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Fourier Analysis of Distribution Functions. 3

Introduction.

For about two hundred years the normal, or, as it also is called, the Laplace-
Gaussian distribution function

(D(ar:)=V%r fe_yf dy

has played an important réle in the theory of probability and its statistical
applications. Thus, for instance, the distribution of the random errors in a
series of equivalent physical measurements may with good approximation be re-

presented by (D(Z;—) » ¢ being the dispersion. To explain this many hypotheses

have been propostéd. Omne of the most convincing is the hypothesis of elementary
errors, introduced by Hacex and Bessgr. According to this hypothesis the error
of a measurement etc. is regarded as the sum of a large number of independent
errors, so-called elementary errors. Let X;, X,, ... be a sequence of one-dimen-
sional random variables (r.v.), each variable representing, for instance, an ele-
mentary error, with the same or different distribution functions (d. f.), the mean
value zero and the finite dispersions ¢;(¢ =1, 2,...). If

sa=0l+a+- - +on
and F.(x) is the d. f. of
Xt X+ o+ X,
Sn

Zn

’

then under certain conditions F,(z) is approximately equal to @ (x) for large
values of n. This is the Central Limit Theorem of the theory of probability.
From this we infer that it is of fundamental importance in the theory of
probability and mathematical statistics to determine the range of validity of the
Central Limit Theorem. Larpracek [1]' and others having formulated the theorem
more or less explicitly as early as about the end of the eighteenth century, it
was first proved under fairly general conditions by the Russian mathematicians
ToreBycaerr, Markorr and Lisrounorr [1, 2]. Liapounoff used what are now
called characteristic funmctions (c.f.), the others employed the moments of the

1 [ ] refers to the bibliography at the end of the work.
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distributions. If F(x) is a d.f., the c.f. f(f) is the Fourier-Stieltjes trans-
form of F(x):

S ==_f°e”“ d F(x).

Liarounorr also succeeded in estimating the remainder term, showing that

=T log n
I Folzg) —@z)| < K- —=»
0 | Fule) — o(a)| < K- 2K
K being independent of » under certain conditions.
The inequality (1) has later been studied by Cramir [1, 3, 5]. fs: being the

third absolute moment of X;, and the quantities By, and B;, being defined by

Bin=r(ol+ i+ + o)

1
B, = ’;(Igax T Bt ﬂan)»
he shows that

= Bs,. log n
(2) IFn(x)—d’(x)IS&B—g—,?"ﬁ'
In recent years important works on the Central Limit Theorem have further
been performed by Linpesere [1], Lévy [1, 2], KainTcriNE [1] and others.
Though the normal d.f may often be used with good approximation to
represent the distribution of a statistical material, there are many cases where
the agreement is not satisfactory. To obtain a better result it has been pro-
posed to expand the d.f. F(x) in a series of @(x) and its derivatives® (we
suppose the mean value = 0 and the dispersion = 1):

(3) Flo)= 0fa) + J0%(@a) + -+ + Z09() + -,

the coefficient ¢, being determined by

ey = (— 1)"fH,(x) dF(z),

-— o0

where H,(x) is the »th Hermite polynomial:

! or, to be exact, the frequency function F'(x) in a series of @' (x) and its derivatives.
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H,(z)=(—1) e%'d%:; (e_%') .

The coefficient ¢, only depends on the first » moments of F(x).

The expansion (3) was introduced by Bruns [1], EpaeworTH [1], CHARLIER
(1, 2, 3, 4] and others, being called by Charlier an A series, as distinguished from
another expansion by Charlier, the B series.' It is possible to deduce the A
series in a formal way, as Edgeworth and Charlier did, by using the hypothesis
of elementary errors. A more rigorous mathematical proof was needed, however.
In the applications there was nevertheless often a good agreement between F(z)
and the sum of the first terms in (3).

A question that naturally arose was that of the convergence properties of
the A series. Compare Cramgr [2]. The essential question, however, is the asymp-
totic behaviour of the partial sums in (3) and the order of magnitude of the
remainder texm. Starting from the hypothesis of elementary errors, regarding
F(x) as the d.f. of the variable

X, + X+ + X,
oV n
where the variables X; are mutually independent and for the sake of simplicity
each X; has the same d.f. with the mean value zero, the dispersion ¢ # 0 and
finite moments of arbitrarily high order, it is easily seen that?

cv=0(n?_l[—ﬂ), v=3,4,5....).

If @, is the moment of order v of X; it is found that

b

o ag 1 o, —3a; I
=— s — e, = ——>" + —,
8 adlt mii? 4 al n
o; — 10a,a 1

10e¢; 1  @g-— 1500, — 1003 + 3003 1
—_, = LS L
as? 12

- 1 .
6 a ol n®

05=

L
Vn

it becomes equal to

Every c¢.(v > 35) generally contains different powers of - After a rearrangement

I

Va

of (3) according to powers of

! The series derived by Edgeworth was not formally identical with (3) but a rearrangement
of it. Compare (4).
* CRAMER (2, 3),
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=
2

il 2
where p,(x) is a polynomial in x, the coefficients of which are only dependent
on the moments «. This is the development of Edgeworth (in the following we
call it the Edgeworth expansion) which has later been studied by Cramzr [3, 5],
especially with regard to the order of magnitude of the remainder term.

The function f(tf) being the c.f. of each variable X;, the Cramér condition (C)
implies that
() lim [ F(f)] <1,

t-tw

this for instance being the case when the d.f. of X; contains an absolutely con-

tinuous component. Provided that the condition (C) is satisfied, Cramér shows that
k-3 P

(s) F@=o@+ 32D 7 1 0(- L), * an integer=>3)

5 z)=@(x znme =K an integer = 3).
v=1

n ?

In this case the expansion (4) may be regarded as an asymptotic series. It
follows from (5) with % = 3, that the Liapounoff remainder term in (1) can be

improved to 0(]%_) if the condition (C) is satisfied.
n

Contents of Part I.

It has been supposed that log » is on the whole superfluous in (1), but this
was not proved until a few years ago. It follows from a somewhat more general
theorem of the present work (Chap. III, Theorem 1) that (2) can be replaced by

.B3n I

BE Vi
The inequality (6) was proved in an earlier work of the present author® and at
the same time by Berry® (1], independently of each other.

One of the main problems of this work may be formulated thus: Given a
sequence of independent r.v.’s X, X;, ... all having the same® d.f. F(z) with

(6) [Falz)— @) <7.5-

! EssEEN [1].

* This work is not yet accessible in Sweden. I have found in a review in Mathematieal
Reviews, 2 (1941} p. 228, that an inequality like (6) is to be found in BerrY [1]. My own proof
of (6) was completed in the antumn of 1940. See ESSEEN [1].

* As we are most interested in principles we generally restrict ourselves to this case.
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mean value zero, the dispersion ¢ £ 0 and some finite absolute moments of higher
order, study the d.f. F,(z) of the variable

X1+X2+ “'+X'u
aVan

as n— o, especially the remainder term problem. A complete discussion of this
question necessitates the introduction of a certain class of d.f's called lattice
distributions. A d.f. is a lattice distribution if it is purely discontinuous, the
jumps belonging to a sequence of equidistant points. This is one of the most
usual types of d.f. met with in the applications.

Three different cases may occur, which together cover all possibilities.

1. The condition (C) is satisfied. Then the expansion (5) holds.
2. F(x) is a lattice -distribution. Even if all moments are finite an ex-
pansion like (5) is impossible with % > 3, there being jumps of F,(x) of order

of magnitude VL— By adding an expression to (5) containing a discontinuous
n

function, it is possible to diminish the order of magnitude of the remainder term.
3. Condition (C) is not satisfied and the distribution is not of lattice type.
It is found that

ot

Fale)= 0(0) + 1= +0(V'n)

ag being the third moment of X;.

These questions are investigated in Chapter IV and the results make it
possible to determine the asymptotic maximum deviation of F,(x) from @ (x).

In Chapter V we study the dependence of the remainder term on % and
on x; the results are applied to the so-called Uniform Law of Great Numbers.

The theorems of Chapters III—V are based on a theorem concerning the
connection between the difference of two d.f.’s and the difference between their
c.£’s. The proof is given in Chapter II. In proving the inequalities (1) and (2)
respectively, Liapounoff and Cramér used a convolution method. Liapounoff
considered the convolution of the difference between the d. f.’s with a convenient
normal d.f., while Cramér applied Riemann-Liouville integrals. By these meth-
ods, however, it is not possible to obtain the real order of magnitude of the
remainder term. In proving the inequality (6) and others, consequences of the
main theorem of Chapter II, we consider the convolution with a function having
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the Fourier-Stieltjes transform equal to zero outside a finite interval. It is just
this property of the transform that is essential.

The c.f.'s being the most important analytical implements of this work, an
account of their theory is given in Chapter I. Many of the theorems stated here
are well known but are included for the sake of continuity. A closer study is
devoted to certain questions, for instance the problem whether two c.f.'s equal
to each other in an interval about the zero point are identical or not. The c.f.’s
form a sub-class of a more general set of functions, the class (7). We begin
Chapter I by investigating these functions.

Contents of Part I

In Part II we study the Central Limit Theorem and the remainder term
problem for r.v.s in % dimensions. Concerning the remainder term problem
there have hitherto been only rough estimations. The results are applied to the
so-called %® method. It follows from Chapter VIII that the remainder term
problem is intimately connected with the lattice point problem of the analytic
theory of numbers. For further information the reader is referred to the in-
troduction of Chapter VII.

I take the opportunity of expressing my warmest thanks to Prof. ArnE
Brurring, Uppsala, for suggesting this investigation and for his kind interest
and valuable advice in the course of the work.

PART 1.
Distribution Functions of One Variable.

Chapter 1.
Functions of Bounded Variation and Their Fourier-Stieltjes Transforms.

The concept of the distribution function plays an important réle not only
in the theory of probability but also in several other branches of mathematics.
As an introduction to the study of this class of functions we shall, however,
devote the first sections of this chapter to a treatment of a more general class,
the functions of bounded variation. For the proofs of several theorems mentioned
below reference is made to BrurLing (1], BocanEr [1] and Cramir [5]. In the
following treatment Lebesgue or Lebesgue-Stieltjes integrals are used.
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1. Functions of bounded variation. Let F(x) be a real or complex-valued
function of the real variable x and of bounded variation on the whole real axes:

L
(1) V(F)=[ldF(x)]| <=.
Further let F(—®)=o0. It is well known that F(x) has at the most an enu-
-merable set of discontinuity points. In such a point we define

Fx)=4[F(x + o) + F(x—o).

The class of all such functions is denoted by (V). A sub-class (¥Vp) consists of
those real functions F(x)<<(V) which are non-decreasing. If F(x) <(Vp) and
F(+®)=1, then F(x) is a distribution function (a.£.).

By a wellknown theorem of Lebesgue, F'(x), belonging to (¥), can be re-
presented as the sum of three components:

F(x)= F,(z) + F;(x) + Fy (),

where F,(z) is absolutely continuous, F,(x) singular, i.e. continuous and having
the derivative = o almost everywhere, and where F,(x) is the step function, i. e.
constant in every interval of continuity of F(x)and having the jump F(x + 0)—
— F{x—o0) at every point of discontinuity. Hence it is convenient to divide (V)
into three sub-classes:

(V) =(r) + (Vo) + (V),
(V,) being the class of absolutely continuous functions etc. In the same way
(VP) =(VP1) + (VPs) + (VP8)~

By the point spectrum @ of a function F(x) <(V) we understand the set of
those points x for which F(x + o) — F(x—o)#0.! The set ¢ is at the most
enumerable and may be empty. By the vectorial sum @ = @, + @, of two such
sets we understand the set of those points z which may be written x =2, + =z,
where ;< @, and z, < ¢,. By definition ¢ is empty if either @, or @, is
empty.

The concept of convolution (»Faltung») of two functions plays an important
role in this work.

! This definition is in accordance with the terminology of Wintner, see WINTNER [I, 2.

It would perhaps be more correct to call ¢ the point spectrum of the Fourier-Stieltjes trans-
form of F(x).
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For every pair of functions F,(x) and F,(x) belonging to (V') with point spectra
Q, and Q, there exists a uniquely determined function F(x) belonging to (V) with
pornt spectrum Q such that the convolution

(2) Fx*Fz=fF1(-77_y)dF2(3l)=fF2(W_.’/)dF1(?I)
exists and is equal to F(x) for every x mot contained in @, + Q5. If x < Q-+ Qy
then F(x) ¢s defined by

F(x)=3}[F(x + o) + F(z—o)).

Further Q < @, + Q.

If F, and F, belong to (Vp), then F belongs to (Vp) and Q= @, + Q,. If F,
and Fy are d.f’s, F s also a d. f.

The convolution of three functions F,, F, and F, is defined by: F, % F % Fy=
== F, % (F, % Fy). Correspondingly for n functions. The convolution operation is
easily found to be commutative. If F,, F,, ..., F, belong to (V) and @ is the
point spectrum of their convolution, then Q= @, + @, + --- + @n.

1f either of the functions F; and F, in (2) is continuous, F is also con-
tinuous. This explains why @ is defined as empty if @, or ¢; is empty. It is,
however, possible further to specialize the continuity properties of F. It is easily
seen that if F, or F, belongs to (¥,) then F < (V,), that if F, or F, belongs
to (V) then F belongs to (V,) or (V, + V), that if both F, and F; belong to
(7,) then F belongs to (¥,) or is constant.

By (1) and (2) we obtain the following important inequalities:

[V(Fy+ F,) < V(F) + V(F)

(3) \V(F, * F,) < V(F,) V(F,).

Finally we introduce that concept of convergence which is especially con-
venient for the (V)-class. A sequence of functions {F,(z)} belonging to (V)
is said to converge to a function F(x) < (V) if lim Fn{x) = F(z) at every point

of continuity of F(x).

2. Functions of class (7). If it is possible to represent a function f(f) of
the real variable ¢ as the Fourier-Stieltjes transform of a function F(z) < (7),

®©

(4) f)=[é=dF(a),

— a0



Fourier Analysis of Distribution Functions. 11

SF(t) by definition belongs to the class (T).! If F(x) < (Vp) we say that f(t) be-
longs to (7Tp). It is immediately clear that f(f) <(T) is a uniformly continuous
and bounded function:

|/ O1=< [1aF(@)| =V (F) < .
In the following we denote a function < (V)' and its transform by the same
letters, capital letters for (¥7) and small letters for (7)functions. Between

classes (V) and (7') there is a one-to-one correspondence, as the following well-
known inversion theorem shows:

If F(x)<(V) and f(t)=fwe”’dF(x), then

v —~{5t —izt
(5) Fla)~F(§=lim = [ “——"— f(jds,
T
(6) Flz +0)— F(x—o0) = lim — [ e-t=tf()dt.
T 2 T_T

Corresponding to the decomposition F = F, + F,; + F; we obtain f=f, +
+ f; + /4, /i being the transform of the absolutely continuous part F; of F ete.
The component f; is called the ordinary, f, the singular and f; the almost periodic
part of f. In conformity to this decomposition we put (T)=(T,) + (T,) + (T),
() béiﬁg the class of ordinary functions of (T') ete. Correspondingly (T'p) =
=(T») + (Ts,) + (Tp).

For later purposes it is desirable to investigate the properties of f(f) for
large values of f. The regularity of F'(x) is here of predominant importance.
We only consider the case where F(x) contains but one component.

a. F(x) <(¥7,). Then it follows by the Riemann-Lebesgue theorem that

t_lgli{lwlf @l =o.

b. F(x) <(V,). Denote by a, the jump of F(x)at z==z,, =0, + 1, +2,...)
Then Y |a,|= V(F) <  and

! This notation is used in BEUBLING [1].
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fi)y= Z ay &5,

Thus f(¢) is almost periodic and lim | f(¢)] > o, provided that f(¢)==o.
t++
¢. F(x) <(V,). Both cases, lim | f(t)] = 0 and lim |f()| > o, may occur. On
tetw t—+ o

the whole the singular transforms have hitherto been very little known. How-
ever, | f(¢)] is small in mean, this being a consequence of:

T
s L g
Tli”;sz'f(t)l dt=o.
-T

Later we shall return to cases a—c and investigate them more closely sup-
posing F(x) to be a d.f.

The study of the convolution of functions in (V) is considerably facilitated
by passing over to the transforms. This depends on the following convolution
theorem:

If F, and F, belong to (V), f, and f; being their transforms, then f,f; is the
transform of F, % F,. Conversely, if f, and f; belong to (T). f, f, also belongs to (T),
being the transform of F, x F,.

The extension to » functions is immediate.

When studying the (T')-functions it is often convenient to introduce the
metric T'(f), defined by
(7) T(f)= VI(F)

This has been done by Bocuxer [2] and Beurring [1], the latter having obtained

important results by the comparison of T(f) with M (f) = Bound |f(t)]. From
—m< i<

(3), (#) and the convolution theorem it follows:

(8) {T(ﬁ + AT+ T(f)
T(HL) =T Tf).

A very important class of functions, especially with regard to the applica-
tions, is formed by those eutire functions of exponential type which on the real
axes belong to the Lebesgue class L(— o, ®). An entire function H(g) is of
exponential type a if

H(z)=0(et), (a>o,]z]—>x)

The following lemma holds':

! See for example PLANCHEREL-POLYA [1], p. 220.
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Lemma 1. If H(2), z==x + 1y, is an entire function of exponential type a, if

H(x) belongs to L(— ®, ®) and ¢f h{t)= fe”‘H(x)d.’r, then h(t) = o for |t| = a.
— o

Finally we may touch upon the convergence in (T). Consider a sequence of
functions {fu(f)} (=1, 2,...), belonging to (T), such that 7(f,) =< K < o for
every n. Such a sequence may converge to a function not belonging to (T), for
instance the sequence {¢~""}. We quote the following convergence theorem?:

Let {f»(t)} be a sequence of functions belonging to (T) such that T(fy) < K< ®
Sfor every m. A sub-sequence can always be chosen, converging to a function f(t)
which almost everywhere and at every continuity point is equal to a function g(f) < (T),
such that T(g) < K. — If {fu(t)} converges to a continuous function f(t), then
SO <(T) and T(f)< K.

3. Minimum extrapolation in (7). Consider a function f(f) defined on a set
e which is made up by a sum of intervals, and suppose f(t) to be continuous on
e. Further, suppose that there exists a function g(f) < (T) such that f(f) = g(t)
on e. Then we say that f(t) belongs to (T) on e and we put by definition

(9) Te(f) = Bound T'(g),

g running through all the functions in (7) equal to f on e. By the convergence
theorem, § 2, it follows that, if f(f) < T on e, there is at least one function
Je(t) < T such that

Te(f)=T(f.).

The function f.(f) is called the minimum extrapolation of f with regard to e (in
French »>prolongement minimal»). Later we shall show by examples that a min-
imum extrapolation need not be uniquely determined. The concept of minimum
extrapolation has been introduced by Brurring® and is of great importance in
many questions.

With regard to a later application we shall briefly determine the minimum
extrapolation of a certain function.

— L on the set w(|t|= T), f(t) belongs to (T) with

Theorem 1. If f(f) o

regard to w and

f

! BEURLING (1], p. 4.
? BEURLING (1), p. 4. This paper is a summary of an earlier work of Beurling, presenteu
to the University of Uppsala in 1936. See BEURLING [1], p. I.
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T 1
2

Without loss of generality we may suppose I'= 1. We put
g(t) for |t] =<1
10 —
(10) A 1 It =1,
vt
g{f) being chosen so that f;(f) is continuous and belongs to (7). As fi(t) <
< L*(— oo, ), it is readily seen that f;(f) <(T), i. e

[+

filt)= f ¢tz Fi(x)dx

— 00

Hence from (10) and the Fourier inversion formula:

1

F{(x)=7—’tfsm xtdt+—1—fe‘“‘g(t)dt
1

t 27
=1
or
1 .
Fi( )=%sgnx——lfsmtxtdt + —f —iztg () dt
0
Hence
(11) Fi(x) =} sign . — H, (2),
where
1
_ 1 [sin xt _ v ~iat g
(12) H,(x)—nf e
0 -1

From (12) it follows that H,(x) is an entire function of exponential type 1.
According to (11) the problem is now to determine an entire function H,(x) of
exponential type 1 such that

-]

(13) T(f) = [} sign « — H, (2)| dz = min. = To(f).

It is easily found that we may choose H,(x) to be an odd function, and
further that H,(x)= H(x) belongs to L(— o, ®). Conversely, for every such
function H, (x) the transform of } sign « — H, () satisfies the conditions on f (#).
Now it evolves that our problem is connected with a theorem of Bomr [1] con-
cerning exponential polynomials:
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If p(x)= D a,e™=, A being real numbers, |2,|=1 and | ¢’ ()| =< 1, then

»=1

(14) lg (=)] <

N

In order to show that such a function ¢ (x) is bounded by an absolute con-
stant we use an argument that has been given in lectures by Prof. Beurling.
Let H(x) be an even entire function of exponential type 1, belonging to

X
L(— o, ») on the real axes. If H,(x)= f H(y) dy we further suppose that
0

(15) fml%—Hl(y)Idy<°°-

Now from Lemma 1;

Hence

and further

p@)=[pl@—y)disigny.

— 00

By subtraction we obtain

p@)=[px—y dl}signy— H,(y).

- Q0

Partial integration gives with regard to (15):

ae

(16) o) =_f ¢’ ( —y) 13 sign y — H,{y)) dy,
or
(17) qu(x)lS_fl%signy-ﬂl(y)ldy-

According to (17) all functions @(x) are bounded by an absolute constant. It

remains to be proved, however, that 7—: i3 the best possible constant.
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On comparison of (13) and (17) the equivalence of the two problems follows.
In both cases the function H,(x) has to satisfy the same conditions: to be an
odd entire function of exponential type 1 and to make the integral (15) con-
vergent and as small as possible.

There are several proofs of Bohr's theorem. I shall, however, give one more
proof, the minimum extrapolation being thus determined.

Let us consider the function 1 (x) with the period 27 represented in Fig. 1.
By the expansion of 1(z) in a Fourier series it is easily found that v (z) meets
all conditions in Bohr's theorem. It is very probable that v (x) is the extremal

function. Under all circumstances it follows from w(g) =7—: that

Y o(x}

—_—— o —— — —— — — - e o e ——— e — . e — — —

(18)

We shall now show that it is possible to determine H; in such a manner that
there is equality in (18). Then Theorem 1 and Bohr's theorem are proved.

Let ¢ =9 in (16) and (17) and x=§. Y (x) being + 1 with the period

! A similar method has been used by VON 8z. NAGY-STRAUSZ [1] who give a proof of Bohr's
1 .
theorem using the minimum extrapolation of — i with regard to |t] = 1. However, the role of

the minimum extrapolation is not explicitly stated; further, since our determination of the minimum
extrapolation is not the same as in the cited paper and may have an interest of its own, I have
found it convenient to treat the question once more.



Fourier Analysis of Distribution Functions.

27, in order not to increase the value of the integral by the step (16) —

is necessary that the variations of sign of { sign y — H,(y) occur in accordance

with Fig. 2.

Thus we form an odd entire function H,(z), ¢==x-+ ¢y, satisfying the

conditions
1° H, (2) = O(e1¥),
2° Hi(z) < L(— w0, »),

(19) 3°4sign z — H,(x)=o0 for x=nn =11, * 2

4° C=f|%signx—Hl(x)|dac<oc.

We will show that (19) uniquely determines H, and that ¢ = 7—;

We prefer, however, to consider the function
(20) G()=31—H,(nez).

From (19) and (20} we obtain:

o for z=1, 2,
2°Ge)=11 » eg=o,
(21)
I » z=—1, —2,

By an interpolation formula of Vavrirox [1] we obtain from (21):
+ a) )

< (=1
—~—10g2—2 z+n.
n=1

n

w

sin e - (=
(22) G (o) =Sin 72 ( % T
a being a constant later to be determined. But
3 =

Sinle+

Here we introduce the function

(23) Ble)= 2

2~ 632042 Acta mathematica. 77
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syny = H(y)

i
2

Ni~

e~ o N I

Fig. 2.
known from the theory of the I'function. From (22) and (23) we thus obtain:

Gl2) = sin ﬂz{ﬂ(z) _2Lz + log 2 + a}-

7T

We now observe that

1S !
zx_1§(x+2n)(x+2n+ 1)@+ 2n + 2)

(24) 8(x) —

Thus £(x) — ﬁ =0 (;‘,—,) as x - o, and hence from (21:3°) a + log 2=0. Thus

_sinmefo 1l
(25) a0 = f }

From (25) it is easily found that H,(z) has the required properties. It only re-

mains to evaluate

dz.

(26) C=2-f|{ﬂ(x)-—$} sin 7z

It is easily seen that the following operations are allowed. According to (24)

1
ﬂ(x)—;;>o for x > 0. Thus
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{5($)—ﬁ}|sinnx|dx=2-{f+f+f+...}___

:_—z.j{ﬂ(x)_i.{..ﬂ(x-l- 1)——2(71;—1)+ ﬂ(x+2)—-—;(?l+—2)+---}sinnxdx.

0

0
n

@

(i

N
- o

Observing that g(x) + g(x + 1) =91_c we obtain:

: e ]

- . ! sin wx T
.:2‘ P — e e 3 . ____—‘d -7
¢ f{zx 2(x+1)+2(x+2) }Slnnxdx f - z="
’ 0

Hence the theorem is proved.

4. A uniqueness theorem in (7, + T,). We shall later consider the problem
of the unique determination of a function in (7»), knowing its values in an
interval about the zero point. Here we shall treat the case where f(t) < (7) is
known in an infinite interval { < a. Without loss of generality we may suppose

a==0. If F(x) is real, the solution is immediate, for then f(— t) = f(f).

Theorem 2.' A function f(t) < (T; + Ty) 2s uniquely determined by its values
in an infinite interval. This need mot be true if f(t) <(T)).

Proof of Theorem 2. In the proof we may suppose the interval in ques-
tion to be ¢t <o. Now suppose that there is actually another function f, (f) <(7),
equal to f(f) for ¢ <o, but not identical with f(f) for > o and belonging to
the same (7')-class as f({). Putting f; (t)=f(t) — £, (t) we have f,(f) =o0 for t=o,
Se(t)= o0 for t > 0. We now use the following theorem, the proof of which will
be postponed somewhat.

Theorem 2 a. If a function belongs to (T) and <s equal to zero for t <o, 1t
is the Fourier-Stieltjes transform of an absolutely continuous function.

Hence from Theorem za f,(f)=f() —fi () <(T,). But if f(t) < (Ty + Ty
this also holds regarding f,(f) and f(f) — f, (). Thus f;(¢) = o, contrary to hypo-
thesis. On the other hand there are functions belonging to (7)) which are zero
in an infinite interval. See for instance Lemma 1. Thus the theorem is proved.

Proof of Theorem 2a. Let f(f) satisfy the conditions of Theorem 2 a.
By hypothesis

! BEURLING [1], p. 4, mentions this theorem incidentally without preof,
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(27) Fl)= [ersar),

where i}

(28) [1dF@E|=V <.

Now we form o

(20) Gl)=1 f et £ dt, (¢ = + iy).

0

Evidently G (z) is analytic and regular for y < 0. We suppose from now on that
this condition is satisfied. But since f(f)=o0 for ¢ <o, we may write (29) in
the following way:

(30) G(2) = -Zin f e~i=tevltl £(1) dt.

Frow (27) and (30) we obtain:

[+

G(Z)=—I dF(§)feyltleit(s—x)dt

2T K
or -
(31) G(2)=7—Itf(—gr|§?)/2—l_l_—?dﬁ’(§)-

From (31) it follows:

" ) , I yldx
f|(f(x+W)Idmgfldz‘@)l;f(r—’l_ng

or

(32) fIG(x+iy)|def|dF(§)|=V<oo.

According to a theorem of HirLLe-Tamarxin [1] there exists a function H ()
such that:

1° lim G (x + {y) = H(x) almost everywhere,
y——0

-

(33) 2 [|H@|dz< ¥V <e,

X X
3° lim fG(x+iy)d:c=fH(x)dac.

Y——0
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From (31) we further obtain:

(34) f(;x—i—zydx—de f:—‘t |"’g)diy

— w0

vl
n(x-—§) +y

On account of the well-known properties of the kernel —

from (33:3°) and (34):

; we have

X
}F(X+0)+ F(X—o)]=[H@)dx,
or this relation and (33:2°) show that F(x) is absolutely continuous. Hence the
theorem is proved.
There is an analogous theorem in the unit circle.

Theorem 2b. Let u(0) be a function of bounded variation in (0, 2 7). If the
Fourver-Stieltjes coefficients

2n

1 .
= ~iné ] =o0,t1,3 2, t o)y
Cn 27tfe d‘u'( )’ (n y 4 1y LI )

]

satisfy the condition ¢y =0 for n <o, then u(0) <s absolutely continuous.
The proof is.similar to that of Theorem 2 a.

5. Distribution functions and their characteristic functions. Henceforth we
restrict ourselves to that sub-class of (V) which was denoted by (Vp), and we
further suppose every function F'(x) < (V) to be so normalized that F(— o) =0,
F(+ o)=1. The class (¥p) then consists of the set of all d.f.’s, i. e. those real
non-decreasing functions which are o for x=— ®, 1 for z = + . The class
(Tp) is formed by those functions f(f) which may be represented as the Fourier-
Stieltjes transform of a function F'(x) < (Vp):

L

(35) fl)=[et=d F(x).

k-

The function f(t) is called the characteristic function (c.f.) of F(x) and has the
following properties: it is

1° uniformly continuous,
(36) 2° bounded: |f(§)| < f(0)=[dF(x)=
3° hermitian, i, e. f(—#) =f(f).
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The c.f.'s naturally have all the properties of the (7')functions but also show
certain special features.

It is very important with regard to applications, to study the convergence
of a sequence of c.f.’s.

A necessary and sufficient condition for the convergence of a sequence {F,(x)}
of d.f’s to a d.f. F(x) is, that the sequence of the corresponding c.f's {fu(t)} con-
verges for all values of t to a function f(f), continuous-at t =o. The limit f(t) is
then identical with the c.f. of F(z) and {fu(t)} converges to f(t) uniformly in every
finite t-interval.

Under somewhat less general conditions a similar theorem was first proved
by Lévy [1], pp. 195—197. In its present form the convergence theorem was proved
contemporaneously by Livy [2], p. 40, and CramEr [5), p. 29. See also CramEr 7],
p. 77, where a correction is made, and compare the convergence theorem in § 2

and Theorem 4 this chapter, § 6.

6. A uniqueness theorem. From the inversion formula in § 2 it follows that
a d.f. F(x) is uniquely determined by its c.f., i.e. if f(f) is known for all ¢
We shall here consider the question: Do there exist two c.f.’s equal to each
other in an interval about the zero point but not identically equal? GnEDENKO [1]
has given an example of such an occurrence. Since there has been some obscurity
as to this point, we give some further examples and theorems, starting with the
following lemma.!

Lemma 2. Let f(t) be an even real bounded function which decreases steadily
to zero as t — © and is convex downwards. Then, if f{0) =1, f(t) <(Tp).

Examples.

a. Suppose that f(t) satisfies the conditions of Lemma 2, that f(+ 1) >0
and that f'(+ 1) exist. Form the even function (Fig. 3)

Jab) foro<|¢|] <1
gy =1+ () (Jt]—=1)for1 =<|t] <1 ch,giz
f )
o for |tl=1— Yol

From Lemma 2 it follows that both f(f) and g¢(¢) belong to (T»). Obviously the
d.f’s of f(t) and g () are not identical in spite of the fact that f(f) = g(f) for

lt]<1

! TITCHMARSH [1], p. 170.
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pit)

D) JALY)

Fig. 3.

b. Let f(f) be defined as in example a. Form p(t)=f(f) for |¢|<1 and
then continue p(f) periodically with the period 2 (Fig. 3). Then p(t) < (Tp,), for
if we expand p(f) in a Fourier series,

1 1
p(t)~ Zanei’”“, anz%fe‘i””‘p(t)dt=fcos nat: f(t)dt,
~1 0

it is easily seen as in the proof of Lemma 2 that @, = o. Furthermore, by a
well-known theorem on Fourier series

pt)=Nand", Dawn=plo)=1.

Hence p(t) is the c.f. of a purely discontinuous d.f. with the jump a, = o0 at
=nm. By the construction, p(f)=s(t) for |¢| <1, but the d.f’s are not
identical.

In the examples given above we may for instance choose f(t) = e l¢l, the
c. f. of the Cauchy distribution } + ;I arctg x.

Remarks.

1. Examples a and b show that a minimum extrapolation need not be unique.
Let h(f)=f(¢) for |¢| < 1. Then all the functions f(f), g (¢) and p (¢} are minimum
extrapolations of %(f) with respect to |#] < 1.

2. In examples a and b the derivative at ¢ = 0 does not exist. This is, how-

ever, by no means necessary.
&
Let us for a moment consider ¢ (f)=e 2, the c.f. of the normal d.f. @(x).

Does there exist a d.f. 52 @ (x) with the c.f. equal to ¢@(f) in an interval about
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t=0? This is an important question with regard to the applications to the
theory of probability. We will show that in this and many other cases the c.f.
is uniquely determined by its values in an interval about {=o0. We base our
argument upon the following lemma.!

Lemma 3. A 'necessary and sufficient condition for the c.f. f(t) of the d.f.
F(x) to have a finite derivative f®9 (o), (k a positive integer), at t = o0, is that

agszx“dF(ac)< ©.,

The sufficiency of the condition is immediately clear. In order to show the
necessity we may without loss of generality suppose Z= 1. Then by hypothesis
/" (o) exists and is finite. Now

S+ f(=1)

2

I —

"%f’,(o):lim ]
t—0 t

From f(t) = fe””dF(ac) it follows:

.ﬂgigtzhifmSMdFux

or
-]

(37) —1/"(0) = lim f ‘—_‘t’—,"s—“idp(x).

From (37) we obtain, with regard to I—:f;)—s@—d Fx)=o:

—1 0= [Lar

o0
for every a. Hence f 2*d F(x) < © and the lemma is proved.
—o

We now enunciate the following theorem:

Theorem 3. Let F(x) and G(x) be two d.f's and f(t) and g(t) the corre-
sponding c. fs, such that
1° g(t) =f(t) in an interval about t=o,

2° ak”—‘kadF(x) <® fork=o0,1,23,.

-

Y LEvy [1), p. 174.
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If the Stieltjes-Hamburger problem of moments with regard to {ag} is determined,

i.e. if the series D ~IT diverges, then F(x)= G ().

k=1 3k
@k

Proof. By the Stieltjes-Hamburger problem of -moments we mean the
determination of a non-decreasing function y(x) belonging to a given sequence
of numbers {c;} so that

(38) _fw’“dtp(x)=ck, (k=o0,1,2,3,...).

The problem is said to be determined if v(x) is uniquely defined by (38), this,

being the case, according to Carremax (1], if and only if D) E]/I? diverges. (Here
k=1 2

we naturally suppose that there exists a solution of the problem.)

By 2°, Theorem 3, f®(0) exists for every % and by 1° g® (o) =f" (o) for
every k. Thus by Lemma 3 every moment of G (x) exists and from f®(0) =1, e
it results that

(39) ak=fx"dF(x)=kadG(x), (k=o0,1,2,3,...).

By hypothesis the problem of moments with regard to {a;} is determined. Hence
according to (39) G (x) = F(x) and the theorem is proved.

Theorem 3 especially holds if f(t), (=0 + ¢7), is analytic and regular at
t=o, for if the Taylor series of f(t) about =0 has a positive radius of con-
vergence g, then from Lemma 3 it is easily seen that f'(f) is analytic in —p <z <y,
i.e. analytic and regular on the whole real axes. Hence, if g(f)=f(f) in an
interval about ¢{= o0, g(f} is also analytic and regular for all real ¢ and thus

~
g()=f(f). Let us observe the important example f(f)=-e 2, the c.f. of the
normal d.f. @(x). Here f(t) is analytic and regular for {= 0, and thus the c.f.

g(?) of a d.f. G(x) cannot be equal to e"g in an interval about ¢ = o without
G(x)= 0 ().

Let us finally consider the convergence theorem in § 5 from the point of
view of this section. It is generally necessary and sufficient for the convergence
of a sequence of d.f's {Fu(x)} to a d.f. F(x) that the corresponding c. £.'s { fn(¢)}
converge for all ¢t to a function f(f) continuous at ¢ =o, or if we only consider
the convergence in an interval about {= 0 there may be several d.f.'s with the
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c.f’s equal to f(f) in the interval in question. With regard to Theorem 3, an
analysis of the proof of the convergence theorem mentioned above shows that
it may be replaced, for instance, by the following: ‘

Theorem 4. A sufficient condition for the convergence of a sequence of d.f’s
{F(x)} with the c.f’s {fu(8)} to a d.f. F(x) with the c. f. f(t) is that lim fn(t) =

=f(t) for all t in the general case, or that lim f,(t) = f(t) <n an interval about

n—+a

t = o, provided that the Stieltjes-Hamburger problem of moments with regard to F(x)

18 determained.

7. On the approach towards 1 of the modulus of a characteristic function.
For later purposes it is of importance to consider f() for large values of ¢, and
further to investigate whether and when |f(¢)] =1 for a finite ¢, # o.

We call a d.f a lattice distribution if the following condition is satisfied:
F(x) is a purely discontinuous d.f. with the jumps situated only in a sequence

of equidistant points. For instance, a purely discontinuous function F(z) with

F(—o)=1% F(+o0)=1% and the jumps 51 at r=+n (n=1,2,3,...)is a

w2
lattice distribution. The most common example is the Bernoulli distribution
having two jumps p and ¢ (p + ¢=1,p > 0,¢>0) at two points z, and x,.
The reason of the term »lattice» will become more clear in the multi-dimensional
case. The lattice distributions are most frequently met with, besides the absolutely

continuous distributions, in statistical applications.

Theorem 5. If and only if F(x) s a lattice distribution, there exists a finite
t, % 0 such that | f{t,)| = 1.
This condition is necessary, for if we suppose that #, < 0 and | f({,) | = flo) =1,
then f(t,)e'% = f(0) for some real 6,, or
©

[ (1 —¢ior62) dF (z) = o.

— 00

On taking real parts we obtain f g(x)dF(x) = o where g(x) =1 —cos (6, + ¢, x).

As g(x) =0 and continuous, g(r) must be o at every point where d F(x) > o.
But g(x) =0 only for

2 0,
(40) x=:1:0+v-~t—, (xoz———o;v:o,il,iz,_t...),
0

! WINTNER (2], p. 48.
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and thus F(x) mnst be a purely discontinuous function with the jumps

(41) avZOforoczxo%—v-?»tzy v=o0,t1,%+2 +..)
0
and no other discontinuities. Thus F'(x) is a lattice distribution.
The condition is sufficient, for if F(x) is a lattice distribution let it be

defined by (41). Then
0= B,

hence |f(t)| is periodic with the period #,. Thus |f(t)] =f(0)= 1.1

The proof of the following theorem will be delayed until Chapter VIT; § 1,
where it is proved in the multi-dimensional case. By I we denote an arbitrary
interval of the real axes and by m;(E) the measure of those ¢-points, belonging
to I, for which a certain property E is satisfied.

Theorem 6. Let F(x) be a d.f. with the mean value zero, the c.f. f(t) and

the finite moments
@0

w=[taF@); g=lelar )

—e0
ay . .
==, the tnequality

For every ¢, (0 <& =< 1), and for every interval I of length ¢, - 3
3

millf O = 1 —e) < ey L
Ve,
holds, ¢, and ¢, being absolute constants.
We now proceed to the study of |f(f)| for large values of f. Let us first
recapitulate the results of § 2.

a. If f(¢) <(T5p,), then lim |f(t).|=0.

t—>+tw
b. If f(t) < (Tp,), then f(t)= D a,¢™*, a, being the jump of F(x) at x=2z,,
and Dla,=1. Then f(f) is almost periodic, and since f(o)= 1, it follows that

lim |f(#)] = 1.

t—two

! It may happen that | f(#)] =t for every £. Then it is easily seen that F(x) = E(x—a) =
_ {o for x<a

, . . . .
1 » >4 a being a constant. We always exclude this case.
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c. f(t) <(Tp). Tt is known that |f(f}] is small in mean. There are’, how-
ever, singular transforms f(f) such that

Lim [f(t)] > o.

t—+ o
On the other hand there exist® singular transforms such that

lim |f(t)] =o.

t—+ o
We are especially interested in the question whether there exists a singular
transform f(f) with the property that
lim |£(8)] = 1.

t—+w

I have not found any example of such a function in the literature until lately,
when a paper by L. Scuwagrrz [1] became available in Sweden. Two years ago I
found another example, using the following lemmata.

Lemma 4.* Let F,(x), Fy(x), ..., Fa(z), ... be a sequence of purely discon-
tinuous d. f’s and suppose that the convolutions Fn(x) = F, % Fy% Fg .- % Fy,
(n=1,2,3,...), converge to a d.f. ¥(x) as n—> . Then ¥(x) zs purely discon-

tinuous or purely singular or absolutely continuous.

Lemma 5.* Let F,(x), Fy(x), ..., Fu(z), ... be a sequence of purely discon-
tinuous d.f’s and suppose that the convolutions Wn(x)= F, % Fy % Fy* .. % Fy,
(n=1,2,3,...), converge to a d.f. ¥(x). If d. denotes the maximum jump of Fy(x),
the necessary and sufficient condition for ¥ (x) to be continuous is that

lim H d, =0,
n —*m v=1
BExample. Let {4}, (n=1, 2, 3, ..., 4 > 2), be a non-decreasing sequence of

numbers such that lim 4, = o0, and let F,(x) be a purely discontinuous d. f. with

n— o

the jump 1 —% at =0 and the jump % at x=2"" (n=1,2,3...). The
n n

corresponding c. f. f;(f) is obtained from

! CARLEMAN [2), p. 225, RiEsz [1], p. 312, JESSEN-WINTNER [1], p. 6I.

® MENCHOFF [1], LITTLEWO0OD [1]; many examples in the American Journal of Mathematics
from 1935 and onwards.

® JESSEN-WINTNER (1], p. 86,

¢ LEvy [3).
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=X T e
Salt)=1 7 +l e

n n

Now we suppose that

(w2 M(i-7)=o

1

By the convolution theorem in § 2 the 4. f. ¥, (x) = F, ¥ F, ¥ --- % F, has the c. f.

n I 1 -
vt =T[ (‘“Z*T“’” : )

=1 v

It is easily seen that yn(f) converges for all ¢ to a continuous function
i I I Rl
(43) w(t)=1-[(l—z+1:e"“ ) as n— o,

v=1

By the convergence theorem in § 5 lim ¥,(x) = ¥ (x) exists and is a d.f. By
fn—r o

Lemma 5 and (42) ¥(x) is continuous, and by Lemma 4 it is either purely
singular or absolutely continuous. Putting f=2x-2™ in (43), (m a positive in-
teger), it is easily found that

(44) Jim [y(zm-2m)]=1.

But (44) shows that ¥(x) cannot be absolutely continuous. Hence it is singular
and its c¢.f. has the required property.

d. Let us finally consider the general case: f(t) < (T#). By § 1 we may write

(45) F(x) =20, F,(x) + by Fy(x) + by Fy(x), (szo, éb;= I, 1=1, 2, 3) ;

i=1

here the functions Fi(x) are d.f.s, F,(x) being absolutely continuous etc. Cor-
respondingly

(46) S(O) = by f1(6) + be fy () + by S5 0).
If b,>o0, i.e. if F(x) has an absolutely continuous component, we obtain

from (46) and case a: i_IE /@< 1.
t—t o

If b,=o0, i.e. if f({) <(Tp,+ Tp), cases b and c¢ show that sometimes

lim [f(t)|= 1, sometimes lim [f(t)] < 1.
frt® t—+w
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If we sum up the results of cases a—d, combined with Theorem 3, we

obtain:
Let F(x) be a d.f. with the c. f. f(t).
If F(z) has an absolutely continuous component, then

lim [f()] < 1.

t—rt o0

If F(x) us purely discontinuous, then
lim | /()] = 1.

t—+eo

If F(x) is purely singular or if F(x) <(Vp, + Vp,) either
lim |f(f)] =1

t—tw
or

lim | ()] <1
t—+»
may ocecur.
If lim |f(8)| < 1, then there exists a constant ¢ > o such that |f(t)| < e~ for
t—+aow
¢ = 1.
Chapter II.

Estimation of the Difference Between Two Distribution Funetions by the Be-
haviour of Their Characteristic Functions in an Interval About the Zero Point.

1. On le(x)—— G (z)| dx. We have earlier found that two c.f.’s may be

equal to each other in an interval about the zero point without the corresponding
d.f.’s being necessarily identical. It will, however, be shown that they are approx-
imately equal in the mean. As a measure of the difference we may consider

o, 6)= [ 1 110) ~ 6] az.

Theorem 1. If F(z) and G(x) are two d.f's, f(t) and g(t) being the cor-
responding c. fi's such that
f)=g(t) on [t] < L,

O

(1) e(F,G)=f|F(x)—G(x)ldxs%

-—@®

then
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Proof. From f(t)—g(t)= f ét* d(F(x) — G(x)) we obtain by partial integra-

tion: -

(2) f(t)_—{z(_t) =] ¢t (Fx) — G @) dz.

From (2) and the definition of the metric T(f), (Chapter I, (7)), we obtain:
5 o(r, 0)— r{{=2l0].

But since f(t)=¢g(¢) in |¢| < L we have f(t)_-;.!:-(—t) =o for [¢|=<L. Hence we
may write:

t)—glt
(4) £ )_ z}iﬂ =(fh—g®)-alt),

where a(t) =—-z.it for |¢| = L and for the rest arbitrary. We now choose
(s) a(f) == the minimum extrapolation of — z_l;t

with respect to |¢{= L. From Cbapter I, Theorem 1, it follows:

7T 1
(6) T(a(t))s;-z-
Further
(7) T(f—gt) = [|d(Fx) ~ G@)| < 2.
From (3), (4), (6) and (7) we now obtain:
e(F,G)=T{(fO—gt)alt)} < T(fO—g@)- Tal) <2 ’2—‘ %

and the theorem is proved. This method has been used by Bzurring (loc. cit.
p. 13) in similar cases.

Remark.

Even if f(f)2 ¢(f) in an interval about f=o0, it is possible to make an
estimation of ¢(F, G), provided that further conditions are imposed. I confine
myself to this indication.

2. On |F(x)— G{z)|. We now proceed to the proof of a theorem that is
fundamental with regard to its applications.!

! EsseeN (1}, p. 3.
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Theorem 2 a. Let A, T and ¢ be arbitrary positive constants, F(x) a non-
decreasing function, G (x) a real function of bounded variation on the whole real azxes,
S(8) and g(t) the corresponding Fourier-Stieltjes transforms such that

1° F(—®)=G(~»)=0, F(+x)=G(+x)

[+

2° @' (z) exists everywhere and |G’ (z)| < 4, .
3 f&)—g(?)
o t - g t .
®) 3 f [o=ea; -,

To every number k> 1 there corresponds a finite positive number c(k), only
depending on k, such that

(0) |Fe)— @@ <t - +c(®)

M)

We also need a theorem?, analogous to Theorem 2z a, where, however, G (z)
is not supposed to be continuous.

Theorem 2 b. Let A, T and & be arbitrary positive constants, let F(x) be a
non-decreasing, purely discontinuous jfunction and G (x) a real function of bounded
variation on the whole real axes, f(t) and g{t) the corresponding Fourier-Stieltjes
transforms such that

1° F(—o)=G(—®)=0, F(+®)=G(+x),

2° 4f G(x) s discontinuous at x==x,, (xy < Xy41, v=0, £ 1, 2, + ---),
there exists a constant L > o such that Min. (z,4+, —x,) = L,

3° |G @)} < 4 everywhere except when x=ux,, v=0, + 1, *+ 2, + ---),

4° F(x) may be discontinuous only at x=x,, v =0, + 1, + 2, + ---),
T
(10) 5° flﬁ—t)——:g(t)ldt=e.
2

Then to every number k > 1 there correspond two finite positive constants c, (k)
and cy(k), only depending on k, such that

?

(11) |Fle)— G@| <&+ o)

Nyl

provided that T - L = ¢, (k).

! EsSEEN (2], p. 7, without proof.
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Proof of Theorem 2a. From f(f)— g(t)=fe“’d(F(x)— G (x)) and in-

tegrating by parts we obtain

w0

(12} f—(f)fz’t’—m= f ét=(Fla) — G @) da

Thus jﬁ)——z—%@ is the Fourier transform of F(z)— G ().
In order to understand the theorem better let us first suppose

ff_(_t_).%lﬁldt=6<°°

—w

and let 7= in (8). By means of the Fourier inversion formula we obtain
from (12):

Hence

| Fa)— |<~fV

Thus c{k) %1, in (9) can be interpreted as a remainder term, corresponding to a

finite 7.
It is sufficient to prove the theorem for A4 = T =1, for if we put

F,(2) =§F(i;,) : Gl(x)——:%G(%f) ,

fi(t) and g, (f) being the corresponding transforms, then | G1(x)] < 1 and

f(t 9, (® T.
|’ |‘“ T

Now suppose that the theorem holds for A =T =1. Then

N

|F (@) — @) <&+ clk)

27T

b

or

3 — 632042 Acta mathematica. 17
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|Flo)~ 6@ <k 5 + c(k)-‘%,

the desired inequality. Thus in the following we take A =T =1,
In the proof, which is based on a convolution method, we use two auxiliary

functions H (z) and k(f) with the following properties:

o

1° H(x) and h(¢) are real even non-negative functions;

(13) J2° wa(x)dxr—-I; b=fw|x|H(a:)dx<oo;
3° h(t)=f°°e”‘”H(x)dx; ho)=1; h(t)=o0 for [t|=1;

—

o<h()<1 for |t|=<1.
To obtain an example of such a function we may proceed as follows. Let

1—|¢| for [t| <1
o) for |¢|=1"

=]

Hence the Fourier transform

2

.z

® sin =
2

x

2

By means of the convolution theorem of Fourier integrals

4

.
s [
ST e
4
and
folc(zt—-s)lc(s)ds
h(t) = =——3

[®@)ds

—

are Fourier transforms; it is easily seen that they have the required properties.
In this connection we quote a theorem by Ingmam [1].

Lemma 1. If e(x) is an assigned positive function tending steadily to zero
when x~o, there exists a non-null function h(t), equal to zero outside an assigned
interval (—1,1), and having a Fourier transform H(x) satisfying
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H(x)= O(e-1=1e02D), (x> + o),

figdx

1

if and only if

converges.

The sufficiency is easily proved by considering a function H (z) of the type:

o

H(z) == Hsm_e”__f,

0
1
the quantities ¢, being suitably chosen.
y‘l +a
14
Flx)
,61%) yed+a
l
o

Fig. 4.
After these preliminaries we proceed to the proof of Theorem 2a. Put

(14) 4 = Max | F(z) — G(z)].
—<r<®
Without loss of generality we may suppose that 4 =|F(x) — G (x)| for z = o,
since a translation x, of x is equivalent to a multiplication of the transform by
¢''» of modulus 1. Further we may suppose F(o) > G (0).
Since F(x) is non-decreasing and | G’ (x)| < 1 it is easily seen from Fig. 4 that

(15) Flx)— Gx)=d—z forosz<4d.

Now consider the integral

@

V(z)= [ Hlz— ) [Fly) — G )] dy,

—®

H(z) and h(t) being defined by (13). Formally we obtain from (12), (13:3°) and
the Parseval formula:
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[«

(16) fﬂ<x—y>[F<y)—G(yndy—2—nf it L0904y,

-1t
- -

The validity of (16) may be proved in the following way. It is immediately
clear that (f(— g(®)-h(f) is the Fourier-Stieltjes transform of 7 (x). By the
inversion formula (5), Chap. I, we have

V(x) : 1 Zﬂff .__zt ( -ztz_e—itz,)dt'

In view of (8) and the Riemann-Lebesgue theorem it is readily seem, that
1
V(z;) > o and that Z—I;tff—(t)—_—if—@h(t) etz dt—» o when x; > . Hence (16), the

central formula of the proof.
From (15) and (16) we have

f4-nH@—piy— [ Ba— 9| Fe)— 6)|dy—

—_fOH(x—y)lF(y) w)|ay <mflf —9, ldtsi-

But |F(y) —.G(y)| < 4. Hence
4

Ju—nre—piy—a [He—yay—a[Ba—nays S

27
0

By means of (13:2°) this is easily transformed to

44—z

f(zd—-x—— yVHy)dy — d<;€
or

4=z
(17) f(zd—x)H(y)dy—JSit+b.

-

In (17) we put z=m-4, (0 <m < 1), and obtain
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(18) d{(z—m)(jm;(y)dy-—l}sz—i;+b.

—md

Given an arbitrary number %> 1 we can always choose m (k) sufficiently
small and e (k) sufficiently large so that

(1—m (k) e (k)
(19) (2—m@®) | Hy)dy—1=1/k
—m{Balk)
Now two cases may occur:
1. 4 <alk),
2. 4> alk).
Hence from (18) and (19):
di<E tbor d<k-= +k-b.
k™ 2m 27

Thus
4 < Max (ki + kb; a(lc)) <k +kb+alk)=Fk —— +c(k),
27 27T 27

c(k) being a number only depending on k. Hence the theorem is proved. By
the construction c¢(k) > o as & — 1.

Proof of Theorem 2b. The method of proof is similar to that of
Theorem 2a. As before we may take 4 = I'=1 and, putting
(20) 4 = Max | F(z) — G (z}],
—_< <o
we may suppose that |F(0)— G(0)| = 4. Several cases may occur in the be-
haviour of F(z) and G (x) about x = 0. We restrict ourselves to that represented

in Fig. 5; the others are treated in the same way.
From Fig. 5 it is-seen that

(21) F)— Ge)=d—z foro<z =<9

where § = Min (4, L/2). As before

(22) f Hiz—g)[Fly) — G @) dy == [ st LO=905 544,

2 —1t
=1
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and hence
d—z

(23) f(zd—x)H(y)dy—dSﬁ+b.

Putting z=m-48, (0 <m < 1), in (23) we obtain

(1—m)d
(24) d{(z --m)f H(y)dy — 1}.5;8;—‘ +b.
-—md
y:xoa
y
F(x)
' Gix)
A :
|
It : ,
1 \
L : |
] a : :
H d i 1
i J' X
Xy > L Xyss
2
Fig. §.

Given an arbitrary number % >1 we choose m(k) and «(%) in such a manner
that (19) holds. Then two cases may occur.

1. 4=<alk).
2. 4> alk).

If now f > a(k), then & = Min. (o, L/2) > «(k), and hence from (19) and (24):
[a d . L
JSMax{k-z—;‘ + kb; a(k)}, or 4=k p + ¢, (k),

provided that L > 2 q (k)= c,(k), ¢,(k) and c,;(k) only depending on k. This
proves the theorem,
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Chapter III.

Random Variables. Improvement of the Liapounoff Remainder Term.

1. Random variables. By a random variable X we understand, popularly
speaking, a quantity, which may assume certain real values with certain pro-
babilities. The foundations and definitions of the theory of probability have always
been subject to discussion and different opinions. In recent years it has been
attempted to give the theory of probability a more rigorous structure by connec-
tion with the general theory of sets and axiomatically stated definitions. (Kowrmo-
eoro¥F [1].) I shall give a brief account of some of the conceptions and defini-
tions that have been used; for further information the reader is referred to the
works of KoLmogororr and Cramer [5].

Consider the #-dimensional euclidean space R with the variable point
x= (2, %3, ..., 2). By S we denote an arbitrary Borel set in R;. (Only such
sets are considered here.) A set function P(S) is called a probability function if
the following conditions are satisfied.

1. P(8) is defined for every Borel set S; P(S)=o.
2. P(Rk) = 1.
3. P(S) is completely additive, i.e.
P(S+ 8+ 8+ )=P(S) + P(Sz) + P(Ss)"’"‘,
where S,, S;, S;, ... are Borel sets, no two of which have a common point.

The probability function P(S) defines the probability distribution of a random
variable X (r.v.) in Ry, P(S) denoting the probability that X < S.

By S:.c.,..., z, we denote the set x; <&, (=1, 2,...,%). Then the distribu-
tion function F(§,, &, . . ., &), corresponding to the r.v. X, is defined by
F(gl’ €2, vy §k)= P(SEI,Ez,.--,Ek)-
The d. f. F(§, &, ..., &) is a point function, uniquely defined by P(S). Con-
versely, by a wellknown theorem of Lebesgue, F(§,, &,, . . ., §) determines P(S)
uniquely. Every d.f. F(§, &, ..., &) has the following properties:

1. In each variable &, F is a non-decreasing function, continuocus to the
right, and lim F=o.

Sy —®

2. As all variables & - + o, F tends to the limit 1.
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If X=(X,,X;,...,Xe)isarv.in Reand Y=(Y,, Y,, ..., Yu)=,(X)
is a B-measurable vector function, finite and uniquely defined for all points X
of BR:, then f(X) is ar.v. in Bn.

Let X; and X, be two r. v.’s in R, and Ry, with the probability functions
P, (S,) and P,(S,) respectively and consider the combined variable X = (X, Xj)
in the product space Ry Ri with the probability function P(S). If S denotes
the set formed by X as X, < §, and X, < &§,, then X, and X, are ¢ndependent if

P(S) =P, (Sl) Ps(Sz)-

In the same way the mutual independence of # r. v.’s is defined.
In this and the following two chapters we only consider probability distri-
butions in one dimension.

2. Probability distributions in one dimension. Consider a one-dimensional
r.v. X with the d. f. F(z). In a discontinuity point we put

Flx)=}(Fx +0)+ Fx—0),

thus slightly modifying the definition in'§ 1. The difference is unimportant, but
now F'(x) belongs to the class (Vp) in Chapter I.

By e and S we always denote the moment and the absolute moment re-
spectively of order k:

(1) ak=fa;"dF(x); ,S’k=fm|x|"dF(x).

The number % is generally a positive integer but sometimes we also consider
absolute moments where this need not be the case. The following important in-
equalities are well known?*: .

1 1 1
(2 p<fi<d<p<.
Two moments play an especially important rdle in the statistical applications,

the mean value or the mathematical expection m(X) of X and the dispersion
o(X):

(3) m(X)=fxdF(x); a’(X)=f(x— m)P dF(x) = a,— oi.

! E. g. HARDY-LITTLEWOOD-POLYA [1], D. 157.
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Let % be a positive integer and g finite and consider the c.f.

(4) f)=[e=aF ().
The derivatives f* (f) obviously exist and are finite forv=1, 2, ..., £. For small

values of { we obtain the expansion

(s FO=1+ 3 E60 + ol

If Bi+e, (0 < d < 1), is finite, (5) may be replaced by

k
Y =1+ F TG+ 0 Bt

y=1
where the modulus of 6 is bounded by a finite quantity, only depending on %
and J. For small values of ¢ the following expansion holds:

|¥

@8+ o(lEF);

v!

©) log f()) = 3

the coefficients y, are called the semi-énvariants of the distribution.

Let us now consider two independent r. v.’s X, and X,. The sum X=X, + X
is also a r.v. The connection between the d.f’s of X,, X; and X is expressed
by the addition theorem?:

Let X, and X, be two independent r.v.’s with the d.f's F,(x) and Fy(x) re-
spectively and the corresponding c. f’s f,(t) and f,(0). The d.f. F(x) of the r.v.
X =X, + X, 7s obtained from

Flo) = F, x = [ File—3) dF,0) = [ Flo—y) dF,(@),

The c. f. f(t) of F(t) vs expressed by

fO=A0)£0)

Concerning the properties of F(x), see Chapter I, § 1. The generalization
of the addition theorem to a sum of any number of independent variables is
immediate. We also observe the following relations: If X, X,, ..., X, are a

! LEvy (1], p. 186.
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sequence of independent r.v.s and X =a,X; + a3 X, + :-- + 2. X,, where the
coefficients a; are constants, then

m(X)=am(X,) + agm(X,) + -+ + aam(Xy);
) {

(x) = ald® (X)) + ddo®(Xp) + - + ano® (X.).

3. Improvement of the Liapounoff remainder term. This section is devoted
to an investigation of the Liapounoff remainder term (see Introduction, (1) and (2)).
Our aim is the proof of the inequality (6) in the Introduction, which relation
we shall obtain from a somewhat more general theorem.

Consider a sequence of independent r.v.’s X, X, ..., X, such that each
variable X, has the d.f. F,(x), the c.f. £, (f), the mean value zero, the disper-
sion 0,, the moments a;,, the absolute moments 8, and the semi-invariants y;,,
(b=1,2,3,...,m; k=23, 4, ... or somefimes, and then we only consider absolute

mowents, 2 <k < 3.) By F.(x) we denote the d.f. of the variable

=X1+Xs+"'+Xn
Sn

Zn

where sp =0} + 6; + --- + o3, and by f,(f) the corresponding c. f. These notations
are used throughout the chapter. It follows from (7) that Z, has the mean value
zero and the dispersion 1.

Our problem is to study the difference

Fy () — @ (x),
@ (x) being the normal d.f.:

_Yy

®) m(x)=%fe Ty

¢
with the c.f. ¢ 2.
Let us first observe the following relations, consequences of the addition
theorem:

Fy(x)=F,(sax) % Fy(snx) % --- % Fy(snx);

=1

According to Cramir [5], p. 70, we introduce the quantities:
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Bkn——":;(ﬂkl + Bia+ o+ Brn)y Tin=

10
(10) oin = B Aen = Tin
n =R’ M= mp?
. B‘z/n F2/1|.

(}’lcl + Vg2 + - +7kn),

S|

(11) -Tlm=_"“3/_k’
kn

It is readily observed that

(12) 1<pll< i< .,

If all the d.f’s F,{x) are equal with the dispersion o, the absolute moments g
and the semi-invariants y:, we observe that gin and 2in are independent of =:

(13) =" n =2

After these preliminaries we may state the following theorem, containing
the desired improvement of the Liapounof remainder term.

Theorem 1. Let X, X,, ..., X» be a sequence of independent r.v.’s such that
each variable X, has the mean value zero and the finite absolute moment .,
w=1,2,3,...,n) of given order k, (2 <<k <3). Then

1
e

1

(14) | Fulw) — @ (2)] < o () |55 + =5
n? n?

where ¢(k) is a finite positive constant only depending on k, and @ra ts defined

by (10).

Remarks.
1. If k=3 we obtain by (14):
(15) | Fafe) — 0(a)| < ¢- 52,
Van
C being an absolute constant. It is possible to show that C may be chosen = 7.5.
The calculations are simple but rather laborious, and I omit them here. If all
the d.f.’s are equal, (15) and (13) give:

(15) li‘,.—(a?)—m(x)|so._;‘;-+_.
[ n
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2. It is interesting to observe that the remainder term O (—VI——_-) in (15)
. n

generally cannot be improved even if moments of all orders are finite. Consider
the case, where every d.f. F,(x) is identical with a d.f. having the jumps § at

=% 1. It is readily observed that Fn(x) has jumps in the vieinity of z=o,

asymptotically equal to V;i . ]—/I—;, (n—> ). We shall return to this question in

the next chapter.
The proof of Theorem 1 is based on Theorem 2 a, Chap. II. Before we
proceed to the proof, however, we shall record some lemmata concerning the

expansion of f,(f). These lemmata are of an elementary ndture, being easily
obtained by expanding each f,(f) in a Taylor series about ¢ = 0. Concerning
Lemma 2 a the reader is referred to CraMir [5], pp. 71 and 74; the others are
proved in a similar way. '

Throughout this chapter we denote by c: an unspecified finite positive con-
stant only depending on £. '

Lemma 1. If k is an assigned number, (2 <k <3), frs < ® for v=1,2,3,
.« N, @rn defined by (10) and

Vn
ltl< ———

(24 ora) 2
then
'f;b ) —e 2|—6k Itl" 1
nT
Lemma 2. If the d. f.'s are equal, if k is an integer = 3, fry < ® forv=1,2,3,
oy Ny Okn deﬁned by (IO) and
Van
It|<Tkn 49:’,’:,
then
2 PGy e
a. Solt) —e3— N n-f/z)e 2 T: 2(|tlk+|tls(k——2) e~ 1
v=1 n
and
e EAp,(it) 8| _é(n
b. ) —e - m) < —)’(ltlk_l,_ltls(k—l) )e s
y=1 n 2

where &(n) only depends on n and lim 6(n) =

n—-w
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Here P,(it) = Zc, (Zt)**+27 4s a polynomial of degree 3v in (i), the coefficient
J=1
¢iv» being a polynomial tn Asn, Aan, ..., Av—jis,n and hence according to (13) on-
dependent of n.
For example, if the d.f’s F.(x) are equal, with the moments g, ¢, ... and
the dispersion g, we obtain

Pyt = o 360,
(16) 1a,— 30 0o}
. 2 8/
Pz(zt)=ﬂ—————4 = (zt)4+—«!0—(zt)6.

Proof of Theorem 1. The theorem is an immediate consequence of
Theorem 2a, Chap. II, and Lemma 1, this chap. In Theorem 2 a, Chap. II,

we put
F(x) = F, (37), G (x) =00 (SL‘),
(17) S8 = fald), g{t)= e““;/_
A =Max|®' (z)]| = 1, T=-—i‘r
Vor =
(24 an)

It only remains to estimate

-T

From Lemma 1 we have

e=c¢ kgy.knﬁfltlk te” 4dt——ck QM
n2

S e
f—————"(t)t_e Na.

and hence from the main theorem

1

_ _ @ Cean , cla) (24 grn)"?
| Fa2) — @) = — "%“Jrl/z_n A

n n?

for every a > 1. This is the desired inequality.
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Chapter IV.

Asymptotic Expansions in the Case of Equal Distribution Funetions.

Consider a sequence of independent r.v.s X,, X,, ..., Xu, all having the
same d.f. F(z), the c.f. f(¢), the mean value zero, the finite dispersion o 7 o,
the moments a; and the absolute moments S, (k=3,4,...). By Fnl(x) we
denote the d.f. of the variable
X+ X+ -+ X
B aVn

with the c.f. f,(f). These notations are used throughout the chapter. From (7),
Chapter III, it follows that Z, has the mean value zero and the dispersion 1.

Zn

As before, the following relations hold:

| Fo(@)=(F(eV na))™,?
ol

In Theorem 1, Chap. 1I1, we found that

| Fala) — @ ()| < C- P2,
13

N

C being an absolute constant, provided that g, <. As was mentioned in the
Introduction (5) in connection with the Charlier A series, it is sometimes possible
to obtain an asymptotic expansion of Fy(x) in @{x) and its derivatives, thus
lowering the order of magnitude of the remainder term. At the.same time a
theoretical explanation of the usefulness of the A series is obtained.

The possibility of such an expansion is conditioned by the behaviour of
| /()] for large values of ¢. Three cases may occur which together cover all
possibilities,

a. tP:—Twl S(®)] < 1. This is the Cramér condition (C). The condition (C) being

satisfied, CRaMER has given an estimation of the remainder term of the Edge-
worth expansion (5) in the introduction. (See also Theorem 1, this chap.)

The estimation of the remainder term becomes more delicate if (C) is no
longer satisfied. We devote this chapter to the study of this question.

! This means the convolntion of # functions F(a¢ Vnx).
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b. lim |f()] =1, but |f(#)] <1 for every finite ¢ 0. We will show (Theo-
t—t o

rem 2) that

t | — —;—’ L , n—>®
Fule) = 0(0) + o (1 — %) +o(y_n) (n—o).

c. |f(t)]=1 for a finite {, % 0. Then by Theorem 5, Chap. I, F(x) is a
lattice distribution and |f(f)| is periodic, with the period £,. Especially |f(»f)[=1
for every =0, + 1, + 2, +---. It will be shown, that F,(z) has discontinuities

of order of magnitude VI; Cramér’'s estimation of the remainder term, valid
in case a., breaks down for k£ > 3. By adding an expression containing a discon-
tinuous term, we shall, however, obtain an expansion which makes it possible to
lower the order of magnitude of the remainder term (Theorems 3 and 4).

For the different cases of the behaviour of |f(f)| for large values of ¢ re-
ference is made to the end of Chap. I. We observe that (C) is satisfied if F(x)
has an absolutely continuous component. We should also remark that cases a.
and c. are most frequently met with in statistical applications, the case b. having
mainly a theoretical interest.

The reason for the dominating importance of the behaviour of |f(f)| for
large values of ¢ may be explained by the following discussion. The proofs are
based on Theorem 2, Chap. II. We have to estimate an integral of the type

2
(2) I=f|—f—(:—)—|fdt,

A being suitably chosen. In case a. we obtain |f({)|* <e=¢", (¢> o, |t] = 1)
Hence if 4 is a power of » we have I = 0(¢~%"), (¢, > 0). In case b. we may

choose 4 = A(n)->o© when n->®, so that I=o(—l—)- In case c. even

Va

vin

7@ const. )

- ~ ’ >
f : dt V. (v an integer so that »{, > 1),
1

as is easily confirmed. Now, the larger 1 may be chosen and the smaller 7, the
smaller is the remainder term. Thus case a. is very favourable, case b. not so
good and case ¢. the most unfavourable of all.

We devote § 1 of this chap. to Cramér’s estimation of the remainder term
in the Edgeworth expansion. In § 2 we treat case b., and in §§ 3 and 4 case c.,
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using two different methods. Finally, in § 5, we investigate the asymptotic
maximum deviation from the normal d.f.

1. The Edgeworth expansion and Cramér’s estimation of the remainder term.
We start from the relation

(3 (—itres = [era00 @),

where @) denotes the »th derivative of @. Consider the polynomial P,(;t) in
Lemma 2, Chap. III, and replace each power (i¢)**27 by (— 1)*+%/ @ +24 (). We
then obtain a linear aggregate of the derivatives of @ (x), symbolically denoted
by P,(— @):

(o P.(~ @)= 3 (= 1)+¥ g5, @499 (),
i=1
From (3) it is easily found that

©

(s) P.it)= f #2 4P, (— O@).

—

For example, from (16), Chap. III:

oy .

1 L Y R e
60*‘1/Zz(I we T

-Pl(_w)::_ ]

[/
B0 () =

w

(6)
o =1%T34 gy 10 & g
P,(— @) i @ (.1:)+6! 060 ().
Now we can formulate the following theorem:

Theorem 1. Let X,, X,, :.., Xa be a sequence of independent r. v.'s all having
the same d.f. with the mean value zero, the dispersion ¢ # o and the finite absolute
moment B, (k betng an integer = 3). If the condition

(0) ,E—‘.‘SJf(t” <1

holds, then h

? F»(x>=¢(w)+2P'LT/z@+o(;’?ﬁ)’ (n o).
y=1 n 2

The proof is to be found in Cramir (3], p. 57 and (5], p. 81. There is,
however, a slight difference between Cramér’s expansion and (7), (cf. the In-
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troduction (5)). By adding one more term to the expansion and applying Lemma 2 b,

k—2

Chap. III, instead of Lemma 2 a, we have replaced the remainder term O (L)
n 2
by o —;:—2 - ‘The proof is analogous to that of Theorem 1, Chap. IlI, and is
n 2
an immediate consequence of Lemma 2 b, Chap. 1II, and Theorem 2 a, Chap. IL.
If k=3, we have from Theorem 1 and (6):

= 1
8 Falt)=0(@) + —2— (1 —2%e 3 + of—=)> (n - ),
(8) (r) = @ () 603%( ) Vo )
provided that the condition (C) is satisfied. In the next section, however, we
shall obtain (8) under less restrictive hypotheses.

2. A further improvement of the Liapounoff remainder term. We devote
this section to the proof of the expansion (8) under more general conditions.

Theorem 2.' Let X,, X,, ..., Xy be a sequence of independent r.v.’s with the
same d. f. F(x), the c. f. f(¢), the mean value zero, the dispersion ¢ o, the third
moment ay and the finite absolute third moment 8;. If F(x) 2s not a lattice distri-
bution, then

oy o =2 1

——\1—z%)e 2+ o|{—=}> n—>®o),

60V 2 nn( ) (Vn) ( )
Before we proceed to the proof, which is based on Theorem 2 a, Chap. II,

we have to investigate an integral of the type (2).

Lemma 1. If F(z) is a d.f. which is not a lattice distribution, if f(t) ¢s the
corresponding ¢. f. and if w an assigned positive number, there exists a posttive func-
tion A(n), so that

lim A{n) = o

and "
(sl
(10) I=f———dt=o 1)
t Vo
The proof is immediately clear if lim |f(f)] < 1, for there then exists a

{—+w-

constant ¢>o such that |f(f)] <e for |{|=w, (cf. the end of Chap. I).
Putting A(r) = n we obtain

! ESSEEN [1], p. 14.

4 — 632042 Acta mathematica. 77
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n
e~¢-n 1
<< === —_— .
I_f : dt 0(1/;;)

w

Now suppose that lim |f(f)] = 1. Since F(x) is not a lattice distribution,
t—tow

there does not exist any f, % o such that | f(t)] = 1. Now we define the func-
tion 7(t) by:

(11) 1 — — = Max | /(1)].

p{t) o=t
Obviously 7(f) is a continuous, non-decreasing function for all finite values of ¢.
Since lim | f(f)] = 1 we have '
t—taw
(12) lim ()= + .

t— 4w

Now from (11):

o i) (1 _ _L)”
(13) I=f|f(ti)|—dtsf ——;—7—(t)—dt.

w

For a given value of » we distinguish between two cases.
1. n{n) <V n. Putting A(n)=n we obtain from (13):

n(l——l__)" V—f.l
Isf#dtse—T log (5)20(7—1_;)

2. n(n)=Vn. Then from (13)

r<

; at.

}( " _(’ K (;(n)))n

We now choose A(n)=15"1(V7), 77 '(t) being the inverse function of 75(f). Ob-

viously lim %~ !(¢f) = ® and i(n) <n. Thus
t—>

Is'f(l;_l%_;_)jd,;:o(l).

t Vn

In either case lim A(r)= o and I= o(‘%)- This proves the lemma.
n—® n
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Proof of Theorem 2. By Lemma 2 b, Chap. III, we have

_f P, it ._‘
(14 =3 =25l < 0 80 up 4 pop et
n n
for |t| < Tsa, where T3,L=ZV—;—, 030 =§—‘§ independent of », C a constant and
3n
lim é(») = 0. Further by (5) and (6) P,(¢f) is the Fourier-Stieltjes transform of
2
P, (— % (1—afe 2
(=0 =yt )

Now apply Theorem 2 a, Chap. 11, with

= _ 2, PGy 2
(g) | SO=r00, gll)=ea+ e,

A = Max |G’ ()| <,

T =i(n)V no, where A(n) is defined by Lemma 1 with w = !

40n-0

Without loss of generality we may suppose T = Tsn.
It only remains to estimate

(16) \‘ﬁ'(t ),d:} *—j:n ‘Tf" f—'*el + & + &.

From (14) it immediately follows that

(17) %=%§ﬂ-

Furthermore it is easily seen that

T
& +53<2f f(o—ff—;) u%é-}-o(]%;)z
.

3n

o s o o) =o(7)
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according to Lemma 1. Hence

(19) e =o(]%;)-

Now the fundamental theorem gives:

_Pl(—w)
Vo

32%0(17'1_—1) + c(k)‘l_(nh)fll/_ﬂr

for every £ > 1. Hence the theorem is proved.

Fo(lx) — @ ()

Discussion of Theorems 1 and 2. Let us first remark that Theorem 2
does not hold if F(x) is a lattice distribution. As we shall see in the next sec-
tion, Fyn(z) then has discontinuities in the vicinity of z =0 of order of magni-

tude VL_ Now suppose that F(z) is not a lattice distribution. Ifﬁ% ] < 1,
n , t—too
there are no difficulties and Theorem 1 gives a satisfactory solution, but if

tl@ | /()] =1 it is difficult to improve upon Theorem 2, at least regarding the

general case. The order of magnitude of the remainder term seems to depend
on arithmetical properties of the point spectrum of the d. f.

If ﬁ;r;x |/(®)]=1 and F(x) is not a lattice distribution, it follows from § 7,
t—tow

Chap. I, that F(z) may be a purely singular function. It is not to be expected
that this case will occur in practice. A less theoretical case is that where F ()
is a purely discontinuous function, the discontinuities of which occur in a se-
quence of points with incommensurable mutual distances. We may consider the
following example. Let F'(x) be a d.f. with the jumps 1 at the points z =+ 1,
+ V2. Then F(x) is not a lattice distribution, f(f) =14 cos ¢ + { cos V' 2t and

@ |F/®)]=1. If = is even, it is found, after some calculation, that F,(x) has
t—t o
a jump at x=o0, asymptotically equal to 7% . }1 Though all moments of F'(x)

are finite, it is not possible to obtain the expansion

(z0) Fw =0 + D= PS4 o).

In order to obtain an expansion like (20) in this and similar cases, where f(t)

is almost periodic, ( flt) = 2 ay e“’v‘) , it is necessary to add a discontinuous func-
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tion (cf. the next section), but this function is no doubt very complicated and
dependent on the nature of the irrationalities in {z,}.

3. Lattice distributions. First method. In order that the contents of this
section may be more easily understood, let us first consider the case of the
symmetrical Bernoulli distribution, F(x) having the jumps } at x= * 1. Here
F(x) is a lattice distribution and f(f) = cos . Now suppose that » is an even
number. Then Fp(z) is purely discontinuous with the discontinuity points

v

x = ﬁ,;(7=0, +2, X4, +-+ tn). Asis seen in all works concerning the

theory of probability, Fu(z) has for a bounded discontinunity point x a jump,
asymptotically equal to

a8

(21) 2 3
Varn
Thus in the vicinity of z =0 the jump of F,(x) and the growth of @(x) over
an interval of length -2 are both equal to —2_ t+o(-£). Further
Va Vann Va

$(Fn(+0) + Fp(—0)=@(0)=1}. Hence the behaviour of Fy(x) and @(x) about

=0 may be represented by Figs. 6 and 7, where, however, the term o(VL_)
n

has been neglected.

$)
21n
N
i
| N z
() —— ;
—+ + X
-4 -2 1 2 3 4
0y n w R w W
Fig. 6.

In Figs. 6 and 7 it is seen that

(22) mw—ww~V£3@@§@

for small values of x, where

(23) Qx)=[z] —x + §,



54 Carl-Gustav Esseen.

()~ $ 00

o N,
NEONE e 86

Fig. 7.

[x] being the integral pari of z. Now (21) and (22) suggest that we write

(24) Dy (o) = —— @, (x V;) 3

2wn 2

and study the expression
Fu(x) — @ {x) — Du ().

By the expansion of @, (x) in a Fourier series we easily evaluate

Au(t)= [ = d Dy ()
and find

«©

(25) )= — = L tnvas,

y= -0

the summation being performed for every integer » > 0. As we shall later prove
in the general case

Folz)— @(z) + Dale) + O(V—‘—;)

an expansion similar to that of Theorem 2.

After these preliminaries we proceed to the general case. Let F(x) be a
lattice distribution, i.e. a purely discontinuous d.f. with the jumps a, = o situ-
ated in

(26) r=x5+ v d, (v=0,1+1, T2, % ).
By definition d(> 0) is the largest number for which (26) holds. For the sake

of brevity we say that such a function F (z)belongs to the class (Ls). According
to § 7, Chap. I, | f(9)] is periodic with the period f,, where
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(27) ty="27 and f(t + ty) = =/ ().
By § 1, Chap. I, it follows that Fy(x) is a lattice distribution with the jumps

situated in

(28) x=o;,;(nxo+v,d+v,d+~-+1r,.d),

(), ¥y - -, =0, * 1, £ 2, £--).

Hence it is easily seen that the least non-negative discontinuity point &, of F ()
may be written as

2

Dy, (%) e5

AN

z%'vém[ \

+ + + X
< U N
Fig. 8.
d nz, [nxO]}
2 AL Lo Jun b Y | O
In analogy with (24) let us write
- n at
(30) .D" (w) = L Ql ((x §n) g Vn) e_?’
aV2nn d
where £, and @, (x) are defined by (29) and (23).
Thus D,(z) is a discontinuous function with the period ]i_ and the jump
aVn

d =
——————¢ ? at a discontinuity point z (Fig. 8).
Vzmn y point = (Fig. 8)

We also put

(31) wm=@&:%ﬂ@y
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this function being periodic and discontinuous with the period 03_1; and the
jump 1 at a discontinuity point. Thus
(32 Dale) = 2 —nla)e 7
aVarn
The Fourier-Stieltjes transform
(33) 4, (t) = f ¢t d Dy ()

is easily evaluated by the expansion of v, (x) in a Fourier series:

@0

(34) Au(t) = - a’:/_ >
0 n

’ e—ito:tonv

e-berto Vo),

1y
v=—a0

where f, is defined by (27) and the summation is performed for every integer
¥ 7 0.
We may now state the following theorem.

Theorem 3.! Let X,, X,, ..., X, be a sequence of independent r. v.’s with the
same d. f. F(x), the mean value zero, the dispersion ¢ 5 0, the third moment ay and
the finite absolute third moment 8;. Suppose further that F(x) < (Ld). Then,

. N a, s —%' d _i; 1
(35)  Fulr)= @ (x) + ULV /;—n_n(l z%)e +—6V2n1‘l1/),‘(x)e +0(V;)

as n >, where Yy (x) 7s defined by (31).

Remarks.

1. We observe that @, (x) is the same function that occurs in the Euler
summation formula. Furthermore we may notice that D, (z), apart from n, only
depends on the two parameters ¢ and d and on x,, regarding the determination
of an initial position.

2. We found in Theorem 2 that the expansion (9) holds for every d. f. F(x)
which is not a lattice distribution. From (35) it is now obvious why Theorem 2
breaks down if F'(x) is a lattice distribution. The expansion (35) contains the
same terms as (9) and in addition a discontinuous function with jumps of order
of magnitude L in the vicinity of z =o.

Va

! ESSEEN (2], p. 7, without proof.
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Proof of Theorem 3. By P,(— @), P,(¢t), Tsn and gs» we denote the
same functions and quantities as in § 1. The quantity & is an unspecified finite
positive constant. We apply Theorem 2z b, Chap. II, putting:

Flz)=TFal), G{)=0()+ P(Vn ”w%wx)e-%’,
(36) f(t) =ﬁb(t)y g(t)=e_t?2 + P_l-l/(%t)e_%'{'dn(t),
4 N
L= A=,

n 18 further supposed to be so large that

Vi Va
(37) T—n>Ton= " ~

,and TL=

> ¢y (R),

O3n

¢y (k) being the constant in Theorem 2 b, Chap. II.
~ It only remains to estimate

_hoyy hy,
PR AL ET P I 7 Y

'n —aVn
o

1°. Without loss of generality we may suppose Ts, < }t,0V n. We further

observe that |/ (t)]| = =
oV n
Tsn<|t| <%t,6V n. Thus

.
f(”t )I < e " for a constant ¢> o0 in the intervals

T3n itbo¥n
— —cn
agﬁf‘f" Idt+0()+2~fet dt,
—T3n T3n

or by Lemma 2 b, Chap. III, it is easily found in the usual way that

(39) & =0 (ﬁ) :

2°. The estimation of & and & is somewhat more laborious. It is immedi-

ately clear that
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(40) —ff" — t)‘dt+0(i)=e4+0(i)-

ityaVn
Here
f| dn\aVnt) it
Now we write
Yo  St, bt ty v
—57". 2 2 klotsy _.?
(41) 84=f=f+f+...+f+...+f=_[l+[2+...+]k+,..
by ty 34 lo 1 4
Y L B Ay P

Let us especially consider I; and make the substitution { =17 + kf,. Hence from
(27) and (34):

by taxank fn (_t__"*'_ﬁd Q T o itozony p—L (t+ ktutrt)2atn
2 |e (foe + L ,:2_,,”6 e
= t+ ki, di.
t
In 3 only the term with » = — k gives any considerable contribution to
the integral. We obtain
& t .
2 eit‘.:co'nlc(f(t))n — ptlpTynk e—%a’nt’ —_———— eitoxonk e-—go’nt’
= 0 dt+ 0(e=™).
I T it + O(e~?")
ta
T
Hence
(42) L<Ii+ I+ O,
where

- f |(for — etonel 5y
J | t+ ke,
2
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,, 1 2u’nt”
I = —
kt,
)
2

Now
b _
2 otoaVn
fi= 7 [lor = ol ar- [1ra- el
kty ktyo V
b —3tyoVn
2
or as in 1°:
, v
=z
Immediately we obtain
" 9
I = Bon
Hence from (42):
9
(43) L=7"

Substituting (43) in (41) and performing the summation from k=1 to k= 0(V »)
we obtain

k=1
and thus from (40)
log n
(44) & = 0(—%—)‘
3°. In the same way
’ lo
(45) o= 0(52).
Summing up the results of 1°—3° we obtain
(46) e=o(y5):
Va
By Theorem 2 b, Chap. II, (36), (37), (38) and (46) we have
P (—0) d x’ k 3 1
Folg) — O(x) — 2 — —————1, =" +oe (k) —2.2
I R e =t AL L] EPOL] 7 EEACR

for every k> 1. Hence the theorem is proved.
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The expansion (35) is similar to the expansion (7) with £ = 3, only a dis-
continuous term being added. By P,(— @) and P,(it) we understand the same
functions as in § 1. If the Cramér condition (C) is satisfied and F(x) has
a finite absolute moment B¢ of order k, (¥ an integer = 3), then by Theorem 1

(w8) ﬁu@=nmww+o(;9»
where "
(49) I, : x) + 2 B

Is it possible in the lattice distribution case to obtain an expansion analogous
to (48) with the same order of magnitude of the remainder term?
We introduce the following functions, occurring in the Euler summation

formula:
i sin 2 nz.
=1
o COS 2V L.
QQ (x) - ’é 2 (’” n)g
(o) L

o COS 2V

(0= 2y

v=1

sin 2vmx

Q21+1(90)=227W'

y=1

These functions are all periodic with the period 1. For o < x < 1 the following
relations hold:
2 3 2

60 @=—s+h @@-Z-Z+1; Q@=%-2+2
The functions @, Q,, ... are continuous while @, has the jump 1 at every in-

teger x. Further

Qaa(r) = — @ri-1(x); Qre1(@)= @ulx); @Qulo)= =

g

where B; are the Bernoullian numbers; ¢::+1(0) =0 for A = 1.
We can now formulate the following theorem.
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Theorem 4. Let X,, X,, ..., X, be a sequence of independent r.v.'s with the
same d.f. F(x), the mean value zero, the dispersion ¢ % 0 and the finite absolute
moment B of order k, (k an integer = 3). If F(x) < (Lg), then

() afe=sel s o

oV n dx’

+ 0 —,‘61_2 ) (n—> ),
n?

where IT, » and Q, are defined by (49) and (50), & by (29) and where
L [+1forvoftheform 4m+ 1, 4m+ 2,
1_1— 1 for v of the form 4m — 1, 4m.

(52) Iﬂn ('E) = Hn‘k (-’L‘) + j‘ h,. .

=1

The proof follows from Theorem 2b, Chap. II, and offers no difficulties.
It is analogous to the proof of Theorem 3, this theorem being a special case of
Theorem 4 with k= 3. I confine myself to state the Fourier-Stieltjes trans-
form g(¢) of the right-hand side of (52), (apart from the remainder term).

PORRGY E RS sy _
g(t)=e_2+ "w‘ e 2 —t» {__—e itgo§p Ve (t+too'an)~“”1-
g‘l " . {%1 1=§w (toa Vn l)"’
. B2 p it it VA
-e_%(‘“ﬂ"V"D (I+ ZP (Zt n?;/t;o‘ n ))}
v=]1

Remarks.

1. In the expansion (52) there are terms of order of magnitude less than

0 (% - This is due to the fact that both the expression and the proof are
n?.
more easy to handle in the present form.

2. By comparison between (48) and (52) it is seen how the discontinuities
enter into the expansion in the lattice distribution case. Obviously the jump
an (&) of F,(x) at a discontinuity point £ is expressed by

d S P(—p®
(s3) an (§) = o {q) & + gl (n‘“/g) 5)} + 0 ( ;__2),

n ?

where

1 &

—e 2
Van

In the next section we shall obtain (53) more directly with a better remainder term.

wer

p)=
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4. Lattice distributions. Second method. Let F(x} be a lattice distribution
with the c.f. f(t). We begin this section by stating an expression for the jump
of F,(x) at a discontinuity point §, using a method that goes back to LarrLack [1]
and has been applied with success by CuarLIER (2, 3] and others. Let us for
the sake of simplicity suppose that F(x) has the jumps a, =oatz =9 (v=o0,
+1,+2 +3 £..) Then

fit)= D a. e,

Y=

Thus
(f(t))" — Z A, eivt)

y=—0

where A, denotes the jump of (F@)"* at x =», (F(x))"* being a lattice distribu-
tion with the only possible discontinuitiesat z=v, (v=0, 1, 2, + 3, +...).

Hence

_._I_ n,—irt
4= f(f(t)) it

Owing to F,(x)=(FoV nx)**, A, =a,(f) is the jump of F,(x) at £ = ;}_-
oVan

Hence
T oy n : v ¢
1 R 1 : t f —{—
4 am@) =4, =— | (fyeivtdt=—= =)} e Vrdt=
(54 @ an(f Fe 2maV n j (f(oV n))
i —~nolVn
ét.,al/;
1
= — (B e itd e,
toaVn S
—%l.,v]/ﬁ

since in this case {,= 2w There is no difficulty in showing that (54) generally
holds, F(z) being a lattice distribution with the jumps a, = oatx=ux, + »-d,
=0, t1,+2 +..)

Lemma 2. If F(x) < (La) with the finite dispersion o+ o, then the jump
an(8) of Fn(x) at a discontinuity point & is expressed by

itaVn
1 .
55 (223 = — n t e—-l;tdt,
(55) (€) i aVn Su(?)
—ito¥Vn
where to=2n

a4
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Applying Lemma 2 we can now prove the following theorem, where P, (— ¢)
has its usual meaning, only @ being replaced by g.

Theorem 5. If F(x) < (La) with the mean value zero, the dispersion ¢ % o
and the finite absolute moment B of order k, (k an integer = 3), then the jump
an (&) of Fu(x) at a discontinuity point & is obtained by

(56) an@):j;(mg) ¥ 25(—’"?’—@) + ( ‘_)

as n— ©, where @(§) = @ (§) =- o
27

Compare (53) and (56)!
Proof of Theorem 5. We apply Lemma 2 and write (55) as

oV

e *ip,(if) _® .
an w(f)—e 2 — e 3| e~ iitdt +
) @)= f [f() 3 o ]
—‘10()'"/’;
:}toaV;;
1 e ip, zt) 81 .
+ — e 2+ etstge=1 + I,.
toaan[ = n* ] ! :

—itoVn

— t —
Observing that | £, ()] < e=¢", (¢ a positive constant), for acV n <|t| < —;’oVn,

where @ is an assigned positive number, we obtain in the usual way by
Lemma 2 b, Chap. III:

(58) I =0(-k§)

Further by (5):

o
I ’ _‘f e I
I, = — e 2+ e 2)eiitdt + o =
(59) =V f ( 2’; nv/l ) ( = )

n ?

~ e 3 ()

n 2

The proof follows from (57), (58) and (59).
If F(x) is a lattice distribution it is possible to obtain a very simple ex-

pression of F,(x).
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Lemma 3. Let F(z) < (Ls) with the finite dispersion ¢ 7 o. Then the dis-
continuities of Fn(x) are situated in the sequence

(66) E,=E + v w=o0, +1, +2 +..)

d
aVn
Let each of the points x, and xy be situated midway between two consecutive points
of the sequence {&,}:

d d
= 1 s =" +1 »
n=b—in @=8tins
where £ and &' belong to {£,}. Then
-}toal/—n —iz ¢ —ixat
(61) Fo(y) — Fo(w)) = — fHol)t———ay,
toaﬁ - 217 8in d‘t__
, -3tV n 206V n
'M)here to=—ﬁ7-'t'

Proof. As before a,(f) denotes the jump of Fn(x) at x=2§ Then by
Lemma 2

%tacr_ﬁ
62 Falwd—Falwd = 3 anl) = —= ] fn(t)( > e-fﬂ)dt.
AP thaV n rse
—3t0Vn

If £ =& +» —1: and £ =§, + 1'2-——0—1: we obtain by (60):
aVn oV

izt e-—t':tgt

. d
S eiit= 3 e‘”(”“”'ﬁ/‘,‘,) ¢

Feisg E =g 217 sin =

Inserting this into (62) we obtain the desired result.
Using Lemma 3 we can prove all the theorems of § 3. Let us for instance
consider Theorem 3, the notations being unaltered. By (61) it follows:

FtooVn )

, 1 e—iz,l_ e—-z:tgt
(63  Falw)—F (m)=—-— ffn(i)—Tdt=
tyoV n _  24¢sin i
UL 20V n
—T3n T3n %touV;
1
tOUVn f ' ? ’

~3t,0Vn —Tsn T3p
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Without loss of generality we may suppose 1t,6¥ »> Ts,. As in the proof of
Theorem 3, (1°),

(64) I +1,=0 (;I?) :
Now
Tyn
1 e-—i:c,t — e—ia‘,t
(65) I, = V_[(f,,(t)—g(t))——d_—t—dt+
too fT : 2¢8in ———
3n 20V n
T3n
izt =izt
+—— [ g —dt =L+ 1,
toa V' n 27 sin—2t
~Tan 20V n
where
2 Pet) -7
H=¢2 + 1"y,
9() Vo
But from the proof of Theorem 3, (1°), it follows:
, 1
66 L=o0o{—}-
Using the expansion LU O(v) for |v| < T we obtain:
sinv v 2
- Tyn
" I 20} nf e-imt _ p—imt (I)
6 Iy = . f) —————dt+ 0|} =
( 7) 2 2 too‘V; d g() il n
~T3n
- —imt __ ,—ixmt .
1 e~tul — g7z
- L j s a4 0(L).
If now -
(68) G(2)= 0(z) + 2L=2
n
it follows from (5), (67) and Chap. I, (5):
(69) Ii=G(x) — G(x,)+ O (%) .

Summing up the results of (63)—(69g) we have:

F(xs) — Fular) = G () — G (=) + O(V—I—Z),
or if 2Ly — 0,

(70) Fula) = Glay) + o (VL;) .

5 — 632042 Atca mathematica. T7
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The expansion (70) is valid for every z, situated midway between two consecutive
points in {&}. Since F,(x) is constant between two discontinuity points, Theo-

rem 3 now follows from (70).

5. On the asymptotic maximum deviation from @ (z). Throughout this sec-
tion we assume that F'(z) is a distribution function with the mean value zero,
the dispersion ¢ 7£ 0, the third moment ¢, and the finite absolute third moment 8;.
By (L) we denote the class of lattice distribution functions and by (Lg) the class
of lattice distribution functions with the distance d between the equidistant
points.

By combination of Theorems 2 and 3 the following theorem is obtained.

Theorem 6. If a;=o0, then
o, if F(x) 4 (L)

Jim . Max Vo|Fale) = @@=y _d_ cpoy oy

20V 27
F(x) being subject to some further conditions we can state:

Theorem 7. If F(x) is symmetrical, i.e. F(— x) =1 — F(x), and continuous

at x =0, then
1

lim Max Va|F,(2)— @@)| <

n—0_ ~00<z< oo V;;;
There is equality <f and only if F(x) ts the symmetrical Bernoulli distribution
Junction, having the jump % at x = * a, where a is a positive constant.
Proof of Theorem 7. Here a;=o0. By Theorem 6 it is sufficient to
treat the case F(x) < (Ls). We thus have to find an upper bound of

(71) 4
20V 2n
We may suppose on grounds of homogeneity that d = 1. Thus under the given
conditions F'(x) has the jump a, =oforx=+(»+ %), »=o0,1, 2, 3,...). Hence

0 o0
Zaw—%and ot=2 Z(z'+§;)2av
»=0 r=0

It is easily seen that the least possible value of o is equal to , F'(x) then being
1
]

the symmetrical Bernoulli distribution function with the jump { at z =+ {.

Hence and the theorem is proved.

<1
20V2n Vaonm
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Remarks.

1. If F(x) does not satisfy the conditions in Theorem 7, symmetry and
continuity at x=o0, it is readily seen from examples that (71) is no longer
bounded.

2. Suppose that two persons, Peter and Paul, play a game of chance so
that the players may win or lose certain sums of money at every round, the
chances of Paul being represented by a purely discontinuous d.f. F(z). Suppose
further that F(x) has the mean value and the third moment ¢, zero, the
dispersion ¢ o and the finite absolute third moment 8;. Let us first assume
that all the winnings and losses are measured in the same monetary unit. Then
F(x) < (L) and the d.f. (F@)** of Paul's gain or loss after a large number »

of games is approximately normal with a possible error term of order of magni-

tude % Let us now assume (if possible) that the game is such that some of
n

the winnings and losses are measured in one sort of monetary unit, some in
another and that the two units are incommensurable. Then F(x) < (L) and by
Theorem 6, (F(zx))** differs from the normal d.f. with an error of order of magni-
tude less than in the previous case. Let us return to the first case, assuming
F(x) to be symmetrical and continuous at x = 0. From Theorem 7 it follows
that among the possible games the old game »pitch and toss> gives a (F@)*
which in the long run most differs from the normal distribution.

Chapter V.

Dependence of the Remainder Term on » and «x.

In the two preceding chapters we have investigated the difference between
the d.f. F,.(z) of the normalized sum of a large number of independent r.v.’s
and the normal d.f. @(x) or a sum of @(x) and its derivatives. We thus ob-
tained an error term containing, besides certain constants, only the parameter n.
It is, however, often important not only to estimate the remainder term as a
function of » but also as a function of x. This question has earlier been treated
in an interesting paper by Cramgr [6], who assumes that all the variables have
the same d.f. F'(x) and that there exists a constant ¢ > o0 such that

[V aF(z) < .
—®
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In this chapter we shall consider the case where

a0

(I) flxl" dF(.’L’)<<I>
for an integer £ = 2. Then also
(2) f|x|"dF,.(w)<°0.

Owing to the well-known generalization of the Bienaymé.-Tchebycheff inequality
it follows from (2):

1 ——Fn(m)=0(l—;|—k) for x> + o;

Fo(x)= 0(|—-’;F) for x> — .
Hence it is to be expected that

| Faa) — @ (a)] < 212

e o el

where 2 (n) is a quantity tending to zero as n -, provided that certain condi-
tions are satisfied. In this chapter we shall prove the correctness of this supposi-
tion. We begin, however, with some remarks concerning the Central Limit
Theorem of the theory of probability. v

1. On the Central Limit Theorem. Let us consider a sequence of independent
r.v.s X;, X,, ..., X,, ..., the variable X,, (v=1, 2, 3,...), having the mean

value zero and the finite dispersion o,. By F,(x) we denote the d.f. of the
variable

=X1+X2++ Xn
Sn

Zn
where s, =0} + i + --- + 0.. As before the mean value of Z, is zero and

(3) fx’dlf‘,. (x)=1.

Under certain very general conditions the sequence {17;(;)} converges to the
normal d.f. @(x) (the Central Limit Theorem, see LinpEBERG [1]). This may be
expressed by

(4) d(n)= Max |F,(x)— @(x)]; lim #(n)=o.

—0 L r<® n— w0
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According to (3) and
(5) facgdd)(x)=1

we also have by the Bienaymé-Tchebycheff inequality

(6) IFn(x)—(D(:cH:O(i—,) as & >,
The relations (4) and (6) give two different estimations of | Fy(x) — @ (x)]; in (4)
the remainder term depends only on %, in (6) only on x. Is it possible to take both
(4) and (6) into conmsideration, using one inequality only? This is, as we shall see,
very easy, but has, as far as I know, not hitherto been explicitly stated.
Let a=1 be a number later to be determined. We may without loss of

generality suppose that F)(x) is continuous at x = 1+ a. Then

a (2 a

[#dF,@)=fad(Fa@)— 0@) + [2*d O (z) =
—a -

= a*(Fala) — @ @) — o (Fa(—a) — ®(—a) — zfx(F,.<x> —0@)dx + fx’d D (x).
—a —a

From (4) it follows:

(7) —fx8d1m2—4a24(n)+fx2dd)(x).

From (3), (5) and (7):

(8) fxgdm=1—-—fax”df‘_n(—x)s «*d ®@{x) + 4a° 4 (n).
lzl=a —-a lz|l=a

Now the following relations hold:

(9) *d Fa(w) = {xz(' ~ Fa@)for x=a
x* n\T s
Ixfza 22 Fo(x) forx<—a

(10) 20> 22(1— @) for x=a
wa{za 2@ (x) for t<—a

(11) fxgdw(x)sl/f—tﬂ%le_%’.

lz]l=a

From (8), (9) and (10) we obtain:
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22| Fo(x) — @ ()| < 40> 4 (n) + fx’d.d)(m) for |z| = a,

lz]=a

and bence from (4) and (11):
2 -z
(12) (1 +x’)|E,(x)——d)(x)|Sl/?—tg—g—I—e 2+ 5 a®d(n).

This inequality obviously holds not only for |z|= a but also for all values of z.
In (12) we choose a such that the two terms of the right-hand side have the
same order of magnitude in n. We suppose n, to be so-large that o (n) <} for

'/ 1
a = 210gm1

A (n) log ZI_E(—n—)

1+ 2

n > n,. Then, putting

we obtain:

(13) | Fala) — @) < C-

for n > n,,

where C is an absolute constant.
The inequality (13) gives, together with (4), the following theorem.

Theorem 1. Let X,, X,, ..., Xn, ... be a sequence of independent r.v.’s such
that the variable X, has the mean value zero and the finite dispersion o,, (v =1, 2,
3 e.yn,...). Further, let F,(x) denote the d.f. of the variable

X, + X, 4+ + Xa

Sn

where sh=a; + a3+ - + on. If

4 (n) = Max | F,(z) — @ (#)]

— 00 <X WD

and 4(n) <% for n > n,, there exists an absolute constant C, such that

A (n) log ZI(JT)]

ll"n(x)—d)(x”g Min 4(11); C. P

Jor n> ny and all values of z.

2. On the remainder term of the asymptotic expansion. In the remainder
of this chapter we consider a sequence of independent r.v.’s X, X,, ..., Xa,.
with the same d.f, F(x), the c.f. f(t), the mean value zero, the dispersion ¢ 7 0,
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the moments «; and the absolute moments 8. By F.(x) we denote as usual the
d.f. of the variable
X + X, + - + Xa
aVn

with the ¢.f. f.(f). As before

Fo(z)= (FV nz)*,

Fult) = (f (GVL;))

The functions P,(— @) and P,(¢t) are the same as in Chap. IV, § 1.
In Chap. IV, Theorem 1, we stated the expansion

(14)

k-8
X P{—o const. )
(138) Folz) — @(x) — 5@”‘2 ) :1_2 , (& an integer = 3),
=1 n 2

provided that the condition (C) is satisfied. In the same chapter we found,
however, that it is generally not possible to obtain anything better than

(16) | Fu (2) — @ ()] = 2205,
Va

without introducing a discontinuous term. Now we shall show that (15) always
holds if |x| is sufficiently large. At the same time we shall obtain the dependence
on x of the remainder terms in (15) and (16). The method of proof is analogous
to that of Theorem 2, Chap. II.

We begin by sketching the main features of the proofs. Our problem con-
sists in the comparison of F,(x) with a certain function G,(x) (in the following
@ (x) or the terms in the Edgeworth expansion) satisfying the conditions:

(17) {Gn (z) is real and of bounded variation on the whole real axis,
7 Gn(—w)=0, G(+®)=1.

Further, let Q(x) and ¢(f) be two real even functions such that

o

Q@)de=1, [q(f)dt <w;
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Other properties of the two functions are later specified. As in the proof:of
Theorem 2, Chap. 1I,

—zt

I n {
(o) [2002—iGab) — Fallay = & [eretl=L0, (g,
o —
gn(f) being the Fourier-Stieltjes transform of Ga(x), z and 1 two parameters.
From (19) we wish to obtain an estimation of | Fa(y) — G (y)]| as a function of
both 7 and y, assuming that it is already known that

(20) | Faly) — Gu(y)| < d(n) for all y.
We now put
(21) 4(0) = %afblF"(” Gy,

(b a positive quantity). It is sufficient to treat the case y > o0 only. Let us
suppose that this maximum occurs for y =a = b and that G.(a) > F.(a). (The
case Gnpla) < F,(a) is treated in the same way). We wish to demoustrate the
inequality

(22) A4 (b) < const. - ¢ (a, 2),

¢(a, #) being a positive function whi¢h tends steadily to zero as a and n se-
parately tend to infinity. Two cases may occur.

(23) 1° 4(b) <ela, n).
This is the desired inequality.

2° 4(b) > ela, n).
Now we determine a number § > 0 such that

(24 Gala) — Galy) < 20

Thus
(25) Gn(y) — Fa(y) = Gafa) —

fora—tisy=a.

4(b)
Tz

)

— Fula)= fora—E<y<a.

As in the proof of Theorem 2, Chap. II, we now obtain from (19), (20) and (25)

(6) ””f@ )ay—zdln f@y)dy< z‘nfe—“z”"”_z{"“ (3) 2|

>,
N|‘
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putting

R
(27) r=a—">
In the following the relation (26) is our main inequality. From (26) we generally
obtain:

(28) A4 (b) < const. - ¢(a, ).
Hence from (23) and (28) the required result follows.
We first prove the following theorem.

Theorem 2. If X,, X,, ..., X, are a sequence of independent r. v.s with
the same d. f. F(x), the c. f. f(t), the mean value zero, the dispersion o % o and the
finite absolute moment B, (k an integer = 3), then

-8

(o) R~ o)~ 3 P50 < A,
Jor "
(30) Izl = V(1 + 8)(k—2) log n,

where & is an assigned number such that o <38 < 1 and ¢(d, f) 7s a finite positive
constant, only depending on & and the moments 8,, 8y, . . ., fr.

Remark. From (30) it is immediately seen that (29) may be written

Id’
B @- 0w =Sl
n

for |z| =V (1 + 6)(k— 2) log n, ¢’ (4, §) satisfying the same conditions as c(d, §).
We have, however, stated the theorem in the present form for purposes of
comparison with the expansion (15).

Proof of Theorem 2. By ¢, ¢, ... we denote a sequence of finite
positive constauts, only depending on J and the moments 8. The quantities
a, b, § etc. are defined by (17)—(28). Further we put

k—8
P‘v(—w)
(51 6ol = 0 + 37
with the c. f.
-8 k3 pGy) -2
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Our problem is to obtain an estimation of () as a function of » and b. By
hypothesis

(32) b=V (1 + 68)(k—2) log n

and we may without loss of generality suppose » to be so large that

(33) b= 1.
From (32) it is easily seen that there exist two constants ¢, and ¢, such that
(34) a—§&=a(1—¢d
and
Y c I
(35) Gnla) = Guly) =T
%
for a—§=y=a. We now choose
2¢ 1
(36) ola, n) = " 7

and obtain two different cases:
1°. 4(b) < ola, n).
Then. the theorem is proved.

2°. 4(b) > ofa, n).

Then by (35) and (36) the inequality (24) holds. Hence from (26)

10,8a
(37) if’ii{?(y)dy —2 d(ni)cl;Q(y)d!l = ‘zln'_["—mgn( )—z{n(t) (1) dt|

Here d(n) obviously is a finite quantity. By Lemma 1, Chap. II, it is possible
to choose Q(x) and ¢(f) such that the conditions (18) are satisfied and at the
same time

Q(x) =0 for le =1,

(38)
qf{¢ —'Itla(x Z3) jltl”" fjdt=r¢, <.

We now choose 4 = and obtain from (18), (37) and (38):

c,0a
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q(cldzat)dt=s.

(39) __SJ_|%U Ja ()

Applying Lemma 2a, Chap. ITII, and putting
~Tkn Ten o
(40) €=f+f+f=£1+€3+53,

—© ~Try Ty

we have by (33) and (38):

a0
2
(s 2 [ e+ 1 eig( 208 &<

n? o
" (k—2)
2 \3lk—2 dt _ ¢ I
5 kol 3 (k—32) I 8 .
) = f[(a) b (G5) e =B
2 0 n ?
Moreover, from (38)
” 8 (k—2)
) - 1 dt _e 1
42 wrase [ () i b
sV n ®

Summing up we obtain

i)
-
<

.

—

(43) 4B) =R 5= cuela n).

Thus in either case:

and the theorem is proved.

Theorem 2 holds for |x|= V(1 + d)(k — 2) log n. We shall now state and
prove a theorem valid in the remaining interval. By ¢,, ¢;, ... we denote as

before finite, positive constants only depending on ¢ and tbe absolute moments

Bsy Bss - - oy Pr.

Theorem 3. Let X,, X,, ..., Xu be a sequence of independent r.v.’s with
the same d.f. F(z), the mean value zero, the dispersion ¢ % o and the finite abso-
lute moment B, (k an integer =3). Then
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k-3  (— , (3, s _il . 6,
W |re-oe - 3O a8 oy @)
v=1 n 2
Jor an assigned number 8, (0 < d < 1), and
(45) |z] < V(1 + 8){k—2)log n.

Remark. In view of (45) it is possible to replace (44) by

| Fu(e) — @ ()| < ci](f_,n‘ﬂ)(l + |z |?) e+ (f’_‘f)

n 3

for |z] < V(1 + 8)(k—2) log ».

Proof of Theorem 3. The quantities a, b, { etc. are defined by (17)—
(28), Ga(x) and its transform g.(f) by (31). The auxiliary functions Q(x) and
¢ (¢) satisfy (18), and further, by Lemma 1, Chap. II:

[g(t)=o0 for Jt|=1

4o L0@) = - et

By Theorem 1, Chap. III, we also have
(47) | Fu ) — G ()| < d(n) = &
Va

According to (45) and (47) it is sufficient to prove the theorem for

(48) 1<¢g<b<asV(i+d(k—2)logn

where n is so large that the above inequality is satisfied and ¢; is a constant
later to be determined. Further we may suppose that z > 0 in (44). It is readily
observed that there exist two positive constants ¢; and ¢, such that

(49) §=06-;/L;

and

(50) Gn(a)—Gn(y)Sc—La’e_% fora—f(<y<a.
Vn

We now assume that

(s1) d(b)zv—c_ase_ﬁ,
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or else the theorem is proved. Then {24) holds and we obtain from (26), (46)
and (18)

i ) l
(52) ”pf‘?(y)dy—z—(gf Q) dy < ;I;fl———g"(t):f"(t)ldt.
YT Tea "
2Va 3V,
Putting
(53) A= Tin

and applying Lemma 2a, Chap. III, to the right-hand side of (52), we obtain
in the usuval way:

cg a® o
NINE 2
(54) “)j Q(y)dy'—vf—ff(l(y)dys ?;_’
—gas oas n?
According to (46)
(55) f Q(y) dy S 610 as“ e—c"ll - a'lc.
cga®

We now choose ¢; in (48) in such a manner that the following two conditions
are satisfied:

o0l

=1,
(<6 _c'fch(y)dy> !

epa®te= o < g3 e 2 for a = ¢.
Hence from (54), (55) and (56)

4Pb) 2¢ 4 -
—— — —=a’e 2 .
4 Vn k-3

(57)

In view of (57) and the converse of (51) we finally obtain:

2¢ _2 8¢ -2 e
4(b) < Max!ZZa% 2; —Zale 2+—}},
” {Vn Va =

n 2

which proves the theorem.
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It is interesting to compare Theorems 2 and 3, this chapter, with Theorems
1 and 4, Chap. IV. Owing to the discontinuous term in the lattice distribution
case it is to be expected that the general remainder term will contain a funec-

x2

e
tion of the type —,
AT

large the predominance of this term vanishes, and we obtain the expansion (29).

and this is also the case in Theorem 3. As x becomes

As in (29), it is possible to multiply the term 52_2 in (44) by a function
n?
of z, tending to zero as x—. In order to do this we may proceed as in the
proof of Theorem 3. The only difference is that we have to investigate the
dependence on @ and »n of the integral

—ut

—i

This may be done by repeated partial integrations. 1 confine myself to stating
the theorem for % ==3, Theorem 3 giving nothing new in this case, since now

I

— I
kg.__V.
n

Theorem 4. Under the same conditions as in Theorem 3 with 8, finite the
Jollowing inequality holds:

e(o, 8s) log (2 + |z))
| Folz) — @(2)] < v PO

Jor all values of x, where c(o, 83} is a finite, positive constant only depending on
G and (.

3. On the Uniform Law of Great Numbers. Consider a r. v. X with the mean
“value zero, the dispersion ¢ #% o and the finite fourth moment §,. Let us imagine
a sequence of independent trials. In the first trial X assumes the value X!V and
we put

X=X .

In the second trial, consisting of two independent trials, X first assumes the
value X and then X. We put
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X, = XP + XP.

We proceed in the same way: in the nth trial, consisting of » independent trials,
X assumes the values X{, X, ... X® and we put

X=X+ X + .-+ X0,
Then the following theorem holds:

Theorem 5. If & 4s an assigned arbitrary small positive number, the probab-
ility of

| Xm|=V2(1 + d)o*nlogn

Jor all n > ny tends to 1 as ny— o, while the probability of

| Xw|<V2(1—d)e*nlogn

Jor all n > n, tends to 0 as ny—~».

This is a form of the Uniform Law of Great Numbers which was proved
by Cramir 4] on the assumption that the fifth moment is also finite. Theorem 5
eagily follows from Theorems 2 and 3, the proofs of which are the main diffi-
culty. For the method of passing over from these theorems to Theorem & the
reader is referred to Cramir [4)].

The conditions of Theorem 5 are as general as possible in so far as the
theorem need not be true if 8, < o for all u < 4, while §,=o. This is seen
from examples.

Concluding Notes.

We have hitherto considered different forms of the Central Limit Theorem
and have especially studied the remainder term problem. In order to avoid un-
necessary complications we have often confined ourselves to the case of equal
d.f’s. It is, however, sometimes possible to escape from this condition; this is
especially the case for Theorem 1, Chap. IV, and the theorems of Chap. V.
Furthermore, we have supposed the r. v.’s to be mutually independent. Following
the method of BerwsteIN [1] (see also Crale [1]) we may generalize the theorems
to hold for a sum of variables dependent in a certain way. There is also a
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problem of a different kind which we have not touched upon, namely the pro-
blem of the convergence of frequency functions to the normal frequency func-

tion @' (zx)= L
27

Most of the theorems stated are based on Theorem 2, Chap. II, or on the
method of proof of this theorem. Part II of this work is devoted to probability
distributions in a multi-dimensional space. Now, it has proved impossible to
extend this method to the multi-dimensional case; we have been obliged to
proceed in another manner. This new method may also be used in proving the
theorems of Chapters ITI—V. Nevertheless, we have hitherto preferred the old
method for two reasons: firstly, it is of interest to vary the methods, secondly,
the old method is much more simple to use in the one-dimensional case.

PART IL

Probability Distributions in More Than One Dimension.

Chapter VI.

Random Variables in & Dimensions.

We have hitherto solely considered probability distributions of one-dimen-
sional r.v.'s. We now proceed to the case of X-dimensional r.v.'s (£ = 2)." By
R, we always denote a k-dimensional euclidean space. The concept of a r.v. X
in R was defined in § 1, Chap. III, where we found that the probability distri-
bution of X is characterized by the probability function (pr. f.) P(E). We further
defined the distribution function of X, a concept extremely useful in the one-
dimensional case. In more than one dimension, however, it is preferable to study
the pr.f. We therefor start this part of the work by giving an account of the
properties of the pr.f. For the proofs of several of the following theorems
reference is made to JessEn-WinTNER [1] and CramER [5).

By definition a pr.f. P(E) is a set function, determined for every Borel set
E in Ry, and such that

1°0o<P(E) <1,
2° P(Ry) =1,
3 P(E) is a completely additive set function.
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In the following we solely consider Borel sets. By z ={(z,, @, . - ., x) we denote
a variable point in Ry, while by f(x) we always mean a B-measurable function.
The notation for an integral with respect to P(E) will be

[ (@) d Pa),

the integral being taken in the Lebesgue-Radon sense (c.f. Rapow [1]). By
f flx)dx
£

we denote the ordinary Lebesgue integral.

A set E is called a continuity set of P if P(E)= P(E") where E’ denotes
the interior points of E and E” is the closure of E. There exists an at the
most enumerable set of real numbers such that at least those intervals a; < x; < b;,
(¢=1,2,..., k), for which the numbers a;, b; do not belong to this set are con-
tinuity sets of P(E). Such an interval is called a continuity interval. By the
point spectrum Q(P) of P we understand the set of those points x for which
P(x) > 0. The point spectrum ¢ is at the most enumerable. It is often con-
venient to represent a probability distribution by a positive mass distribution of
total amount 1, dispersed all over the space so that every set F is allotted the
mass P(FE). Hence, in the following, we often speak of the probability mass.
The point spectrum, for instance, is the set of points, each of which has a
positive mass.

A pr.f. P is called continuous or discontinuous according to whether Q(P)
is empty or not. According to Rapox 1] every pr.f. P can be written as a sum
of three components
(1) P=a, P, + ay Py + a3 Py,
where P,, P, and P; are pr.f.'s and a,, @, and a; non-negative numbers with
the sum 1. Here

P, is absolutely continuous, i.e.
P(E)=[D@dx
B

where D(z) is a non-negative point function, the density function,

P, is singular, i.e. continuous and such that there exists a set E of measure
zero, but yet P,(E)=1,

Py is purely discontinuous, i.e. Py(Q(Py) = 1.

1 Or perbaps rather the point spectrum of the characteristic function of P.
6 — 632042 Acta mathematica. 77
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The convolution (»Faltung») P of two pr.f.'s P, and P, is a very important
operation. It is defined by

P(E)=P,* P,= [ P,(E — 2)d P, (x)
Eg

where E — x denotes the set obtained by F through the translation — 2. The
set function P(F) is also a pr.f. and

P=P1*P2=.P2*P].

The vectorial sum 4 + B of two point sets 4 and B is defined as those points
in R; which may be represented in at least one way as the vector sum a + b,
where @ and b are points of A and B respectively. If either of A and B is
empty, 4 + B is by definition also empty. If @,, ¢; and @ are the point spectra
of P,, P, and P = P, * P, respectively, then

Q=¢; + ¢s.
The concept of convolution of two functions is immediately extended to the

convolution of » functions.
It {P.(E)} is a sequence of pr.f.'s and P(E) is another pr.f. and if

lim P,(I)= P(I)

n~—r 0

for every continuity interval I of P(E), then we say that P, (E) converges to P(E).
The characteristic function (c.f.) f(t,, ts, ..., &) of P(E) is defined as the
Fourier-Radon transform of P(E):

(2) S, ty, ..., &) =fe”"’l*’”‘-’*""*’k"k) d P(x).

Ry
We always assume that ¢, 4, ..., { are real numbers. Then by t=(¢, ..., &)
and x=(z,..., x) we may denote two vectors in R; with the origin at o=
=(0,0,...,0) and the components #,¢t,, ..., & and z, @,, ..., x respectively.

By |¢] and |z| we denote the lengths of the vectors { and x. Then the expression
tyx, + tyxy + - + by is the scalar product f{x of t and x. Hence we may write

(2) fltty, oot =Ft)=[et=d P(a),

\nd we often use this notation when there is no danger of error. The function

(¢) is uniformly bounded and continuous:

LF O] =<flo)=1.
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According to (1) we obtain

(3) SO = a, fi(t) + a, /3 (0) + a5 /5 (D),

where the functions f;({) also are c. £.’s, (¢ =1, 2, 3). By the generalized Riemann-
Lebesgue theorem it follows:

(4) lim |f,(§]=o.

ft]—
From (3) and (4) it results:
If P(E) has an absolutely continuous component, then

lim |f(%)] < 1.

ftf—o
According to (2) the c.f. f(¢) is determined by P(E). Conversely, P(E) is
determined by the knowledge of f(¢f). This is a consequence of the following
well-known <nverston theorem. ,
If the k-dimensional interval J, defined by mi <& <wxi+ hi, 0 =1,2,...,k),
18 a continuity interval of the pr. f. P(E) with the c.f. f(t), then

— p— it Ay — p—tlh
(55 P(J)= lim f [‘ e .. lTe e

o (271: it Tt

cemttmtivastt e dnty) f(¢ L ) de ... d .

By the inversion formula P(E) is determined for all continuity intervals
and hence for all Borel sets. In this work we shall mainly consider circles,
spheres and hyper spheres instead of intervals. Then it may be of some interest
to obtain the probability mass of such a region expressed as a functional of f(2).

k
Theorem 1. If §, (Z (2, — &P < R’), is a sphere in Ry with the centre
y:=1
E=(&,8, ..., &) and the radius R and if S is a continuity set of the pr.f. P(E)
with the c. f. f(t), then
. R\ Jia (R]2])
(6) P(S) = lim (—) ff ";‘%—Lf(t)dt,...dtk,

a-—+w \27T
ftl=a

where Jys(2) is the Bessel function of order k2 and the vector notation ts used.

Proof of Theorem 2. We start from the right-hand side P,(S) of (6)
with a finite value of 4, and from (2) we obtain after some transformations and
easy evaluations of integrals:



84 Carl-Gustav Esseen.

P.(S) =Rf K, (u) d P(z),

where
k
w=|/ 3 @—&)
y=1

and

B[

Ka(u) = —F=s ka/g (RS) Jk;g(us) ds.
uT 0 2

By a well-known formula® we have

1ifu<R
lim K,(u) =3} if u=R.
q—r

oif u>R

The remainder of the proof is immediately clear.

If the point spectrum @ (P) of the pr.f. P(E) is not empty, it is sometimes
of interest to express the probability mass at a point £ as a functional of f(#).
Let D be an assigned k-dimensional parallelogram of positive volume with its
centre at o and let Dr denote that parallelogram which is obtained from D by
the magnification to the scale 7':1. Then the following theorem holds.

If P(E) is a pr. f. with the c. f. f(t) and § = (&, &, ..., &) s a point in Ry,
which is to be understood as the Borel set consisting of the point § alone, then

(7) P(&) =lim 2 fe"s‘f(t)dt, dty ... dtx.

Dr
Here Dr denotes both the volume of the parallelogram and the region of integration,
and the vector notation is used.
The proof is analogous to that of formula (6), Chap. I.
The connection between the c.f.s of a sequence of pr.f.’s and the c¢.f. of

their convolution is expressed by the convolution theorem.

If £i(0), £o@®), ..., fult) are the c. f’s of the pr. f's Py, P,, ..., Pn respectively
and f(t) is the c. f. of the convolution

1 Warson [1], p. 406.



Fourier Analysis of Distribution Functions. 85

P=P % P,% - %P,
then

Finally let us consider the moments of r.v. X =(X,, X,, ..., Xi) in Ry with
the pr.f. P(E) and the c.f. f(f). We use the symbolic notation

(8) a:*a‘;'...a;k=fx}”lx;’*...x;de(x),
Ry
(9) guge... gx=[lal |zl ... |zl dP),
By
where »,,v,, ..., % are nonnmegative integers. Here ej:a}*... o}t is interpreted

as a symbolic product, so that the following relation holds:

(IO) (altl + az tg + Pt + aktk)v=f(t1xl + tgxg + s + thk)vdp(x),
By

(v a positive integer). The same applies to (9). If » is a positive integer and
the absolute moments (g) are finite for », + v, + --- + #, <, then we have from
(2), (10) and the expansion of ¢‘* in series:

LA
FO=14 3 Slent +agty + o + axt +o(|¢])
v=1"

for small values of |¢]. We also observe that if all 87, ({ =1, 2, ..., k), are finite,
then all moments oj ej... ojk and 818 ... Bk with v, + v, + - + 9, =<7 are
finite. This follows from the inequality

vy Vi

(1) lovap . o] <guge... gr<{g}r-{g - {8},

an immediate consequence of the Holder inequality.

A special importance is attached to the first moments or mean values m; and
the quantities u;; defined by

(12) m; = fxidP(x), (t=1,2,...,k),

(13) wis= [ (i — mi) (o;— my) d P (x), G,j=1,z2 ... k).

Ry

We call the quantities p;; the translated second order moments. We further put
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(14) o =i = f(xi—mt)zdP(x)
Ry

and
.= B

(IS) rij 0: 0

The quantity m; is the mean value, the quantity o; the dispersion of the com-
ponent X; of X. The quantity r;; is called the correlation coefficient between the
components X; and X;. It satisfies the inequality — 1 =7r;<1. If ¢7%j we
call the u;;'s the mixed tranmslated second order moments.

Consider the quadratic form

(16) S mjuiu,-=f (élu.-(x.-—mf))’dP(x)

1,j=1 .
with the determinant
(17) 4 = || i)l

Obviously the form (16) is definite positive or semi-definite according as /> o
or 4=o0. If 4=o0, it is easily found by the theory of quadratic forms that
the probability mass is concentrated to a sub-space of Ri;. Then the problem is
reduced to the study of a r.v. in Ry with # <% Thus we may neglect the
case 4 =0 and always assume the form (16) to be positive definite.

The subsequent investigations are formally simplified by a certain trans-
formation.

Lemma 1. If X=(X,,X,,..., Xs) ¢s a r.v. in R, with the mean values
mi=0 and the finite second order moments u;; and 4 =||pi;||> o, then by a
linear, non-singular real transformation

Yi=a: Xi+ 0 Xo + - +ari Xi, (e=1,2,...,k)
vt 1s possible to obtain a new r.v. Y =(Y,, Y,, ..., Yi) such that
1° the mean value of Y, 7s zero, (i=1, 2, ..., k),
(18) 2° the dispersion of Y;, (=1, 2, ..., k), s equal to 1,

3 the mixed moments of the second order are zero.

Further
I

V4
If 4:; denotes the algebraic complement of 4 with respect to uij, then

a5l
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: 4
(19) S ¥i= Z “HX X
=1 1, j=1
Proof of Lemma 1. Consider the definite positive quadratic form

(20) zk]y,-,-uiu, f (S‘ ux) Pl).

i,j=1 i=1

Since o > o there exists, according to the theory of quadratic forms, a non-
gingular real linear transformation

(21) wi==a; 3wy + @itz + o0+ @ uk, (e=1,2,...,k),
such that
k k
(22) 2 Wig Wi uj = Z(ui)”
i,j=1 i=1

By a well-known theorem ||| a;;||| = - Substituting (21) in (20) and introducing

S
V4
the variables

(23) Yi=a1: X1 + az: Xo + -+ + ari X, (e=1,2,..,k),
we obtain from (22)

(24) é (ui)® = f (Zk‘, u; yi)2 dP,(y),
By

=1

where P, (E) is the pr.f. of the r.v. Y =(Y,, Y,,..., Yi). From (23) and (24)
it immediately follows that the variable Y satisfies the conditions (18). Only the
relation (19) remains to be proved. From (23) we obtain

k k
(23) Y= bi; X X5,

=1 i,j=1

where the coefficients b;; are to be determined. We introduce the matrices

Hy1 By oo Pk Q11 Gyy - .. Q1g
D= , A= - .0,
Ury ke ... Ukk ary Are . . . Grk
(26)
by bia ... bug 100 ... 0
10 o]
%‘-: 3 €= o

bklbkg...bkk 000 ... 1
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By €* we denote the transpose of a matrix €, by €~ the inverse of €. Now (22)
and (23) may be written

(27) ADA=E
and
(28) A* E Y* =B

respectively. Hence from (28) B* =AA=AAD D" From (27) we obtain
AD=A"! and hence B* =AY D! =D}, and the lemma is proved.

In the following chapters we shall mainly occupy ourselves with the addition
of independent r.v.’s. Let XW=(X{, X, .., X{V) and X = (X®, X@, ..,
X®) be two r.v.’s in R¢. By the sum X = X® + X@® we understand the variable

X= (X4 X0, X0+ XP, ..., X®4 X2,

The following well-known addition theorem holds:

If XY and X are two independent r.v.'s in Ry with the pr.f's P,(E)
and Py (E) respectively and the corresponding c.f's f,(t) and f,(t), then the sum
X =X+ X® has the pr.f.

P(E)=P, % P,= [ P,(E— x) dP,(x)

and the c. f.
SO)=A0) £(0).

The generalization to a sum of » independent r. v.’s is immediate. If the variables
have the mean values m{" and m® and the dispersions ¢/ and 6, ({1 =1, 2, .., &),
we also observe:

(20) m, = m{" + m®
and
(30) o2 = (@) + (o),

where m; and ¢; are the mean values and the dispersions of X.

In the one-dimensional case the normal distribution function m(x;m)
with the mean value m and the dispersion o has the c.f. ¢™ -3¢ In the
multi-dimensional case the normal distribution is defined in the following way.

4 rv X=(X,,X,, ..., Xp) in Ry with the mean values m;, (r =1, 2, ..., k),
and the translated second order moments prs, (r,s=1, 2, ..., k), is normally distri-

buted, if the pr.f. vs absolutely continuous with the density function
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~%alzy, 25, .., "‘k)’

(31) D(@)=———==e

where

k
A
Q(xnxe:---, xk)=z N(xr-—m,-)(xs—ms)

and 4= ||urs| is the determinant of the quadratic form D) prstrts. Here Ay is
r, 8=1

the algebraic complement of wu.s with respect to 4 and A ts supposed to be > o.

The c.f. f(t) is expressed by

iémrtr"‘% Zk} Hrglrty
(32) fl)=er=r

If 4=o0, f(t) may be considered as the c.f. of an improper normal distri-
bution with the probability mass concentrated to a sub-space of B:. We neglect
this case.

If a r.v. X=(X,, X,, ..., Xt) is normally distributed according to (31) let
us consider the variable X = (X, —m,, X;—m,, ..., Xy —m). The variable X is
also normally distributed with the mean values zero and the ordinary second
moments u;;. By Lemma 1 it is possible to form a r.v. Y= (Y, Y,, ..., ¥i)
with the mean values zero, the dispersions 1 and the mixed second order moments
zero. It is easily seen that Y has the frequency function

I - 2 ot Y2
(33) @Y1, v, - . yk)zgme O U3+,
The probability (a, k) of Y being situated within a sphere with its centre at
0=(0,0,...,0) and the radius a, is expressed by
I I VO SO
(4) Yia b= ff (2 n)k/ae Wiy, L dy

viteetup=at

It is easily found that

— 7 - 3 k~2 e
I—I/%fe'%"’dr—l/z[g+L+~-+ ? ]e 2
7T |1 13 1.3.5...(k_2)
(35) V(e k)= ’ for % odd,
at ak—2? _®
I-—[I +——I—---+-—————]e 2 for k even.
2 A g )
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Chapter VII.
On the Central Limit Theorem in R;. Estimation of the Remainder Term.

Introduction. Let us consider a sequence of independent r.v.'s X, X0
..., X" in R, (k=2). As in the one-dimensional case it is of great importance
to the theory of probability and its applications to study the distribution of the
sum of a large number of such variables. If 'P,(E) denotes the pr.f. of the
variable
X 4+ X 4+ ... 4 X

Vn ’
then under certain comditions! P,(E) converges to the normal pr.f. as n tends
to infinity. This is the Central Limit Theorem in R;. How large is the error

("')X =

involved when the process ceases at a finite value of »? The only result hitherto
obtained in this direction is due to Jouravsky [1], who, however, only gives a
rough estimation of the error term.?

Being mainly interested in principles we confine ourselves to the case of
equal distributions; there is, however, no difficulty in generalizing the subsequent
theorems. Thus, consider a sequence of indepvendent r.v.’s

(1) Xo x@ ., Xt
in R; with the same pr.f. Let an arbitrary variable X =(X;, X,, ..., Xi) of

the sequence have the properties:

1° the mean value of every component is equal to zero;

(-]

@) 2° the determinant o = ||u;|| > 0 where u;; are the moments of the

second order;

3° the fourth moments are all finite.
Our problem is to study the distribution of the variable

XM 4+ X 4 ... 4 X0
Vn

(3) WX = (WX, WX,, ... ®X)=

! BERNSTEIN [1], CRAMER (5], p. 113; JOURAVSKY [1] and others.
* Considering the probability of ()X belonging to a k-dimensional interval and supposing
that the absolute moments of order 2+ 4, (0 < d < 1), are finite, he obtains a remainder term =

I
=o( 5 )
2ETSTE
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In order to facilitate the calculation we make a transformation according to
Lemma 1, Chap. VI, of each variable X in the sequence (1), obtaining hereby
anew r.v. Y=(Y,, Y,, ..., Y such that

1° the mean value of each component is equal to zero,

(a) 2° the dispersion of each component is equal to I,
3° the mixed moments of the second order are equal to zero,
4° the fourth moments are finite.

Now form the variable
YO 4+ V0@ 4 ... 4 Y

(s) Wy = (WY, WY,, ... ) Yy) =

Van
where by Lemma 1, Chap. VI,
(6) MY =a; WX, + ass WX+ - + ars WX, (i=1,2,... k),
and
k kg
) S @xp =3 Liwx,mx,
i=1 i,j=1

A;; being the algebraic complement of u;; with respect to /. From (6) it follows
that the probability distribution of ™X is easily obtained if it is known for the
variable Y. Hence we may confine ourselves to the case that the conditions (2)
are identical with the conditions (4).

Notations. By P.(E) we denote the pr.f. of ™Y, by u,(a) the probability
of WY lying within the sphere

k
(8) S: 2 yi < a’.
i=1
Further ¢ (y) =@ (v, ¥s, . . ., ) denotes the density function of the normalized
normal distribution:
LI R R

q)(yl, :’/21 ey yk) =(—2—ﬂ:)_k/é

The normal pr.f. II(E) is expressed by

By (34), Chap. VI,
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We wish to estimate the quantity | P,(E) — II{E)| as a function of #. In
order to do this we have to impose certain conditions on E. With regard to the
applications it is natural to let £ be a 4-dimensional interval or a hyper sphere
with its centre at o = (o, ..., 0), this case giving particularly interesting results
with application to the x* method. The main problem of this chapter is the
estimation of |Pn(S)— IT(S)| = |un(a) — w(a,k)]. The following theorem holds:

Theorem 1. Let YW, Y . [ Y™ be a sequence of independent r.v.s in
Ry, (k = 2), with the same pr. f. P(E) and c. f. f(t). Further let an arbitrary var-
able Y =(Y,, Y,, ..., Yi) of the sequence satisfy the conditions:

1° the mean value of every component Y; is equal to zero;
2° the dispersion of every component Y; is equal to 1;

3° the mized moments of the second order are equal to zero;
4° the fourth moments Bt are finite.

(e=1,2,.., k)
I
YO+ Y@ 4. 4y

MYy =(mMYy,, @y, ... ®WY)= Ve

k
and p,(a) denotes the probability of 2("‘) Y:)? < a®, then

) lonla) — wla, B = o) £
,nk+l

k
Jor all a, where c(k) is a finite, posttive constant only depending on k, 8, = Zﬂf and
=1

I -3+ 9]+ v
Yia, k) =r—um f e dy, ... dyx.
(2 n)y§+-~~+y;sw

Corollary. Let XM X® . | X® be a sequence of independent r.v.'s satis-
fying the conditions (2) and let ®X be defined by (3). Then from (7) the func-
tion u.(a) in Theorem 1 is also the probability of

k
‘J_ij(n
A

i,§=1

)X, W X; < g?

and the inequality (g) still holds, We further observe that (g, k) also may be
expressed by
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L s i
I "2 X Y
(10) S S g =1 dz, ...dxx.
(2 )2V 4
k -
by %xiajsaﬁ
1, j=1

We briefly sketch the proof of Theorem 1. It is based on a convolution
method which is, however, not the same as in the one-dimensional case. As
before we need some lemmata concerning the behaviour of the c.f. fn(f) of WY
about ¢t =o0. These are given in § 2. The essential point of the proof is, however,
an investigation of the value distribution of the modulus of the c.f. f(f). This
question is studied in § 1. In § 3 we form an auxiliary function. After these
preliminaries the proof of Theorem 1 follows, (§ 4). In § 5 we apply the theorem
to the x® method. In the next and last chapter we study the %-dimensional
lattice distribution, especially its connection with the general lattice point pro-
blem for ellipsoids.

I. On the approach towards 1 of the modulus of a characteristic function.
Consider the pr.f. P(E) of the r.v. X =(X,, X, ..., Xi) in Ry, (k= 2).
Throughout this section we assume that the following conditions hold:

fx.,dP(x)=o; fodP(x)= 1; ﬁi=f|acv|3dP(9c)<cc, v=1,2,...,%);
(II) Rg By, Ky

fx,xsdP(x)———o for r,s=1,2,..., kand r #s.
By

If a variable satisfies the two first and the last condition of (11) we call it
normalized. By @, we denote the quantity

k

(12) ﬂs=2m-

Consider the e.f.

(13) SO =l ty, .t = [ORTERTTTRR AP ().

Eg

The problem of this section is to study the approach of |f(t)| towards 1. Ttis,
however, easier to treat the function

(14) g() =gt s, ... ) =|FOP.
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Now L i
Fl)= [emitusrus e tadng py
and hence ¢
(15) g =sW0f@=[ [ coslti(w,— &)+ - + telon — &) d P(x) d P(®)

Ry By

By S, we denote an arbitrary k-dimensional sphere of radius ¢, and by ms, (A4)
the measure of those {-points belonging to S, for which a certain property A
is satisfied.

Theorem 2. If the pr.f. P(E) is normalized, 8 < © and

I

(16) 0= . ,
6(1+V2)Krg,

then

(17) ms, fgl=1—¢) < !

TR {37(1 +V2)e)t?,
r (1 + —)
2
where ¢ is an arbitrary number such that o < e < 1.
We begin by proving the following lemma.
Lemma 1. If a=(a,, a,, ..., ax) is a point in Ry and

k

r= Z (tv - a")g)

»=1

then under the conditions of Theorem 2

/] 7]
08 =9+ 6—a)(52) + -+ —a) (52 -
0t1 a atk a
— 131 — 6 kBB (1 — g@)B} + $ B2 8y 1S
Proof of Lemma 1. Expanding cos [t (x, — &)+ - + t(xx — &)] about
t=a, we obtain from (13):

g(t)=9(a)+(t1‘“*)(ggti)a+ o (‘”_“”)(g—fk)a_

—3 f f —a,)( §1) + (e — a;,) (@ — &))® cos [al( Xy — §1) +

Ky Ry

o+ asloe— 5)) dP() d PE) +
+9 f j It —E) 4+ (b — ap) (o — &) P d P(@) A P(3),

Rlc Ry
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where 0 < |0] < 1. By (11)

[ [(ti—a) @ —E5) + % (te—ad o~ ENF A P@) A P(E) = 21%,

Ry Ry
and hence
(o) o) =g+ 6= a) (32) + o+ —a) (J2) =+ Sk T,
where
(20) J, =i{ R{ (6 — @) (m, — &) + - + (b — @) (e — &2
- (1 — cos (a, (@, — &) + - + arler — E0)| d P(x) d P ()
ey L= [lt—a)m—5)+ -+ @ —8)PaPE dPE.

Ry By
We first estimate J;. From Cauchy’s inequality it follows that
=% [ [l—gr+ o+ w82 PP aPe.
Ry R
We now apply the inequality
lw = &)+ -+ e — &8P P < B oy — 5 P+ + | — & <

< 4Bl P+ 18P+ + |l + &L
and then from (11) and (12):

(22) | T] < § % gy 2.

The estimation of J; is somewhat more laborious. We first apply the Cauchy
inequality and obtain

J, S%flf}gf{ ,— &) + (e — &) -
o [t —cos (a, (@, — &) + - + arlar — &) d P{x) d P(E) =
(23) =4re- ff + 47 ff =3y + J4),

(=5 (= HPS 2 (m—3)+ o (- )’>4*
A being a positive number later to be determined. Now

Js <12f f[r —cos (a, (@, — &)+ - + ar(wx — &) d P(z)d P (&)

By Ry

and hence from (15)
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(24) Jy < 21 — g(a).

In order to estimate J, we observe the following inequalities:
BEk gy = [ fk"=[|x1—§1|’+--~+|xk—§k|“]dP(x)dP<§)z

= f f —&) “+ (or— &))" d P(x)d P(§) =

Ey Ry

21 [ [(@—E)+ -+ @m—5NdPRAPE.

(=&t - (St > 40

But now
J4S2' ff [(x]—gl)s‘l'+(xk—_§k)2]dp(x)dp(§)
E=&2t - (mp—Gpt> 2
and hence
1s
(25) J, < 16 k2B

A
Summing up we obtain from (23), (24) and (25):

(26) J=1ir [l’(l —gl@) + 16 ‘/’ﬂ“’]

We now choose A so that the right-hand side of (26) becomes as small as pos-
gible. This occurs for

_ 2 e gl
(1 —gla)™”

and then

(27) J, < 6r2 kPl g1 —g ).

From (19), (22) and (27) the desired inequality follows, and the lemma is proved.

Proof of Theorem 2.

A. First suppose that ¢(f) has a maximum for {=a=(a,, a5, ..., @)

and that

[1° gla)=1—c¢,
(28) (1—2)®

o <=M

[2 o<e= 6k B

where
A=—2

.
1+V2
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Then from Lemma 1

gy s1—r {1 —6 kgLl + $ K78,
where

From (28:2°) it follows:
(29) gt) =1 —2r" + §5 8y 1°

The function 1 — 27? + § %' 8;1® steadily decreases as r increases from o to

i
(30) =g, = m.
Hence from (29) and (30):
(31) g(t)SI—grz for o<r<g,

According to (31) the set of tpoints about f=a, for which g(f)=1—¢, is
situated within a sphere of radius

(32) a=]/3
By the choice of 1, ¢, < g,.
B. Now consider an arbitrary sphere S, in R; of radius
/31— I
(33) = {QO ;skl 1 s
Bl 6+ V2kng,
We still assume that the condition (28:2°) is satisfied. Then obviously

QS%{QO— 3—;}

Three cases may occur.

1. There exists a point @ in S, for which g(a) is maximum and g(a)=1—e.
According to the choice of ¢, S, is entirely situated within a sphere with
its centre at « and of radius g,. Hence according to (32) the set of ¢
points in §,, satisfying the condition g(f) = 1 — ¢, is entirely situated within a

sphere of radius /3¢ 3_;, i. e.

(34) ms,{g(t) =1 —e} < s (3—;)kl2-

(3

7— 632042 Acta mathematica. 17
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2. There is no maximum in §, but there exists a point p in §, such that
g(p)=1—¢. It is easily seen from Lemma 1 that there must exist a point a
in the neighbourhood of p for which ¢ () is maximum, and from A4 it follows

that a is at the most at the distance l %f from p. Owing to the choice of

o, S, still is situated within a sphere with its centre at & and of radius g,.
The inequality (34) is still valid.

3. There is no point ¢ in S, for which ¢(f) = 1 — ¢. The validity of (34)
is immediately clear.

C. Now we make the contradictory assumption to (28:2°), i. e.

(1—2)°
(35) &> 6k & ;
and consider an arbitrary sphere S, in Ry of radius (33). Our aim is the proof
of the inequality

(36) ms, {g(t) = 1— ¢} < K- &7,
K being a constant. The smallest possible value of K on the assumption (33)

obviously occurs if the lefi-hand side of (36) is replaced by the volume of S,
and if

_ (=
Tk
Hence
(37) ms fg(f)=1— o < o€ _[CEBIP
¢ ( kY (1 —2)p
I l+—2)

D. Comparing the inequalities (34) and (37) and observing that the right-

hand sides are equal for A= 13 , we obtain the desired result.

1+V2

Remarks.

1°. In Theorem 2 the quantity 8, occurs; later on, however, we are most

interested in the fourth moments, i. e. the quantity

k
.34=2,/~‘>’i‘-

i=1
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Now
k k koo
B3 = S = k(S =wea
i=1 =1 i=1
Hence in Theorem 2 we may replace &8, with (k8" and obtain the result:

It S, is an arbitrary %-dimensional sphere of radius

I

6(1 +V72) (k8"

9::

then (17) holds.

2°. Theorem 2 also holds for k= 1. Hence by a simple transformation we

obtain Theorem 6, Chap. L.

2. Some lemmata concerning fn(f). The notations and hypotheses of Theo-
rem 1, the main theorem, remain unaltered in this section; the same remark
holds concerning the symbolic notation of the moments, introduced in Chap. VI
By fa(t) we denote the c. f. of Y. Then by the addition theorem, Chap. VI,

(38) £l = { f(_‘:)}".

If t=(¢, t, ..., t) is a point in Ry, the quantity r is defined by

r=V&+8HB+--+ .
The following lemma is easily proved as in the one-dimensional case.

Lemmas 2.

r2

falt)—e 2

_i—— 3 _'T‘? < ﬁ'—;/z 4 .6 ‘I‘z
+6V;(altl+ +oart)Pe z| < ec(k) - (r* + 1% e s
Jor r = (k_l;'%’ ¢ (k) being a finite constant only depending on k.

4.
We further observe that the function

[ ; _r
e 2 ——L(altl +--- 4+ aktk)3e 2

6V n

is the Fourier transform of the »frequency function»

( ) wlz,, x)___*lm-—"_p; r 1 a_t?__}___._ra:@_)‘*e_%e,
39) @l B =Rt T g g\ %, ool ©

——
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(e*=a} +:--+ z}). Let S be a sphere in R with its centre at o = (0,0, ..., 0)
and of radius . With regard to subsequent applications we also notice that

(40) fw(xl, N AL =f(—2—7-1t—)me‘i"’dx=w(a, k).
% 5

By S, we denote the sphere of radius

1

6+ V) (ke

(41)

introduced in Theorem 2. (Compare Remark 1, § 1). This theorem makes it
possible to prove the following lemma.

Lemma 3. Let S, be an arbitrary sphere in Ry of radius ¢ determined by
(41). Then

c{k)
f|f(t)|"dtl...dtkSW’
Se

c(k) being a constant only depending on k.

Proof of Lemma 3. Dividing up the region of integration in the follow-
ing way, we obtain from Theorem 2:

n/2
ms(,[05|f(t)|" < (x—;—) }SK- 1+2,

mSg{(I - ;)"/2 =|fOlr < (1 — é)m} <K (é)m,

S 1 n/2 1 /2 1 x/2

K being the constant of the right-hand side of (17). Hence

s 1 \®a [ \k2
J=f|f(t)|ndt1...dtksKZ(I_F) (;_) )
Se

»=0

. . k
By comparing the series with an integral it is easily found that J < %,

which proves the lemma.
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3. Construction of an auxiliary function. Let the function Q. (x,, x5, . .., x)
in Rk, (k= 2), be defined in the following way:

1forVal+a+ -+zi<a
(43) Qa(xlvxz’ "'7wk)= !
oforVal+al+ —-+zi>a

where o is an assigned positive number. The Fourier transform

Qalty, boy ooy i) = f gnthmt v hm) o (o ay, ..., x)de, ... das
Ry

is easily evaluated according to well.known methods.! It is found that

2 v a\k? 7 2 3
(44) Qa (tla t2) ey tk) = r Jk/2 (ar), (7’ = th + ta + - tk),

Jia(2) denoting the Bessel function of order k/2. Now consider the convolution

function
F(I + ,23)
(45) M(xla Zyy ooy xk) = W Qa (xl_gly v xk—gk) QE (gl! ey §k) d§1 L) dgkv

Ry

where 0 < ¢ <a. From (43) it is easily seen that

1forVal+ i+ +xt<a—¢
Mz, ,z,y, ..., %) = )
oforVal+ai+ - +axt=a+e

(46)
| M(x)| < 1 for all x.

The Fourier transform of M, m(t,, £,, ..., &), is obtained by

%2
(47) m (b, by oo B) = (”“) Jun(ar) 2% T (x + f) Jinler),

r (er)ei2

owing to the fact that the Fourier transform of a convolution is equal to the
product of the transforms corresponding to the functions in the convolution.
~ From (46) and (47) we obtain by a simple transformation: the function

( +£) k2 7 (sr)

(48) ifa—g_ 7, + &)l 22| _[_’ﬁ _k/i_z_

4 " Jezllat )7 2. > (er)m
2

! See for instance BOCHNER [I], § 43;
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is the Fourier transform of a function =

II forVai+ai+ - +xi<a
loform+x§+--~+x22a+e

the modulus of which is bounded by 1 for all x.
In the same way: the function

(49) “ﬂ e J) —£ 2“’21“(1+—k— - 2/
49 , H2f @ r 2 (e ,.)k/z
2

is the Fourier transform of a function =

1forVal+udi+-+axi<a—e
= b
oforVal+ai+ - -+xi=a

the modulus of which is bounded by 1 for all .
By ¢, ¢, ... we denote a sequence of finite positive constants only depending
on k. We now use the follewing well-known properties of the Bessel functions:

[ 1° Jk/ﬁ(z)

gD
12° | Jia(e)| < 2 for all positive 2

= ¢, for all positive 2

(50)
Ve
The relations (48), (49) and (50) imply the validity of

Lemma 4. Let a and ¢ be two assigned constants and o< & <<a. There
exists a function H(x,, x,, ..., ax, a, &) = H (g, a, &) only depending on

e=Va+ai+ -+
such that
l 1foro<e¢<a
1° Hp, a, &) = » and | Hg, a, &)] < 1
lofor e=a-+t ¢
Jor all o.
Further the Fourier transform of H, h(t,, &y, ..., t, a, &) = h(r, a, &), is only de-

pendent on

r=Vi+ 8+ -+t
and
k—1
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There also exists a function H (g, a, —¢) such that

Iforo<g<ag—e¢
4° Hg,a,—¢) = » and |Ho, a, —e)| < 1
o for o=a
Jor all ¢, the Fourier transform of which, h(r, a, — &), satisfies the inequalities 2°
and 3°.

4. Proof of the main theorem. We use the same nofation as in the state-
ment of Theorem 1 but repeat it here for the sake of lucidity. P, (E) denotes
the pr.f. of the sum
YO 4+ YO 1 ... i

{n) — .
(51) Y v ;

fa(t) is the corresponding c.f. and
t n
n t =I —_ ’
"
S () being the c.f. of the variable Y®, (y=1, 2, ..., n). u.(a) is the probability

of ™Y being situated within the sphere S with its centre 0o =(0, 0, ..., 0} and
of radius a.

¢(1?1, Lgy ooy Cb‘k) = (*2—71;5,%3‘5‘(”%*‘“5"‘"""'“@,
the normal frequency function.

Y(a, k) =f<p(cc,,x2, e x)dx, ... dxy; see Chap. VI, (35).
8

w(xy, Xy ..o, T) =@ LX), To, . . ., TH) —
1 1 0 a\® _
N T A A A
27f% 6 Vy Oz, 0 i

r=Vé+ti+--+8#; o=Valtai+ o +ai
Further,
2 . ]

e ?———(a b+ + at)le
1

6V n

is the Fourier transform of w(x,, x,, ..., z;), see Lemma 2.



104 Carl-Gustav Esseen.

U,.(E)=fw(x,, Zgy oo xr)dx, dzy . .. dXp.
£

Ho, a, &), Hlo, a, —¢), h{r, a, &) and h(r, a, —e) are defined in Lemma 4. Finally
we remark that the function
r? ) r?

(32) Anlty, tyr oo t)=Salty, by .. ti) —€ T + 6;/;(111 to++ art)e T

is the c. f. of the set fumction P,(E)— U.(E).

By ¢, ¢y, .. we denote a sequence of finite positive constants only de-
pending on k.

The starting point of the proof is the formula

(53) | Hlo,a,¢)d{Py(x)— Unlx)} = du(ty, by, . W R(r, a6 dt, ... dt,
J =1

the validity of which is immediately clear accordiug to the Fourier inversion
formula. Owing to the properties of H, (Lemma 4:1°), we obtain from (53)

and (40):
( a t - +te 9 )8 02!
¥
xk

fd,. hir,a, &) dt.
(2 m)*

Using H (g, a, —¢) in (53) instead of H({p, a, &) we obtain in the same way:
/] 0\ -2
(ala—xl+---+ akga)e 2
1
> - - @, —
_(zn)kfd,.(t)h(;,a, o dt.
R
Hence from (54) and (55):
(s6) | #n(a) — @ (a, k)| < Max (4,, 4,),

where

(57) di=lyla+ehk)—ylah)]+

1

pn(@)—W(a + & k) — e eV

de,...do<

a595a+e

pnla) —Yla—e k) +

o dx, ...dx =

a—c=g=a

»\.,

aml 0xk dxl..-dxk+

| .
gt )

+ Tf|4,,(t)h(r,a,s)|alt,

(zn
Ry
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(58) Ay=|y(a, k) —pla—e k)| +

L1 LN Y <
26V n 9z, Y

a—t<p=<a

dxl...dxk+

1

(z—n)kf|4n(t)h(r,a,—-e)|dt.

Ry

+

The relation (56), together with (57) and (58), is the main inequality of the sub-
sequent estimations.

Without loss of generality we may make the following assumptions.

°

(59) 1° a<log(z + n),

or else we choose ¢ = af2 and proceed as in the subsequent estimations.

/2
(60) 2° ﬁk_ =4
I

or else Theorem 1 is true with ¢{k) =2.
We may confine ourselves to the estimation of 4,, 4, being treated in a

similar way. Now choose

(61) e=a-%-

nk+l
Hence 0 < ¢ < a. It is immediately found that

1 1 9 o\ -%
|1p(a+s,k)—1p(a,k)|_+*—(275),5/23-1/7f (ala—xl+-..+akb7k) e 2

a=<po=a+te
53/2
Lt S
k

,nk+l

dx,...dx=<

=gqg

We proceed to the estimation of the last term of A, and begin by dividing up
the region of integration:

1

. _ I _
(63) I=Wf|dn(t)h(1,a,a)|dt—( f_ + f —IL+1,

2 )k (2 =)

Eod

Ry - Van n
0=7= gy > & B
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A. Estimation of I;. By virtue of Lemma 2, Lemma 4:2° and (59) it

follows:
k-1
/3 .__7_.2 T 2 kf2
L =e ‘%(r‘*+r°)e 8 akH dt, ... dt < ¢, 87 nk .
r2 r (*)
Ry, 2
LIl k e
1 2 k=3 =~ fe
.(og(2+n)) f(,.4+1.6),.2 e 3d7'503"‘3_:k—'
n _k_
b pFt1
Hence
2
(64) L=e 5

nk+l

B. Estimation of I,. This is tke main point of the proof. We use the
earlier result regarding the value distribution of | f(¢)], (Theorem 2 and Lemma 3).

w=ew [ il

|h(r, a, &)|dt + ¢, ‘8:

/nk-f'l
(/\ ﬁa)’ﬂ
nk/z _
[lftl,tg,...,tk)I"Ih(rVn,a,s)ldt+c4- =
T
(kﬁ)"h
,nk/2 nk/z E1/5: :/2
(65) =(~2;); [ +(2—1;)" f + ¢ - L=13+I4+c4-——_;‘—_-'
v k+1 k+1
—<rs—— > " "
(% Ba)¥/a eV eVn

(Wlthout loss of generality we may suppose — From Lemma 4:2°

Ve )

we first obtain:

a ? nt? A AR 31
Iy =" —— LG R Il dt, ...dt,
n 4 r 2
1 e 1
(K Ba)3/a £V
or
k=1 k-1
Iy =ca? I, where
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From Lemma 4:3° we obtain in the same way:

=1

(lﬁzr

AI4 = Cg - EIT/TZ?ZI IG’ where
(67)
t, by )]

[6= f MQLH([&...(’[;;.

1 rr

oV

B:a. Estimation of I; and I,. By D we denote the region hetween two &-
dimensional cubes, the edges of which are parallel with the coordinate axeses.

Furthermore the interior cube is inscribed in a sphere with its centre at

0=1(0,0,...,0) and of radius (—Ir_é‘){“’ while the exterior cube is circumseribed
it}
around a sphere with its centre at 0 ={0, 0, ..., 0) and of radius E—IF Then
"N
t R A
(68) 15<f|-’”("'52*k_+_1 Wt an=1.
b r?

The interior cube has the edge-length

2

6 2§ =——-

(9) ViEs)

By K, we always denote a cube with the edges parallel with the coordinate

axeses, which is inseribed in a sphere S, of radius

I

—6(1 + 17'5) (m)ﬂ/*‘

The edge-length & of K, is calculated to be

o S B
Vi 6(1 + V2) (k)"

By Lemma 3 we have:

[4
(71) f‘f(tl,tz,...,t;;)l"dtl...dtkﬁn—&-
¥

Now consider a sequence of cubes with their centres at o=(0,0,...,0),
their edges parallel with the coordinate axeses and their edge-lengths 2({s+»b),
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I

(w =0,1,2,...,%, ¥ being so determined that s + (y,—1)b < <s+ vob).

eVn
The number of cubes K, without common part which may be situated in the
space between two cubes of the sequence with the edge-lengths 2{s + v b} and
2{s+ (v + 1)b} respectively is less than or equal to

s+{+1)b k s+vb "_( s )"_
(2—~——b +I) -—(2 5 1)— 2b+2v+3

s k 4k,2k—l 3b k-1
—(2;-’-21’—1) S——bk—_—l——(8+l'b+? 4

Hence according to (71) the contribution of this region of integration to I, is

k-1
. (s+vb +§2—b) o I k-3
. k-3
= =5 T S g tvb) T
nk? p k41 nt? b
(s+2b) 2
Thus
_2
eVn
1 7o ,.5—_3 G E—_S
9 9
v= 0
or
e I
(72) L= i e
e ? n

From (66), (72), (70) and (61) we finally obtain:

8k k-1 &
k=1 k-1 134'4_”"7 k+1 ¢y B
L<e,-a®nt 1T RSl 8 k-1 _k_
nry & g2 g2 2 pk+l
or
/]
(73) Iy<e¢y,- ﬂ:k :
k1

(Since the dispersions are all 1, 8, > 1; compare Chap. VI, (11).

B:b. Estimation of I; and I,. The estimation of I; proceeds in exactly the
same way as that of I;. Dividing up the region of integration into a sequence
of cubes, we apply Lemma 3 and find:
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- ]
k—1 e plfe
Cig Y __Cig 1€
(74) L= 772 BF f i Y = TR T
1

y ?
LETR N

Hence from (67), (74), (70) and (61):

I, =<cy

/t]
(75) I4SC14'ﬂ: .

L
nktl

The final result of Section B follows from (65), (73) and (75):

/2
(76) I, < Ci5 —ﬂ:—k— .

,nlc+l

Conclusion. From (63), (64) and (76) we obtain:

/g
(77) I<e, f2

nk+l

and hence from (57), (62), (63) and (77):

/2
4 =<0, Zu

*_
nb+1

This proves the theorem.

Remarks.

1. We have proved Theorem 1 on the assumption that all the r.v.'s bhave
the same probability distribution. If this is not the case it is mnecessary to
modify the proof a little. The main difference consists in the estimation of the
integral

I=Sf|f,(t)f2(t)...f,,(t)|dt1...dtk.
o

Using the inequality of H¢lder in a suitable manner we may estimate I by a
product of integrals of type

N1A@F-dt, ... dt.
Sp
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The Lemma 3 is applicable to every such integral. In this way it is possible
to prove all the theorems of Part I concerning probability distributions, for in-
stance the inequality

| Fo(2) — @ ()] < ¢- 222, (Chap. III, (15).

E

2. In Theorem 1 we have made the least restrictive assumptions possible.

Now suppose that lim |f(¢, t,, ..., t)] < 1. Then it is easily seen that the re-
jtj]—
\
mainder term has the order of magnitude O(;Iz) Absolute moments of order

greater than 4 being supposed to be finite, it is also possible to obtain an

asymptotic expansion as in the one-dimensional case.

3. In the one-dimensional case we have found that the absolute third mo-
ment plays an important part in the problem of obtaining the general true order
of magnitude of the remainder term. In the multi-dimensional case the same

applies to the fourth moments (compare the next chapter).

4. In Theorem 1 we have confined ourselves to the case where ™Y belongs
to a sphere § with its centre at 0 = (0, 0, ..., 0). It is, indeed, possible to escape
from this restriction; but the form of the theorem given here is especially simple.

5. Application to the »* method. In this section we shall briefly apply
Theorem 1 to the so-called * method; we confine ourselves to the most simple
case which may concretely be illustrated by the drawing of balls from an urn.
Let an urn contain a collection of balls, white, black etc. and let in all £+ 1
different colours be represented. Suppose that the probability of drawing a white
ball is p,, of drawing a black p, etc. In every trial a ball is drawn, its colour is
noted and then it is replaced. In all we suppose that » trials are made, the
results of which consist of m; white, my black balls ete. Obviously

’ ’ ’
my + my + -+ mpp1 = 0.

1f the drawing were so performed as to give an exact representation of the
distribution of the balls among the different colours, these numbers would be
the mean values:

My =P, My =DPaN, ..., Mrt1= Pr+1h.

Now we ask: What is the probability p(y) of
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k+1 ’ 2
Vmy —ma
(78) . % - > g%

The result of every trial may be characterized by a k-dimensional r.v.
X =(X,, X,, ..., Xx), the component X, assuming the value 1 if a white ball
is drawn, otherwise the value o etec. The mean value of the component X, is
equal to p, and the fourth moments are finite.

Let the results of the # trials be represented by a sequence of variables
X0 x@ X&) and form

X3 X3 ... 3 X pgn}

r9)  WX=("X, MX,,..., "X;) =
Vn

M® being a point in R; with the coordinates (np,, nps, ..., nps). It is possible
to show? that

k+1 ( ’ Y k

My — My) A,
2T T 2 K,
= r, 8=

where 4 =||u,s|| and 4,, is the algebraic complement of u,, with respect to
4. By the corollary of Theorem 1 it follows:

(80) p=1—y( b+ 3(pl,pg,k. o2

nk+l

where 0(py, pg, ..., px) is a finite quantity only depending omn p,, ps, ..., pr and
I P O TR I
yx, k)=(2n),;,; f e g gy L day.

112+ P +x}csx‘z

The relation (80) answers our question.

The so-called x* method, applied to this case, consists of taking p(x) =
=1—1(x, k); thus the remainder term of (80) is neglected. By our methods
we have, however, been able to estimate the order of magnitude of the re-
mainder. I hope to have the opportunity of returning to these questions at a
later date.

! PearsoN [1).
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Chapter VIIL
Lattice Distributions. Connection with the Lattice Point Problem.

In the one-dimensional case we have found that it is generally impossible
to obtain an expansion of the d.f. F,(x) corresponding to the normalized sum
of a large number n of independent r. v.'s in a series of continuous functions,
and with a remainder term of order of magnitude less than Lot every vari-

n
able of the sum has the same d. f. and this is of lattice type, then Fu(x) has

discontinuities of order of magnitude VI—_ In the multi-dimensional case the situa-
n
tion is analogous. In the last chapter we obtained the remainder 0(—1,:—)
b+l

The pr. f. being subject to certain conditions, we also remarked that this estima-
tion may be improved and that it is possible to obtain an asymptotic expansion,
provided that absolute moments of order greater than 4 are finite. However,
as we shall see in this chapter, this is generally not possible even if all moments

are finite, and we shall show that the remainder term 0( Ik) is intimately
nk+l

connected with a certain kind of probability distribution, the lattice distribution.

We shall compare this remainder with that of the lattice point problem in the

analytic theory of numbers.

I. On characteristic functions having the modulus equal to 1 at a sequence
of points. It is to be expected that the remainder term in Theorem 1, Chap. VII,
will be of as large order of magnitude as possible when the modulus of the c. f.
Slt,, ts, ..., &) is equal to 1 at a sequence of points different from (o, 0, ..., 0)
(cf. the one-dimensional case, Chap. IV). Thus, let us find out when this case
may occur. For the sake of simplicity we only treat the two-dimensional case.

Consider a e¢. f. f(t,, t;) corrésponding to a two-dimensional pr. f. P(E), and
suppose that there exists a finite point (¢, t”)) > (o, 0) such that

(1) A, E) =1

As’in the one-dimensional case (Theorem 5, Chap. I) it follows from (1) that the
probability mass necessarily is concentrated to the straight lines

(2) 0, +tg,—0y=»-2n, (=0, 11, +2, £-).
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It is readily observed that only the following cases may occur:
a. The probability mass is concentrated to one single line. We neglect this
case being of a one-dimensional nature.

b The probability mass is concentrated to at least two parallel lines, and

$ (0)
there is a point (", t{!)) different from (o, o) and (#", t{) such that t—(}—) 7% :—io—) and
| F(£Y, €] = 1. Then the probability mass is also situated in the lines
(3) tgl)xl+t(21)x2_'01=v'2”) ( =o’ilai——2vi—”')7

and hence is concentrated to the points cf intersection of the families of lines
(2) and (3), i.e. is situated in a set of lattice points. We call such a distribution
a lattice distribution.

c. The probability mass is concentrated to at least two parallel lines, and
the distribution is not of lattice type. It is easily found that all points (¢, ¢,).
for which |f(t,, t;)| = 1, form a set of equidistant points belonging to one single
straight line through (o, o).

Let us consider the lattice distributions more closely. It is convenient to
use vectors. Let P(E) be a lattice distribution in R,, i.e. let there exist three
vectors 3, , and a, (a, not parallel with a,) such that the probability mass is
concentrated to the points'®

(4) (w(lu)’ xgv))=3y7=50+ﬂal+va27 (‘IL,V=O, illiza i)-
¥ x") are the rectangular components o e vector 3., having the origin
(), 2 the rectangul ts of th tor 3., having the origi
at (0, 0). Let the probability mass at gu, be @, = 0. Thus Y au, =1. Thee.f.
of P(E) is expressed by e
(5) .f(tlv tQ) = 2 Quv ei(t,x(l#)+t,x(!")) .

", v
By t={(t,, t;) we denote a vector having the rectangular components (¢, f,) and

the origin at (0, 0). Further we put f(¢,, ¢,) =f(t). Using vector notation and
the concept of scalar product we obtain from (4) and (5):

(6) f(t) — 2 Ay eit(fm*}"ltalﬂ- Yay) —— eita',z Qs eit([lﬂl‘*"l'ag).

"y *y
From (6) it is readily observed, that the necessary and sufficient condition for
(7) LF®]=1

! It is always supposed that @, and a, are the greatest possible of their kind.

8 — 632042 Acta mathematica. 77



114 Carl-Gustav Esseen.

is that
(8) t=DNu + Ny, (N, Ny=o0, 1, £2 + )

where u, and u, are determined by

(9)

wa =27 ua, =0 |
, ’
ua,=o0 gy = 27z

Further |f(8 + t)| =|f(8)]| for every t satisfying (8). The area p of the parallelo-
gram of periodicity formed by the vectors u, and u, is easily calculated. If the
rectangular components of a, and @, are (a;;, a,5) and (ay, as) respectively, then

(2 7)°

p _
a1y Qs

Qg Qs

From (8) it follows that the points (¢, ;) for which | f(¢, &) =1, f(¢, t5)
being the c.f. of a lattice distribution, also form a set of lattice points. Let us
‘for a moment return to Theorem 1, Chap. VII. The estimation of the remainder

term 0(—1,7), (k= 2), is mainly based on Theorem 2, Chap. VII. The purport
nit1

of this theorem is, roughly speaking, that the modulus of the c.f. may approach
the value 1 only at points which do not lie closer than a set of lattice points.
The most unfavourable case with regard to our method of proof is thus the
lattice distribution and it is of special interest to study the remainder term
problem in this case. In the following two sections we shall see that this pro-
blem is connected with the difficult estimation of the remainder occurring in
the lattice point problem of the analytic theory of numbers.

The preceding results are easily extended to the multi-dimensional case. By
a lattice distribution in R; we understand a probability distribution P(E), the
probability mass of which is concentrated to the lattice points

(IO) 50+"'1a1+"'+"’kak, (7171,21"-1vk=0’i1’i21i'“)i

where 3,, a;, ..., ar are vectors in R, and the volume of the parallelogram
formed by the vectors a is £ o. If a, has the rectangular components (a,1, a,,
- ..., Gyy), this means that the determinant 4 = [|a,,|| # o. If f({t)=f(t, &5, - . -, &)
is the c.f. of P(E), where t= (¢, t,, ..., &), then there exist vectors u,, u,, .. ., I,
determined by
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ua =2 ma, =o
u1a2=0 uka3=0

g e e e s s
U ax =0 UGy =27

such that every t for which |f(t)] =1 is expressed by
(11) t=DNu + Nyuy + - + Newtg, (Ny, Ny, ..., Ny=o0,%1,t2 +--)

and conversely. Furthermore | f(8 + t)| =|f(8)| for all 8 and every t satisfying (11).
The volume p of the k-dimensional parallelogram of periodicity formed by the
vectors u is equal to

2 m)ft
(12) p=( :
[4]
2. On the probability mass at a discontinuity point, Let X®) X® X

be a sequence of independent r.v.’s in R; with the same pr. f. P(E) and the c.f.
Sty &g, ..., &). We further suppose that P(E) is a lattice distribution defined
by (10). We form the variable

X4+ X 4 ... 4 Xn)
Van

(13) WX
with the pr.f. P.(E) and the c.f.

h b4 &\ "
(14) Salty, by - - s tk)={f(ﬁ,ﬁ, V—n)}'

By Chap. VI P,(E) is also a lattice distribution with the point spectrum situ-
ated in

(15) n30+71a3+"'+”kak
Va

v (e, . am=o0, %1, 2, +-)
We wish to express the probability mass ¢™(§,, &, ..., &) at a discontinuity
point (5, &, ..., §) of P.(E) as a functional of f,(¢,, &, ..., ). By p we denote
both the volume of the parallelogram of periodicity, (cf. (12)), and the region of
integration formed by that parallelogram when it is moved parallel to itself so
that the origin and the centre of the parallelogram coincide. By p(Vn) we
understand the parallelogram p magnified to the scale Vn:1.
By a proof similar to that of Lemma 2, Chap. 1V, we obtain:
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Lemma 1.
q(") (§l! §2) ey §k) 217—:;”_2 f e—i(’:'t'+m+sktk)fn(tl, « e ey tk) dtx o dt‘;,
(V%)
or by (12),
A e
q(n)(gn §21 vy §k) = (_2_71;),%“2 f e—t(Hit? "'+=k'k)fn(fl, ey tk) dtx oo d .
p(¥V'n)

Lemma 1 may be applied to the proof of

Theorem 1. Let X, X® .. . X" be a sequence of independent r.v.’s in
Ry with the same pr.f. P(E) and let P(E) be a lattice distribution defined by (10).
Let an arbitrary r.v. of the sequence have the properties:

1° the mean values are equal to zero;

2° the dispersions are equal to 1;
3° the mixed moments of the second order are zero;

]

4 the fourth moments are finite.

Then the probability function Pa(E) of MX is also a lattice distribution and
the probability mass q™ (%, &, ..., &) at a discontinuity point (&, 5, ..., &) of
P, (E) is expressed by

" 14} 2 1 7} A S 1
q()(gl’gi,...,gk)——@";)k—m e 2—6]/;; a,a—§l+... 1 ak-azc e 2 +0(—F_§ )

where

/] a\®
()2=§§ + &84+ +8 and (ala—g-l + -+ ak—az)
is taken in the symbolic sense, (cf. (10), Chap. VI).

The proof of Theorem 1, which is an immediate consequence of Lemma 1,
this chapter, and Lemma 2, Chap. VII, is similar to that of the corresponding
one-dimensional case, (Theorem 5, Chap. IV).

3. The connection with the lattice point problem. We begin by giving an
account of the lattice point problem concerning a %-dimensional ellipsoid.’ Let

k= 2 be an integer and
k

(16) Q= Q(!/)=Zawyu?/v’ (@us = avu),

u, v=1

! For further information, ¢f. JARNIK [1) and [2]).
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a definite positive quadratic form with the determinant D =||a,,||. The form
Q is called rational if there exists a number « such that a,, = ab,., where the
b..'s are integers; otherwise @ is érrational. For x > 0, B(x) = Bq(r) denotes the
number of lattice points (i.e. points in R; having integers (m,, my, ..., my) as
coordinates) in the closed %-dimensional ellipsoid @(y) < 2. The volume of this
ellipsoid is equal to

K2 k2
(17) Vie)=Volo) = — 22— .
T vpr(i+Y
We put
(r8) P(z) = Pq(z) = Bo(2) — Vq(a),

where Pq(x) is called the lattice remainder. We also put

4

(19) R@)=Rele) =1 [1Pe(ellac

For all forms @ and all £ = 2 the following result holds, (Lanpav):

(20) Ple) = 0l m),

Plx)=Q (xk-:—l)

If Q is rational and k > 4 the true order of magnitude of P(x) is known,
(Lanpau, Wavrrisz, JARNIK):

(21) Px)=0 (xg—l) for k > 4,

(22) Plz)=Q (xg_l) for k= 2.

Even if k < 4, estimations similar to (21) are known. Let, for instance,
k=2 and consider the circular case: @ =y!+ 3. Then

P(x) = 0 (=),
(23) P(x) = Q(x'* log* ),
R(x) = O(z**).
By very deep methods the expoment § in (23) may be diminished a little, for

example replaced by %}, (NigLanp). Later, slightly better results bave been
obtained. The true value is not known.
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If Q has the form a, 4 + a,43 + +-- + aryt then, (Jarnig):
R(x)= O(x'log®z), k=2,
(24) R(z)= 0(x'*log z), k=3,

k
R(x)=.0 (at:2 1), k= 4.
The estimation (20) always holds, the estimations (21), (22) and (24) are
proved only for special cases and lie very deep.

Finally we remark that the number ofinteger solutions (y,, ¥s, ..., yx) of
the equation

(25) m=yi+ 4+t
(k >4, m a positive integer), is asymptotically equal to

k
(26) const. m? l, (m— o).

(HarpY, MoORDELL).

Now consider a sequence of independent r.v.’s XW, X@ . X® in Ry,
(k = 2), all having the same pr.f. P(E) and suppose that P(E) is a lattice distribu-
tion with the probability mass concentrated in the points

(27) v, a; +vyay + -0 + wear, (v, ¥4y .., =0, F1,+2 % ).

The vector a, has the rectangular components (a1, av2, ..., awi), (¥ =1, 2,..., k).
Further we suppose that the determinant

A =|layull # 0.
Let an arbitrary r.v. X of the sequence have the properties:

1" the mean values are equal to zero;
the dispersions are equal to 1;
the mixed moments of the second order are equal to zero;
the third moments are equal to zero;
k
the fourth moments §; are finite and 8, = 6.

=1

We form the variable
XU 4+ X 4 ... + X
Va
and denote by un(a) the probability of X belonging to a sphere with its centre
at (0,0, ...,0) and of radius a. Furthermore, as usual,

MY =
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'P(a,lf)=(“2—"lwg f e Y@t Dy L da.

n LS
o I a'fcstﬁ

By Theorem 1, Chap. VII,
g

% b

(29) ltnla) — Y, B <c-

.nk+ 1

¢ being a constant. However, in the case under consideration we may find an
explicit expression of un(a), thus making it possible to discuss the remainder
term in greater detail.

As before the pr.f. P,(E) of ™X is a lattice distribution with the point
spectrum belonging to

(30) 1’1(11+”202+“‘+"k0k, ("’1)"2)'--71’k=01i11 i21i)
Va

If (&, &, ..., &) is a discontinuity point of P,(E) and
(31) e=8+E5+ -+ &,
then by Theorem 1 and (28:4°) the probability mass at (£, &, ..., &) is ex-
pressed by
A e 1

(32) 0 G B = AL T O(k—ﬁ)’
and u.(a) is equal to the sum
(33) 2 q(") (Ela gza RIS} gk)

Ht-ti=e

Consider the quadratic form

(3 QW =(any +ayy+ - +a g+ + (arry + asys + - + aryx)

with the determinant
(35) D= 4%

the coefficients a,, of which are the components of the vectors a in (30). Let
the functions B(xz), V(x), P{z) and R{z) be defined by {17)—{19), @ being the
form (34). By U(xz) we denote the number of integer solutions (y;, ¥s, .. ., %)
of the equation
Q) ==
From (30) and (34) it is seen that the number of discontinuity points of
P.(E) lying on the surface of a sphere with its centre at (0, 0, ..., 0) and of
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radius o, is equal to Ulg®n). Hence from (32) the contribution of the probability
masses belonging to this surface is equal to

y:} _e Ule®
(36) (Z—I;#me 2 Ule?n) + 0( (ﬁ_@")) )
n 2

or from (33)

¢ Uo®n
#ala) = D {(—%;—‘l#me—? Ule*n) + 0("(;2 ))}

esa n *

Since B(x)= > Ul(y), we have:

y=z
- IA{e‘%, IB(a”n.)
(37) tala) = (z—y;n—)mdB(g’n) + Ol B2 (0
. s

Here we introduce

K2 B2 ok
Ble*n) =V (e*n) + P(o*n) = _mne P(o%n),

. k

and obtain after a simple calculation:

B 4] f e Bla*n)|
ta{a) w(a’k)ﬁ(zym}’*‘/'-’u e 2dPle*n) + O ng%ﬁ, J
Integrating by parts we have:
4] -=

(38) pnla) —la, b) = e 2 Pla®n) +

(2 7w n)?

a o? 2
+ _E_l_fgg_?])(gsn)dg -+ O{B(:i;?)}.

(2 wn)? *
0 n?

‘We now use the immediate estimation

Blx)= 6"
and observe that

2

a a an
(,2
lfee'7P(e*n)de|SfelP(og’n)lder—;’;fIP(y)Id!/=a;R(a2n)-
0 ° 0

Hence from (38):
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—I‘y——[ qu (@®n) + 0 @ R{a*n) + aagf’
(2w n)? ' P gk TR * 5

(3
i

(39) (@) — Y (@, k) =

where |0,] and |6,] are bounded by constants independent of a and #»'. The
radius a occurs in the remainder term of formula (39). This is, however, of no
importance with regard to our purpose, which is to study the order of magni-
tude in n. In the sequel we suppose that a is bounded. The relations (38) and
(39) express the connection between the discontinuities of u,(a) and the remainders
of the lattice point problem.

As we have mentioned earlier, the estimation (20) is the only one valid in
the general case. If

then obviously

According to this we obtain from (39):

(40) tn (@) — W (a, k) = 0( L )

nk+1

or the same order of magnitude as in (29). Conversely, it is possible to prove
(20) by methods similar to those of the proof of Theorem 1, Chap. VII. I con-
fine myself to this indication. Thus we may say, that Theorem 1, Chap. VII,
and the estimation (20) are of the same depth. The estimations (21) and (24)
lie deeper but are only valid in special cases. If @(y) in (34) is rational and
k > 4, ther from (21) and (39) we obtain the improvement

(41) tnla) —la, k)= 0 (1)

7

Hitherto we have only obtained O-estimations. Is it not possible also to get
(-estimations? This dces mnot follow from (39) since the remainder terms may
eventually compensate each other. Consider, however, the foliowing example:
Q(y) has the form ¢} + 93 + -+ yi and k> 4. If S, is a sphere with its centre
at (0,0, ...,0) and of radius ¢, having discontinuity points of P,(E) on its sur-

! Since B(x) is not generally zero for x = o we suppose that a® n = 1, or else a trivial change
in (39) has to be performed.
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face, then from (25), (26) and (36) the probability mass on S, is asymptotically
equal to

ol
.

k
(42) const. 92(2 —l) e ? = const. of~2e "

From (41) it follows that the remainder term is 0(;11 ) and from (42) that it

cannot be improved. Thus, even if all moments are finite, an expansion like

n

pn (@) =y, (a) +£,_(a_) + o(i),

Y, and Y, being continuous, is generally tmpossible. There must enter into the
expansion a discontinuous function which, however, is much more complicated
than in the one-dimensional case.

To conclude we give an example which well illustrates the connection be-
tween our remainder term problem in the two-dimensional case and the lattice
point problem for a circle. Consider the two-dimensional lattice distribution
having the probability mass } at the points (+ 1, + 1). Obviously the conditions
(28) are satisfied. If » is even, it is easily seen that the point spectrum of P, (E)
is situated in

2 2
(71. ), ('VI;"z‘:o;iI:iZ, i_)

2.y, =
Va' " Vo
Obviously
Qy) =4yi+4y
We prefer to use the function
Q)= yi+y.
Hence Pq(x)= Pq,(x/4), Re(x) = Rq,(x/4), where Pq and Rgq, are the remainders
of the lattice point problem for a circle (cf. (23)). Then from (39):

2¢ ? atn a’ a’ n) a®
n - = —— —— — 0,—.
)~ wla,2) = 2 27 2o (22) + 0, S R (1) + 0,2
According to (23) we have:
_ _2 T p (2n), go"
(43) un(a) — Y (a, 2)—nne .PQ|( 7 )-{-0”%,

where |@] is bounded. Using (23) again we obtain
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(44) o) = wla 2) = 0(5)

or the order of magnitude of Theorem 1, Chap. VII. As was mentioned in
connection with the circular lattice point problem, it is possible to replace the
exponent § by a somewhat greater number, but then very deep methods must
be used. For instance, according to the result of NizLanp, we have

un(a)—tp(a, 2)=O( 127)~

1
n 82

On the other hand it follows from P (x) = Q(x" log” x) (cf. (23)), that the re-

mainder term of (44) cannot be replaced by O(;Is/—‘) Thus tn the two-dymensional

case it s impossible to attain a better general result than

| ttn (0) —~ @ (a, 2)] < 22%,

na

where $ < a< i,

Remark. We have hitherto exclusively studied the probability of ™X be-
longing to a sphere about the origin. It must be observed that the remainder
term is dependent on the region considered. In the two-dimensional case we

obtained a remainder term of order of magnitude — if the region was a circle,
” .

but if the region is a square with its centre at the origin and the sides pa-
rallel with the coordinate axeses, there may occur discontinuities of order of

magnitude % This is, for instance, the case if P(FE) is a lattice distribution
n

with the probability mass 1 at (+ 1, * 1),
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