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1. Introduction

This paper is devoted to the extension, to certain commutative topological semi-
groups, of the fundamental approximation theorem for almost periodic functions on
groups. Several definitions are necessary before we are able to state our results.

If § is a commutative topological semigroup,(?) we shall denote by C(S) the
Banach algebra of all bounded continuous complex valued functions on S supplied
with the norm |:|| defined by

171l=sup | (o)1
For each ¢ in 8§ and f in C(S), the translated function ¢f in C(8) is definéd by

of(r)=f(r+o), TES.

A function f in C(8) is called almost periodic if the set {of: o6 € 8} of translates
of f is conditionally compact (}) in C(S). We shall denote by 4 (S) the collection of
all almost periodic functions on S. It is simple to check that 4 (S) is a closed

translation invariant subalgebra of C(S).

(*) This work was supported in part by the United States Air Force Office of Scientific Research.

(?) We call S a commutative topological semigroup if it is a commutative semigroup having an
identity element, supplied with a topology in which the map (o, T)->¢+7 from § x§ to § is con-
tinuous. In the terminology of [6], § would be a commutative topological semigroup with jointly
continuous addition. Subsemigroups need nct have identities.

(%) € (S) will always be considered to be topologized with the norm topology, that is, the topo-
logy of uniform convergence. We shall use “conditionally compact’”’ to mean “having compact closure”.
Our definition of almost periodicity is weaker than that used by Maak in [11] and our results are
disjoint from his.
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A function x in C(8) is called a semicharacter if
ylo+7)=%(c)X(7), o€S, TES,
and |%(0)|<1, o€S.
Each semicharacter of S is almo'st periodic; for % is a semicharacter, then
oX=X(c)%, ocESN,

so {o%: €8} is contained in the compact subset {i%x: |1]|<1} of C(S). Note that
the set of semicharacters of S is closed under complex conjugation.

We shall say that the approximation theorem holds for § if linear combinations
of semicharacters of 8 are dense in 4 (8); that is, if each function in A (8) can be
approximated uniformly on S by linear combinations of semicharacters of S. That
the approximation theorem holds if § is a commutative topological group is the
fundamental result of the theory of almost periodic functions on commutative groups
(see Chapter 7 of [10]). We show in the next section that the approximation theorem
does not hold in general for commutative semigroups, and that it may fail even for a
subsemigroup of a discrete group.

The remainder of the paper is devoted to establishing the approximation theorem
for certain classes of topological semigroups. The most important of these are

1. Cones in finite dimensional Euclidean spaces in the usual topology.

2. Finitely generated subsemigroups of commutative groups in the discrete topology.

3. Semigroups consisting of the non-negative elements of a totally ordered com-
mutative group in any ‘‘reasonable’” topology.

We also show that the class of commutative topological semigroups for which
the approximation theorem holds is closed under the formation of products.

The main tool that we use is the almost periodic compactification introduced
in [6]. For groups the approximation theorem is an immediate consequence (see
Chapter 7 of [10]) of the existence of a compactification and the Peter-Weyl theorem.
No such direct method is available for semigroups, as there is no analogue of the
Peter—Weyl theorem for compact commutative semigroups. On the contrary, such
semigroups may have few semicharacters, as the first example of the next section
shows. For this reason we are forced to carry out a detailed analysis of the structure
of the compactification in each of the cases that we consider.

Some comments on notation: In the following, the letters S and T (with or

without subscript or superscripts) will be used to denote commutative topological
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semigroups. If ¢:S—7T is a continuous mapping, we shall always denote by ¢ the
induced mapping ¢: O (7)—C (S) defined by

¢h=f-p, 1€CTD).
If X and Y are any sets,
{x: z in X, # not in Y}

is denoted by X\Y.

The results that follow were announced in part in Section 4 of [5].

2. Some Examples

The approximation theorem may fail for a variety of reasons, some of which
become apparent in the following examples.
Let 8 be the commutative topological semigroup formed by the closed unit

interval supplied with the usual topology and the composition
(o, T)—=sup (0, 7).

It is simple to check that each function in C(S) is almost periodic. Nevertheless the
only semicharacters of § are the constant functions equal to 0 and to I.

Even with many semicharacters, indeed sufficiently many to separate points,
approximation may fail due to the lack of homogeneity in topological semigroups.
For let S be the non-negative reals under addition, supplied with the usual topology
on [1, o] but with the discrete topology on [0, 1]. If f is a character of the discrete

reals and

l1-0, O<o<l
0, 1<o,

h(o‘)={

the fh is in A (S). However, the only semicharacters of S are exponentials and a
pair of functions equal to 0 for all ¢>0, so the approximation theorem fails for S.

Another possible reason for the failure of the approximation theorem is that a
non-trivial function may have only trivial translates. For let S be the semigroup of

lattice points

{(m,n): m>0 or m=n=0}

in the plane. Then if f is any function in C(S) that satisfies f(m,n)=0 for m>1,
{of: 0 €S} consists only of f and functions that are zero except at (0,0), so f is
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almost periodic. On the other hand, the semicharacters of S, with two exceptions,
are of the form

x (m, n) ze}.m+iyn,

where u is real and Re (1) <0, so the approximation theorem fails for S. Note that
8§ is not a finitely generated subsemigroup of the lattice point group; because of

Theorem 10.1 no finitely generated example can be found.

3. The Compactification

The following lemma lists three of the basic properties of almost periodic func-
tions that we shall need. The results are simple to establish and are contained in
Theorems 5.1 and 6.1 and Lemma 5.2 of [6].

Lemma 3.1. Let 8 and T be commutative topological semigroups.

(i) If ¢: S—T is a continuous homomorphism, then the induced map ¢: C(T)—~C(S)
satisfies @ (A ())<= A (8).

(i) If T 4s compact, then A (T)=C (T).

(i) If f is in A (S), the map o—af of S into A(S) is continuous.

Note that as a consequence of (i) and (ii) if § is a commutative topological
semigroup, ¢: S—T a continuous homomorphism of § into a compact commutative
topological semigroup 7' and f a function in C(T'), then the composite fo ¢ is almost
periodic on 8. As we shall see in Lemma 3.2, all of A (S) can be obtained in
this way.

The main tool in our study of the space A4 (S) of almost periodic functions on a
commutative topological semigroup S is an associated compact commutative topological
semigroup 8° and a mapping Iy: §—8% §° was introduced in [6] and called the
almost periodic compactification (1) of 8. It is defined to be the closure in the strong
operator topology of the semigroup {R,: o €S} of operators on A (S), where R, is

the translation operator
R:()=cf, [€A(S);
Is: 8§—8° is defined by
Is(o)=R,, o€S.

(1) If S is a group, S is of course isomorphic to the usual almost periodic compactification, for
which see Chapter 7 of [10].
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For our purposes these definitions have no relevance; we shall need only those facts
about the compactification that are listed in the following three lemmas (see Sec-
tion 6 of [6]).

The first describes the basic property of the compactification, the second shows
that this property characterizes the compactification, while the third states the

existence of induced homomorphisms for compactifications.

LemMa 3.2. Let S be a commutative topological semigroup. Then Ig: S—8% isa
continuous homomorphism with I (S) dense in 8% The induced mapping Is: C(8%)—C(S)

18 an tsometry and an algebra isomorphism of C(8%) onto A (S).

LeEMMA 33. Let S and 8* be commutative topological semigroups with S* compact.
Suppose that ¢: S—8* is a continuous homomorphism, with ¢ (S) dense in S*, which
18 such that the induced map @: C(S*)—~>C(S) satisfies A (S)=¢ (C(S¥)). Then there

s a topological isomorphism w: S*—>8* so that the diagram
//7 S*
¢
//

P
S\/ 7

.

.

1 s \\\\

IS
Vga

s commutative, i.e. yoIg=g.
Lemma 34. Let 8 and T be commutative topological semagroups. If @ : 8—T is a

continuous homomorphism, then there is an associated continuous homomorphism ¢%: S*—T*

which is such that the diagram

@
8 >T
I Iy
v ¢* v
S >

is commutative, i.e. g% Ig=1Ioq.

Let S be a commutative topological semigroup. If f is in A4 (S), by Lemma 3.2
there is a unique function & in C (S that satisfies f=hoI;. We shall denote this
function A by f.
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Thus if f is an almost periodic function on 8, f is its “extension” to the com-
pactification 8% The mapping (1) f—f of 4 (8) onto C (89) is inverse of the isomorphism
I of Lemma 3.2.

The following is an immediate consequence of Lemma 3.2 and the fact that

semicharacters are almost periodic and ‘“extend’ so as to remain multiplicative.
Iy

Lemma 3.5. Let S be a commutative topological semigroup. Then X—% is a 1—1

correspondence between the semicharacters of S and the semicharacters of S

This leads to the following result, which reduces the appreximation problem for

A (S) to a question about the existence of semicharacters of S%

THEOREM 3.6. Let S be a commutative topological semigroup. Then the following

are equivalent :

(i) The approximation theorem holds for S.
(il 8* has suffictently many semicharacters to separate points, i.e. if x and y are
distinct elements of S then there is a semicharacter X of S* that satisfies X (x)=FX ().

Proof. (i) implies (ii). For if linear combinations of semicharacters of S are
dense in 4 (S), then by Lemmas 3.2 and 3.5, linear combinations of semicharacters
of 8% are dense in € (8%, so there must be sufficiently many to separate points of S%
(ii) implies (i). For if 8* has sufficiently many semicharacters, by the Stone-Weier-
strass Theorem, linear combinations of these semicharacters are dense in C (8%, so by
Lemmas 3.2 and 3.5, linear combinations of semicharacters of S are dense in A4 (S).

In what follows we shall, in many cases, be dealing with commutative topo-
logical semigroups 8 which have sufficiently many almost periodic functions to sepa-
rate points. In these situations the map Ig: S—8% is 1—1 and we shall identify §
with its image in S° For each f in 4 (S), f will then simply be the unique conti-
nuous extension of f to 8% And the restriction of a function in C (8% to § will be
a function in 4 (8).

If § is identified with its image in S8* and @ is a subset of §, we shall denote
by @~ the closure of @ in §° (and not the closure of @ in S).

4. The Product Theorem

Let § and T be commutative topological semigroups. Then the product semi-

group Sx7T is defined to have coordinatewise addition

1) f——>}2 is the Gelfand representation of A (S), in the sense of Chapter IV of [10].
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(o1, 7)) + (09, Tg) = (01 F 0y, T, +7Ty)

and the product topology. If {8,},.; is any collection of commutative topological

semigroups, the product semigroup [] S, is defined in the same manner.
yelJ

We establish in this section the isomorphism (1)

(18, =[] 8s (4.1)
yes yed
and obtain as a consequence the fact that the approximation theorem holds for

[1S, if and only if it holds for each of the S,. This result is used later in an in-

yed

duction step in our proof of the approximation theorem for cones.

Lemma 4.1. Let S be a commutative topological semigroup and @ a dense subset
of 8. Let f be a function in C(S) with {6f: c€Q} conditionally compact. Then
{of: 0 €8} is conditionally compact, i.e. | is almost periodic.

Proof. It suffices to show that the map o—of from 8§ to C(8) is continuous.
For if it is continuous, then {of: ¢ €S} is contained in the closure of the condi-
tionally compact set {o/: 6 €Q} and is thus itself conditionally compact. As a first
step we show that if 7 is any element of S, the map o—¢f is continuous when
restricted to QU {r}. {of: 0 €QU {r}} is a conditionally compact subset of C'(S) and
thus its topology, which is the topology of uniform convergence on S, coincides with
the topology of pointwise convergence on S. But since f is continuous, the mapping
g—cf is continuous from S to C(S) supplied with the topology of pointwise con-
vergence on S. Thus ¢—+¢f is continuous when restricted to QU {r} as was claimed.
Suppose now that the mapping s—>o¢f from S to C(S) is not continuous. Then there
is & g, in S, an ¢>0, and, for each neighborhood U of ¢,, an element g, in U with
||ovf~aof|l>2e. Furthermore, for each neighborhood U of ¢,, since o—¢ f is conti-
nuous on QU {oy}, there is a 7, in QNU with ||tyf—oyf]|<e and thus with
llTof~o4f]|>e. But this contradicts the continuity of o—of on @ U{o,}, so that
our assumption that ¢—c¢f is not continuous on 8 is false and the proof is complete.

If 2 is a function defined on a produkt Sx7 and ¢ is in § we denote by %,
the function defined on 7' by

ho(t)=h (o, 1), TET.

(1) The corresponding result for the weakly almost periodic compactification introduced in [6]
ig false.
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Lemma 4.2. Let S and T be commulative topological semigroups, and f a function

in A(8xT). Then
{t(f,): 0c€8,7€T} (4.2)

is a conditionally compact subset of C(T). Furthermore, the map o—>f, from S to C(T)

18 continuous.

Proof. Let e be the identity element of S and define ®: S(SxT)—C(T) by
O (R)=h,, REC(SXT).
Then O (e, 1)f)=7(f), c€S,T€T,

s0 (4.2) is the image under the continuous map ® of the conditionally compact subset
{(o, 7) f: (0, T) ESXT} of C(SxT) and must thus itself be conditionally compact.
Since f is continuous on Sx7T, the map o—f, is continuous from 8§ to C (T') supplied
with the topology of pointwise convergence. But since 7 has an identity element,
{fs: 0 €8} is contained in (4.2) and is thus conditionally compact, so its topology
must agree with that of pointwise convergence. Therefore o—f, is continuous and the

proof is complete.

LemMma 4.3. Let 8 and T be commutative topological semigroups, and

p: SXT—=>8xT"
be defined by

¢ (0, 7)=(0, Iz (7)), (0, 7)€SXT.
Then the induced mapping
§: C(8xTHY—=C(8xT)
satisfies @ (4 (SxT*))=A(SxT).
Proof. ¢ is a continuous homomorphism, so by (i) of Lemma 3.1 it suffices to
show that A4 (SxT)c @ (4 (SxT?). Let f be any function in A4 (SxT). By Lemma 4.2,
for each ¢ in S, f, is in A (T) and thus f, is a function in C(7°). Define the func-

tion 2 on SxT° by
hic,x)=f,(x), c€S,x€T

h has been defined so that it satisfies
k(g (o, t))=f(0,1), (o,7)ESXT.

Thus if it could be shown that A is in A4 (Sx7T?), f would be @ (k) and the proof

would be complete.
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First we show that A is in C(§x7%). By Lemma 4.2, 6—f, is continuous from
S to A (T), so because of Lemma 3.2, o—f, is continuous from S to C (79). If (o, )

is an element of Sx7° and (r,y) in SxT° is chosen so that [|f,—Ff [[<4e and

lfa(x)—fa(y)|<%e, then
5o, @)~z 9) | =]l @) ~F ) |<|fo @~ L) |+ o )~ [ ) | <e.

But since g->f, is continuous and f, is in C (7%, this shows that % is in C (8xT%).
We now complete the proof by showing that 2 is in 4 (§x2%). It is simple to
check that

¢ (o, T)h)=(0,7)f, (0,7)€ESXT.
Thus since §: C(SxT*)->C(SxT) is an isometry and
{(0. D) f: (0, 7) ESXT}
is conditionally compact in C (ST,
{p (0, 7)h: (0,7) ESXT}

is conditionally compact in C(SxT?). ¢ (SxT) is a dense subset of Sx7T%, so by
Lemma 4.1 applied to A, SxT* and ¢ (SxT), & is in A4 (§xT?).

We can now establish the isomorphism (4.1) for the case of two factors.

COROLLARY 4.4. Let S and T be commutative topological semigroups. Then there
18 a topological isomorphism between (SxT)* and S*xT*

Proof. Using Lemma 4.3 on the map (o, 7)—(0, Iz (7)) of §xT' into §xT“ and
also on the map (o, }—(Is (o), ) of SxT* into 8*x T, we see that if ¢: SxT—=8*x 1"

is their composite, i.e.
@ (o, 1)=Us(0), I (1)), {(0,7)€ESXT,

then the induced map ¢: C (8*xT*)—C (SxT) satisfies @ (4 (§*xT%))=A4 (SxT). Thus
by Lemma 3.3 and (ii) of Lemma 3.1, 8*x7T® is topologically isomorphie to (SxT')%
By Lemma 4.4 and induction, the isomorphism (4.1) holds for any finite number
of factors. We now proceed to show that it holds in general.
Let {8,},es be a collection of commutative topological semigroups, ¢, the identity
element of S, S=}JJ S,, S*:ES;‘L and @: S—8* the homomorphism induced by the

Is,: 8,—~8;. If o is an element of S, its coordinate in S, will be denoted by o,.

Let K be a finite subset of J. We denote by Ax(S) the subspace of 4 (S) consisting
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of those [ that depend only on the coordinates in K, i.e. that satisfy f(o)=F(7)

whenever o,=7, for all y in K.

LeMMA 4.5. Let ¢: C(S*)—>C(S) be the mapping induced by ¢—S—>S*. If K is
any finite subset of J, then Ag(S)c @ (C(S*)).

Proof. Let S1=yErS§f, Sz=y£\IKSy and ¢@g: S—8;x8, be the homomorphism

induced by the Is, for y in K and the identity mappings for y in J\ K. By successive
application of Lemma 4.3, we see that the induced mapping Pr: O (8, %x8,)—=C(S)
satisfies @ (4 (S;x8,))=A4(S). Now let f be any function in A (S) and let §x (k) =1{.
Since f is in Ag (S),

h(z,0)=h(z,7), x€8,;, 0€S,, TES,.

Let S;= [] Sy and define k on S*=8;%8; by

yeJ\K

k{x,y)=h(2,0), x€8;, y€S,,

where ¢ is any element of S,. It is clear that k is in C(S*) and that f=¢ (k), so

since f was an arbitrary function in Ag(8), the lemma is proved.

LEMMA 4.6. Let F be the collection of all finite subsels of J. Then U Ag(S) is
. KeF
dense i A (S).

Proof. Let f be a function in A (S). By (iii) of Lemma 3.1 the map 6—of of
S into A4 (S) is continuous. Thus there is a neighborhood U of the identity element
of § which is such that '

lof—fll<e, o€U. (4.3)

As a consequence of the definition of the product topology, there is a finite subset
K of J so that any ¢ in S, with o,=e, for all y in K, will be in U. Let y: 88
be the homomorphism defined by

T, YEK

(’/)(T))vz{ e '}/EJ\K
> .

Then for each 7 in S there is a ¢ in U with =0+ (1) (we need only set o,=1,
for y€J\K, 6,=¢, for y € K); thus
@ =gf@|=lofp @)1 ED]<e

by (4.3), and ||f—¢f]|<e. But by (i) of Lemma 3.1, ¢f is in 4 (S), and therefore
clearly in Ag(S). This completes the proof.
We can now finally establish the isomorphism (4.1).
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TaEoREM 4.7. Let {S,},; be a collection of commutative topological semigroups.
Then ] Sy and ([]18,)* are topologically isomorphic.
veJ yel

Proof. We wuse the notation introduced before Lemma 4.5. The mapping
@: C(8*)—>C(8) induced by ¢: S—8* is an isometry since ¢ (S) is dense in S*.
Thus @ (C'(S¥)) is a closed linear subspace of C(S), which is contained in A (S) by
(i) of Lemma 3.1. But by Lemmas 4.5 and 4.6 it must be all of 4 (S), so our result
follows from Lemma 3.3.

Lemma 48, Let {T,},es be a collection of commutative topological semigroups.

Then [1 T, has sufficiently many semicharacters to separate points if and only if each
yel

T, has sufficiently many semicharacters to separate points.

Proof. If x€J, there is a natural isomorphism of 7', into [] 7, so T, will have
yed

sufficiently many semicharacters if [] 7', does. Conversely if 7', has sufficiently many
yvelJ

semicharacters, any two elements of [] 7, having different coordinates in 7', can be
vel

separated by the natural projection [] 7,7, followed by some semicharacter of T,.
yelJ

The following is now an immediate consequence of Lemma 4.8, applied to 7T, = S,
Theorem 3.6 and Theorem 4.7.

TarorEM 4.9. Let {S,},c; be a collection of commutative topological semigroups.
Then the approximation theorem holds for [] 8, if and only if it holds for each of the S,.
ved

5. The Kernel

Let S be a commutative semigroup. In all that follows we shall use the standard

notation

c+U={c+7: T€U},
U+V={o+71: c€U, 1€V},

if U and V are subsets of 8 and ¢ is an element of 8. If 7 is a subset of 8, T is

called a subsemigroup if T+T<T and is called an ideal if it is non-empty and

S+T<T. The kernel of S is defined to be N (¢+5) and denoted by K (S). If non-
ceS

empty, it is clearly the smallest ideal of S.
The following will be useful later.
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LEMMA 5.1. Let 8 be a compact commutative topological semigroup. If @ is a

dense subset of S, then
N (¢+8) (5.1)

ceQ

s dentical with the kernel K (S).

Proof. Let v be an element of (5.1). Choose any ¢ in § and let {g,} be a net
in @ with ¢,~>¢. Since 7 is in (5.1), for each y, there is some 7, in S with ¢, +%,=17.
By the compactness of S, the net {5,} has a cluster point 5, which satisfies 0+ =7
since the multiplication of S is jointly continuous. But ¢ was an arbitrary element
of 8, so 7 is inogg (c+8)=K(8).

The next lemma, which is well known (see [8] or § 1 of [13]) is the basic result

concerning the kernel.

LEmMMA 52. Let 8 be a commutative semigroup with a compact topology in which
addition is jointly continuous.() Then the kernel K (S) is non-empty and is a compact
topological group.

As a consequence we obtain the fact that a compact commutative topological

semigroup always has sufficiently many semicharacters to separate points of the kernel.

CoRrROLLARY 5.3. Let S be a compact commutative topological semigroup. Suppose
that o and v are distinct elements of the kernel K (8). Then there is a semicharacter X
of 8 satisfying X (6)+X ().

Proof. By Lemma 5.2, K (8) is a compact commutative topological group, so by
the Peter-Weyl Theorem, there is a character X, of K (8) with X,(c)=+ X, (7). Let e
be the identity element of K (S). Then the function % defined on § by

X(o)=2%p(c+e), o€S,
is a semicharacter of S and satisfies

X () =X () F X (1) =X (7).

6. The Half-line and Half-integers

The proof of the approximation theorem for cones which we give in Section 9
proceeds by induction on dimension. In dimension 1 a cone is either the full line,

the half-line [0, o) or the isomorphic half-line (— oo, 0]. The approximation theorem

(*) In particular, S may be a compact subsemigroup of a commutative topological semigroup.
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is known for the full line. In this section we obtain, aé a relatively simple consequence
of the results established thus far, the validity of the approximation theorem for the
half-line. The same proof shows that the approximation theorem holds for the half-
integers {n:n=0,1, 2, ...}.

TaEOREM 6.1. The approximation theorem holds for

(1) The semigroup of the half-line [0, oo) under addition with the usual topology.

(i) The semigrowp of the half-integers {n: n=0, 1, 2, ...} under addition with the
discrete topology.

Proof. Let S be either of the semigroups described. The function X defined on
S by
X(o)=e"° GES, (6.1)

is a semicharacter and separates points of S. Thus Ig: §—>8% is 1 —1 and we identify
S with its image in S%

We show first that $*=SU K (8%). Let =z be a point of §8* not in 8. For each
o in 8, {r: T€S, 0<t<g} is closed in 8° since it is compact in the topology of S

and Ig: S—8® is continuous. Thus, since S is dense in 8% x must be in
{r:7€8, 120} " =(+8) " =0+8*

for each ¢ in 8, so x is in M (¢ + 8%, which by Lemma 5.1 is the kernel K (S8%).
ces

To complete the proof, because of Theorem 3.6, it is only necessary to show
that two distinet points « and y of 8* can be separated by a semicharacter of 8%
We have shown that S§°=_8U K (8%, so there are the following three cases to consider.

Case I. z and y in 8. If X is defined by (6.1), then % is a semicharacter of S*

and satisfies
L@ =x@+2 @y =Xy

Case II. x in S, y in K (8%. For each ¢ €8, K(8Y)co+8% so if x is defined
by (6.1), then
|2 )] <int |7 (o) | ~0.

On the other hand, % (x) =2 (x)=*0, so X (x) =% (%).

Case III. x and y in K (§%. Corollary 5.3 guarantees that in this case there
will be a semicharacter of S* separating = and y. This completes the proof of
Theorem 6.1.
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If § is the half-line, it is simple to show using Theorem 6.1 that 4 (8) consists
of all f in C(8) of the form f,+f,, where f, is the restriction of a function almost
periodic on the full line and f, satisties lim f, (o) =0. This is slightly stronger than a
result in [7]. o

Theorem 6.1 together with Theorem 4.9 shows that the approzsimation theorem
holds for certain cones; in particular it holds for closed sectors in the plane. Thus a
function on a close sector is almost periedic if and only if it can be approximated
uniformly by linear combinations of the semicharacters of the sector, which will be
exponential functions. It can further be shown that if such a function is analytic at
interior points of the sector, approximation by linear combinations of analytic ex-
ponential functions is possible. When the sector is a half-plane, this is the approxi-
mation theorem of [1].

Finally let us point out that the approximation theorem for the discrete half-
line cannot be obtained as simply as Theorem 6.1. The result is contained in
Theorem 11.1.

7. The Main Lemma

In this section we isolate a technical lemma that will be used later in sections 9,
10 and 12.

Let G be a commutative topological group and § a subsemigroup of G containing
its identity element. § supplied with the topology induced by G is a commutative
topological semigroup and the lemma we prove concerns the separation by semi-
characters of points in the compactification S°

We assume that S itself has sufficiently many semicharacters to separate points
so that Ig: S—8% is 1—1 and as before, we can identify S with its image in §°

Let @ be a subsemigroup of S and @~ its closure in 8% @~ is a subsemigroup of §¢
and we shall denote its kernel K (¢~) simply by K. The subgroup {c—~7: ¢€Q, 71 €Q}
of G generated by @ will be denoted by H. We assume that H is a closed subgroup
of G. The image of S under the natural projection G—G/H is a subsemigroup of
G/H which will be denoted by 7. T is a topological semigroup if supplied with the
topology induced by the quotient topology on G/H.

LemMMA 7.1. Let x and y be distinct elements of S° Suppose that x and y are in
e+ 8% where e is the identity element of K.

(@) If @x+EK)n{y+K) is non-empty and if in addition each character(}) of Q

extends to o semicharacter of S, then x and y can be separated by a semicharacter of S*.

(}) A character is a semicharacter that is of modulus one everywhere.



ALMOST PERIODIC FUNCTIONS ON SEMIGROUPS 113

(ii) If (x+EK)n(y+K) is empty and if in addition the approximation theorem
holds for T, then x and y ban be separated by a semicharacter of S°.
Proof of (i). Let x+u=y~+v for » and v in K. By Lemma 5.2, K is a compact

commutative topological group, so by the Peter—Weyl Theorem, there is a character
%, of K with %, (u)+%, (v). The function X, defined on @ by

Xo(w)=x,(e+w), w€EQ,

is a character of Q7. Let X, be the restriction of X, to Q. Since the injection map
of S into S§% is continuous, X; is continuous in the topology of @ and is thus a
character of Q. By hypothesis, X; extends to a semicharacter %, of 8, i.e. there is a

semicharacter ¥, of S that satisfies
Xs(0)=%3(0), c€Q.

We will show that the semicharacter X, of S® satisfies 2, (x)==4, (¥). By its defini-
tion, ¥, when restricted to @ agrees with %, and since both £, and ¥, are continuous

on @, they agree on % and v. Thus
Ta () = Lo (w) =2y (e ) =2, () F Xy () =Xy (¢ +0) =Xy () = 24 (0)
and as a consequence, since x-+u=y-+v,

RACORATEI
LW T ) W

24 ()

This completes the proof of (i).
Proof of (ii). The natural projection G—G/H when restricted to S yields the

continuous homomorphism ¢: S—7 defined by
plo)=c+H, c¢€SN.
By Lemma 3.4, ¢ induces a continuous homomorphism ¢%: §%>7" that satisfies
¢ lo)=Ir(p(0)), c€S, (7.1)

since § has been identified with its image in S% Suppose that we could show that
¢” (x) and ¢” (y) were distinct. Then, since we have assumed that the approximation
theorem holds for 7', by Theorem 3.6 there would be a semicharacter ¥ of T* with
2(¢" (@)% (¢*(y)) and thus the composite Xo¢® would be a semicharacter of S°
separating x and y. So to complete the proof of (ii) it suffices to show that ¢*(x) + ¢ (y).
Since x+K and y+ K are disjoint compact subsets of 8% there is a function f in
C (8% satisfying

8 ~ 60173047. Acta mathematica. 105. Tmprimé le 20 mars 1961
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0, uEx+ K
_[% 7.2
fw) =1, wey+K. (12)

Let x4 be normalized Haar measure on K. By Lemma 3.1 the map v—vf of §%into

C (8% is continuous, so the vector valued integral ()

Jviauw
R
exists and represents a function » in C(8%). Because of (7.2), A (x)=0 and 5 (y)=1.
Furthermore, because of the invariance of y, vh=h for all » in K and thus since
e+@ <K,
uh=u(eh)=(ut+e)h=h, u€Q . (7.3)

Let k& be the restriction of & to S, so that k is in 4 (S) and 2= k. Because of (7.3),
k(c+1)=k(0), 0€S8, T€Q,

and as a consequence, if @ (0,)=¢ (0,), then k(0,) =% (0,). Thus we can define the
function ¢ on 7T by
g(@(e)=k(o), oc€S. (7.4)

It is simple to check that g is in C(T). Let ¢: C(T)—C(S) be the map induced
by ¢: S—T. Because of (7.4), ¢ (g)=k.

Furthermore, ¢glpla)g)=0ck, oES,
SO ¢ maps {rg: T€T} (7.5)
into {ok: 0 €8}. (7.6)

But since ¢ is onto, ¢ is an isometry and thus (7.5) must be conditionally compact
since (7.6) is conditionally compact. As a consequence g is in 4 (7). For each ¢ in 8§,
because of (7.1),

§(g° () =G Ur(p () =9 (¢ (a)) =k () =P (o).
Thus since S is dense in 8%
§(g" (w)=h(u), u€s®
so in particular § (@ (@) =h(x)=0=+=1=h(y)=4§ (¢° (¥)).

But this shows that ¢ (x)+¢?(y) so the proof of (ii) is complete.

(1) We shall use the standard properties of vector valued integration found for example in [3].
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8. More Lemmas

In this section we establish several lemmas for later use. Most of the results are
of little independent interest and occur here simply because they will be used more
than once in the following.

Until Lemma 8.5 we assume that any semigroup S which is discussed has
sufficiently many almost periodic functions to separate points. In these cases the

map Iy: §—8%is 1—1 and we identify S with its image in S°

Lemma 8.1. Let G be a commutative group, S a subsemigroup and H a subgroup,
with H=S< G. Let T be the image of S under the natural projection G—>G/H. If the
approximation theorem holds for T supplied with the discrete topology, then the approxi-
mation theorem holds for S supplied with the discrete topology.

Proof. We apply Lemma 7.1, taking @ to be the subgroup H and the topology
of G to be discrete. Since @ is a group, 6+ @Q=Q forall ¢ in @, 6+ Q =(c+ Q)" =@,
and so the kernel K of @ is N(c+Q )=@ by Lemma 5.1. Thus ¢ =K is a

Q

group. In particular, the identity element e of K is the identity element of @, so
e+8%=48% Since G is a discrete group, any character of ¢ extends to a character
of ¢ and thus of S. Furthermore, we have assumed that the approximation theorem
holds for 7. Thus the hypotheses of Lemma 7.1 are satisfied, so if  and y are two
distinet elements of S there is a semicharacter X of 8* with X (z)= % (y). That the

approximation theorem holds for § is then a consequence of Theorem 3.6.

LemMma 8.2, Let 8 be a locally compact commutative topological semigroup. Suppose

that S has a semicharacter X that is nowhere zero and vanishes at infinity. Then
S={z:x€8% % (x)=*=0}.
Furthermore, S is an open subsemigroup of S* whose complement S*\S is an ideal.
Proof. Since X vanishes at infinity, for each £>0
{o: 0 €8, |X(0)|>¢}

is compact in the topology of S and thus in the topology of S% As a consequence,

any « in S*\§ must be in the closure of each
{o:0€8, |1 (0)]|<e}

and thus satisfy % (2)=0. On the other hand, if 2 €S, then % (x)=% (x)=0. This
8% — 60173047
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establishes the first assertion of the lemma. The second is immediate since % is a

semicharacter of 8%

Lemma 83. Let S be a commutative topological semigroup. Suppose that T is an
open and closed subsemigroup of S whose complement S\T is an ideal. Then the closure
T~ of T in 8* is an open and closed subsemigroup of 8% whose complement S°\T~ is
an ideal of 8% Furthermore, if j: T->8 s the injection mapping, the induced homo-

morphism (1) j*: T*—=S8% is a homeomorphism of T® onto T~.
Proof. Let X be the characteristic function of 7 in S, i.e.

1, €T

x(a)={0’ s €S\T.

% is a semicharacter of S. The semicharacter £ of S° satisfies

. 1, zeT
%)= 0, zes\T,

8o T~ has the properties claimed. Because of the commutativity of the diagram in
Lemma 3.4, T is a dense subset of j*(7%). Furthermore 4* (1) is compact, since 1™
is compact and §* continuous, so j* (1) =1T". It remains only to show that j*is 1 —1.
Let z and y be distinct elements of 7 Choose f in 4 (T') so that f@)%f(y) and
define 2 on 8 by

f(e), oc€T

h(o) =
() {0, c€S\T.

It is simple to check that % is in 4 (S). Moreover, for ¢ in T,
h(j*(0)=h(j (o) =h(0)=](0)=](0),

so that &(j*@)=F@)+f@)=h(j*(y), and j*(x)+j*(y). Thus j* is 1—1 and the
proof is complete.
Let 8 be a commutative semigroup and 7' a subsemigroup of 8. A collection W

of subsets of T is called an initial family for T if it satisties the following conditions.

(i) W does not contain the empty set.

(i) ¥ U and V are in W, then UnV is in W.

(iii) For each U in W, there is a V in W with V+V<=U.
)

(iv) For each v in T there is a U in W so that t €0+ 8 for each ¢ in U.

(1) The induced homomorphism 7% is that given by Lemma 3.4.
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Levma 8.4. Let S be a commutative semigroup supplied with the discrete topology.
Suppose that T is a subsemigroup of S8 and W an initial family for T. Then ()
H= NU"

UeW

is a compact topological group whose identity is an identity for T~.

Proof. Because W satisfies conditions (i) and (ii), any finite number of the U™,
for U in W, have a non-void intersection. Thus by the compactness of 8% H is
compact and non-empty. It is a subsemigroup of 8* because W satisfies condition (iii).
The kernel K (H) is a compact topological group by Lemma 5.2. Let e be its identity
element and let v be any element of 7. By condition (iv) there is a U in W so that
T €0+ for each ¢ in U. Since ¢ is in H, there is a net {o,} in U with ¢,—e. If
{ny} is chosen so that v=o,+7, for each y, then 7 =e+z, where z is any cluster
point of the net {z,} in 8% As a consequence, ¢e+1=c¢+(e+2)=e+2x=7 and since
T was an arbitrary element of 7, e is an identity element for 7~. In particular,
e+ H=H. But since e is the identity element of K (H), e-+H=K (H), so H=K (H),
which is a compact topological group.

If S is a subset of a commutative topological group @, a complex valued func-
tion f defined on S will be called wuniformly continuous if it is uniformly continuous
with respect to the uniform structure on S induced by that of @, ie. if for each
£>0 there is a neighborhood U of the identity element 0 in G so that |[f(e+1)—
—f(a)l<e if ¢ and o+7 are in § and 7 is in U. We shall need the following

“one-sided” criterion for uniform continuity.

Lemma 85. Let G be a commulative topological group and S a subsemigroup of G
containing 0. Suppose that the interior T of S is dense in S. Let f be a complex valued

function on S for which, for each £>0, there is a neighborhood U of 0 in G so that
|flc+1)—F(0)|<e, c€S, T€UNT.
Then f is uniformly continuous on S.
Proof. Choose a neighborhood ¥ of 0 in G so that
|[f o' +7)—f()|<ke o €S8, TYEVNT. (8.1)

V0T is non-empty since 0 is a limit point of 7. Choose an element  of ¥V N 7T and
a symmetric neighborhood U of 0 in G so that #+ U<V nT. Let ¢ and o+7 be

(*) Recall that ~ means closure in S%
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elements of S with v in U. We shall complete the proof by showing that
|f(c+7)—f(a)| <e.

Since n+ U<V NT and U is symmetric, y—7 is in ¥ 0 7. Then by (8.1),

l[fe+n)—f(@|<|fle+r)—flo+n)|+|f(o+n)—f(o)]
=|fe+n)+—1)—f(e+T)|+|f(o+n)—flo)|<tetie=es

LeMMA 8.6. Let G be a commutative topological group and S a subsemigroup of
G containing O whose interior is dense in S. Let S, be the semigroup S supplied with

the discrete topology. Then there is a projection (t) ® of A (Ss) onto A (S) that satisfies
fofll<ifll, feAd(Sy, (8.2)
and ® X =0 for each semicharacter X of Sy that is not continuous on S.

Proof. Let T be the interior of S and W the collection -of all subsets of T of
the form VN7 for V a neighborhood of 0 in G. We show first that W is an initial
family for 7' in the sense of the definition given before Lemma 8.4. Condition (i)
holds since 0O is a limit point of 7. (ii) and (iii) are clear. If 7 is in 7 and V is
chosen to be a symmetric neighborhood of 0 in G with v+ V< T, then 1 €0+ 7 for
each ¢ in V and thus in particular for each ¢ in ¥V NT. Therefore condition (iv) is
satisfied and W is an initial family for 7' as claimed. §; is a subsemigroup of a
discrete commutative group and thus has sufficiently many characters to separate
points, so the map Ig;: 8;—>8% is 1—1. We shall identify S, with its image in Sg
and consider T and its subsets as subsets of 83. Since W is an initial family for T,

by Lemma 8.4 applied to S,
H= N U~

UeW

is a subsemigroup of 8§ which is a compact topological group. Let u be normalized
Haar measure on H. If & is in € (87), by Lemma 3.1 the map x—xA is continuous

from S35 to € (S3) so the vector valued integral

thdy(x)

H

is defined and represents a function in C (S§3). We define the map ¥': C (S3)—C (S3) by

‘I"h=thd‘u(x), h €0 (S%).

H

(1) We are identifying A (S) with the subspace of A4 (Sy) consisting of those functions that are
continuous on 8. @ is called a projection if it is linear and satisfies ©2=@.
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It is simple to check, using standard properties of vector valued integrals, and the

invariance of u, that ¥ is a projection of € (S3) onto the linear subspace
{h:heC(83), xh="h, all x€H}
and that 1T r|<|R], keC(SF). (8.3)
We define @ to be the composite mapping
i gay L o gay it
A (8g) = C(Sa) = € (82)"— A (8a),
where j is the isomorphism defined by
ih=1 fedsy.

® is a projection since W is a projection. @ satisfies (8.2) since V' satisfies (8.3)
and j is an isometry. To establish that the range of @ is as claimed, we must show
that a function f in A4 (8,) is in 4 (8) if and only if it satisfies z f =ffor all z in H.
So let 7 be in A(S) and x be an element in H. Because of the definition of H, it
is possible to find a net {r,} in T with 7,—>0 in the topology of S and 7,->z in

the topology of S3. Then for each ¢ in 8§,

xf(o‘)=f(x+o‘)=limf(r,,+a)=lim f(r,,+o‘)=f(o‘)=f(a),
y y

so since S, is dense in S% xf=F. For the converse, let f be a function in 4 (S,)
that is not continuous on 8. Then f is not uniformly continuous on 8, so by Lemma 8.5
there is an &>0 and for each neighborhood V of 0 in G a 7y in V nT with
lzvf—fll>e, and thus ||z, f—F||>¢. Let = be a cluster point in 8% of the net {ry}.
By the definition of H, z is in H. Furthermore ||2f—f|[>¢ because of Lemma 3.1,
so xzf=+f This completes the proof that a function f in 4 (8;) is in 4 (S) if and
only if «f =f for all z in H, and thus establishes the fact that @ maps A (S;) onto
A (S). It remains to show that if X is a semicharacter of S; that is not continuous
on S, then ® ¥=0. Let ¥ be such a semicharacter. Then, as we have shown, there
must be some y in H with yZ+4. But since yf =2 (y) 1, the restriction of ¥ to the
group H is not identically 1 so must be either identically 0 or agree with a character

of H that is not identically 1. In either case,

ffc(w)du(x):o,

and as a consequence,
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OL=Vi-= fx%d,u(x) = ff((x)fcd,u(x)z (ff((x)d‘u(x)) 71=0,
H H H

so ®x=0. This completes the proof of Lemma 8.6.

CoRrROLLARY 8.7. Let G be a commutative topological group and S a subsemigroup of
G containing 0. Suppose that the interior of S is dense tn S. Then the approximation

theorem holds for S if it holds for S supplied with the discrete topology.

Proof. Let S; be S supplied with the discrete topology and ®: A (S;) — A4 (S}
the projection whose existence is established in Lemma 8.6. Because of the properties
of @ stated there, if f is in A(S) and ¢ is a linear combination of semicharacters of
S; with ||f—g|/<e, then ®g is a linear combination of semicharacters of S with
|f—®gl|| <e. Thus the approximation theorem will hold for S if it holds for S,.

LeMMA 8.8. Let G be a commulative topological group and S a subsemigroup of
containing 0. Suppose that the interior of S is dense in S. Let S be the closure of S in G.
Then the approximation theorem holds for S if it holds for S.

Proof. Let f be a function in A4(S). By Lemma 3.1, the map o¢—of from 8§ to
A(S) is continuous. Since the map is continuous at =0, Lemma 8.5 shows that f is
uniformly continuous on S. Thus it has a continuous extension g to S, i.e. there is
a function g in O (8) with

g(o)=f(0), o€S.
Let r: C(S)—> O (S) be the restriction mapping. 7 is an isometry, so {¢ g: ¢ €S}, which
is the inverse image under r of the conditionally compact set {cf: o €S}, is condi-
tionally compact. Thus by Lemma 4.1, ¢ is in 4 (S). Any approximation of g on §
by a linear combination of semicharacters of S, when restricted to S, yields an ap-
proximation of f on S by a linear combination of semicharacters of S. Thus the

approximation theorem will hold for § if (*) it holds for S.

LeMMA 8.9. Let S be a commutative topological semigroup and F a subset of S
consisting of idempotents.(2) Suppose that for each ¢ in F and each uw and v in e+ S
with w=v there is a semicharacter X of S with X (u)=*=X (v). Then for each x and y in
F+ 8 with z==y there is a semicharacter X of S with X (x)=+X (v).

(*) Conversely, if the approximation theorem holds for .S, it holds for ,§; for semicharacters of S
extend to 8 continuously by the above, and thus, for f in A4 (8), an approximation of f!S extends to
an approximation of f.

(2) e is called an idempotent if e+e=e.
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Proof. Let « and y be distinct elements of F+ S§. Choose ¢ in F so that v €e+ S.

Case 1. e+y=+x. Both e+y and x are in ¢+.S so by hypothesis there is a semi-
character ¥ of S with
X (@)=L (e+y)=1() X (y)- (8.4)

Since ¢ is an idempotent 1y (¢). is either 0 or 1. X (e) cannot be 0, for then we would
have

X(@=x(eta)=7(e) X (x)=0=2(e),

which contradicts (8.4). Thus X(e)=1, so by (8.4). X (z)+X(¥).

Case 1I. e+y=x. Let y€e' +8 with ¢ €F so y=¢' +2=¢"+e¢ +2=¢+y. Then
z=ety=e+te +yisin ¢'+8 and y=e¢' +y=+x, so by Case I applied to ¢, there is
a semicharacter ¥ of S with X (z)=+X(y).

9. Cones

KEuclidean n-space E" is a topological group under vector addition and the usual
topology. A subset S of E” is called a cone if it is a subsemigroup of E” and further-
more if, for each ¢ in S, the ray {Ao: 1>0} is also in S. Any such cone, supplied
with the induced topology from E®, is a commutative topological semigroup. This

section is devoted to the proof of the following.

TurorEM 9.1. Let S be a cone in E". Then the approximation theorem holds for S.

Even though one is interested mainly in closed cones, it is necessary for us to
consider also cones that are not necessarily closed, as these will arise in the course
of our proof as projections of closed cones. We shall use below without further com-
ment standard elementary results on cones that may be found for example in [2].

The proof of Theorem 9.1 will proceed by induction on n. The only cones in
E' are the full line E' and the half-lines [0, o) and (— oo, 0]. The full line is a
topological group so the approximation theorem is known; the approximation theorem
for the half-lines has been established in Theorem 6.1. We take as our induction
hypothesis the validity of the approximation theorem for all cones in E"~!. We shall
show, on the basis of this, that the approximation theorem holds for all cones in B

So let 8§ be a cone in E". We may assume that S has non-void interior. For
if that is not the case. S will be isomorphic to a cone in K" ' and by the induction
hypothesis, the approximation theorem holds for S. A cone with non-void interior

has its interior dense. Thus Lemma 8.8 shows that the approximation theorem holds
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for § if it holds for the closure of §, which is also a cone. So we may assume that
S is closed.

Finally, we may assume that S is proper, i.e. that
{o: 0€8, —c €S}

consists of 0 alone. For if § is not proper, it contains a full line {1g: — oo <A< + oo}
and will be isomorphic to the product of E* and a cone in E""', so by the approxi-
mation theorem for the line, the induction hypothesis, and Theorem 4.9, the approxi-

mation theorem holds for S.
LEMMA 9.2. 8 has a semicharacter that is nowhere zero and vamishes at infinity.

Proof. Since 8§ is a closed proper cone in E", there is a linear functional 2 on

E" which is non-negative on S and which is such that
{o: 6€8, O0<h(o)<1}
is a compact subset of S. The semicharacter X defined by

X(o)y=e"® €S,
has the properties desired.

S has sufficiently many semicharacters to separate points, so Iy §—8%is 1—1.
We shall identify S with its image in S%

By Lemmas 8.2 and 9.2, S\ 8 is a closed ideal in 8% The next three lemmas
lead to Corollary 9.6, which gives an identification of S*\ S that is sufficient for our
purposes. First two definitions are necessary.

The only idempotent in § is 0. We shall denote by Z the collection of all other
idempotents in 8% 8%\ & is closed in S* and because of the joint continuity of addi-
tion in 8% the set of all idempotents in S8* is also closed. Thus E is a closed sub-
set of §°

Let ¢ be an element of 8, ¢+ 0. The closure in S% of the ray {lo: A=0} is a
compact subsemigroup of 8% By Lemma 5.2, the kernel of this compact semigroup
contains a unique idempotent and this idempotent will be denoted by e,. We define
F to be the set {e,: 0 €8, 6+0} of all idempotents of S* obtained in this manner.

In the following, if ¢ € E", we shall denote by |o| the distance from ¢ to 0 in

the Euclidean metric.

LemMMA 9.3. Let f be a function in A(S) that satisfies ef=0 for all e in E. Then

| vanishes at infinity on 8.
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Proof. Choose any £>0. Let ¢ be a point in
{z: 7€8, |7|=1}. 9.1)

Then A— ||(A¢)f|| is a non-increasing function on the half-line [0, co). We show first
that it goes to O as A increases. By Lemma 3.1, the map 7—tf from S* to O (S%
is continuous, and since e, is in the closure of the ray {ic: 1>0}, O=¢, f must be
in the closure in C (8% of {(A¢)f: A>0}. But this cannot happen unless

0= lim [[(i0) f|| = lim [|20) /|

In particular, there must be a A, with ||(1;0)f||<e. Again using Lemma 3.1, the
map 7—7f from 8 to C(S) is continuous, so there is a neighborhood U, of ¢ in
(9.1) so that ||(A,7)f||<e for all 7 in U,. (9.1) is compact and thus can be covered
by a finite number of the U, If A is the maximum of the corresponding 2,, then
[[(A7)f||<e for all 7 in (9.1) and as a consequence |f(r)|<e if |7|>A. Since ¢ was

arbitrary, f vanishes at infinity as claimed.

LEMMA 9.4. 8*\S=FK+ 8%
Proof. Since E< 8\ S and S*\S is an ideal, E+S°= 8%\ 8. Thus it remains to

establish the reverse inclusion. So let = be a point in §* not in E+ 8% We must
show that x is in S. K is compact, so by the joint continuity of addition in §%
E+8* is compact. Thus, by Lemma 3.2, we can choose f in 4 (8) so that f(z)=1
and f is zero on K+ 8% Then ef=0 for each ¢ in E, so by Lemma 9.3, f vanishes

at infinity on S. Since S is dense in §% and f(z)=1, x is in the closure in §° of
{o: 6 €8, |f(0)] =1} 9.2)

But since f vanishes at infinity on S, (9.2) is compact in the topology of S and thus
is compact in 8% So « is in (9.2) and the proof is complete.

We must next strengthen the assertion of Lemma 9.4 to S°\S=F + 8. The proof
of Lemma 9.4 will not work with F in place of E since we do not know that F is

compact. One further lemma is needed.

Lemwma 9.5. Ec F+ 8%

Proof. Let Sy, S; and S, be the subsets of S consisting of those ¢ in S that satisfy
|o| <1, |o|=1, |o|>1 respectively. §, and §; are compact in the topology of S and
thus in the topology of 8° Furthermore, since S,=8,+8 and the addition in S% is
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jointly continuous, Sy = (8;+8)” =8;+ 8% Let ¢ be an element of E. Since e is not
in §,, it must be in S5 =8,+8% s0 ¢e€c+8* for some ¢ in S;. We define T, to be

{x: z€8% e€x+ 8.

Using the fact that e is an idempotent, it is simple to check that 7', is a closed
subsemigroup of 8% and that it contains the entire ray {io: A>0} since it contains
o. But ¢, is in the closure of {Ao: 1>0}, so ¢, is in 7, and thus ¢ € ¢,+ 8% F + 5%,

Since e¢ was an arbitrary element of E, the proof is complete.

COROLLARY 9.6. 8°\S=F+ 8%
Proof. By Lemma 9.5,
E+S°cF+ 8+ 8=F+ 8%

But since FcE, F+8°cE+8° Thus F-+8°=FE+8% and the result follows from
Lemma 9.4.

We can now complete the proof of the approximation theorem for 8. Let z and
y be two distinct elements of 8% By Theorem 3.6, in order to establish the approxi-
mation theorem for S it suffices to find a semicharacter of S that separates « and y.
By Corollary 9.6, there are three cases to consider: both x and % in S; one in 8
and the other in F + 8% both x and y in F+ 8%

Case I. x and y both in 8. Since S is a cone in E", there is a character X of S

that separptes x and y. Then the semicharacter ¥ of S% satisfies
@) =x@)*+xy=1.

Case II. z in § and y in F+ 8% Since by Corollary 9.6 F+ 8°=8%\8, Lemmas
8.2 and 9.2 show that there is a semicharacter ¥ of S* that satisfies X (x)+0 and
X(y)=0.

Case III. x and y both in F+ 8% By Lemma 8.9 we may assume that z and y
are both in e,+ 8% for some ¢; in F. Let S, be {A¢: 1>0} and S; its closure in S%
¢; has been defined to be the identity element of the kernel K (S,). We shall apply
Lemma 7.1 to S, taking G to be E" and @ to be S,, so that K is K(S;) and e is
¢s. The subgroup H of @ generated by S, is the line {i¢: — oo <A< + oo}. Each
character of S, can be extended to a character of H which in turn extends to a
character of ¢. Thus by (i) of Lemma 7.1, if (z+ K) N (y+ K) is non-empty, x and y

can be separated by a semicharacter of S% The image T of § under the natural
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projection G — G/H is isomorphic to a cone in E"~! and thus because of our induec-
tion hypothesis, the approximation theorem holds for 7'. Therefore by (ii) of Lemma
7.1, if (x+K)N (y+K) is empty, z and y can be separated by a semicharacter of §°.
This completes the discussion of Case III and the proof of Theorem 9.1.

10. Finitely Generated Subsemigroups of Groups

We have seen in Section 2 that the approximation theorem does not hold for
all subsemigroups of discrete commutative groups. In Theorem 10.1 below we show
that nonetheless the approximation theorem does hold for finitely gemerated subsemi-
groups of discrete commutative groups.(!)

Let S be a commutative semigroup with an identity element. If 7' is a subset
of 8, then 7T is said to generate S if the smallest subsemigroup of 8 containing 7'
and the identity element is S itself. n (S) is defined to be the infimum of the car-
dinalities of subsets that generate S and S is called finitely generated if n(S)< oo.

THEOREM 10.1. Let G be a commulative group and S a subsemigroup of G that
contains the identity element of G and that is finitely generated. Then the approximation

theorem holds for S supplied with the discrete topology.

The remainder of this section is devoted to the proof of Theorem 10.1. The
proof is similar in outline to that of Theorem 9.1 and proceeds by induction on = (S).

So let us assume that ¢ and S are a group and subsemigroup that satisfy the
hypotheses of Theorem 10.1. There is clearly no loss of generality in assuming further-
more that the subgroup {c—7: 6 €8, T€S8} of G is G itself.

If n(S)=1, then § is either a finite cyclic group, so that the approximation
theorem holds for 8, or § is isomorphic to the non-negative integers, in which case
the approximation theorem for & is contained in Theorem 6.1.

Thus we may assume that »(S)=m and that Theorem 10.1 is valid for semi-
groups that can be generated by fewer than m elements.

Since n(S)=m, it is possible to find a subset (oy, ..., 0,,) of § that generates S.
We shall keep this set of generators fixed throughout the course of the proof.

We consider first the case where there is some 7 besides the identity element
that is invertible in S, i.e. both 7 and —7 are in 8. Since {0y, ..., 6,,; generates S,

there are non-negative integers #,, ..., n,, not all zero, so that

(*) This is precisely the class of finitely generated commutative cancellation semigroups. See
[91, p. 90.

9 — 60173047, Acta mathematica. 105. Imprimé le 20 mars 1961
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AY
T=N,0,F ... + Ny Oy
By rearranging the ¢; if necessary we may assume that n,>0. Then

—gy= T+~ 1oy, +ny0,t ... Fng 0,

is in S and as a consequence, the cyclic group H generated by oy is contained in 8.
If n: G—G/H is the natural projection, then = (S) is the subsemigroup of G/H

generated by
{n(o)): ©=2,3,...,m}

and so by our induction hypothesis, the approximation theorem holds for 7 (S). But
then Lemma 8.1 shows that the approximation theorem holds for S.
Thus we may henceforth assume that S contains no element besides the identity

that is invertible in S.

LeEMMA 10.2. S has o semicharacter that is mowhere zero and vanishes at infinity.

Proof. Let H be the subgroup of G consisting of all elements of finite order and
let y: G — G/H be the natural projection. Since @={o—7: 0 €8, 7 €8}, G is finitely
generated and thus G/H is finitely generated. Furthermore, G//H has no elements of
finite order so (see section 109 of [12]) it has a basis; that is, a subset {y,, ..., ys}
which is such that each element of G/H has a unique representation of the form
Ny Y+ ... +nsys, with the n; integers. Let R® be the linear space of all s-tuples of
rational numbers supplied with the inner product (-,-) defined by (a, b) = o, f, + ... + a5 fs
if a=(ay, ..., as) and b= (B, ..., Bs). Let ¢: G/H — R° be the homomorphism defined by

@yt . FRgys) = (B, .., ng).
We define bi=¢(o)), i=1,...,m,
and denote by 7T the cone

{Z J;b;: A; rational, li>0}
1

i=

in R°® generated by the b. Suppose that none of the —b, are in 7. Then by (%)
Theorem 1 of [14], there must be elements a;, i=1, ..., m, in R° satisfying (a;, ) <0
for all b in T and (e;, —b;)>0. As a consequence, if a=a,+ ... +a,, the function X

defined on S by
4 (O') — e(’lvlp(w(l’»), g€ S,

(1) The results of [14] are stated for real linear space but the proofs are valid for rational linear
spaces.
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is a semicharacter of § satisfying

0<X(o)<l, =1,...,m,

and is thus nowhere zero and vanishes at infinity on . So to complete the proof
it remains to show that no —b; is in 7. Suppose that this is not the case. By re-
numbering if necessary we may assume that —b, is in 7. Then there are non-nega-

tive rational numbers 4; so that

Multiplying through by the denominators of the 4; and transposing we obtain

0= ; n; b, = glni plyplo))=¢ (w (glm oi)),

1

where the n; are non-negative integers and n,>0. But the kernel of @oy is H, so
i%l n;0; is in HNS. Each element of H NS is of finite order and thus invertible in S.
S;nce we have assumed that the only invertible element in S is the identity element 0,
Zil n;0;=0. But this cannot occur since the m»; are non-negative, », >0 and ¢, is non

invertible in 8. Thus we have a contradiction to our assumption that —b, is in 7T
and the proof is complete.

S is a subsemigroup of a discrete commutative group and thus has sufficiently
many characters to separate points, s0 Iy 8—8%is 1—1. We identify § with its
image in S%

By Lemmas 8.2 and 10.2, §°\S is a closed ideal in 8% The next lemma leads
to Corollary 10.4, which gives an identification of 82\ 8 that is sufficient for our
purposes. First a definition is necessary.

If ¢; is one of the generators {oy, ..., 6,} of S, the closure of {no;: n=0,1,2, ...}
in 8% is a compact subsemigroup of S% By Lemma 5.2, the kernel of this compact
semigroup contains a unique idempotent and this idempotent will be denoted by e,.
We define F' to be the set {e,, ..., €n}.

LeMma 10.3. Let f be a function in A(S) that satisfies ef=0 for all ¢ in F.
Then f vanishes at infintty on S.
Proof Choose any ¢>0. The same argument as that used in the first part of

the proof of Lemma 9.3 shows that there are positive integers i, so that

Ao fll<e, i=1,...,m.
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Thus if 6€S, |f(o)| can be greater than e only if ¢ has a representation of the

form ¢=n,0,+ ... +n,0, with 0<n;<4; and as a consequence

{o: c€8, |f(o)|>¢}

is finite. Since ¢ was arbitrary, / vanishes at infinity and the proof is complete.
The proof of Corollary 10.4 below is identical with that of Corollary 9.4 except
that Lemma 10.3 is used in place of Lemma 9.3 and F in place of K.

CoroOLLARY 10.4. 8°\S=F+ 8%

We can now complete the proof of the approximation theorem for S. Let x and
y be two distinct elements of S* By Theorem 3.6, in order to establish the approxi-
mation theorem for § it suffices to find a semicharacter of S* that separates x and y.
Corollary 10.4 shows that there are three cases to consider: both z and y in S; one
in S and the other in F+ 8% both x and y in F+ 8%

Case I. = and y both in S. Since S is a subsemigroup of a discrete commuta-
tive group there is a character ¥ of § that separates x and y. Then the semicharacter
X of S satisfies

@) =2@)+2@) =1

Case II. z in S and y is F+S. Lemma 8.2 and 10.2 show that there is a semi-

character ¥ of S§° that satisfies X (x)=+0 and X (y)=0.

Case III. x and y both in F+ 5% By Lemma 8.9 we may assume that x and y
are both in ¢+ 8. Let §;={no;: n=0,1,2, ...} and 8; be its closure in S ¢, has
been defined to be the identity element of the kernel K (87). We shall apply Lemma,
7.1 to 8, taking @ to be S;, so that K is K(S;) and e is ¢;. The subgroup H of
G generated by S; is the infinite cyclic group {no;: — oo <n< + oo}. Each character
of 8, can be extended to a character of H which in turn extends to a character of
G. Thus by (i) of Lemma 7.1, if (z+ K)N (y+ K) is non-empty, z and y can be
separated by a semicharacter of S° The image 7' of S under the natural projection
G- G/H satisfies n(T)<m and because of our induction hypothesis, the approxima-
tion theorem holds for 7. Therefore by (ii) of Lemma 7.1, if (x+ K)N (y+ K) is
empty, x and y can be separated by a semicharacter of S° This completes the dis-

cussion of Case III and thus the proof of Theorem 10.1.
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11. Ordered Groups, Archimedian Case

In Section 6 the approximation theorem for the semigroup of non-negative in-
tegers was established. This result is extended below to the non-negative half of any
subgroup of the discrete real line. The theorem obtained will be used in the next
section, where we show that the approximation theorem holds for the non-negative

half of any totally ordered commutative group in the discrete topology.

TreorEM 11.1. Let G be a subgroup of the real line and S the subsemigroup
{o: 6€G, 6=>0} consisting of its non-negative elementis. Then the approximation theorem

holds for S supplied with the discrete topology.

For the remainder of this section, G and S are as in the statement of Theorem
11.1. We may assume that @ is dense in the real line. For if it were not, it would
be isomorphic to the integers and Theorem 6.1 would apply.

One lemma is needed before we proceed to the proof of the theorem.

Lemma 11.2. Let 7 be an element of S, 10, and b be a function in A(S)
with h{o)=0 if o<t or if 0=571. Let k be the unique function in C(S) satisfying
k(o)=h(o) if 0<o<b7 and k(c+57)=Fk(c) for all ¢ in 8. Then k is also in A (S).

Proof. The subset
{oh: 6€S, 0<o<T1} (11.1)

of € (8) is conditionally compact since & is in A4 (S). Each of the sets
{ok: 6€8, nt<o<(n+1)t}, n=0,1,...,4,

is isometric to (11.1), so their union

{ok: 6€S, 0<o<51} (11.2)

is conditionally compact. But % has period 57, so (11.2) is all of {gk: o €8} and
thus & is in 4 (S).

We now proceed to the proof of Theorem 11.1. Let z and y be two distinet
elements of the compactification S° By Theorem 3.6, the proof will be complete if
we can find a semicharacter X of S* that separates z and v.

Let ¢ be the semicharacter of § defined by ¢(o)=e"°. Since ¢ separates points
on 8, Iy §—8%is 1—-1 and we identify S with its image in S™.

If ¢(@)+¢(y), we are finished, so we can assume that ¢ (z)=¢(y). We shall
consider separately the three cases where ¢ (z)=0, 0<@(z)<1 and ¢(z)=1.
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Case I. ¢(x)=¢(y)=0. Let 7 be an element of S. Since ¢ (z)=¢(y)=0 and ¢

is bounded away from zero on {o: ¢ €S, 0<c¢<7}, z and ¥ must be in
{o: 0€8, 627} =@+8) =v+5%

But 7 was an arbitrary element of S, so by Lemma 5.1, x and y are in K (8%).
Thus by Corollary 5.3, there is a semicharacter ¥ of §° with X (x)=+% (y).

Case II. O0<q@(x)=¢(y)<l. Since § is dense in the non-negative reals, it is
possible to find a 7 in 8 with

1>¢(27)>¢(@)=¢ ) >¢B37)>0.

Then z and y must be in the closure of {o: ¢ €8, 27<¢<37) in 8% By Theorem
3.2 there is a function f in A (S) with f(z)+/(y). Let g be the piecewise linear func-
tion in C(S) that is equal to O outside of

{o: 6€8, 1<6<47}
and equal to 1 on {o0: 0€8, 271<0<31}.

It is clear that g is in A(S) and thus that fg is in A(S). Let t be the unique
funetion in C(8) satisfying k(c)=7(0)g(0c) if 0<o<57 and k(c+57)=k(c) for all
o in 8. By Lemma 11.2, k£ is in A4 (8). Using the fact that x and y are in

{o: 0 €8, 27<0<37},
on which ¢ is identically 1, we have
k@ =f@d@—f@+fo)=1@ o) -kw). (11.3)
Let v be a cluster point in S* of the net {6n7: #=0,1,2,...}. Then v is in
N Enres)= 00+,

which is K (8% by Lemma 5.1. Furthermore, since k¢ has period 57, Euw+vo)=Fk@)

for all » in 8% In particular, because of (11.3),
b+ =k@) k@) =Fky+o),

80 z+v and y+v are distinet. They are in K (8% since K (§%) is an ideal containing v.
Clearly @ vanishes on K (8% and therefore, by Case I, there is a semicharacter ¥ of
8 that satisfies X (z+v)+ X (y+v) and thus ¥ (z)=+%(y).
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Case III. ¢(x)=¢(y)=1. We may assume that neither # nor y is 0. For if one
were 0, the semicharacter ¥ of S defined by

2(0)= 1, ¢=0
9= 0, ¢>0,

would satisty () £ (x)==% (). For each 7 in § with 7>0 we define U, to be
{o: 6€8, 0<o<1}.

{U;} is an initial family for {o: 0 €8, 0>0} in the sense of the definition given
before Lemma 8.4, so that by Lemma 8.4.
H=NU;

T€S
>0

is a subgroup of 8% For each 7 in 8 with >0, ¢ is bounded away from 1 on
{o: 0€8, 6>7}, so since ¢(¥)=¢(y)=1, « and y are in U;. Thus « and y are in
H. If x+¢=y+o for each ¢ in S with ¢> 0, then we would have r=xte=y+e=y,
where e is the identity element of H, since ¢ is in the closure in 8% of {0: ¢ €8, o> 0}.
Thus there is some ¢ in § with ¢>0 and x+o+y+o. Since ¢>0, 0<g(o)<1 and
therefore

O<g(et+o)=py+o)<l

so, by Case II, there is a semicharacter ¥ of 8% that satisfies X(x+a)*+=X(y+ o) and
thus X (x)=+X(y). This completes the proof of Theorem 11.1.

12. Ordered Groups, General Case

In this section we establish the approximation theorem for the non-negative half

of any totally ordered () discrete commutative group.

TrEOREM 12.1. Let G be a fotally ordered commutative group and S the subsemi-
group {o: c€G, 6=0) consisting of its non-negative elements. Then the approximation

theorem holds for S supplied with the discrete topology.

For the remainder of this section G and S are as in the statement of Theorem 12.1.
G is called Archimedian if for each ¢ and 7 in G with 0<¢ <7, there is a positive
integer n with 7<no. Since an Archimedian G is order isomorphic to a subgroup

(1) Trivially ;Ag vanishes except at 0.
(?) For the basic facts concerning ordered groups, see [4].
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of the real line (see [4], p. 30). Theorem 11.1 is nothing but the special case of
Theorem 12.1 for ' Archimedian. We shall use Theorem 11.1 in our proof of Theo-
rem 12.1.

Before we proceed to the proof, several definitions are necessary. Let ¢ be an
element of § with ¢>0. We define the following subsets of G:

G,={1: —o<nt <o for all positive integers n},

G°={1: —no<t<no for some positive integer n},
S;=6,n8, 8=6°08,
Io)={r: 0<t<0}.

It is clear that G,< G and that both are order subgroups(!) of . Furthermore, it
is simple to check that the quotient group G°/G, is Archimedian under the natural
ordering.(?) Thus (see [4], p. 30) there is a unique order preserving isomorphism gy,

of G°/G, into the real line satisfying w,(c+G;)=1. We define the function ¢, on S by

e—wo(1+ GG)’ T€ Sa

(”“(T)z{o, T €8\

It is clear that ¢, is a semicharacter of S.

Since S is a subsemigroup of a discrete commutative group, it has sufficiently
many characters so separate points. Thus Iy 8§ — 8% is 11 and we identify S with
its image in §°

If ¢ is an element of §, S, has been defined to consist of all elements of §
that are “infinitely small” with respect to ¢. It is necessary for us to extend this to
a definition of S, for z in S§% The next lemma demonstrates the equivalence of

several possible definitions.

Lemma 12.2. Let x€8° and v €8. Then the following are equivalent:

(i) There is no positive tnleger n for which x €I (nt)".
(ii) For each positive integer n, x €nt+ S%

(ifl) e (2) =0,

Proof. Suppose that (i) holds. Then for each =, since

S=I(nt)Unt+A.),

() H is called an order subgroup of G if whenever 6 €H and ¢>0, then {T: ~0<T< 0’} < H.
(2) If 7, <7y, then 7,+ Gs <1, + G
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z is in (nt+8) " =nt+8°

so (ii) follows. If (ii) holds, then for each =,

0<g, () <g;(n1)=e¢",
80 @ (x)=0. Finally, if (iii) is valid, (i) must be also, For if x were in I (n7)”, since
@, is bounded from zero on I{nt), ¢.(x) would be non-zero.
If z is an element of S* with x40, we define S, to be the subset of S con-
sisting of all 7 that satisfy the three equivalent conditions of Lemma 12.2. G, is
defined to be

{r: 7€G, T€S, or —TES,},

so that §;=G, N S. It is simple to check that @, is an order subgroup of G. Further-
more, our definition of S, agrees with that given earlier if x happens to be an ele-
ment of S. For if z is in 8§, then 7t is in 8, (second definition) if and only if
@, () =@, (x) =0, which occurs if and only if x is not in 8%, or equivalently, if and
only if 7 is in S, (first definition).

We can now begin the proof of Theorem 12.1. Let # and y be distinet elements
of 8¢ By Theorem 3.6, our result will be established if we can find a semicharacter of
8% that separates x and y. The proof proceeds by a rather complicated analysis of
various special cases, which are not mutually exclusive,

We may assume that neither x nor y is 0. For if one were 0, the semicharacter
2 of § defined by

1, o=0
X(O‘)={O, 5> 0,
would satisfy X (x)=+7 (¢).

Case I. 8,=+8,. In this case if ¢ is in, say, 9,\8,, then, by (iii} of Lemma
12.2, ¢, (2) =05 (y).

Case II. 8,=8,, z or y in S; =8,. Let X be the semicharacter of § defined by

1, 6€S,

X("):{o, o €8\,

If not both # and y are in S;, then one is in (S\8,;)", so % (x)+X ().

Thus it remains to consider the case that both z and y are in S;. By the
definition of S, if ¢ €8,, then x=¢+x, for some x,€ 8% If 2, were in (S\S;)”, we
would have 7 (x,)=0 and thus
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X (@)= (0+2)=1%(0) X (2:) =0,
contradicting the fact that z is in S;. Thus %, is in 87 and since ¢ was an arbitrary

element of S;, z is in

N (o+8z),

oeS,

which is K (87) by Lemma 5.1. Similarly y is in K (87). Any character of S, can be
extended to a semicharacter of S simply by defining it to be 0 on S\S,. Thus by
Corollary 5.3 there is a semicharacter X of 8° satisfying X (x) =X ().

Case III. For some ¢ in 8, §,=8,=8, and §°=S8. We shall apply both parts
of Lemma 7.1, taking @ to be S, It is only necessary to show that the hypotheses
of the lemma are satisfied: first, that # and y are in e+ 8% second, that each charac-
ter of @ extends to a semicharacter of S; and third, that the approximation theorem
holds for T.

By the definition of S,, x €7+ 8° for each 7 in §; and thus by compactness,
x €u-t8® for each u in S;. In particular, z €e+ 8% where ¢ is the identity element
of K=K (@)=K (8;). Similarly y €e- 5%

Any semicharacter of @ =S, extends to a semicharacter of S by defining it to
be zero on S\S,.

The semigroup T that ocours in the statement of Lemma 7.1 is the image of
S§=S8° under the natural projection G°>G°/G,. Thus T is the subsemigroup of non-
negative elements in the archimedian ordered group G°/G,, which we know to be
order isomorphic to a subgroup of the real line, so by Theorem 11.1 the approxima-
tion theorem holds for 7.

We have shown that the hypotheses of Lemma 7.1 are satisfied for Q@=28, so
as a consequence there is a semicharacter of S* that separates x and y.

Case IV. For some ¢ in S, §,=8,=8,. Let T=8°. We shall establish Case IV
by applying the result of Case III to 7.

Let j: T—S8 be the injection map. By Lemma 3.4, there is an induced homo-
morphism §*: 7*—> 8% which by Lemma 8.3, maps 7 homeomorphically onto the
open and closed subset 7'~ of S% z and y are both in 7'~. For assume that z is not
in I'~. Then, since for each positive integer » we have I (no)< T, xisinno I (no)",
so by the definition of S,, ¢ is in S,=8,, which is a contradiction.

Let j*(u)=2 and §*(v)=y. If we could find a semicharacter ¥ of 7 that satisfied
X (u)==X (v), then the function X, defined on §° by
X (w) if §*(w)=2

xl(z)={0 if z€8°\T"
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would satisfy ¥, (z)=+ X, (y). And %, would be a semicharacter of S° since, by Lemma
8.3, T~ is an open and closed subsemigroup of S whose complement S%\ 7'~ is an ideal.
Thus it remains only to produce X. But it is simple to check that T',=T,=1T,
and that T°=T, so by the result of Case IIT applied to 7', such a ¥ must exist.
Case V. 8,=8, and neither x nor y in S; =8,. Let V be the collection of all
open initial intervals in the ordered group G/@,, i.e. V consists of all subsets of
G/G, of the form

{r+G;: 0+ G, <7+G, <o+ Gy} (12.1)

for ¢ in S\ 8,. Note that V contains the empty set if and only if G/G, has a least
positive element.
Let W be the collection of all subsets of G that are inverse images of the sets
in V under the natural projection G'—G/G,. Each set in W is a subset of S\S,.
We define H to be
nu-.
Uew
Suppose that W does not contain the empty set. Then G/G, does not have a least
positive element and using this fact it is simple to check that W is an initial family
for S\S, in the sense of the definition given before Lemma 8.4. Thus, by Lemma 8.4,
H is a compact topological group whose identity element is an identity for (S\S8,) .
If, on the other hand, W does contain the empty set, then H is empty.
Subcase Va. Not both x and y in H. We shall show that in this case there is
a ¢ in § with §;=8,=8,;, so that we are actually in Case IV which has already
been settled. We may assume that z is not in H.

The inverse image of (12.1) under the natural projection G->G/G, is
{r: 7€8, 0<t+y<o, all 9 in G},

which will be denoted by U,. Since z is not in H and H is the intersection of the
U;, we may assume that ¢ in S\S, has been chosen so that x is not in U,. We
show that this o satisfies S,=3,.

First, S, <=8,. For if there were a 7 in S, that were not in S,, then oc<n7
would hold for some positive integer #» and ¢ would be in S,. But ¢ has been chosen
to be an element of §\S,.

So it remains to show that S,<=8,. Note that sinece each t in S, satisfies 7 <,

UsUS8,={r: T€8, 0<7+5<o, all 4 in S,}. (12.2)
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Let v be an element of S, and » a positive integer. Then nt +5 €8, for each 5 €8,
and thus in particular nv+#% <o for each % in the subset S, of S,. As a consequence,
nt and thus I (nt) is contained in (12.2). We have assumed that z is not in 87
and ¢ has been chosen so that x is not in U;. Thus x cannot be in I (n7)” and as
a consequence 7 is in §,. Since 7 was an arbitrary element of S,;, we have S,<8S,.

This completes the proof that S,=8,=8,, which shows that we are actually in
Cese IV, where we have already established the existence of a semicharacter of S°
that separates z and y.

Subcase Vb. Both z and y in H. Suppose that z+o=y+0 for all ¢ in S\S,.
Then since the identity element e of the group H is in (S\8;)”, we would have the
contradiction

r=xte=yte=y.

So choose some ¢ in S\ 8, with v+ o=+y+o0. We show next that §,=8,.,,. Itis
clear that S, <8;., we shall assume that equality does not hold and derive a con-
tradiction. Choose a t in S,,, that is not in S,. Since 7 is not in S,, there is a
positive n for which ¢ <n7. Since ¢ is not in S§,, there is another positive integer
~ and sincé
6€l(nt)”, o+z is in I ((mn+n)7t)”, which contradicts the fact that 7 € S,.,. Thus

S:+6=28, and similarly S,,,=58,.

m such that z is in T(mo)". But I(moe)<I(mnz), so z€I(mn7)

Since Szi6==8y.6=S, Wwe can now apply the result of Case IV to z+ ¢ and
y+o to obtain a semicharacter ¥ of S% that satisfies X (x+0)=+X (y+ o) and thus
% ()= X (y). This completes the discussion of Case V.

It is now simple to finish the proof of Theorem 12.1. By Theorem 3.6 it suf-
fices to separate two distinct elements x and y of S* by a semicharacter of S% By
the argument before Case I we may assume that neither is 0. If S,+S,, we use
Case I. If S:=S8, and either xz or y is in S; =8,, we use Case II. If S,=38, and

neither z nor y is in S; =8,, we use Case V.

13. Large Subsemigroups

If § is a subset of a commutative group, we shall denote by — S the set
{—0:0€8}. Then Theorem 12.1 can be stated as follows. If S is a subsemigroup
of a commutative group ¢ with SU(—S8)=6 and S n(—8)={0}, then the approxi-
mation theorem holds for § supplied with the discrete topology.(')

(1) For if we define 6>7 to mean 6—7€S, then ¢ is a totally ordered commutative group and
S={a: ocEG, 0> O}.
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In this section wo obtain as a relatively simple consequence of Theorem 12.1

the following extension to a much wider class of topological semigroups.

Turorem 13.1. Let G be a commulative topological semigroup and S a closed
subsemigroup with SU (—8)=G. Then the approximation theorem holds for S.

We need first two lemmas.

LeEMmaA 13.2. Let G be a discrete commutative group and S a subsemigroup with
SU(—8)=0. Then the approximation theorem holds for S.

Proof. Let H be the subgroup SNn(~—48) of G. If T is the image of S under
the natural projection G@—G/H, then TU (—~T)=G/H and T N (—T)={0+H}, so by
Theorem 12.1, the approximation theorem holds for 7. Thus by Lemma 8.1, the

approximation theorem holds for S.

Lemma 13.3. Let G be a commulative topological group and S a closed subsemi-
group with SU (—8)=G. Then the interior of S is dense in S.

Proof. Let T be the closure of the interior of S, clearly an ideal in S. We may
assume that § is not open and thus the open set G\(—8) =T is not closed. Then,

since § is closed and

S={8Sn (=8} {G\ (-8}, (13.1)

SN (—8S) must intersect the closure of G\(— &) and thus intersect 7. But SN (—.98)
is a subgroup of §, so since it intersects the ideal 7', it must be contained in 7'. There-
fore S<T by (13.1).

It is now simple to complete the proof of Theorem 13.1. By Lemma 13.2, the
approximation theorem holds for S in the discrete topology. But by Lemma 13.3,
the interior of § is dense in S, so as a consequence of Corollary 8.7, the approxi-

mation theorem holds for S.

14. A Related Question

Let 8 be a commutative topological semigroup. If M is a bounded continuous

matrix representation of S,

fi1 (6) -+ f1n (0)
M(o)=< : : ),GES,

.fﬂl (0) fnn (0')
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it is simple to check that each of the coefficients f;, is in A(8). If § is a group,
the functions on § that occur as such coefficients are linear combinations of charac-
ters. If S is only a semigroup there may be coefficients that are not of this form.
Thus the question arises of whether the linear span of these coefficients is dense in
A (8), or equivalently, whether A (8) is spanned by its finite dimensional translation
invariant subspaces. In this section we establish that for a wide class of semigroups
this occurs if and only if the approximation theorem holds.

We first show by an example that this equivalence is not universally valid.
Let § be the semigroup, which was introduced in Section 2, of all lattice points
(m, n) in the plane with m=n=0 or m>1. As was noted in Section 2, if f is a
bounded function on S which vanishes when m>2, f is in 4 (8) although it may
not be approximable by linear combinations of semicharacters of §. Let M be the

representation of § defined by

M (m,n)= (14.1)

f differs from a coefficient of this representation only at (0, 0), and since the charac-
teristic function X, of {(0, 0)} is a semicharacter of 8, f lies in a finite dimensional
invariant subspace of 4 (S). Now let f be any function in A4 (S). Then (14.1) defines
a representation of § and subtracting from f the upper right-hand coefficient and an
appropriate multiple of %, we obtain a function g in A4 (S) which vanishes for m <1.
Thus to show that 4 (8) is spanned by its finite dimensional invariant subspaces,
it suffices to show that g can be approximated uniformly on S by linear combina-
tions of semicharacters of §. Let S, be the semigroup of all lattice points (m, n)

with m >0 and let g, be the function defined on §, by

g(o), €S
o (G):{O, o €S\ 8.
It is simple to check that g, is in A4 (S,). Since S, is the product of the integers
and the half-integers, the approximation theorem holds for S, so g, can be ap-
proximated by linear combinations of semicharacters of §,. Thus, by restriction to 8,
g can be approximated by linear combinations of semicharacters of S. This completes

the proof that 4 (8) is spanned by its finite dimensional translation invariant subspaces.
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THEOREM 14.1. Let S be a commutative topological semigroup and n an integer,
n>1. Suppose thot the map c—>no takes S onto a dense subset of itself.(!) Then the
following are equivalent:

(i) The approximation theorem holds for S.

(i) A(S) is spanned by its finite dimensional translation invariant subspaces.

Proof. We need only prove that (ii) implies (i). Note first that there isa 1—1
correspondence between the bounded continuous finite dimensional representations of
S and those of S% Thus, by the Stone-Weierstrass Theorem, (ii) holds if and only
if 8% has sufficiently many continuous finite dimensional representations to separate
points. As a consequence, by Theorem 3.6, we need only show that if z and y are
elements of §° separated by such a representation M, then they are also separated
by a semicharacter.

It is clear that we can assume that J is indecomposable and acts on k-dimen-
sional complex Euclidean space C*. Choose any w in 8% and let Ai o5 Ay be the

distinet eigenvalues of M (u). Then C* is the direct sum of the r subspaces
{y: (M (w)—2,I)*y=0 for some n}.

But these subspaces are invariant under {M (v): v € §*} since §° is commutative, and
thus r=1 since M is indecomposable.

For each » in S% we denote by 4, the unique eigenvalue of M (u). Let » and v
be elements of S% Then

{y: M (w)y=2,7)

is a linear subspace of C* which is invariant under M (v) since M (v) M (u) =M (u) M (v).

Thus it contains a non-zero eigenvector f of M (v) which satisfies
M uv)f=M (u) M (v) f=2, 4, 5.

As a consequence, A,,=A,A, for all 4 and v in 8% Furthermore, u—1, is continuous,
and is thus a semicharacter of 8% If A,%],, this semicharacter separates x and v,
and we are finished. Thus we may assume that A,=A4,.

Since ¢—>n ¢ maps S onto a dense subset of itself, u—nwu maps S* onto itself.
Consequently there is an integer m >k for which any w in S has mth roots. Suppose

now that » is an element in §* with A,=0. Then, choosing v in S§° so that mv=1u,

(*) This holds for all the examples of Section 2 besides the one that we have just discussed.
Thus we have examples of § for which 4 (S) is not spanned by its finite dimensional invariant
subspaces.
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we have 4,=0 and thus M (u)=M (»)"=0. Since M (z)== M (y), this shows that
Ae=2,F0.

Let T be the subsemigroup {u: w€8% A,+0} of S% For u in T we have
M (w)=Ay, N (w), where the matrix N (u) has the single eigenvalue 1 and so is non-
singular. Clearly w—>N (u) is continuous on 7' and {N (u): u € T} generates a com-
mutative subgroup H of the group of non-singular kxk matrices. Since N (x)= N (y),
there is a character X, of H for which X, (N ())+ %, (N (y)). Then the function ¥
defined on S* by
AuXo (N (w), u€T

x(u):{o, Ay

is a semicharacter of 8% for if the net {u,; of elements of 7 converges to % in
S8*\T, then A,—~>0 and X (u,)>0=%(u), so that X is continuous. Since } satisfies

X (x)=+X (y), the proof is complete.
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