

the discrete topology. Then there is a projection (1) ~p o/ A (Sd) onto A (S) that satis/ies 

]1 (I)/ll  < II/I1, t e A ( & ) ,  (8.2) 

and ~ Z = 0 /or each semicharacter Z o/ Sa that is not continuous on S. 

Proo/. L e t  T be the  in ter ior  of S and  W the  collection of all subsets  of T of 

the  form V N T for V a ne ighborhood  of 0 in G. We show f i rs t  t h a t  W is an  ini t ia l  

f ami ly  for T in the  sense of the  def in i t ion  given before L e m m a  8.4. Condi t ion  (i) 

holds  since 0 is a l imi t  po in t  of T. (ii) and  (iii) are  clear. I f  T is in T and  V is 

chosen to be a symmet r i c  ne ighborhood  of 0 in G wi th  T §  V c T, t hen  ~ E a § T for 

each a in V and  thus  in pa r t i cu l a r  for each a in  V N T. Therefore  condi t ion  (iv) is 

sat isf ied and W is an  in i t ia l  fami ly  for T as claimed.  Sd is a subsemigroup  of a 

discrete  c o m m u t a t i v e  group and  thus  has  suff ic ient ly  m a n y  charac te rs  to  separa te  

points ,  so the  m a p  Isd: Sd-~S~ is l -  1. We  shall  iden t i fy  S~ wi th  i ts  image  in  S ~d 

and  consider T and  i ts  subsets  as subsets  of S ~ 6. Since W is an  in i t ia l  f ami ly  for T,  

b y  L e m m a  8.4 app l ied  to  S~, 

H = N V -  
U e W  

is a subsemigroup of S ~ ~ which is a compac t  topologica l  group. Le t  # be normal ized  

H a a r  measure  on H.  I f  h is in C(S~), b y  L e m m a  3.1 the  m a p  x---~xh is cont inuous  

f rom S a a to  C (S~) so the  vec to r  va lued  in tegra l  

f x h d # ( x )  
H 

is def ined and  represents  a funct ion  in C (Sd). ~ We define the  m a p  vtz: C (S~)-->C (Sad) by 

�9 Fh= fxhd (x), h e  
H 

(1) We are identifying A (S) with the subspace of A (Sa) consisting of those functions that are 
continuous on S. (I) is called a projection if it is linear and satisfies (I) 2 = (I). 
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I t  is simple to check, using standard properties of vector valued integrals, and the 

invariance of /t, that  ~F is a projection of C (S~) onto the linear subspace 

{h :hEC(S~) ,  x h = h ,  all x E H }  

and that II hll<llhll, 

We define (I) to be the composite mapping 

a ~F a 
A (Sd) ~ C (S~) ~ C (S~)i~ A (Sd), 

where j is the isomorphism defined by 

j ( / ) = f ,  /EA(Sd) .  

(8.3) 

�9 is a projection since ~F is a projection. �9 satisfies (8.2) since ~F satisfies (8.3) 

and j is an isometry. To establish that  the range of r is as claimed, we must show 

that  a function / in A (Sd) is in A (S) if and only if it satisfies x f =  ] for all x in H. 

So let ] be in A (S) and x be an element in H. Because of the definition of H, it 

is possible to find a net {Tv} in T with ~r--~0 in the topology of S and vr-->x in 

the topology of S a d. Then for each o in Sd, 

x f (o) = [ (x + o) = lira [ (T, + o) = l im / (T r + o) = / (0) = [ (o), 
Y Y 

so since Sd is dense in S ~ , x ] = ] .  For the converse, let / be a function in A(Sa) 

that  is not continuous on S. Then / is not uniformly continuous on S, so by Lemma 8.5 

there is an r  and for each neighborhood V of 0 in G a ~v in Vf~T with 

l l~,[-[ l l>s, and thus ll,:.l-lll> . Let x be a cluster point in S~ of the net {v,}. 

By the definition of H, x is in H. Furthermore It ~ I - t l l / >  because of Lemma 3.1, 

so x [ # [ .  This completes the proof that  a function / in A (Sd) is in A (S) if and 

only if x [ =  ] for all x in H, and thus establishes the fact that  �9 maps A (Sa) onto 

A (S). I t  remains to show that  if Z is a semicharacter of S~ that is not continuous 

on S, then r Z = 0. Let Z be such a semicharacter. Then, as we have shown, there 

must be some y in H with y 2 # 2 .  But since y 2 =  2 (y)2, the restriction of 2 to the 

group H is not identically 1 so must be either identically 0 or agree with a character 

of H that  is not identically 1. In  either case, 

f 2  (z) tt (x) = o, d 

H 

and as a consequence, 
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H H H 

so d ) Z = 0 .  This completes  the  proof  of L e m m a  8.6. 

COROLLARY 8.7. Let G be a commutative topological group and S a subsemigroup of 

G containing O. Suppose that the interior o] S is dense in S. Then the approximation 

theorem holds /or S i/ it holds /or S supplied with the discrete topology. 

Proo/. Le t  Sd be S suppl ied  wi th  the  discrete  topo logy  and  qb: A (Sa)-> A (S) 

the  pro jec t ion  whose exis tence is es tab l i shed  in L e m m a  8.6. Because  of the  p roper t i e s  

of (P s t a t ed  there ,  if / is in A (S) and  g is a l inear  combina t ion  of semicharac ters  of 

Sd wi th  [ [ f - g l [ < e ,  then  O g  is a l inear  combina t ion  of semicharac te rs  of S wi th  

[ [ f - ( I )g l [  < e .  Thus  the  a p p r o x i m a t i o n  theorem will hold  for S if i t  holds for Sa. 

LEMMA 8.8. Let G be a commutative topological group and S a subsemigroup o/ G 

containing O. Suppose that the interior o] S is dense in S. Let S be the closure o/ S in G. 

Then the approximation theorem holds /or S i/ it holds /or S. 

Proo/. Let  / be a funct ion  in A(S) .  B y  L e m m a  3.1, the  m a p  a - > a f  f rom S to  

A (S) is cont inuous.  Since the  m a p  is cont inuous  a t  a = 0 ,  L e m m a  8.5 shows t h a t / i s  

un i fo rmly  cont inuous  on S. Thus i t  has  a cont inuous  extens ion g to  ~q, i.e. the re  is  

a funct ion  g in C (S) wi th  
g(~) =/(~), ~es .  

Le t  r: C (Lq) -> C (S) be the  res t r ic t ion  mapping ,  r is an i sometry ,  so {a g: (r C S) ,  which  

is the  inverse image  under  r of the  condi t iona l ly  compac t  set ( a ] :  a E S ) ,  is condi- 

t i ona l ly  compact .  Thus b y  L e m m a  4.1, g is in A (Lq). A n y  a p p r o x i m a t i o n  of g on ~q 

b y  a l inear  combina t ion  of semicharac ters  of ~q, when res t r i c ted  to  S, yields  an  ap-  

p r o x i m a t i o n  of / on S b y  a l inear  combina t ion  of semicharac te rs  of S.  Thus  t h e  

a p p r o x i m a t i o n  theorem will hold  for S if (1) i t  holds  for  ~q. 

L]gMMA 8.9. Let S be a commutative topological semigroup and F a subset o/ S 

consisting o/ idempotents.(2) Suppose that /or each e in F and each u and v in e §  S 

with u=#v there is a semicharacter g of S with Z (u)=#Z (v). Then /or each x and y in 

F +  S with x 4 : y  there is a semicharacter Z o/ S with Z(x)=#g(y). 

(1) Conversely, if the approximation theorem holds for S, it holds for S; for semieharacters of S 
extend to S continuously by the above, and thus, for ] in A (S), an approximation of ] 1S extends t(~ 
an approximation of /. 

(2) e is called an idempotent if e + e = e. 
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Proo/. Le t  x and  y be d i s t inc t  e lements  of 2 '  + S. Choose e in F so t h a t  x 6 e + S.  

Case I. e § y ~: x. B o t h  e + y a n d  x are in e § S so b y  hypothes is  there  is a semi- 

charac te r  Z of S wi th  

z (x) ~ z (e + y) = z (e) Z (y). (8.4) 

Since e is an  i dempo ten t  V (e) i s  e i ther  0 or 1. Z (e) cannot  be 0, for t hen  we wou ld  

have 

Z (x) = Z (e § x) = Z (e) Z (x) = 0 = Z (e), 

which  cont rad ic t s  (8.4). Thus Z ( e ) = l ,  so b y  (8.4). Z ( x ) # Z ( y ) .  

Case 1I. e + y = x .  Let  y E e ' + S  with  e ' E F  so y = e ' + z = e ' §  Then  

x = e + y = e + e ' + y  is in e ' + S  a n d  y = e ' + y # x ,  so b y  Case I app l i ed  to  e', the re  is 

a semicharac te r  Z of S wi th  Z (x) :~Z (y). 

9. Cones 

Eucl idean  n-space E ~ is a topologica l  group under  vec to r  add i t i on  and  the  usual  

topology.  A subse t  S of E "  is called a cone if i t  is a subsemigroup  of E ~ and  fur ther -  

more  if, for each a in S, the  r a y  { in :  )~>0} is also in S. A n y  such cone, suppl ied  

wi th  the  induced  topo logy  f rom E n, is a c o m m u t a t i v e  topologica l  semigroup.  This  

sect ion is devo ted  to  the  proof  of the  following. 

THEOREM 9.1. Let S be a cone in E n. Then the approximation theorem, holds/or S. 

Even  though  one is in te res ted  ma in ly  in closed cones, i t  is necessary  for us  to  

consider  also cones t h a t  are  no t  necessar i ly  closed, as these will ar ise in the  course 

of our  proof  as p ro jec t ions  of closed cones. W e  shall  use below wi thou t  fur ther  com- 

men t  s t a n d a r d  e l emen ta ry  resul ts  on cones t h a t  m a y  be found  for example  in [2]. 

The  proof  of Theorem 9.1 will  proceed b y  induct ion  on n. The only  cones in 

E i are  the  full  line E i and  the  half-l ines [0, ~ )  and  ( - o o , 0 ] .  The full line is a 

topologica l  group so the  app rox ima t ion  theorem is known;  the  a pp rox ima t ion  theorem 

for the  half- l ines has  been es tabl i shed  in Theorem 6.1. We t ake  as our induc t ion  

hypo thes i s  the  va l i d i t y  of the  app rox ima t ion  theorem for all  cones in E n-1. We shall  

show, on the  basis  of this,  t h a t  the  a p p r o x i m a t i o n  theorem holds for all  cones in EL 

So let  S be a cone in E L  W e  m a y  assume t h a t  S has  non-vo id  interior .  F o r  

if t h a t  is no t  the  case. S will be i somorphic  to  a cone in E n 1 and  b y  the  induct ion  

hypothes is ,  the  a p p r o x i m a t i o n  theorem holds for S. A cone wi th  non-vo id  in ter ior  

has i ts  in ter ior  dense.  Thus L e m m a  8.8 shows t h a t  the  a p p r o x i m a t i o n  theorem holds 
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for S if it holds for the closure of S, which is also a cone. So we m a y  assume t h a t  

S is closed. 

Finally, we m a y  assume tha t  S is proper, i.e. t ha t  

{~: (~eS, -GeS} 

consists of 0 alone. For  if S is no t  proper, it contains a full line { ~ :  - oo < ~ <  + oo} 

and will be isomorphic to  the  product  of E 1 and a cone in E n-l ,  so by  the approxi-  

mat ion  theorem for the line, the induction hypothesis,  and Theorem 4.9, the approxi- 

mat ion  theorem holds for S. 

LE~M.~ 9.2. S has a semicharacter that is nowhere zero and vanishes at in/inity.  

Proo]. Since S is a closed proper  cone in E n, there is a linear functional h on 

E ~ which is non-negat ive on S and which is such tha t  

{g: a e S ,  0 < h ( a ) < l }  

is a compact  subset of S. The semicharacter Z defined by  

X (a) = e -h(~), a E S, 

has the  properties desired. 

S has sufficiently m a n y  semicharacters to separate points, so Is: S--> S a is 1 -  1. 

We shall identify S with its image in S% 

B y  Lemmas  8.2 and 9.2, S~\  S is a closed ideal in S a. The next  three lemmas 

lead to  Corollary 9.6, which gives an  identification of S ~ \ S t h a t  is sufficient for our 

purposes. First  two definitions are necessary. 

The only idempotent  in S is 0. We shall denote by  E the collection of all other  

idempotents  in S ~. s a \  S is closed in S a and because of the joint cont inui ty  of addi- 

t ion in S a, the set of all idcmpotents  in S ~ is also closed. Thus E is a closed sub- 

set of S a. 

Le t  a be an element of S, (~=~0. The closure in S a of the  r ay  (~(~: X>~0} is a 

compact  subsemigroup of S :. By  Lemma 5.2, the kernel of this compact  semigroup 

contains a unique idempotent  and this idempotent  will be denoted by  e~. We define 

-~" to  be the set {e,: a E S, a # 0 }  of all idempotents  of S ~ obtained in this manner.  

I n  the following, if a E E  ~, we shall denote by  In] the distance from a to  0 in 

the Eucl idean metric. 

L ] ~ M A  9.3. Let / be a /unction in A (S) that satisfies e [ = 0  /or all e i n E .  Then 

/ vanishes at in / in i ty  on S. 
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Proo/. Choose any s > 0 .  Let  a be a point in 

 es, I 1=1}. (9.1) 

Then 2--> 11 (ga)[l l  is a non-increasing function on the half-line [0, ~ ) .  We show first 

that  it goes to 0 as 2 increases. By  Lemma 3.1, the map ~--~v[  from S a to C(S ~) 

is continuous, and since eo is in the closure of the ray {2s: ~>~0}, 0 = e o [  must  be 

in the closure in C(S a) of { ( ~ ) [ :  A>~0}. But  this cannot happen unless 

O= lim lim II(a )/ll. 

In  particular, there must  be a ~o with [[(~oa)/H<e. Again using Lemma 3.1, the 

map ~-+ ~/  from S to C(S) is continuous, so there is a neighborhood U, of a in 

(9.1) so tha t  for all T in U,. (9.1) is compact and thus can be covered 

by a finite number of the Us. I f  2 is the maximum of the corresponding 2~, then 

l l (2~ ) / l l<s  for all ~ in (9.1) and as a consequence ] [ ( v ) l < e  if I~I>A. Since e was 

arbitrary,  ] vanishes a t  infinity as claimed. 

L E M M A  9.4.  S a \ S = E + S  a. 

Pro@ Since E c S ~ \ S  and S ~ \ S  is an ideal, E + S ~ S ~ \ S .  Thus it remains to 

establish the reverse inclusion. So let x be a point in S a not in E + S  a. We must  

show tha t  x is in S. E is compact, so by  the joint continuity of addition in S ~, 

E + S  ~ is compact. Thus, by  Lemma 3.2, we can choose [ in A(S) so tha t  [ ( x ) = l  

and [ is zero on E + S  ~. Then e [ - O  for each e in E, so by  Lemma 9.3, +/ vanishes 

at  infinity on S. Since S is dense in S a and / ( x ) =  1, x is in the closure in S ~ of 

(9.2) 

But  since / vanishes at  infinity on S, (9.2) is compact in the topology of S and thus 

is compact in S ~. So x is in (9.2) and the proof is complete. 

We must  next strengthen the assertion of Lemma 9.4 to S a \ S = F +  S. The proof 

of Lemma 9.4 will not work with F in place of E since we do not know tha t  F is 

compact. One further lemma is needed. 

LXMMA 9.5. E ~ F + S  ~. 

Proo/. L e t  So, S 1 and S~ be the subsets of S consisting of those a in S t h a t  satisfy 

](~]~<1, ] ~ l = l ,  ] o ] ~ 1  respectively. S 0 and S 1 are compact in the topo]ogy of S and 

thus in the topology of S ~. Furthermore,  since S~ = $1+ S and the addition in S a is 
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j o in t ly  continuous,  S~ = ($1§ S) - S I + S  a. Le t  e be an  e lement  of E.  Since e is no t  

in So, i t  m u s t  be in $ 2 - = S  1 §  ~, so e E a + S  ~ for some a in S 1. We define T e t o b e  

{X: X~S  a, eEx§ 

Using the  fac t  t h a t  e is an  idempoten t ,  i t  is s imple to  check t h a t  Te is a closed 

subsemigroup of S ~, and  t h a t  i t  contains  the  ent ire  r a y  {~a: ~>~0} since i t  conta ins  

a. Bu t  e~ is in the  closure of {~a: 2>~0}, so eo is in T~ and  thus  e E e , + S ~ F + S %  

Since e was an  a r b i t r a r y  e lement  of E,  the  proof  is complete .  

COROLLARY 9.6. s a \ S = . F + S  a. 

Proo/. B y  L e m m a  9.5, 

E § s a c  F § s § s a = F  § S a. 

But  since F c E, F § S a c E § S ~. Thus F § S a = E + S ~ and  the  resul t  follows f rom 

L e m m a  9.4. 

W e  can now comple te  the  proof  of the  a pp rox ima t ion  theorem for S. Le t  x and  

y be two d i s t inc t  e lements  of S ~. B y  Theorem 3.6, in order  to  es tabl ish  the  approx i -  

m a t i o n  theorem for S i t  suffices to  f ind a semicharac te r  of S a t h a t  separa tes  x and  y. 

B y  Corol lary 9.6, there  are  three  cases to  consider:  bo th  x and  y in S; one in S 

and  the  o ther  in  F + s a ;  bo th  x and  y in F §  ~. 

Case I .  x and  y bo th  in S. Since S is a cone in E ~, there  is a charac te r  g of S 

t h a t  separa tes  x and  y. Then the  semicharac te r  ~ of S ~ satisfies 

(x) = • (x) ~: X (y) = ~ (y). 

Case I I .  x in S and  y in F §  sa. Since b y  Corol lary  9.6 F §  S ~= sa'\s, L e m m a s  

8.2 and  9.2 show t h a t  there  is a semicharac te r  Z of S ~ t h a t  satisfies X(x) 4 0  and  

Z (y) = 0. 

Case I l l .  x and  y bo th  in F + S  ". B y  L e m m a  8.9 we m a y  assume t h a t  x and  y 

are  bo th  in e , + S  ~, for some e~ in F .  Le t  So be {2~: 2>~0} and  Sd i ts  closure in S a. 

e, has  been def ined to  be the  i d e n t i t y  e lement  of the  kernel  K ( S ~ ) .  W e  shall  a p p l y  

L e m m a  7.1 to  S,  t ak ing  G to be E"  and  Q to be S~, so t h a t  K is K ( S ~ )  a n d  e is 

eo. The subgroup  H of G genera ted  b y  So is the  line {2a:  - ~ < 2 <  + ~ } .  Each  

charac te r  of S ,  can be ex t ended  to a charac te r  of H which in  t u r n  ex tends  to  a 

charac te r  of G. Thus  b y  (i) of L e m m a  7.1, if ( x + K ) N  ( y + K )  is non -empty ,  x and  y 

can be sepa ra t ed  b y  a semicharac te r  of S ~. The  image T of S under  the  n a t u r a l  
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pro jec t ion  G--> G/H  is i somorphic  to  a cone in  E n-1 and  thus  because of our  induc-  

t ion  hypothes is ,  the  a p p r o x i m a t i o n  theorem holds for T. Therefore b y  (ii) of L e m m a  

7.1, if (x + K ) N  (y + K) is empty ,  x and  y can be separa ted  b y  a semieharac te r  of S a. 

This completes  the  discussion of Case I I I  and  the  proof  of Theorem 9.1. 

10. Finitely Generated Subsemigroups of Groups 

We have seen in Section 2 t h a t  the  a p p r o x i m a t i o n  theorem does no t  hold  for 

all  subsemigroups  of discrete  c o m m u t a t i v e  groups.  I n  Theorem 10.1 below we show 

t h a t  nonetheless  the  a p p r o x i m a t i o n  theorem does hold  for ]initely generated subsemi-  

groups  of discrete  c o m m u t a t i v e  groups.(1) 

Le t  S be a c o m m u t a t i v e  semigroup wi th  an  i d e n t i t y  e lement .  I f  T is a subse t  

of S, t hen  T is said to generate S if the  smal les t  subsemigroup of S conta in ing T 

~nd the  i d e n t i t y  e lement  is S itself, n (S) is def ined to  be the  in f imum of the  car- 

d ina l i t ies  of subsets  t h a t  genera te  S and  S is called /initely generated if n ( S ) <  ~ .  

THEOREM 10.1. Let G be a commutative group and S a subsemigroup o/ G that 

contains the identity element o/ G and that is /initely generated. Then the approximation 

theorem holds /or S supplied with the discrete topology. 

The rema inde r  of this  sect ion is devo ted  to  the  proof  of Theorem 10.1. The 

proof  is s imilar  in out l ine to t h a t  of Theorem 9.1 and  proceeds  b y  induc t ion  on n (S). 

So le t  us assume t h a t  G and  S are a group and  subsemigroup t h a t  sa t i s fy  the  

hypotheses  of Theorem 10.1. There  is c lear ly  no loss of genera l i ty  in assuming fur ther-  

more  t h a t  the  subgroup  { a - r :  o E S ,  "rES} of G is G itself. 

I f  n ( S ) =  1, t hen  S is e i ther  a f ini te  cyclic group,  so t h a t  the  a p p r o x i m a t i o n  

theorem holds for S, or S is i somorphic  to  the  non-nega t ive  integers,  in which case 

the  a p p r o x i m a t i o n  theorem for S is conta ined  in Theorem 6.1. 

Thus we m a y  assume t h a t  n ( S ) = m  and  t h a t  Theorem 10.1 is va l id  for semi- 

groups  t h a t  can be genera ted  b y  fewer t h a n  m elements.  

Since n ( S ) = m ,  i t  is possible to  f ind a subset  (al  . . . . .  a,,) of S t h a t  genera tes  S.  

W e  shall  keep this  set of genera tors  f ixed  t h roughou t  t he  course of t he  proof.  

We  consider  f irst  the  case where there  is some T besides the  i d e n t i t y  e lement  

t h a t  is inver t ib le  in S, i.e. bo th  ~ and  - T  are  in S. Since {al . . . . .  am} genera tes  S, 

there  are  non-nega t ive  integers nl ,  . . . ,  nm, no t  all  zero, so t h a t  

(1) This is precisely the class of finitely generated commutative cancellation semigroups. See 
[9], p. 90. 

9-- 60173047. Acta mathematica. 105. Imprim6 le 20 mars 1961 



126 K. DELEEUW AND I. GLICKSBERG 

\ 
T = nl al § ... § ~'bm arn. 

By rearranging the at if necessary we m a y  assume tha t  h i >  0. Then 

- -  q 1 = - -  T § ( n  I - -  1) ax + n2 as  + . . .  + nm am 

is in S and as a consequence, the cyclic group H generated b y  al is contained in S. 

I f  7~: G--> G / H  is the natura l  projection, then J r ( S ) i s  the subsemigroup of G / H  

generated by  
{Jr(a~): i = 2 ,  3 . . . . .  m} 

and so b y  our induct ion hypothesis,  the approximat ion theorem holds for z (S). But  

then Lemma 8.1 shows tha t  the approximat ion theorem holds for S. 

Thus we m a y  henceforth assume tha t  S contains no element besides the ident i ty  

t h a t  is invertible in S. 

LEMMA 10.2. S has a semicharacter that is nowhere zero and vanishes at in / in i ty .  

Proo/ .  Let  H be the subgroup of G consisting of all elements of finite order and 

let y): G ---> G / H  be the natura l  projection. Since G = {a - T: a ~ S, ~ E S), G is finitely 

generated and thus G / H  is finitely generated. Furthermore,  G / H  has no elements of 

finite order so (see section 109 of [12]) it has a basis; t ha t  is, a subset {7~ . . . . .  7~  

which is such tha t  each element of G / H  has a unique representat ion of the form 

n~?~+ ... + n s y s ,  with the nj integers. Let  R ~ be the linear space of all s-tuples of 

rat ional  numbers  supplied with the inner product  (., .) defined by  (a, b )=  ~l fil + ... § :r fis 

if a = (~1 . . . . .  ~ )  and b = (ill . . . . .  fl~). Let  ~: G / H  --> R ~ be the homomorphism defined by  

q~ (nl y l  + ... § n~ 7~) = (n 1 . . . . .  n~). 

We define 

and denote by  T the cone 

bt = ~ (yJ (as)), i = 1 . . . . .  m, 

{t=~ 2~bt: 2~ rational, 2~>0} 

in /~  generated by  the bt. Suppose tha t  none of the - b t  are in T. Then by(1) 

Theorem 1 of [14], there mus t  be demen t s  at, i = 1 . . . . .  m, in R ~ satisfying (at, b)~< 0 

for all b in T and (a ,  - b t ) >  0. As a consequence, if a = a ~ +  ... +am, the funct ion 7, 

defined on S by  
( a )  = e (a'~o0p(a))), o' ~ S ,  

(1) The  resul t s  of [14] are  s t a t e d  for rea l  l inear  space b u t  the  proofs are  v a l i d  for r a t i o n a l  l inear  

spaces.  
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is a semicharac te r  of S sa t is fying 

0<Z(~r~) < 1, i = 1  . . . .  ,m,  

and  is thus  nowhere  zero and  vanishes a t  in f in i ty  on S. So to comple te  the  proof  

i t  remains  to show t h a t  no -b~  is in T. Suppose t h a t  th is  is no t  the  case. B y  re- 

number ing  if necessary  we m a y  assume t h a t  - b  1 is in T. Then there  are  non-nega-  

t ive  ra t iona l  numbers  ~ so t h a t  

- bl = ~. ~ bi. 
i=1 

Mult ip ly ing  th rough  b y  the  denomina tors  of the  hi and  t ranspos ing  we ob ta in  

0 = n~ 4 = n1 ~ (~v (~i)) = ~v ~v n~ ~i , 
i = I  i=1  i 

where the  n~ arc non-nega t ive  integers  and  n 1 > 0. Bu t  the  kerne l  of q9 o ~v is H,  so 

~ n t  at is in H f3 S. E a c h  e lement  of H f3 S is of f inite order  and  t hus  inver t ib le  in S. 
i - 1  

Since we have  assumed t h a t  the  only  inver t ib le  e lement  in S is the  i d e n t i t y  e lement  0, 

~ n ~  a~ = 0. Bu t  this  cannot  occur since the  n1 are non-negat ive ,  n 1 > 0 and  ol  is non 
iffil 

inver t ib le  in S. Thus we have  a con t rad ic t ion  to our  a s sumpt ion  t h a t  - b  1 is in T 

and  the  proof  is complete.  

S is a subsemigroup of a discrete  c o m m u t a t i v e  group and  thus  has  suff ic ient ly  

m a n y  charac te rs  to  separa te  points ,  so Is:  S--> S ~ is 1 -  1. We iden t i fy  S with  i ts  

image  in S ~. 

B y  L e m m a s  8.2 and  10.2, S ~ \ S  is a closed ideal  in S ~ The nex t  l emma leads  

to  Corol lary  10.4, which gives an  ident i f ica t ion  of S ~ \ S  t h a t  is sufficient for our  

purposes.  F i r s t  a def ini t ion is necessary.  

I f  (ri is one of the  genera tors  { ~  . . . . .  ~rm} of S, the  closure of {nor1: n = 0 ,  1, 2 . . . .  } 

in S ~ is a compac t  subsemigroup of S ~ By  L e m m a  5.2, the  kerne l  of this  compac t  

semigroup conta ins  a unique i dempo ten t  and  this  i d e m p o t e n t  will be deno ted  b y  et. 

We  define F to  be the  set {e I . . . . .  em}. 

LEMMA 10.3. Let f be a function in A ( S )  that satisfies e / = 0  for all e in F. 

Then [ vanishes at infinity on S. 

Proof Choose a n y  s > 0 .  The same a r g u m e n t  as t h a t  used in the  first  p a r t  of 

the  proof  of L e m m a  9.3 shows t h a t  there  a re  posi t ive  in tegers  ~ so t h a t  
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Thus  if 0 .ES,  [/(0.)[ can be grea te r  t han  s only  if a has  a r ep resen ta t ion  of the  

form 0. = n 10" 1 § . . .  §  0.m wi th  0 ~< nt < ~t and  as a consequence 

{0.: 0.es, I/(0.)t>~} 

is finite.  Since s was a rb i t r a ry ,  / vanishes  a t  in f in i ty  and  the  proof  is complete.  

The proof  of Corol lary  10.4 below is ident ica l  w i th  t h a t  of Corol lary  9.4 except  

t h a t  L e m m a  10.3 is used in place  of L e m m a  9.3 and  F in p lace  of E .  

C01~OLLAI~u 10.4. S a ' \ S = F + S %  

W e  can now complete  the  proof of the  a p p r o x i m a t i o n  theo rem for S. Le t  x and  

y be two d i s t inc t  e lements  of S% B y  Theorem 3.6, in order  to  es tabl ish  the  approx i -  

m a t i o n  theorem for S i t  suffices to  f ind a semicharac te r  of S a t h a t  separa tes  x and  y. 

Corol lary  10.4 shows t h a t  there  are  three  cases to  consider:  b o t h  x and  y in S; one 

in S and  the  o ther  in F + S ~ ;  bo th  x and  y in F §  ~. 

Case I. x and  y b o t h  in S. Since S is a subsemigroup  of a discrete  commuta -  

t ive  group there  is a charac te r  Z of S t h a t  separa tes  x and  y. Then  the  semicharac te r  

:~ of S ~ satisfies 

;~ (x) = X (x) =~ Z (y) = ;~ (y). 

Case II .  x in  S and  y is F §  L e m m a  8.2 and  10.2 show t h a t  there  i s a s e m i -  

charac te r  Z of S a t h a t  satisfies Z (x)=4=0 and  Z ( y ) =  0. 

Case I I I .  x and  y bo th  in F + S  a. B y  L e m m a  8.9 we m a y  assume t h a t  x and  y 

are  bo th  in e,+S.  Let  St=(na~: n = 0 , 1 , 2  . . . .  } and  S~ be i ts  c losure  in S ~. et has  

been def ined to  be the  i d e n t i t y  e lement  of the  kerne l  K ( S , ) .  W e  shall  a p p l y  L e m m a  

7.1 to  S, t ak ing  Q to be St, so t h a t  K is K ( S , )  and  e is ei. The subgroup  H of 

G genera ted  b y  S~ is the  inf in i te  cyclic group (n0.v - o ~  < n  < + ~ ) .  Each  charac te r  

of St can be ex tended  to a charac te r  of H which in t u rn  ex tends  to  a charac te r  of 

G. Thus  b y  (i) of L e m m a  7.1, if ( x + K ) ~  ( y + K )  is non -empty ,  x and  y can be 

s epa ra t ed  b y  a semicharac te r  of S% The image  T of S under  the  n a t u r a l  p ro jec t ion  

G-~ G/H satisfies n ( T ) <  m and  because  of our induc t ion  hypothes is ,  the  a pp rox ima -  

t ion theorem holds for T. Therefore  b y  (ii) of L e m m a  7.1, if ( x + K )  N ( y + K ) i s  

e m p t y ,  x and  y can be sepa ra t ed  b y  a semicharac te r  of S a. This completes  the  dis- 

cussion of Case I I I  and  thus  the  proof  of Theorem 10.1. 



ALMOST P E R I O D I C  F U N C T I O N S  ON S E M I G R O U P S  129 

l l .  Ordered Groups, Archimedian Case 

In  Section 6 the approximation theorem for the semigroup of non-negative in- 

tegers was established. This result is extended below to the non-negative half of any 

subgroup of the discrete real line. The theorem obtained will be used in the next  

section, where we show tha t  the approximation theorem holds for the non-negative 

half of any totally ordered commutat ive group in the discrete topology. 

THEOREM 11.1..Le~ G be a subgroup o/ the real line and S the subsemigroup 

{~: ~ E G, a ~> 0} consisting o/ its non-negative elements. Then the approximation theorem 

holds /or S supplied with the discrete topology. 

For the remainder of this section, G and S are as in the s tatement  of Theorem 

11.1. We may  assume tha t  G is dense in the real line. For if it were not, it wbuld 

be isomorphic to the integers and Theorem 6.1 would apply. 

One lemma is needed before we proceed to the proof of the theorem. 

LWMMA 11.2. Let T be an element o/ S, T:4:0, and h be a /unction in A (S )  

with h(a)=O i/ a < ~  or i/ a ~ 5 ~ .  Let /C be the unique /unction in C(S) satis/ying 

k ( ~ ) - h ( a )  i/ 0 ~ < 5 T  and k ( a + 5 T ) = / c ( a )  /or all ~ in S. Then k is also in A(S) .  

Proo/. The subset 
{~h: ~ E S ,  0~<~<~} (11.1) 

of C (S) is conditionally compact since h is in A (S). Each of the sets 

{a/c: a E S ,  n T ~ a ~ ( n + l ) ~ } ,  n = 0 , 1  . . . . .  4, 

is isometric to (11.1), so their union 

{gk: a E S ,  0 ~ a ~ 5 ~ }  (11.2) 

is conditionally compact. But  k has period 5T, so (11.2) is all of {ak: a E S }  and 

thus /C is in A (S). 

We now proceed to the proof of Theorem 11.1. Let  x and y be two distinct 

elements of the eompactification S a. By Theorem 3.6, the proof will be complete if 

we can find a semieharacter Z of S a that  separates x and y. 

Let  ~v be the semicharaeter of S defined by  ~ ( a ) =  e -~ Since q separates points 

on S, Is: S--> S ~ is I - 1  and we identify S with its image in S n. 

I f  ~ (x) # ~ (y), we are finished, so we can assume tha t  q~ (x) = ~ (y). We shall 

consider separately the three eases where ~ (x)= 0, 0 < ~0 (x)< 1 and ~0 (x)= 1. 
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Case I .  ~ ( x ) = ~ ( y ) = 0 .  Le t  ~ be an element  of S. Since ~ ( x ) = ~ ( y ) = 0  and ~0 

is bounded  away  f rom zero on {o: o E S ,  0~.<o~<T}, x and y mus t  be in 

{0: o e S ,  o > ~ v ) - = ( v + S ) - = v + S  ". 

Bu t  ~ was an a rb i t r a ry  e lement  of S, so b y  L e m m a  5.1, x and  y are in K(sa). 

Thus  by  Corollary 5.3, there  is a semicharacter  Z of S a with X ( x ) # Z  (y). 

Case / / .  0 < ~ ( x ) = ~ ( y )  < 1. Since S is dense in the non-negat ive  reals, it is 

possible to  f ind a T in S wi th  

1 > ~ (2 3) > ~ (x) = ~ (y) > ~ (3 3) > o. 

Then  x and  y mus t  be in the  closure of {0: o E S ,  2~-~<0~3T)  in S ~. B y  Theorem 

3.2 there is a funct ion / in A (S) wi th  [ ( x ) # ] ( y ) .  Le t  g be the  piecewise linear func- 

t ion in C (S) t h a t  is equal  to  0 outside of 

and equal  to 1 on {o: oES,  2T<~-~<3~}.  

I t  is clear t h a t  g is in A(S)  and  thus  t h a t  /g is in A(S) .  Le t  k be the  u n i q u e  

funct ion in C (S) satisfying k (0) = / (a) g (0) if 0 <~ a ~< 5 v and  k (o + 5 3) = k (0) for all 

a in S. B y  L e m m a  11.2, k is in A(S) .  Using the fact  t ha t  x and  y are in 

{a: o E S ,  2 ~ < o ~ 3 v ) - ,  

on which ~ is identically 1, we have  

(x) = ] (x) ~ (x) = ] (x) # f (y) = ] (y) ~ (y) = ~ (y). (11.3) 

Le t  v be a cluster point  in S a of the net  {5nv :  n = 0 ,  1, 2 . . . .  }. Then  v is in 

n=O ~7~8 

which is K ( S  ~) b y  L e m m a  5.1. Fur thermore ,  since k has period 53, ~(u+v)=~(u)  

for all u in S ~. I n  par t icular ,  because of (11.3), 

~(x+v)=fc(x)#]c(y) = ]c (y + v), 

so x + v and y + v are distinct.  They  are in K (S a) since K (S a) is an ideal containing v. 

Clearly 9~ vanishes on K (S a) and  therefore,  b y  Case I ,  there  is a semicharacter  Z of 

S a t h a t  satisfies Z (x + v) # Z (y + v) and  thus  Z (x) # Z (y). 
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Case I I I .  ~ (x)= ~ (y )=  1. We m a y  assume tha t  neither x nor  y is 0. For  if one 

were 0, the semicharaeter Z of S defined b y  

1, a = O  

Z ( a ) =  0, a > 0 ,  

would satisfy (1) ~ ( x ) + ~  (y). For  each T in S with T > 0 we define UT: to  be 

{a: a E S ,  O < a < ~ ) .  

{U~} is an initial family for {a: o E S, a > 0 }  in the sense of the definition given 

before Lemma 8.4, so tha t  by  Lemma 8.4. 

H =  f'l U;  
~ e S  
7:>0 

is a subgroup of S a. For  each ~ in S with ~ > 0 ,  ~ is bounded away  from 1 on 

{a: a E S ,  a > v } ,  so since ~ ( x ) = ~ ( y ) = l ,  x and y are in U ; .  Thus  x and y are in 

H. If  x + a = y + a  for each a in S w i t h a > 0 ,  t h e n w e w o u l d h a v e x = x + e = y + e = y ,  

where e is the ident i ty  element of H, since e is in the closure in S a of {a: a E S, a > 0}. 

Thus there is some a in S with a > 0  and x+a:C:y+a.  Since a > 0 ,  0 < ~ ( a ) <  1 and 

therefore 

0<~(~+a)=~(y+~)< 1 

so, by  Case II,  there is a semicharacter Z of S a t ha t  satisfies Z (x + a ) #  Z (Y + a) and  

thus Z (x )#X(y ) .  This completes the proof of Theorem 11.1. 

12. Ordered Groups, General Case 

I n  this sec t ion  we establish the approximat ion theorem for the non-negative half 

of any  total ly  ordered (2) discrete commuta t ive  group. 

THEOREM 12.1. Let G be a totally ordered commutative group and S the subsemi. 

group {a: a E G, a~> 0) consisting o/ its non-negative elements. Then the approximation 

theorem holds /or S supplied with the discrete topology. 

For  the remainder  of this section G and S are as in the s ta tement  of Theorem 12.1. 

G is called Archimedian if for each a and T in G with 0 < a < T, there is a positive 

integer n with v < n a. Since an Archimedian G is order isomorphic to a subgroup 

(1) Trivially Z vanishes except at 0. 
(3) For the basic facts concerning ordered groups, see [4]. 



132 K. I)ELEEUW A~D I. GLICKSBERG 

of the  real  l ine (see [4], p. 30). Theorem 11.1 is no th ing  b u t  the  special  case of 

Theorem 12.1 for G Archimedian .  W e  shall  use Theorem 11.1 in our proof  of Theo-  

rem 12.1. 

Before we proceed to  t he  proof,  severa l  def ini t ions are  necessary.  Le t  ~ be an  

e lement  of S wi th  ~ >  0. W e  define the  following subsets  of G: 

Go= {T: - a < n z  < a for all posi t ive  integers n}, 

G" = (v: - n a < z < n a for some posi t ive  integer  n) ,  

& = G ~  n s ,  S ~ = G ~  

I(~)= {~: 0<~<a).  

I t  is clear t h a t  Go C G ~ and  t h a t  bo th  are order  subgroups  (1) of G. Fu r the rmore ,  i t  

is s imple  to  check t h a t  the  quot ien t  g roup  G~ is Arch imed ian  under  the  n a t u r a l  

ordering.(2) Thus  (see [4], p. 30) there  is a unique  order  preserving i somorphism ~ 

of G"/Go into the  real  l ine sat isfying y)~ (~ § G,) = 1. W e  define the  funct ion  ~o on S b y  

~ o ( v ) =  0, ~ E S \ S  ~. 

I t  is clear t h a t  ~o is a semicharac te r  of S. 

Since S is a subsemigroup of a discrete  c o m m u t a t i v e  group,  i t  has suff ic ient ly  

m a n y  characters  so separa te  points .  Thus  Is: S ~ S a is 1 -  1 and  we iden t i fy  S wi th  

i ts  image  in S a. 

I f  a is an  e lement  of S, So has been def ined to  consist  of all  e lements  of S 

t h a t  are  " in f in i te ly  smal l "  wi th  respect  to  a. I t  is necessary  for us to  ex tend  this  to  

a def ini t ion of S~ for x in S ~. The  nex t  l emma demons t ra t e s  the  equivalence  of 

several  possible definit ions.  

L~MMA 12.2. Let x E S ~ and ~ E S. Then the /ollowing are equivalent: 

(i) There is no positive integer n /or which x E I ( n r ) - .  

(ii) For each positive integer n, x C n T + S ~. 

(iii) ~ (x) = 0. 

Proo/. Suppose  t h a t  (i) holds.  Then  for each n, since 

S =  I (n ~) U (n ~ + S), 

(1) H is called an order subgroup of G if whenever (~EH and (~> 0, then {3: - ~ <  v~< o} ~ H. 
(2) If Tx~<T2, then T 1 +Go<~v~+GG. 
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x i s i n  (uz  + S ) - = n ~  + S ~, 

so (ii) follows. If  (ii) holds, then for each n, 

0 < ~ ( x ) < ~ , ( ~ ) = ~  ", 

so ~ ( x ) =  O. Finally, if (iii) is valid, (i) must  be also, For  if x were in I (n'r)-, since 

~ is bounded from zero on I (n~), ~o~(x) would be non-zero. 

I f  x is an element of S ~ with x4=0, we define Sx to be the subset of S con- 

sisting of all ~ t ha t  satisfy the three equivalent  conditions of Lemma 12.2. G, is 

defined to be 

{T:Yea, r e ~  or - ~ S ~ } ,  

so tha t  S~= G~ f3 S. I t  is simple to check t h a t  Gz is an order subgroup of G. Fur ther-  

more, our definition of Sz agrees with tha t  given earlier if x happens to  be an ele- 

men t  of S. For  if x is in S, then ~ is in S,  (second def in i t ion) f f  and only if 

~, (x)= ~v~ (x)= 0, which occurs if and only if x is not  in S ~, or equivalently,  if and 

only if ~ is in S,  (first definition). 

We can now begin the proof of Theorem 12.1. Let  x and y be distinct elements 

of S ~. By  Theorem 3.6, our result will be established if we can find a semicharacter of 

S" tha t  separates x and y. The proof proceeds by  a ra ther  complicated analysis of 

various special cases, which are not  mutua l ly  exclusive. 

We m a y  assume tha t  neither x nor y is 0. For  if one were 0, the semicharacter 

Z of S defined by  

would satisfy ;~ (x) 4= ;~ (y). 

Case I. Sx#S~.  I n  this 

12.2, ~o (x) = 0 # ~o (y). 

1, a = O  

Z ( a ) =  O, a > O ,  

case if a is in, say, S~\Sv, then,  by  (iii) of L e m m a  

Case II .  S~ = Sg, x or y in S ;  = S~. Let  Z be the semieharacter of S defined by  

1, a ES t  

Z(a)= 0, a~S\S~. 

I f  not  both  x and y are in Sx, then one is in (S \Sz ) - ,  so ~ (x) 4= ~ (y). 

Thus it remains to  consider the case tha t  bo th  x and y are in Sx. B y  the 

definition of Sz, if a ESz, then x = a + x ~  for some Xo C S ~. If  xo were in ( S \ S z ) - ,  we 

would have ;~ (x~)= 0 and thus 
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2 (x) = 2 (a + x~) = 2 (~) 2 (x~) = o, 

cont rad ic t ing  the  fact  t h a t  x is in S~. Thus  x~ is in Sx and  since a was an  a r b i t r a r y  

e lement  of Sx, x is in 
N ( a +  s ; ) ,  aES x 

which is K (S~) b y  L e m m a  5.1. S imi la r ly  y is in K ( S ; ) .  A n y  charac te r  of Sx can be 

ex t ended  to a semicharac te r  of S s imply  b y  defining i t  to  be 0 on S \ S x .  Thus  b y  

Corol lary  5.3 there  is a scmicharac te r  Z of S a sat isfying Z (x)=~Z (y). 

Case H I .  F o r  some a in S,  S~ = Su= S~ and  S ~=  S. W e  shall  a p p l y  bo th  pa r t s  

of L e m m a  7.1, t ak ing  Q to be S, .  I t  is only  necessary  to  show t h a t  the hypotheses  

of the  l emma are sat isf ied:  first ,  t h a t  x and  y are  in e + sa; second, t h a t  each charac-  

te r  of Q ex tends  to  a semicharac te r  of S; and  th i rd ,  t h a t  the  a pp rox ima t ion  theorem 

holds for T. 

B y  the  def ini t ion of S, ,  x E T + S a for each ~ in Sx and  thus  b y  compactness ,  

x E u + S a for each u in S ; .  I n  par t icu la r ,  x E e + S a, where e is the  i den t i t y  e lement  

of K = K (Q) = K (S;) .  Simi la r ly  y E e + S ~. 

A n y  semicharac te r  of Q = S ,  ex tends  to  a semicharac te r  of S b y  defining i t  to 

be zero on S \ S , .  

The  semigroup T t h a t  occurs in the  s t a t e m e n t  of L e m m a  7.1 is the  image  of 

S = S  ~ under  the  n a t u r a l  p ro jec t ion  G"--->G"/G,. Thus  T is the  subsemigroup of non- 

nega t ive  e lements  in the  a rch imedian  ordered  group G"/G,, which we know to  be 

order  i somorphic  to  a subgroup  of the  real  line, so b y  Theorem 11.1 the  app rox ima-  

t ion  theorem holds  for T. 

W e  have  shown t h a t  the  hypotheses  of L c m m a  7.1 are sat isf ied for Q = S ~  so 

as a consequence there  is a semicharac te r  of S ~ t h a t  separa tes  x and  y. 

Case I V .  F o r  some a in S, S x = S y = S o .  Le t  T = S  ~. W e  shall  es tabl ish  Case I V  

b y  app ly ing  the  resul t  of Case I I I  to  T. 

Le t  ~: T--->S be the  in jec t ion  map .  B y  L e m m a  3.4, there  is an  induced  homo-  

morph i sm ~ :  T~-+S a, which b y  L e m m a  8.3, maps  T a homeomorph ica l ly  onto the  

open and  closed subset  T -  of S a. x and  y are  b o t h  in T - .  F o r  assume t h a t  x is no t  

in T - .  Then,  since for each posi t ive  in teger  n we have  I (n a ) c  T, x is in no I (n a ) - ,  

so b y  the  def ini t ion of Sx, a is in S x =  S, ,  which is a cont radic t ion .  

Le t  j~ (U) = x and  ~ (v) = y. I f  we could f ind  a semicharac te r  Z of T ~ t h a t  sat isf ied 

Z (u)=~Z (v), t hen  the  func t ion  g l  def ined on S a b y  

~l(Z)=(g (w) if~a(w)=Z 
if z E S ~ \~ T -  
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would sa t is fy  )~1 (Z):~X1 (y). A n d  Zl would be a semicharac te r  of S ~ since, b y  L e m m a  

8.3, T -  is an open and  closed subsemigroup of S ~ whose complement  S~\  T -  is an  ideal .  

Thus  i t  remains  only  to  produce  Z. B u t  i t  is s imple to  check t h a t  Tu ~ Tv= T, 

and  t h a t  T ~  so b y  the  resul t  of Case I I I  app l ied  to  T, such a Z mus t  exist .  

Case V. S~=Sy and  ne i ther  x nor  y in S~ = S ~ .  L e t  V be the  collection of all  

open in i t ia l  in terva ls  in the  ordered group G/G~, i.e. V consists of all  subsets  of 

G/G~ of the  form 

{T + G~: O§247 (12.1) 

for a in S\Sx. Note  t h a t  V conta ins  the  e m p t y  set if and  only if G/Gx has a leas t  

pos i t ive  element.  

Le t  W be the  collect ion of al l  subsets  of G t h a t  are  inverse images of the  sets 

in V under  the  na tu r a l  p ro jec t ion  G--->G/G~. Each  set  in W is a subset  of S\S~. 
W e  define H to  be 

f l U - .  
U e W  

Suppose  t h a t  W does no t  conta in  the  e m p t y  set. Then  G/G~ does no t  have  a leas t  

pos i t ive  e lement  and  using this  fact  i t  is s imple to  check t h a t  W is an  ini t ia l  f ami ly  

for S \ S~ in the  sense of the  def ini t ion given before L e m m a  8.4. Thus,  b y  L e m m a  8.4, 

H is a compac t  topologica l  group whose i d e n t i t y  e lement  is an i d e n t i t y  for (S\S~) . 

If ,  on the  o ther  hand,  W does conta in  the  e m p t y  set, t hen  H is empty .  

Subcase V a. N o t  b o t h  x and  y in H.  W e  shall  show t h a t  in th is  case there  is 

a a in S wi th  Sx = S~ = So, so t h a t  we are ac tua l ly  in Case I V  which has a l r eady  

been set t led.  W e  m a y  assume t h a t  x is no t  in H.  

The  inverse image  of (12.1) under  the  n a t u r a l  p ro jec t ion  G-~G//G~ is 

{~: Y E S ,  0 < ~ + ~ < a ,  all  U in Gz}, 

which will  be deno ted  b y  Uo. Since x is no t  in H and  H is the  in tersec t ion  of the  

Uj, we m a y  assume t h a t  a in S\Sz has been chosen so t h a t  x is no t  in U j .  W e  

show t h a t  this  a satisfies S~ = So. 

F i r s t ,  S ~ c S o .  F o r  if the re  were a ~ in S~ t h a t  were no t  in S~, t hen  a < n v  

would  hold  for some posi t ive  integer  n a n d  a would  be in Sx. B u t  a has  been chosen 

to  be an  e lement  of S\Sz. 

So i t  remains  to  show t h a t  S , c  S~. No te  t h a t  since each T in S~ satisfies T < a, 

UoUS,={v: TES, O~T+U <a, all  U in Sx}. (12.2) 
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Let ~ be an element  of S~ and  n a posit ive integer. Then  n ~ + ~ E So for each ~ E S,  

and  thus  in  par t icular  n ~ + ~ < a for each ~ in the subset  St of So. As a consequence, 

n ~  and  thus  I(n'c) is conta ined in (12.2). We have assmned t h a t  x is no t  in S~ 

and  a has been chosen so t ha t  x is no t  in U ; .  Thus  x cannot  be in I ( n ~ ) - a n d  as 

a consequence T is in Sx. Since ~ was an  a rb i t ra ry  element  of So, we have S , c  Sx. 

This completes the proof tha t  S , =  Sx ~ S~, which shows tha t  we are ac tual ly  in  

Cese IV, where we have already established the existence of a semicharacter  of S a 

t h a t  separates x and  y. 

Subcase V b. Both x and  y in H. Suppose tha t  x + a = y + a  for all a in S\Sx.  

Then  since the iden t i ty  e lement  e of the group H is in  (S\Sz)- ,  we would have the 

contradic t ion 

x = x §  

So choose some a in S\S~ with x § 2 4 7  We show next. t ha t  S,=Sx+,. I t  is 

clear tha t  So~Sx+~; we shall assume tha t  equal i ty  does no t  hold and  derive a con- 

t radict ion.  Choose a T in S~+, tha t  is no t  in S~. Since ~ is no t  in S,, there is a 

positive n for which a<n~ .  Since a is no t  in S~, there is another  positive integer 

m such t h a t  x is in I (m a)-. But  l ( m a ) c I  (mn'~), so x e I (ranT)- and  since 

a E I (n ~)-,  a + x is in  I ( ( m n  § n) ~)-,  which contradicts  the fact t ha t  T E S~§ Thus  

Sx+~=S~ and  similarly Sy+~=S~. 

Since S.~+,=Sy+,=S~, we can now apply the result  of Case IV to x + a  and  

y + a  to ob ta in  a semicharacter  Z of S ~ tha t  satisfies Z ( x + a )  4 X ( y + a )  and  thus  

Z (x):~ Z (Y). This completes the discussion of Case V. 

I t  is now simple to finish the proof of Theorem 12.1. By  Theorem 3.6 it  suf- 

fices to separate two dis t inct  elements x and  y of S ~ by  a semicharacter  of S a. By 

the a rgument  before Case I we m a y  assume tha t  ne i ther  is 0. If S ~ S y ,  we use 

Case I.  If St= S v and  either x or y is in  S ;  = S~, we use Case II .  If Sx=  Sv and  

nei ther  x nor  y is in  Sx = S~, we use Case V. 

13. Large Subsemigroups 

If S is a subset  of a commuta t ive  group, we shall denote by  - S  the set 

{ - a : a  E S}. Then  Theorem 12.1 can be s ta ted as follows. If  S is a subsemigroup 

of a commuta t ive  group G wi th  S U ( -  S ) =  G and  S N ( -  S ) =  (0}, then  the approxi-  

ma t ion  theorem holds for S supplied with the discrete topology.(1) 

(1) F o r  if  w e  d e f i n e  a>~ T t o  m e a n  a - v  E S, t h e n  G is  a t o t a l l y  o r d e r e d  c o m m u t a t i v e  g r o u p  a n d  

s={a: aeG, a~>O}. 
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In this section wo obtain as a relatively simple consequence of Theorem 12.1 

the following extension to a much wider class of topological semigroups. 

T~]~o~]~M 13.1. Let G be a commutative topological semigroup and S a closed 

subsemigroup with S U ( - S ) =  G. Then the approximation theorem holds for S. 

We need first two lemmas. 

LElV[MA 13.2. Let G be a discrete commutative group and S a subsemigroup with 

S U ( - S ) =  G. Then the approximation theorem holds /or S. 

Proof. Let H be the subgroup S A ( - S )  of G. If  T is the image of S under 

the natural projection G->G/H, then T U ( -  T) = G/H and T A ( -  T ) =  {0+H},  so by 

Theorem 12.1, the approximation theorem holds for T. Thus by Lemma 8.1, the 

approximation theorem holds for S. 

Lw~MA 13.3. Let G be a commutative topological group and S a closed subsemi- 

group with S U ( -  S )=  G. Then the interior of S is dense in S. 

Proof. Let T be the closure of the interior of S, clearly an ideal in S. We may 

assume that S is not open and thus the open set G \ ( - S ) c T  is not closed. Then, 

since S is closed and 

S = {S (1 ( - S)} U {G\ ( - S)}, (13.1) 

S(1 ( - S )  must intersect the closure of G \ ( - S )  and thus intersect T. But S N ( - S )  

is a subgroup of S, so since it intersects the ideal T, it must be contained in T. There- 

fore S ~ T  by (13.1). 

I t  is now simple to complete the proof of Theorem 13.1. By Lemma 13.2, the 

approximation theorem holds for S in the discrete topology. :But by Lemma 13.3, 

the interior of S is dense in S, so as a consequence of Corollary 8.7, the approxi- 

mation theorem holds for S. 

14. A Related Question 

Let S be a commutative topological semigroup. If M is a bounded continuous 

matrix representation of S, 

(/ll (~) "*" /ln.(a)t , ff E ~.~, 
M (~)  = 

\1,,)(~) 1=:(o-)/ 
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it is simple to check tha t  each of the coefficients /~ is in A (S). I f  S is a group, 

the functions on S tha t  occur as such coefficients are linear combinations of charac- 

ters. I f  S is only a semigroup there may  be coefficients that  are not of this form. 

Thus the question arises of whether the linear spun of these coefficients is dense in 

A (S), or equivalently, whether A (S) is spanned by  its finite dimensional translation 

invariant subspaces. In  this section we establish tha t  for a wide class of semigroups 

this occurs if and only if the approximation theorem holds. 

We first show by an example tha t  this equivalence is not universally valid. 

Let  S be the semigroup, which was introduced in Section 2, of all lattice points 

(m,n)  in the plane with r e = n = 0  or m~>l. As was noted in Section 2, if / is a 

bounded function on S which vanishes when m~> 2, / is in A (S) although it may  

not be approximable by  linear combinations of semieharacters of S. Let  M be the 

representation of S defined by  

M (m, n) = 

(~ / ( l ' n ) ~  m m>~l 
0 ] '  

('0 0) 1 , m = n = 0 .  

(14.1) 

/ differs from a coefficient of this representation only at  (0, 0), and since the charac- 

teristic function Xo of {(0, 0)} is a semicharacter of S, / lies in a finite dimensional 

invariant  subspace of A (S). Now let / be any function in A (S). Then (14.1) defines 

a representation of S and subtracting from / the upper right-hand coefficient and an 

appropriate multiple of Z0, we obtain a function 9 in A (S)which vanishes for m ~< 1. 

Thus to show tha t  A (S) is spanned by  its finite dimensional invariant  subspaces, 

it suffices to show tha t  g can be approximated uniformly on S by  linear combina- 

tions of semicharacters of S. Let  S o be the semigroup of all lattice points (m, n) 

with m ~> 0 and let go be the function defined on S o by  

I g  (a), a e S  

g~ ( a ) = [ 0  ' aESo\S" 

I t  is simple to check that  go is in A (So). Since S o is the product of the integers 

and the half-integers, the approximation theorem holds for So, so go can be ap- 

proximated by  linear combinations of semicharacters of S o. Thus, by  restriction to S, 

g can be approximated by  linear combinations of semicharacters of S. This completes 

the proof tha t  A (S) is spanned by its finite dimensional translation invariant subspaces. 
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THEOREM 14.1. Let 8 be a commutative topological semigroup and n an integer, 

n > l .  Suppose that the map a-->na takes 8 onto a dense subset o/ itsel/.(1) Then the 

]ollowing are equivalent: 

(i) The approximation theorem holds /or 8. 

(ii) A (8) is spanned by its finite dimensional translation invariant subspaces. 

Proo]. W e  need only  prove  t h a t  (ii) implies  (i). Note  f i rs t  t h a t  there  is a 1 -  1 

correspondence be tween the  bounded  cont inuous  f ini te  d imensional  represen ta t ions  of 

8 and  those of 8 ~. Thus,  b y  the  S tone -Weie r s t r a s s  Theorem,  (ii) holds  if and  on ly  

if 8 a has suff ic ient ly  m a n y  cont inuous  finite d imensional  represen ta t ions  to  separa te  

points .  As a consequence,  by  Theorem 3.6, we need on ly  show t h a t  if x and  y are  

e lements  of 8 ~ sepa ra t ed  b y  such a r ep resen ta t ion  M,  then  t hey  are  also sepa ra t ed  

b y  a semicharac ter .  

I t  is clear t h a t  we can assume t h a t  M is indecomposable  and  acts  on ]c-dimen- 

sional  complex  Euc l idean  space C ~. Choose any  u in 8 a and  le t  ~1, " - ,  2~ be the  

d i s t inc t  eigenvalues of M (u). Then C k is the  d i rec t  sum of the  r subspaces  

{y: ( M  (u) - L I F  y = 0 for  some  n}. 

Bu t  these subspaces  are  i nva r i an t  under  ( M  (v): v E 8 a} since 8 ~ is commuta t ive ,  and  

thus  r = 1 since M is indecomposable .  

F o r  each u in 8 ~, we denote  b y  ~u the  unique  eigenvalue of M (u). Le t  u and  v 

be e lements  of S ~. Then  

(y:  M (u) V = , ~  y) 

is a l inear  subspace  of C k which is i nva r i an t  under  M (v) since M (v) M (u) = M (u) M (v). 

Thus i t  contains  a non-zero e igenvector  fl of M (v) which satisfies 

M (u v) fl = M (u) M (v) fl = 2~ ~, fl. 

As a consequence,  ~uv = ~u ~v for all  u and  v in 8 ~. Fu r the rmore ,  u-->~u is continuous,  

and  is thus  a semicharac te r  of 8 a. I f  )~x4:~u, this  semicharac te r  separa tes  x and  y, 

and  we are  finished. Thus  we m a y  assume t h a t  ~ =~y. 

Since a-->n(T maps  8 onto a dense subset  of itself,  u--->nu maps  8 ~ onto itself.  

Consequent ly  there  is an  integer  m > k f o r  which any  u in 8 ~ has ruth roots.  Suppose 

now t h a t  u is an  e lement  in 8 a wi th  2 u = 0 .  Then,  choosing v in S a so t h a t m v = u ,  

(1) This holds for all the examples of Section 2 besides the one that we have just discussed. 
Thus we have examples of S for which A (S) is not spanned by its finite dimensional invariant 
subspaees. 
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we have  2 , = 0  and  thus  M ( u ) = M ( v ) ~ = 0 .  Since M ( x ) : ~ M ( y ) ,  th is  shows t h a t  

2~ = 2~ ~: 0. 

Le t  T be the  subsemigroup {u: u 6 S  ~, 2u~:0} of S a. For  u in T we have  

M (u )=~u  N (u), where the  m a t r i x  N (u) has  the  single e igenvalue  1 and  so is non- 

singular.  Clearly u - ~ N  (u) is cont inuous  on T and  {N (u): u 6 T} generates  a com- 

m u t a t i v e  subgroup  H of the  group of non-s ingular  ]c • ]c mat r ices .  Since N (x):~ N (y), 

the re  is a charac te r  Z0 of H for which Xo(N(x ) )~ :Zo (N(y ) ) .  Then  the  funct ion Z 

def ined on S ~ b y  

{ 2u Z0 (N (u)), u E T 

Z ( u ) =  O, u ~ S a \ T ,  

is a semicharac te r  of sa; 

S a \ T ,  t hen  ~ / - > 0  and  Z ( u , ) - > 0 = g ( u ) ,  

Z ( x ) 4 Z  (y), the  proof  is complete .  

for if the  ne t  {ur} of e lements  of T converges to  u in 

so t h a t  Z is cont inuous .  Since Z satisfies 
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