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1. In this note, I consider an inequality bearing a formal resemblance to
that of Hbolder, and I derive from it mnew conditions for the existence of a
Stieltjes integral, and for passage to the limit under the integral sign. The
conditions for limits under the integral sign differ from any previously known,
in that, for the first time, absolute integrability is not required. They throw
some light on problems of convergence of Fourier series.

The first proof of the inequality is due to M* E. R. Love, who studied it
at my suggestion. In a joint paper, elsewhere, we propose to consider further
questions connected with it.

2. We begin with a simple lemma.
If a,..., an and b,, ..., by are two ordered sets of » complex numbers,
and p, ¢ > o, then there is an index % (0 < % = n), such that

. 1/p 1 & 1/q
(2. I) Idkbklg(;;'“llp) (E;lb‘lq) .

Progf. It will suffice to prove that the right hand side majorises the geometric
mean of the » products |a: bi|, that is, the expression

[(@,8) .o (@nba) [ = [([a? . .. Jan Py 21 0y )2 .. JBu] ],

and for this purpose, we need only observe that, by the theorem of the arithmetic
and geometric means’, the expressions

! ¢f Hardy, Littlewood, and Polya [5], (hereafter simply H. L. P.) and Bohr [2].
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I n 1 n
(;;;‘aip’) and (E;lbllq)

majorise, respectively, the expressions

[(Hacde ... Janl?p] and [(1Bgfe ... ]5a]9M".

3. Holder's inequalety. We remark in passing that the trivial lemma just
proved may be used to give a simple proof of the well known inequality of
Holder

n n 1/p " 1/q
(3.1) ZlakbklﬁA-(ZMklp) (Zlbqu)
1 1 1

valid for l + —=1, in which 4 =1.

r

q b
I 1

We suppose first — + — > 1.
PP r 4

Let the |aibi| be arranged in decreasing order. Then, by our lemma

_ (l+;_) n 1p [ n 1/q
Idnbnl =n WP 1 (Z'(li'p) (Zlbllq) :
1 1
Similarly

_(%_’_l) n—1 1p [n—1 1/q
| @n—1bp—1| = (n— 1) g (Zlailp) (Zlb"lq)
1 1

_(}V+£) n Up [ n 1/q
s=n—1) W Q(Z|ai|p) (Zlbilq) .

Proceeding in this way, we finally obtain, by addition,

n 1.1

1.1 n p [ n 1/q
Zlakbk|$[9l_(5+a) +(n_1)—(17+q~) +...+1]. (Zlaklp)/ <2|bk|q) ,

1

and so (3.1), but only with A=C(ZI7 + é—), — where (s)= =%, and only for

}~+l>1.
p g
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To make A== 1, still supposing ;— + é > 1, we argue as follows.! Applying

(3. 1) in the form proved, to the double sum

n o n n 2
Z Iakazbkbd = (Z I akbkl) N
11 1

we find that this is majorised by

nooam tpfn n 1/q
A-(ZZWW) (2 .|bkbz|q) ,
1 1 1

1

T T

and, on taking the square root, we find our previous inequality for M |axb:|,

that is, by

but with A replaced by V A. The factor { (IB + é) may therefore be replaced

successively by its square root, its fourth root, its 2™ root, and making N — o,
the factor becomes 1.

Finally, with A4 = 1, both sides of (3. 1) are continuous in p, ¢
for each fixed set of a’s and b's and the inequality is therefore valid for
Tils
r q

4. Denoting, for a moment, by @, b the finite sequences of numbers
ay, ..., an and by, ..., by, Holder's inequality states that a certain function of
a, b is majorised by a product of the form Agp(a) W(d).

In our main inequality, a similar state of affairs will occur. A certain
function of @, b will be majorised by the largest of a finite number of such
products, derived from one of them by a simple operation that we now deseribe.

The operation of replacing by

+
certain of the

3

! A favourite type of argument, cf Bohr [2].
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separating consecutive terms of a finite sequence
a=(a,, ..., an)
may be termed a partition P. The result of the operation is a finite sequence
Pa=x=(x,,..., Tn)

in which each x; is a corresponding sum of a;, and, of course, m <. And if
®@(a, b) is a function of a pair of sequences a =(a,, ..., an) and b= (b, ..., bp)

the expression
@ (Pa, Pb)

may be said to be derived from ®@(a, b) by the partition P.
It is with the expressions thus derived by partition from the product

1 1

that we shall be concerned.

5. The inequality for finite sequences. Let S, q(a, b) be the largest of the

()

for which «,,...xn and y,, ..., ym are the result of a same partition applied

values of the produect

to the finite sequences

a=a;,...,a, and b=¥b,, ..., bs.

We assert that, for ;—) + ; > 1 and p, g >0,

(5. 1) SIS b, .<_{I +;(%+é~)}-sp,q(a, B).

O<r=gsn

Progf:* Consider the partition defined by changing the

to a
+

! As already mentioned, the first proof was obtained by Mt E. R. Love. Mr Love's proof
was on entirely different lines, and was not so simple as this one.



An Inequality of the Holder Type, connected with Stieltjes Integration. 255
We have, for o<k =n — 1,

ar, by if r<=¢g
Zry Yo

Ar+1, br+1 fh<r<n—1

and &, ¥r = ax + ks, br + brsa,

so that

Z (@, 4+ +a)ys = Z (ag + -+ adbs + (a; + - + ape1)(Br + bps1) +

0<ssn—1 0<s<k

+ Z (@y + -+ asr1)boss = aperbe + ) (ag + o + ag)bs.

k<g=n-—1 o<ssEn

Now, by the trivial lemma (2. 1), for some %, (0 <k <u — 1), we have

n—1 I -1 Vg
|k be} = ( ZI%HI”) ( — '|q)
1

kS

‘1) - Sp, qla, b). Hence, with this

+

LSRN

which is certainly majorised by (n — I)—(
value for £,

2D b=

0<r=s=n

IZ( 4 as)b,

= |ak+1 bk| -+ Z Z ZrlYs I

O<r=s=spn-—1

1

S(ﬂ_l)—(;+§)'8p,q(a, b} + 22 -’L'r?fs‘.

0<rss<sn—1

A similar inequality applies to the sum > | @rys, in terms of a sum of the

O<r=gsn—I1
same kind with » — 2 variables. Moreover, by definition, Sp, q(a, b) = Sp, ¢(x, ).
Proceeding in this way we therefore obtain finally,

1 1

<1[n_ 1) (—1194-!11) + (72__2)_-(1) q) + ok I] + I}Sp,q(a, b),

23 ab

i<r=s=n

and this implies (5. 1).
We shall see later (below § 7) that, contrary to the expectations raised by

our treatment of Holder's inequality, the factor involving { (;i + é) cannot in

(5. 1) be replaced by one remaining bounded for — +

=1,

-]

I
p
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6. The inequality for functions in an interval. Let now f(x), g{x) be

complex-valued functions defined in (', ”).! We make a subdivision %,

=y Sy <Smy<- <zay=2a",

and form the sum

N

6.1) Fl)= D fle)lglx) —glas)t = 22 4nf 4ig + f(&)lglc”) — 9(=)],

O<r=sg=N

where A,¢ denotes the difference (p(x,) — @(x,—1)) of a function g(z) at the ends
of the »*® interval (x,_1, ;) of our subdivision.
Let us denote further by

SP, q [x,7 x”] = SP, (l[x’) w”; f7 g]

the upper bound of the expression

(Z I drflp)””(Zldry I")””

r r

for every subdivision » of (x’, z”’). Since a partition of the sequences of numbers
A f, 4r9, (r=1,2,..., N), is a sequence of exactly the same form, correspond-
ing to a subdivision of (z,z”) by a subset of the division points of x, we
conclude from (5.1) and (6. 1) that if £ is the point &', and hence, more gener-
ally, if § s a division point of » in (', 2”),

I

6.2) | Fb)—rBl") — )] = { +g(2a 5)}sp,q[x: 25 £, g,

. 11
rovided p, q >0, — + — > 1.
¥4 b q ? " q

For, this inequality, valid when &= «’, holds similarly (or by changing the
sign of the variable) when £ =x"”. And, applying these two cases to the inter-
vals (§, ") and (x, &) respectively, we obtain the same inequality for any division
point of x.

From (6.2), we now derive an inequality concerning sums of a more general
kind. Let the points §&* z® be a subset of the division points of », such that
for each k, a0 <fW <ax®  Applying (6.2) to the interval (x*~Y, z*) and

adding, we find

! Always supposed closed.
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(6.9 | 71 = S eloet) = ol = V(o ) S e e sl

If now (2, #’) be divided in two ways into partial intervals of the form (z®*-7,
™) and we select in each of these partial intervals a point £&¥, it is always
possible to find a subdivision » including among its division points the xz*) and
E® of both kinds. Hence, if @ =2, <z, < - <zy=2" and 2 =) <1 <

= =zv=2o" are two subdivisions and xr— <& < x,, Xsm1 < & = x4, then

(6.4) | S,ENo) — gla—)) — D F(EN gl ~ glai) |

< {1 + C(é + é—) }{;‘J Sy, aler—r, ] + 3 8y, olah, xé]}

I G |
rovided p, ¢ >0, —+—>1.
p b, q '3 g

7. A »Gegenbeispiel> for the case jia+ é= 1. We suppose, for simplicity,

p=¢q=2. Let f(x) be the partial sum

N
—%n 2xiax
e

n=1

of the complex Weierstrassian function, where ¢ is an integer > 1, and x varies
in {0, 1). Let g(x) be the conjugate of f(x). We have'

N Ny ®
|fle + k) —fla)] = D) a—%"|2 sin (warh)| < D) a i 27| h]a® + 2 Za_%"
1

n=1 e+ 1

== Vinl Mo _Z]/L;___l T4V ma
Ll Vavastil 4 2 b < VIR < s VT

a—1
provided that my is chosen so that 2z|hla™ < 1 < 2m|h|a™~1. It follows that
8,510, 1; f, 9] = (32)".

On the other hand, we can find a subdivision » for which F(x) differs by as

little as we please, in modulus, from

! ef Hardy [3).
33—36122. Acta mathematica. 67. Imprimé le 27 novembre 19386,
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! N N

ff(x)dg(w)=ff(x)g'(x)dx=z Z _zﬂia—%(n+m)am

n=1m=1

e2m’x(a”—am)dx —

T—.

0

— Z :é(—znz) = —2miN.

n=m
. . | 1, 1\ .
Since g¢(1) = g(0), it follows that (6.2) cannot hold when 11 + g ;-i-é— f is

replaced by a factor remaining bounded for ;f + :7 = 1. The inequality (5. 1) is
therefore not valid either, when such a change is made.
Other examples of the failure for i+ é=1 (proving rather more) are

furnished by the Weierstrassian functions themselves', or by the simpler func-

tions Vx et?7i*  The examples may be adapted to any p, ¢ > o subject to

;;+ ;-=1 and they may be further elaborated by introducing an oscillating

factor @(n) or @(x) tending to zero sufficiently slowly, while its amplitude oscil-
lates still more slowly.

8. Higher mean variations of a function. Following Wiener® (except for
a slight change of notation), we associate with an f(z) in (z', z”) and with
» >0, 0 >0, the quantity

VO(f) = V(f; @', &) = upper bound (Zlf (@) —f (wr—l)lf’)””

for all subdivisions of (z’, ) into parts (x,—1, ;) of lengths each less than d.
The value of this quantity for a d exceeding (x”” — ') we write simply Vp(f);
it is then the upper bound of V{)(f) as function of J (evidently increasing).
The limit of V{(f) as § - o is the corresponding lower bound and we write it

Va(f). We may call Vp(f), the mean variation of order p.

(8. 1) Vp(f) s a decreasing function of p. This is an immediate consequence
of Jensen’s inequality.?

«w

! i, e. the sums Z

1
? Wiener [11],

3 H.L.P. p. 28 (Theorem 19).
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Moreover?, log { V5(f)} is convex in p, that is to say
(8.2) if py < py < py then (VR (/)P < (VR (Ve (f) 5,

by a familiar theorem.?
We write further

VO(f) = Ose. (f, 9)

for the upper bound of the difference |f(x)— f(y)| when |x—y|<d, and
V. (f)=Osc. (f)=Ose. (f; o', 2”). These may be regarded as limiting cases for
p==—c0, and the relations (8. 1), (8. 2) become

(8. 1) Vo(f) = Ose. (f)

(8.2a) Vielf) = Vi (f)(Ose. £ provided p, > p,.

These are easily verified directly.
We shall say that f(x) belongs to the Wiener class Wy

Slx) < W,

if its p'® mean variation V,(f) is finite. The class of functions W, evidently
contains the Lipschitz class Lip (fo)’ which consists of the functions f(x) such

that, for all small & > o,
(8.3) [fle + B} — flz)[ < A WP,

where A depends only on f. On the other hand W, is contained in the Hardy-
Littlewood® eclass Lip (}I?’ p), which consists of the functions satisfying the in-

tegrated condition

bt
(8. 4) f|f(x+h)—~f(x)|1’dx<Ah.

! Vg denotes the pth power of V.

® H.L.P. p. 28 theorem 18.
8 Hardy, Littlewood [4].
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This last condition is equivalent to
h
fZ [fr + t) — flar + O)|Pdt < Ah
0 r

where the x, are the division points of a subdivision of (@, b — k) into equal
parts of length h, supposing as we may, without lose of generality, b —a to
be an integral multiple of k. And this is certainly satisfied when f belongs
to Wp.

We shall require some simple properties of V,(f) connected with the in-
equalities of Minkowski and Holder.

(8.5) If p>1, Vp(f+ 9) < Vu(f) + Valy)

To prove this, we remark that, by the well- known inequality of Minkowski,

(Stas + aabyr = (S1470)" + (Sl agb)”

for any subdivision into intervals # (we denote by 4@ the difference of a func-
tion @ at the ends of o), and (8. 5) follows by taking the upper bound on the left.

Since, for constant A, V,(Af)=|4]| V»(f), we may also express (8.5) by
saying that V,(f) is a convex function of f.

(8.6) {ZWMMmmwswm

for every subdivision of (', ") into (x,—1, ), (r =1, ..., N), each of length less
than 6. This is evident.

(8.7) Ifpg>o and i—+321 then
2 Volfs @1, @) Volg; @, ) < AT

Sfor every subdivision of (&', &) into @i, x,, (r=1, ..., N) each of length <.
This follows at once from (8.6) since the left hand side, by Hoélder's inequality,
is at most

{;%m%ﬁwwq;w@%%%W@
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9. The starred variation and the singular variation. By analogy with the
case p=1 (bounded variation in the usual Jordan sense), we easily obtain
various simple properties of functions of W), and the proofs require only trivial
adaptation. Thus, an f of W, has at most simple discontinuities, and these are
enumerable.” This being so, we may introduce the symbols « + o in the usual
way as arguments, and we see at once that when (', 2"’} is divided at an in-
creasing finite sequence of af, (r=o0, 1, ..., N), with 2§ = 2', zk == 2" and the
remaining divisions at places xz or x t+ o, then, if each (x/, m,) has length less
than Jd,

N 1/p
(9. 1) (z | £ () —f(x’:—l)lp) < 73 (/).

We shall call singular mean variation of order p, the quantity &,(f) whose
p™ power is the series, arising from the discontinuities of f, (that we suppose
arranged as a sequence) and having for its general term, the greater of the two

expressions
| /(@ + o) = fle — )2, | /= + o) = f(@)IP + |f(&) — fle— o).

It follows from (9. 1) that the series &p(f), that is to say

(0-2) X Max {|f(z + o) —fle — )|p, |flz+0) = f@)P + | f(z) — flz —O)|*}

is majorised by [VY(f)l? for every § > 0. Consequently
(9. 3) Sp(f) = V3 (/)

Let us observe that the singular variation cannot in general be regarded as a
variation of a »Singular function» of the type

D (fly + o) = fly — o)) + (flz) — flz —0)).

y<z

This series need not be convergent in any sense, and the singular part of f
cannot therefore in general be detached from the remainder.
We shall say that f(x) belongs to the Wiener class Wy, if Va(f) is finite

and equals ©,(f). Evidently, if V:(f) is finite so is V.'(f) for all small 6, and

! Wiener [11] § 1.
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therefore for all 6. Hence Wj s the subclass of Wy for which equality holds
i (9.3). It is easy to see that Wj includes the class Lip *(é) obtained by
strengthening the A in (8.3) to an & that tends to zero with . W, is not,
however, included in the class Lip *(;i: p) obtained by making the corresponding

change in (8. 4}, unless we restrict ourselves to continous functions.
We shall now show that <f p < p, the class W, s included in W3, that s

(9. 4) Wy < Wi, if p<p,.
This is implicitly contained in Wiener's discussion®, but seems worthy of special
mention,

Given ¢, we choose discontinuities &, ..., &, so that the remainder of the

series® for &)!(f) is less than &, It follows that, apart from the &;, there are

no points at which any of the quantities

If(z + 0) = flz —o)] and | f(z + o) — f(x)]

exceed e. It is therefore possible to choose a d, less than the distance of every
pair of the &, (¢=1, ..., n,), so that

If(B) —fle)] < 2¢

whenever (e, 8) is an interval of length less than J,, not containing a &. And
since the limits f(§ + o) exist, we can choose J, < d, so that, whenever ¢ and

8 are separated by a §; distant less than d;, from both, the differences
|f(8) = fla)| and | £(8) — FENP + [ £E) — fla)]P

exceed by at most &/n, the corresponding expressions with ¢ and 8 replaced by
& —o and & + o.
This being so, it is clear that a sum of the form

Z |.f(r) — f (271} |7

with o < 2z, — 2, < d;, will be majorised by

! In particular the limits f(x *0) exist for all  and we can form the expression 6p( a8
% Wiener [11] § 2. )
2 Convergent by (8. 1) and (9. 3).
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(2 e)p‘—pz Lf (er) — flacr—a) [P + mo - o/me + @31(f),
r
so that (9. 4) must hold, as asserted.

10. Euxistence of the Stieltjes integral. We say that the Stieltjes integral

2

(10.1) [r@s

exists in the Riemann sense with the value I, if the sum
N

(r0. 2) D& lglar) — glar—a)],
r=1

(in which, as usual, ¥, =2y <§ <2, < - Sy < Ey<ay=2") differs from
I by at most &s in modulus, as soon as all the (x,—1, /) have lengths less than d,
where ¢&s— 0 as d —o.

‘The integral (10.1) exists in the Moore-Pollard® sense with the value 7,
if there is, for each &> o0, a finite set of points F such that the sum (10. 2)
differs from I by at most ¢ in modulus as soon as the , include all points of E.

Finally, if the limits f(x * o) and g(x + o) exist for all x, we shall say that
(10. 1) exists in the generalised Moore-Pollard sense, if the integral

2

(10.3) ff(x+o)0lg(x——o)

2!

exists in the Moore-Pollard sense and the series

(10. 4) 2 (f@) —flz + o)) {g(x + 0) — gz — o)}

X

summed over the (necessarily enumerable) set of common discontinuities of f and g
is absolutely convergent.. And we then assign, as value, to (10. 1), the sum of
{(10.3) and (10. 4).

We observe that, for integrability in the Riemann sense, it is sufficient
that the difference of any two sums (10. 2), for each of which the (z,_;, x,) have

! Pollard [9]. The idea is derived from various earlier papers by E. H. Moore.
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lengths less than d, be less than &5 in modulus. This will be the case, by (6. 4),

if, for some p, ¢ > o satisfying ;; + é > 1, we have

N
(IO. 5) Z Sp’q [xr—l, xr] << &4.
r=1

Now it is clear from the definitions that, in any interval,
(10.6) Sp, e = Vu(f) Valg).
Thus, a sufficient condition for integrability in the Riemann sense is that there

exist p,, ¢, > o satisfying p% + qL > 1 such that
1 41

~
(r0.7) Z Vo (s @r—1, @) Vo, (95 r—1, 20) < &

r=1
for all subdivisions into partial intervals (x,—i, ;) whose lengths are less than a
certain 0 depending: on e&.

Similarly, in the Moore-Pollard sense, it is sufficient that (10.7) hold for
all subdivisions whose division points z, include those of a certain finite set ¥
depending on e.

We shall have occasion, several times to use the following lemma:

(10.8) Let f and g belong respectively to the classes W, and W, and suppose
that, in each of the non overlapping intervals (o, §),

Ose. f< .

Then, for p, >p>o0,q, =q> o,]% + ZII— = 1, we must have
1 1

NVl f; @ 8) Valg; @, ) < P2 V2 (f) Vo (g).
(e, B)

The proof is immediate. By (8.2 a) the left hand side is at most
S PP VE(f; @, 81 Vo, (g5 @, B) < gi—Pim [Z Vo (f;e, ﬂ)]””" [ SVl a, ﬁ)]”"‘,
(e, 8) (@, B) of

by Holder's inequality. And this, as in (8, 6), is evidently at most equal to the
quantity on the right of the inequality to be proved.

Theorem on Stieltjes integrability. If an f(x) of Wy and a glx) of W, where
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P, q >0, ;5 + é > 1, have no common discontenusties, their Stieltjes integral exists in

the Riemann sense. If they have no common discontinuities on the right and no
common discontinuities on the left, the integral exists vn the Moore-Pollard sense.
And in any event, 1t exists in the generalised sense.

We determine, as in (9.4), n, discontinuities of f and #, discontinuities
of g, and a positive d;, so that in every interval of length < d, not contéining
any of these first #, discontinuities of one of the functions, the function concerned
has oscillation at most 2¢,, where ¢, > o is arbitrarily chosen.

If f and ¢ have no common discontinuities, we can determine ¢, < d,, so
that no interval of length less than d, can contain together one of the first #,
discontinuities of f and one of the first », discontinuities of g. In that case, for
any subdivision of (x', ") into partial intervals (x,—i, x,) of lengths less than d,,
in edch (x,—1, 7, one of the two functions has oscillation less than 2 ¢,. Choosing

P> P, ¢, > ¢ so that % + (:]1_ > 1, it follows from our lemma that the left hand
1 1

side of (10.7) can be made arbitrarily small by choice of &,, and therefore of d;,
by restricting the z, — x,—; to be less than d,. This proves the first part.

Similarly if f and g have no common one-sided discontinuity, let E; be
the combined set of the first n, discontinuities of each. On each side of a point
& of FE,, one of our functions is continuous, and therefore we can find points
E_ and £ on the two sides of £ so that in each of the intervals (£-, %), (§ &+)
one of our functions has oscillation less than 2¢,. Denoting by E a finite set
of points, each distant less than 0, from its neighbours, that includes the § of E,
together with the £ and &, it is clear that in the interval determined by any
two neighbouring points of E the oscillation of one of our functions will be less
than 2¢,. From this, the second part, referring to the Moore-Pollard sense,
follows at once by the argument of the first part.

Finally, if f and ¢ are unrestricted in the classes W,, W, the functions
J{z -+ o) and g(x — o) belong to the same classes and have no common onesided
discontinuity. Moreover the series (10. 4) summed over the discontinuities common

to f and ¢ is absolutely convergent by Holder’s inequality, since
(21f(@) = flz + o)|?)® and (Z]|g(x + o) - g(z — o))"

are majorised by &,(f) and S,(g) respectively. The integral (10. 1) thus exists
in the generalised Moore-Pollard sense in this case, and this completes the proof.
34—36122. Acta mathematica. 67. Imprimé le 28 novembre 1936.
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Bemarks on the theorem. In. the elementary Stieltjes integral, two conditions
are used:. continnity of one function, bounded variation of the other. The treat-
ment introduced here consists essentially in dividing up the conditions of
continuity and bounded variation between the two functions concerned. Instead
of one function being W,, each has to satisfy a weaker condition W, or W, where

1,1 . . . . .
-+ p > 1. Instead of one function being continuous at all z, each is continuous

wherever the other is not, (with, in the Moore-Pollard sense, the further refine-
ment each is continuous on one side, wherever the other is not continuous on
that side). In the generalised Moore-Pollard sense, continuity has been abandonned,
but the definition no longer corresponds to a unique limit in the Cauchy or in
the Moore sense of a function of a subdivision, and is to be regarded as a
modification, not of the elementary Stieitjes integral, but rather of the so-called
Lebesgue-Stieltjes integral.

Let us remark further that, in whichever of the three senses our integral
is taken!, the inequality (6.2) gives at once, under the hypotheses of our theorem
of existence of the integral

I I R
(10.9) [ue - rerage)| =i a(y+ ) Sule e s
where, on the right, S, ,[2’,2";f, g] may be replaced by the product
Vplf; @, 2") Volg; &, 2").

11. Integration of sequences. By a W-sequence | fo{zx)}, we shall mean a
sequence of functions fu(x), » =1, 2, ..., for which fu(z") and V,(f,) are bounded
functions of #. Such a sequence will be said to be densely convergent in (x’, 2”')
to a limit function f(x), if -fu(x) tends to f(x) for each z of an everywhere
dense set in (z’,2”). When this is the case, it is always possible to define f(x)
outside this set in such a manner that f(x) is of W,.2

Besides the notion of dense convergence, we require that of uniform con-
vergence. The latter is the closest analogue for a sequence of functions to the
property of continuity for a single funection. We shall say that a sequenee
{ falz)} converges uniformly to f(x) at x,, if given &, there is an n, and a 4, such
that, for all » > n, and all x distant less than J from x,,

! It is sutficient to observe that the integral is the limit of a suitable finite sum F(x).
* Just as in the case p = 1 discussed by Helly [6].
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| fal) — fla)] <e.

We shall also speak of wniform convergence on the right at x, when the above
holds for x = x,, the other conditions beihg the same, and, similarly, of unzform
convergence on the left at x,.

The notions of a Wysequence and of uniform convergence at a point, will
play in term by term integration of a pair of sequences of functions, a part
similar to that of the corresponding notions in the existence of the integral of
a pair of functions. The classical theorems on term by term integration, all
depend essentially on some condition of absolute integrability. In the Lebesgue
theorems, the great generality achieved in other directions necessitates a particularly
strong form of this condition. A theorem much closer to those that we shall
be concerned with here, is due to Helly.! It is the analogue for sequences of
the existence of the elementary Stieltjes integral, and it states, substantially, that
a sufficient condition for

Lim [ fle) dunle)= [ £ dgte)
when {fn.(x)} and {g.(z)] converge to finite functions f(x), g(x) respectively, is
that the fu(x) be uniformly (in ») continuous (in z) and the gn(x) uniformly
(in n) of bounded variation in . Our conditions for term by term integration
may be regarded as derived from those of Helly by assigning the properties of
uniform continuity, or uniform convergence, and of uniform bounded variation,
partly to the sequence {fn} and partly to the sequence {gn}.

We begin with a lemma.

Let f be a function belonging to the Wiener class Wy, and let {gn} be a W
sequence converging to zero densely in (' ). Suppose further that p, >p, 9, > ¢

satisfy 19i + ;—,> 1, and that (&', 2"} can be divided into a finite number of partial
1 1

intervals (Xy—1, x:) in each of which either

Ose. f< 1y

or

upper bound |g,(x)| < é 7, for each large n.

Then, for all large n,

! Helly [6].
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2"

(11.71) fgn df] < &en + {1 + c(}-}l} + —q%)} ol Vﬁ“"(f) Valgn) +

pd

[ (]i : )] -
+ + = + =)} pla—adia 7, Viia(g,),
1»1 Iy T In o () a (gn)

X

where &, >0 as n— . The same inequality applies also to f Sfdagn|, provided
p

that g, tends to zero at x' and x”.
The proof of this lemma is very simple. In each (z,_i,z,) we choose a
point & at which g,— 0. We have

"

f G df = 3 0a(8) (fl) — flars) + 3 f (gne) — ga () .

z

The first sum on the right evidently tends to zero as n— «. The second is

majorised by

{I + C(i‘ + é)} 2 Vo (s rma, @) Vo, (gn; Xr—1, )

1

on account of (10.9). Making use of (10.8) we obtain (11.1). The corresponding
inequality for f Sfdgn may be obtained similarly, or by integration by parts.!

The following result, of some importance in applications, is an immediate
consequence of the lemma just proved.

(11.2) Let f be a jfunction of W, and {g.} a Wysequence, where p,q > o,

;;-ij é > 1. Suppose that {gn} converges densely, and at the ends x', 2", to a func-

tion g of Wy, and that {g.} converges uniformly to g at each discontinuity of f. Then

m’l m!l
f Fdga— f fdg.
z’ '

To see this, we determine, as on several previous occasions, a finite set of
discontinuities of f, such that in any interval whose length does not exceed a

! Cf Pollard (9]
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certain d, and which contains no point of the finite set, the oscillation of f is
less than 7. Since ¢, —g converges uniformly to zero at each point of the
finite set, we can determine a positive d, not exceeding d,, and an integer #,,
so that for all # > n,, the upper bound of (g9, — ¢g) in any interval containing

a point of the finite set and having length less than d,, is less than ;—17. By

f f d(gn—g)l

Theorem on term by term integration. Let {f.} be a Wy-sequence converging

choice of 7, it follows from (11. 1) that the upper limit, as n— o, of

is arbitrarily small and (11.2) follows at once.

densely to an f of Wy, and converging uniformly to f at each point of a set A.
Let {g.} be a Wysequence converging densely, and at the ends x',x”, to a g of Wy,
and .converging wniformly to g at each point of a set B. Suppose further that

p,q >0, 1_19 + :; > 1, and that A includes the discontinuities of g, B those of f,
A + B all points of (&', 2”’). Then

x!l ﬂ:”
f Jndgn— f fdg

Proof. Given &> 0, since A + B includes all z of the (closed) interval (z’, z”'),
each « is contained in a mneighbourhood in which, for all large », the upper

bound of one of the expressions |f, —f],|g. — g| is less than ;a. By Borel's

covering theorem we can divide (z, 2”') into a finite number of intervals, separated

by points at which g, — g, such that, in some of these intervals, the intervals
(e, 8) say, the upper bound of |f, — f| is less than ;’9 for all » greater than a

certain- #n;, and the oscillation of (f, —f) therefore less than ¢, while in the
remainder, the intervals (y, d) say, the oscillation of (g, — g) is less than .

In an (o, §) we write
8 8 8 8
JEXTS f Fig— f (fim F)dgn + f Falga—g).

Since, at any discontinuity of fin (e, 8), g» — ¢ tends uniformly to zero, it follows,
by the construction so often repeated, that («,8) can be divided into a finite
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number of intervals, in each of which either Osc.f < e, or, upper bound

low—gl < Je.
2

In a (y,d), we write

jfndgn—ffdg=ffnd(gn—g)+f(f -

and remark similarly, that (y, d) can be divided into a finite number of parts in

each of which either Osc.g <&, or, upper bound |f, — f| < -

Now choose p, >p,q, > ¢q so0 thati+qL> I. We have
1 1

(r1.3) ffndgn—jfdg SZ jﬁu fldgaf +

d
ff;z n—g) ffdgn—g fﬁz
(Y” (aﬁ)

On account of (10.9) and lemma (10. 8), the first two sumns are majorised for
all large n, by

{I + C(Z’l ;1)}[ P—plim Vz?/px (fo —F) Vo lgn) + eo—da Vpl(fn) Vglq. (gn —9)],

while, on account of our lemma (11.1), the last two are majorised, for all
large », by

Ney + {I + C(p QL)} [elpplims Vg/p: () Vylgn — g) + eo—9aV, (f) Vg/q.(gn —g)+
1 1

+ g(p—p)ips Vg/px( Jo—=F)Valg) + ooV (fu —f) Vzﬂn(g)],

where N is the number of (¢, 8) and (y, d). Since, for all large n, Ne&, < ¢, the
left hand side of (11.3) is arbitrarily small for all large », and this proves the
theorem.

The theorem just proved, which corresponds to the existence theorem in
the Riemann sense, can be slightly extended in accordance with the ideas of the
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Moore-Pollard definition, and the proof requires only minor alterations. We
shall content ourselves with stating the theorem in the extended form without proof.

Let { fa} be a Wy-sequence converging densely to an f of Wy, and converging
to f uniformly on the right at each point of a set A., and uniformly on the left
at each point of a set A—. Let {g.} be a Wysequence converging densely and at
the ends ', 2" to a g of Wy and converging to g uniformly on the right at each
point of a set By and uniformly on the left at each point of a set B_. Suppose

Jurther that p,q > o, 2—1-) + é > 1, that Ay includes the right hand discontinuities

of 9, A— the left hand discontinuities of g, B+ the right hand discontinuities of f,
B_ the left hand discontinuities of f, and finally that A4 + A_ + By + B—
includes all points of (x', ”). Then

ffndgwffdg.

12. Fourier series. It is well known that the depth of the convergence
problem for Fourier series is largely due to the fact that, in the expression for the
Fourier partial sums of a function f(x),

20 sy s [(1ETOEEZD kg,

2
0

(where @(x) is arbitrary), the functions

¢ sin (n + 1) t
(12. 2) gn(t)=j 2y
g sin 5 t
do not satisfy uniformly the condition of bounded variation W, so essential to

all classical theorems on term by term integration.

It is therefore of some interest, that, while the g,(f) of (12.2) do not fulfill
the classical condition W,, they have, neverless, for every ¢ > 1, uniformly
bounded mean variation of order ¢. Similar remarks apply to the functions
g% (t) arising from the corresponding expression for the Cesaro means of negative

order y > — 1. These functions form a W, sequence for every ¢>> 1/(1 +y). Itis
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trivial that, for Cesaro means of positive order, the corresponding ¢7(f) have
uniformly bounded variation, and it is not unnatural that something should remain
of this property when y = o, the case of the partial sums s,(x), and even when
0>y > —1. This »something» is W, for ¢ > 1/(1 + y). It is curious that such
a simple property should have escaped notice until now. The full result, together
with similar information relating to the allied series, is as follows:

Theorem on mean variations of the Fourier kernels. For y > — 1, the
Cesaro means of order y of the Fourier series of f(x) may be written

(2.3 SPlel—gle) + % f (LA SE =0 o) agp o,

where the functions g (t) which vanish for t = o0 and tend uniformly to 1 at each
t < 0, have, for every q =1 satisfying q(1 + y) > 1, uniformly bounded mean varia-
tion of order q. Moreover, if Sy(x) is the partial sum (to 2n + 1 terms) of the allied
series, then
A T

I . 1 1 . .
(29 st [l 0 sl — ) eot jtar=" [(fan—rte—t)agio

n2n 0
where the gn(t), which are bounded at t =0, and tend uniformty to zero at each
t + 0, have, for every q = 1, uniformly bounded mean variation of order q.

Proof. We make use of the known fact that (12.3) is valid with

t

g9 () = f o) ar,

0

where!, for — 1 <y <o, (and indeed for — 1 <y < 1),

Q=0 + 2, |2|<K,, |2]|=K/nt,

: 1 n, 1t
Tly+1)I'ln+ 1) s1n((n+27+2)t 27717)
= r+1
I'ln+y+1) 27(sin(—;t))

and the K, are independent of n, ¢.

?

2

! Kogbetliantz [6], Hardy and Littlewood [4].
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b
And (12.4) is valid with gZ(t)-:——fQ*(t)dt, where Q*(0)=o, 2%(t) =
: t

= gin nt + cotit(l — cos nt) for 0 < t < n/2n, and Q*(t) = sin nt — cotitcosnt

for t > n/2n, since (12. 4) then reduces to the known formula®

sfi(w)——i f(f(x—f—t)——f(x——t)){sin nt + cot ét(l — cos nt)}dt.

1
Let now an= (m+—;y)n/(n+ ;-y + 5) for m=1,2,...,n, and @,=0, apt1=7r.

From the expression for £, it follows, by the second mean value theorem, that

£

5 Ifsin((n-l—é—;ﬂl—é)t—éyn)dt
_ Iy +1)rn+1) 13
f.Ql(t)dt-— 27T+ y + 1) (sin 1 a)y+1 +
@ 2

g
. I -1 1
fsm((n+5y+ E)t—zyn) dt]

. 1 T+1
s —

+ -
for some § in (¢, 8). If we perform the integrations on the right and then

majorise crudely [the gamma factors are O(n ™), |+ cos z| <1, and sin éﬂz

= gin ; ¢ =a/rn= 0(m + I)/n)] we get a majorant K/(m + 1)r+!, with K depending
g

only on 7. And combining this with the obvious inequality f | ()| dt <

< K/m = K/(m + 1+, (for —1<y<o), we find that, for (¢, 8) in (an, n),
m=+o0, and —1 <y <o,

g B
fﬂl(t)dt + f|92(t)|dtszc/(m 4o,

! Zygmund {12] p. 21.
35—36122. Acta mathematica. 67. Imprimé le 28 novembre 1936.
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a relation in which it will be remarked that, when 8 < ay41, the modulus of
the first integral is the integral of | 2,|, since the integrand is of constant sign.
Moreover

fI.Q(t)ldt<K
(1]

since a, < K/n. Hence, for any (a, ) in (am, ), m=o0,1,...,n + 1, we have,
for —1 <y =o,

8
(12. 5) f.Q(t)dt < K/m + 1+
and for any (¢, ) in (am, am+1), (m=o0,1,...,n+ 1)
8
(12. 6) le(t)|dt£K/(m+ L

Similar inequalities hold for Q% with y=0 and with amz(m-—é) n/n for

=1,...,% and g, =0, @s41=s. They are obtained in the same way.
Consider now any subdivision of (o, #) by a finite increasing sequence of

ZI f!z(t)dt 0

Fp—1

points of division 2-. The sum

can be split up into n+ 1 groups of terms for which (z,—1, #,) lie in the n + 1
portions (am, @m+1), together with single terms arising from the values of + for
which there is an inequality of the type x,—1 < am < xr, at most one such 7 corre-
sponding to each m. By (8.1) the groups of terms are majorised by the corre-
sponding ¢ powers of the right hand side of (12.6). The additional single terms
are evidently majorised by the ¢™ powers of the right hand side of (12.3).

QOur sum is thus at most

K 3wt = K Cfgly + 1)

1
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provided ¢(y + 1) > 1. This is the same as our assertion of uniformly bounded
mean variation of ¢ () for —1<y=<o. The case y >0 is disposed of by
trivial inequalities, while the corresponding assertion relating to the allied series
is established in the same way as for g\ (¢).

Finally, as regards convergence, we have ¢ (0)=o0 and, since (12.3) is
valid with @(x) arbitrary, g% (n) = 1. By (12.5), |¢"(z) — ¢?(¢)| tends uniformly
to zero, when ¢ exceeds a fixed positive d, arbitrarily small, provided —1 <y =<o.
The corresponding assertions for y > o0 and for the allied series are obtained
similarly, and this completes the proof.

From the theorem just proved, we see that the notion of mean variation
has a natural connection with Fourier series. We now consider some properties
of the latter, for functions of W,.

Theorem on the Fourier series of a function of W,. (i) If f belongs to W,
and has period 2m its Fourier coefficients are O(n(_% +8)).]) (ii) The Fourier sertes,
together with its Cesaro means of order greater than —-]I;, converges at each x to
the value ;(f(:v +0) + flw—o0). (iii) 4t a point = of continuity of f, the con-
vergence ts wuntform and wmoreover the dz’ﬁerénce between the partial sum s (x) of

the allied series and the integral

T

(12.7) i;f(f(x+t)——f(x—t)) cot%tdt

n'an

converges uniformly to zero.
(i)* We have, (for » positive or negative), by (10.9)

T

| 27nen| = f (F1) — fO) d ()| < K Vy(en)

—

provided that ZI;+ é> 1. It will therefore suffice to show that V,(e*!) is O(n'/9),

that is to say, V(™) = O(n).

! The stronger result O (n—/p) is also trueé when f belongs to Wp and even when f belongs
. I . : .
merely to Lip (F p), vide Hardy and Littlewood (4). The two results are eqvivalent in the case

(that usually arises) when f belongs to Wp for an open segment of values of p.
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Now in forming the upper bound of
Z. I ez‘nﬁ — einalq
e, B)

for mnon-overlapping (e, 8), we may suppose, by periodicity, 8 -— e < 27/n. And
the upper bound for non-overlapping (¢, 8) that lie in a same interval of length
27/n is, by (8.1) at most the total variation raised to the ¢ power, and so is

majorised by

ine
—— €

)q= (2.

27T
— max
n x

It follows immediately that, for (— =, #), the upper bound is at most »(2x)?
and this proves (i).

(ii) We have only to choose ¢(x)= ;— (f(x + o) + f(x — o)) and observe that

on the right of (12.3) the integrand is continuous and zero as function of ¢ for
t=o0. The result then follows from (11.2).

(iii) Uniformity of convergence is easily derived from (10.9). We shall
content ourselves with proving the part referring to sp(x). Given & we deter-
mine a neighbourhood of x and a small interval of ¢, in which (uniformly in z)
the function of ¢, f(x + {) — f(x — f), has oscillation less than ¢, and therefore,
by (8.2 a), a mean variation of order p, not exceeding K&P—?P. when p, > p.

We choose such a p, with a ¢, > 1 for which 1% + ql > 1. Since V,(gn) is bounded,
1 1

it follows at once from (10.9) that the right hand side of (12. 4) tends uniformly
to zero at the point x as required. This completes the proof of our theorem.

The convergence of the Fourier series of an f of W), was proved by Wiener?,
when p==2. But when p =+ 2, he obtained only thb incomplete result that the
Fourier series converges almost everywhere. For general p, the convergence of
the Fourier series and its Cesaro means of order greater than — 1/p, is implied
in a theorem of Hardy and Littlewood? relating to the class of functions

Lip (}% , p), which asserts summability (O’, -;) + s) whenever there is summability

(C,1). The proofs of Wiener and of Hardy and Littlewood do not suggest,

! Wiener [11].
? Hardy and Littlewood [4] (Theorem 1),
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what is evident from our discussion, that results of this kind are largely inde-
pendent of the special nature of Fourier analysis.

In the part of our theorem that relates to the allied series, we assert
nothing as to the convergence of this series by itself, for the integral (12.%)
may diverge as »— ©, at a point x of continuity for which f(x + &) — f(z) is,
for instance, O(1/log t), and this may occur even when f is monotone. It is
known, however, that, for almost all x, the integral converges under far more
general conditions than we have supposed?, and it follows that the allied series
converges almost everywhere, a result that can also be inferred directly from a
beautiful theorem of B. Kuttner?, since the Fourier series converges. It will
be remarked, however, that the only simple formula to which we may expect to
sum the allied series, is the limit of an integral such as (12.7). A theorem of
comparison between the series and the integral is therefore the natural analogue
of the theorems of convergence, or summability, of a Fourier series, to a sum

f(x) or to a sum é(f(x-f— o) + flxz — o).

We conclude with a new form a Parseval's theorem, not included in the
classical forms of this theorem, and not including them. The theorem is some-
what deeper than our preceeding ones on Fourier series, and in the proof we
have combined our methods with those of Hardy and Littlewood.®

The »Parseval» equation. Let the real periodic functions

f(®) ~ Z(an cos nx + by sin nx), g(x) ~ Z(an cos nx + by sin nx)

of period 27 belong respectively to W, and Wy, where p, q> o, ; + :;> 1. Then
the serizes

< On by
(12.8) %n‘n b,

converges and has the value
Ha

f Fla)dgla),

—

! 8. Pollard and R. C. Young [10). The case of functions of integrable square (which amply
suffices here), was treated much earlier by Besicoviteh [I].

? Kuttner [8].

3 Hardy and Littlewood [4].
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if f and g have no common discontinuilies, and, in the general case, the value

T

[30+ 0+ sl —ohag)

—7

‘We obtain this theorem by considering the function

(12.9) Flx)= ff(x + t)dg(t) ~ Z(An cos nx + By sin nx).

Lemma (3). When q=1 and ¢(t) is continuous Vu(F)=< Vo(f) V,(g9). To
prove this, write fi(x) =f(x + #) and observe that (8. 5) implies

Vo (2 afi@)) = 3 Velafile) = Zlal Valfilel) = V() 3l al

for any finite sum over ¢. Let now x, be the points of division of any sub-
division of (— =, w) and ¢; those of another. Then it follows that

(2'2_.(9@:‘) — g(tm)) (flr + &) — flars + t,-))|p )l/p < Vp(f) 2| 9(t) — glte)].

Keeping the z, fixed, we make the ¢; everywhere dense and derive

n p\ Up

> f (Flar+ ) — flams + ) dgd)| | = Vo) 72(0)

and replacing the left hand side by its upper bound, we have our assertion.

Lemma (i2). If f belongs to Wy, the sequence o.(f) of arithmetric means of
its Fowrier series form a Wy-sequence. This follows at once from lemma (i) by
expressing 6.(f) in the form of an F(x) with for g(f) the indefinite integral of

sin® 5 nt/ 27w sin? ;t, in' which case the total variation of g(¢) is independant of #.

Lemma (¢32). Wruth the hypotheses of the theorem, the function F(x) of (12.0)
has the Fourier coefficients An = mwn(anbn — anbn), By = wn(andy + byby). By lemma
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(ii) and by (10.9) and (11.2), at every x for which f{x + ¢) and ¢(¢) have no
common discontinuities (that is, for almost all x), F(x) is the bounded limit of
the corresponding integral of f(z) with respect to on(g).

Multiplying by cos nx, sin nx and integrating term by term by the classical
theorem of Lebesgue, we find for the Fourier constants the values stated.

Lemma (wv). The limits F(x + o) extst and have the values

T

ff(x + t+ o)dy(t).

—7

In particular, Flx) is continuous for the values of = such that f{z + 1) and g(8)
have no common discontinuities as functions of t.

This lemma follows at once from the obvious modification of (r1.2) that
corresponds to the Moore-Pollard order of ideas. Thus, when h,— + o,

I

ff(x+t+ hn)dg(t——o)—»ff(w+t—l—o)d'g(t~—o)

—7

it being clear that f(x + ¢ + k) tends uniformly to f(x -+ ¢ + o) on the right at
any point ¢, while g(¢ — o) is continuous on the left. Observing that the inte-
grals are unaffected in value if g(t — o) is replaced by g(f), the conclusion follows
for + o, and similarly for — o,

Lemma (v). F(x) belongs, for some finite L > 0, to the integrated Lipschitz
1
PR

It will suffice to show that, except for a set of x of measure less than
K|k|* (in which F(x) is certainly bounded by (10. 9)),

[F(z + h) — Flz)| < K|h[?.

class Lip( l) of Hardy and Lattlewood.

We may suppose |h] < 7, and we determine %, and the integer N by
hy=z2n/N=|h|>2a/N +1)= éhl‘

We divide (—m, ) into N equal parts {f,—1, &) of length h, and select in each

L CE (8. 4).
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part a pair of points 7, 7, — h of distance |h|=<h,. Choosing as usual p, > p,

g, > q so that 1—:— + ZZI—> 1, we have, by (10.9), for the difference
1 1

N

Fla)— 3 flo + ) (g(6) — g(ts) |,

r=1

the majorant

N
%+§G~wﬁ}2Vuﬁx+umw+hﬂawwhhm
1

% r=1

and, since (7, — h) lies in (t—1, %), the same majorant holds for the difference

N

F(x+h) — 2 fle + %) (g(t) — glt)) |,

re=l

and therefore also for the expression
3F@+M—FML
To prove our lemma, it will therefore suffice to show that

N
Z Vpx(fv x + tf—17 z + tr) V!h(g’ tf‘—ly t") < Kh’f

r=1

except for a set of x of measure less than Kh% Let E; be the subset of the

t» for which
1

Osec. (f; tr— 2hy, b + 2h) > B3P,

If », is the number of such values of ., it is clear from the definition of
Vp(f) that
n,hY® < VE(f; o, 87).

Similarly, if E, is the subset of the # for which
Osc. (g; ¢, — 2h,, t, + 2h)) > B3¢

the number 7, of points of E, is at most KhT'S.
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Let now E, be the set of the differences between points of E, and points
of E,. The number of points of E; is then

ny < myny < Kh7T3;

and if F is the set of points distant at most h, from points of E;, the measure
of E is at most Kh'®, and for any x outside E and any » we must have either

Osc. (f; x + tr—1, x + ) < h1B3P
or
Osc. (g; t—, &) << B3¢

and by lemma (10. 8)

SV f; 2+ tror, @ + 6) Vi (g; i, 8) < KRP

with, for 8, the smaller of the two values (p, — p)/3pp;, (2, — ¢)/394,.
This completes the proof of lemma (v).

To prove our theorem we observe that é(F(—l— o) + F(— o)) is the limit of

the Cesaro mean of the Fourier series of F(z) for x =0 by a classical theorem.
By lemma (v) and the theorem of Hardy and Littlewood already referred
to!, this implies that the Fourier series of F({z) converges for x = 0 and is in-

dead summable ( C, —% + e).

By lemma (iii) this is equivalent to the statement of our theorem, and this
completes the proof.
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