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1. Introduction and main results

A crossed product type construction due to Murray and von Neumann [MvN] associates
with any free ergodic probability-measure-preserving (pmp) action I' (X, i) of a count-
able group I, a II; factor denoted L (X)x T and called the group measure space algebra
of '»X. A more general groupoid-version of this construction associates a II; fac-
tor LR with any countable ergodic pmp equivalence relation R on (X, p) ([FM]). The
two algebras coincide when R is given by the orbits of the free ergodic action I'v X,
showing that group actions having the same orbits give the same II; factor. Moreover,
both L>®(X)xT" and LR contain L*°(X) as a Cartan subalgebra, i.e. a maximal abelian
x-subalgebra whose normalizer generates the II; factor, while by [FM] two countable er-
godic pmp equivalence relations R, and Rs are isomorphic if and only if there exists an
isomorphism of the associated II; factors taking the corresponding Cartan subalgebras
one onto the other.

The classification of the algebras L®°(X)xI' and LR in terms of their building data,
I'mX and R, is a notoriously hard problem which, over the years, has led to a fruitful
interplay between operator algebras and functional analysis, group theory (geometric,
measured, etc.), representation theory, Lie group theory, ergodic theory, etc.

The dichotomy amenable/non-amenable is particularly strong in this framework: by
a celebrated theorem of Connes [C], all IT; factors L>®(X)xI' and LR, with I' and R
amenable, are isomorphic (in fact, by [CFW], there is just one amenable equivalence

relation R!); but non-amenable group actions “tend to be” recognizable from the iso-
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morphism class of their associated algebra. In fact, the prevailing point of view in recent
years has been to approach the non-amenable case of this classification problem as a
rigidity paradigm, seeking to prove that an isomorphism of group measure space II;
factors forces the corresponding building data (e.g., I' and R) to share some common
properties, or even coincide.

There has been intense activity in this direction over the last decade, with the emer-
gence of new tools of investigation and the discovery of many surprising rigidity results.
But one of the most intriguing questions in this area, asking whether an isomorphism
L>®(X)xTF,,~L>®(Y)xF,,, arising from two arbitrary free ergodic pmp actions F,, ~X
and F,, ~Y of the free groups with n and respectively m generators, forces n=m, has re-
mained open. There was supporting evidence for this conjecture from results in [Po2] and
[OP1], showing that this is indeed the case if the two actions are either HT or compact.

But this was not known for other actions, such as the Bernoulli actions F,,~ [0, 1]¥~.

We solve this problem here, in the affirmative. More precisely, we prove that any
group measure space 1I; factor M =L>(X)xF,, arising from an arbitrary free ergodic
pmp action F,, ~ X, “remembers” the associated equivalence relation Ry, . We do this by
showing that M has a unique Cartan subalgebra, up to conjugacy by a unitary operator
in M. This in turn reduces the problem to whether equivalence relations arising from
free ergodic pmp actions of free groups with different number of generators are always
non-isomorphic, which does hold true by a well-known result in [G1] and [G2]. Note that
our result gives an answer to the wreath product version of the famous free group factor
problem: if L(Z{F,,)~L(ZF,,) then n=m. In fact, by combining our theorem with the
work in [Bol] and [Bo2], we obtain a complete classification of the amplifications of IIy
factors arising from Bernoulli actions of free groups, (L>([0,1]»)xF,)!, for which we
show that the number (n—1)/t is a complete invariant.

Note that our result provides the first groups I' with the property that any group
measure space II; factor L>°(X) T, arising from an arbitrary free ergodic pmp I'-action,
has a unique Cartan subalgebra, up to unitary conjugacy, a class of groups that we call
C-rigid. Indeed, the results in [OP1], which were the first to provide a class of factors
with unique Cartan decomposition up to unitary conjugacy, only covered group measure
space II; factors arising from profinite actions of IF,,.

We in fact prove C-rigidity for much larger classes of groups I' than the free groups.
For instance, we show that any weakly amenable group I' with non-zero first £2-Betti
number, 52) (I >0, is C-rigid. We conjecture that in fact any I with at least one non-zero
£?-Betti number, ,(L2)(I‘)>O7 is C-rigid. Note that if this conjecture would be true then,
since the ¢2-Betti numbers of groups are invariant under orbit equivalence (cf. [G2]), it

would follow that @(12)(1“) are isomorphism invariants for arbitrary group measure space
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I1; factors L>°(X)xT.

There is further supporting evidence for the above conjecture. For instance, in [PV4]
we proved that a fairly large class of free product groups I'=I"y *I'5, including all those
where I'; is an infinite property (T) group and I's is non-trivial, has the property that
L*(X)xT has a unique group measure space Cartan subalgebra(*) for any I'-action. We
call groups I" with this property Cems-rigid. More generally, it was established in [CP]
that all groups that have at the same time a non-vanishing first £2-Betti number and
a non-amenable subgroup with the relative property (T), are Cgms-rigid (see also the
expository paper [V2]). Very recently it was shown in [I2] that L>°(X) T has a unique
group measure space Cartan subalgebra if ﬂ§2)(F)>O and '~ (X, ) is a rigid (in the
sense of [Po2]) free ergodic pmp action.

One should point out that the unique Cartan decomposition results for profinite
actions of [OP1] and [OP2] have been generalized in [CS] and [CSU] to show that group
measure space 1I; factors L>°(X)xI' arising from profinite free ergodic pmp actions
of any hyperbolic group or direct product of hyperbolic groups, have a unique Cartan
subalgebra up to unitary conjugacy. In the follow-up paper [PV5], the main innovations
of our article (§4 and §5) are combined with the methods of [CS] and [CSU] to prove that
any product of hyperbolic groups is C-rigid. So, the uniqueness of the Cartan subalgebra
of L>*°(X)xT holds without assuming the profiniteness of the action ' (X, p).

While a characterization of all C-rigid groups seems even difficult to guess, it would
be very interesting to find other sufficient conditions for this property to hold. As for
necessary conditions, let us point out that in [CJ] it was shown that any direct product
I'=H x G between a non-amenable group G and a certain type of locally finite infinite
non-commutative group H, is not C-rigid. Another class of groups that are not C-rigid
was found in [OP2] and it consists of certain semidirect products I'=H xG, with H
abelian, notably I'=72 xSL(2,Z). More generally, it was shown in [PV4, §5.5] that a
semidirect product '=H xG with H infinite abelian, is never C-rigid. We believe that
in fact groups I' with an infinite amenable normal subgroup are never C-rigid. Since
by [CG] (see also [L, Theorem 7.2(2)]) all £2-Betti numbers of such groups I' vanish,
this is compatible with the conjecture that all groups with at least one non-zero £2-Betti
number are C-rigid, as formulated above. On the other hand, it would be interesting
to find examples of non-C-rigid groups that admit no infinite amenable quasi-normal
subgroup.

To state our results in more details, we first need some terminology.

(') A maximal abelian subalgebra A of a II; factor M is a group measure space Cartan subalgebra
if M can be decomposed as a crossed product M=AxA. Not all Cartan subalgebras in II; factors are
of this form.
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Definition 1.1. A Herz—Schur multiplier on a countable group I" is a map f:T'—C
such that the corresponding map uy+— f(g)uy extends to a normal completely bounded
map my: L(I') = L(T"). In that case we write ||f|lcb:=[mf|lcb. A countable group I
is weakly amenable (see [CH]) if it admits a sequence of finitely supported Herz—Schur
multipliers f,,: I'—C that tend to 1 pointwise and that satisfy lim sup,,_, o || fn|lcb<oo. If
{fn}nen can be chosen in such a way that limsup,, . || fn|lco=1, we say that T" has the
complete metric approzimation property (CMAP), see [Ha).

Let T be a countable group and n:I'—=O(Kg) be an orthogonal representation. A

1-cocycle for T into the orthogonal representation n is a map c: I'— Ky satisfying
c(gh) =c(g)+ngc(h) for all g,hel.

We say that ¢ is proper if ||c(g)||— oo whenever g— occ.

Following [Be, Definition 1.1], we say that a unitary representation 7:I'—U(K)
is amenable if B(K) admits an (Adng)ger-invariant state. A unitary representation
n:T—U(K) is mizing if for all £,&'€ K we have that (ny¢,&’)—0 whenever g—o0, i.e.

when the matrix coefficients of 7 tend to zero at infinity.

THEOREM 1.2. For all of the following groups T, all group measure space 11y factors
M:=L>(X)xT with respect to arbitrary free ergodic pmp actions T~ (X, p) have L™= (X)
as their unique Cartan subalgebra up to unitary conjugacy.

(1) All weakly amenable groups T' such that ﬁ§2) (T')>0. More generally, all weakly
amenable groups I' that admit an unbounded 1-cocycle into a miring non-amenable rep-
resentation.

(2) All weakly amenable groups T' that admit a proper 1-cocycle into a non-amenable
representation.

Actually a more general statement holds: whenever ACM is a maximal abelian
subalgebra whose normalizer is a finite index subfactor of M, we must have that A is

unitarily conjugate to L™ (X).

Remark 1.3. Theorem 1.2 covers a rather large family of groups. In [OP2, Defi-
nition 1] a countable group I' is said to have the property (HH)* if T has the CMAP
and if I' admits a proper 1-cocycle into a non-amenable representation. Obviously all
groups with the property (HH)" belong to the second family of Theorem 1.2. By [OP2,
Theorem 2.3], the class (HH)" contains all lattices in SL(2,R), SL(2,C), SO(n, 1) with
n>2, and SU(n,1). Furthermore the class (HH)" contains the free groups F,,, 2<n <0,
and contains all free products A;*As of amenable groups A; and Ag with |A;|>2 and
|A2|>3. Also, the class (HH)" is stable under free products and direct products.
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Definition 1.4. We say that a countable group I is C-rigid (Cartan-rigid) if for every
free ergodic pmp action I'~ (X, ), the II; factor L (X)X I has L>°(X) as its unique
Cartan subalgebra up to unitary conjugacy.

In view of [OP1, Proposition 4.12] we say that a countable group I is C,-rigid(?)
if for every free ergodic pmp action I'v(X, ), the II; factor M=L>(X) %I has the
following property: every maximal abelian subalgebra AC M whose normalizer Ny, (A)”

is a finite-index subfactor of M is unitarily conjugate to L>(X).

As already mentioned above, Theorem 1.2 has some immediate consequences in the
classification of free group measure space II; factors. Recall that, if M is a II; factor and

5>0, then M? denotes the Murray—von Neumann amplification of M by s.

THEOREM 1.5. (1) If n#m and Fo(X,p) and F,,~(Y,n) are arbitrary free er-
godic pmp actions, then
L°(X)xTF,, 2 L°(Y)xF,,.

(2) If (Xo,po) and (Yo,n0) are non-trivial standard probability spaces, then, for

2<n, m<oo and s,t>0, we have
-1
(L®(Xgm) ¥, ) =2 (L®(Yy ™) xF,,)t  if and only if n—L_m—a
s

Fn)

In particular for the wreath product groups Z2F, =7 xF,, we get that

—1 —1
L(Z2F,,)* = L(ZF,,)"  if and only if nTl o mT
s
(i) If R1 is a treeable ergodic pmp equivalence relation and if LR1=LRy for some

other pmp equivalence relation Ro, then R1=Rs.

Theorem 1.2 also has a number of consequences for the fundamental groups of group
measure space II; factors. Recall that the fundamental group F(M) of a II; factor M
is the group of positive real numbers s>0 such that M*=M. In [PV3] we introduced
the invariants Sgactor(I') and Seqrei(I') of a countable group I', as the set of subgroups
of R, that can arise as the fundamental group of a group measure space II; factor
L (X)xT, resp. an orbit-equivalence relation R(I'~X), for some free ergodic pmp
action of I'. In [PV2] we proved that Stactor(Foo) and Seqrei(Foo) are huge. They for
instance contain subgroups of R, that can have any Hausdorff dimension between 0
and 1. On the other hand, from [G2, Théoréme 6.3] we know that Seqrer(IF,,)={{1}} for
all 2<n<oco. Whenever I' is a C-rigid group we have Sgacior(I') =Seqre1 (I'). So it follows

(?) The notation Cs-rigid can be read as “strongly Cartan-rigid”, but also as “stably Cartan-rigid”
because of the stability results in [OP1, Proposition 4.12].
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from Theorem 1.2 that also Stactor(Frn) ={{1}} for all 2<n < 0o, confirming our conjecture
in [PV3].

Throughout this article we say that (M, 1) is a tracial von Neumann algebra if M
is a von Neumann algebra equipped with a faithful normal tracial state 7.

Following [O1] a tracial von Neumann algebra (M, 1) is called solid if the relative
commutant A’NM of any diffuse von Neumann subalgebra ACM is amenable. It is
shown in [O1] that the group von Neumann algebras LT of any hyperbolic group is
solid. Then in [OP1], (M, 1) is called strongly solid if even the normalizer of any diffuse
amenable subalgebra of M is still amenable, and it is shown that the free group factors
LF,, are strongly solid. It has been recently proved in [CS] that in fact all group von
Neumann algebras LT" of arbitrary hyperbolic groups are strongly solid.

Crossed products B XTI are of course typically not strongly solid, but we establish the
following relative strong solidity property: for certain groups I' we prove the dichotomy
that an amenable subalgebra A of an arbitrary crossed product B xI" with B amenable
either embeds into B (in the sense of intertwining-by-bimodules, see Definition 2.1), or has
an amenable normalizer. More generally one can replace “amenability” by “amenability

relative to B” in the sense of Definition 2.2, resulting in the following statement.

THEOREM 1.6. Let T' be a weakly amenable group that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the reqular representation.
Let F&(B,T) be any trace-preserving action on a tracial von Neumann algebra (B,T).
Set M=BxT and let ACM be a von Neumann subalgebra such that A is amenable
relative to B.

Either A<y B or the normalizer P:=Ny;(A)” is amenable relative to B.

Theorem 1.6 immediately implies that, for all II; factors B and all 2<n< oo, the
tensor product B® LF,, has no Cartan subalgebra, thus improving [OP1, Corollary 2]
which required B to have the complete metric approximation property.

IfI'=T"y x...xT, is a direct product of n>2 non-amenable groups, Theorem 1.6 does
not hold since, for instance, the relative commutant of a subalgebra of L(I'1) contains
L(I'3). Nevertheless we obtain the following precise description of what exactly can

happen. The notion of strong intertwining A<{VIQ is explained in Definition 2.1.

THEOREM 1.7. Let I'=T'1 x...xI'y, be a direct product of weakly amenable groups
such that every T'; admits a proper 1-cocycle into an orthogonal representation that
is weakly contained in the regular representation of I';. Let Friv(B,'r) be any trace-
preserving action on a tracial von Neumann algebra (B, 7). Set M=BxT and let ACM
1

be a von Neumann subalgebra that is amenable relative to B. Denote by P:=N(A)

the normalizer of A inside M.
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Then there exist projections pg, ..., pn € Z(P), some of which might be zero, such that
poV...Vp,=1 and
e Ppg is amenable relative to B;

e for every i=1,...,n we have Api<{wB><1fi, where fl is the product of all 'y, j#i.

Note that each I' covered by Theorem 1.7 with the factors I'; being non-amenable,
also belongs to the second family of Theorem 1.2 and hence is C-rigid and C,-rigid.

We obtain the following similar result for crossed products B xIT" by arbitrary actions
of weakly amenable free products I'=A;*As. Note that these groups belong to the first

family in Theorem 1.2 and hence also are C-rigid and C,-rigid.

THEOREM 1.8. Let T'=A1xAy be any weakly amenable free product group (e.g. the
free product of two groups with the CMAP). Let Frq\v(B, 7) be any trace-preserving action
on a tracial von Neumann algebra (B, 7). Set M=BxT and let ACM be a von Neumann
subalgebra that is amenable relative to B. Denote by P:=Ny;(A)" the normalizer of A
inside M.

Then there exist projections q,po,p1,p2€Z(P), some of which might be zero, such
that qVpoVp1Vpas=1 and

. Aq%ﬁ,B;

e Ppg is amenable relative to B;

° sz-%g/[BXIAi for i=1,2.

All the results above will follow from a key technical theorem that we state as
Theorem 3.1 in §3.

As a consequence of the above uniqueness theorems for Cartan subalgebras, we
obtain several W*-superrigidity results. Recall that a free ergodic pmp action T’ (X, p)
is W*-superrigid if the group measure space II; factor L (X)X T “remembers” the group
action '~ (X, p): any other group measure space construction yielding an isomorphic ITy
factor must come from an isomorphic group and a conjugate action (see §12 for precise
definitions). In [Pe2] the existence of virtually W*-superrigid group actions was proven.
In [PV4] we obtained the first concrete W*-superrigidity theorem, for Bernoulli actions
of a large class of amalgamated free product groups. In [I1] it was shown that Bernoulli
actions of icc property (T) groups are W*-superrigid. In the present paper, a combination
of our unique Cartan decomposition (Theorem 1.2) and the OE superrigidity theorems
in [Po4] and [Po5] will allow us to deduce the following result (see also Theorem 12.1 and
Remark 12.3 thereafter).

THEOREM 1.9. Let A, I'; and T's be weakly amenable icc groups that admit a proper
1-cocycle into a non-amenable representation.
o Put T'=TyxTy. All free actions of T' that arise as a quotient of the Bernoulli
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action T ~[0,1]Y are W*-superrigid.
o Consider Ax A~ by left-right multiplication. All free actions of Ax A that arise

as a quotient of the generalized Bernoulli action AxA~[0,1]* are W*-superrigid.

We finally deduce a strong rigidity theorem for crossed products by outer actions.
Recall that an action (ag)ger by automorphisms of a factor R is outer if no ay, g€e,
is an inner automorphism Adwu, u€U(R). Two outer actions c: '~ P and §: AnQ are
cocycle conjugate if there exists an isomorphism 7: P— (@), an isomorphism §:I'— A and
a map w: ' —=U(P) such that

m(wgoy(v)wy) = Bs(g)(m(x)) and wgp =wgay(wy) for all g,he€l and x € P.

THEOREM 1.10. If T and A are icc groups in one of the families of Theorem 1.2
and if TR and A~R are outer actions on the hyperfinite 11y factor R such that
RxT'ZRxA, then T=ZA and the actions TR and A~ R are cocycle conjugate.

Comments on the proofs

In order to explain the main ideas of the paper, we outline the proof of the following
special case of Theorem 1.6. Assume that I is a group with the CMAP and with a proper
1-cocycle into the infinite multiple 2 (T')®°° of the regular representation. Note that the
free groups I'=F,, satisfy these properties. Assume that '~ (B, 7) is an arbitrary trace-
preserving action on the tracial von Neumann algebra (B,7) and put M=BxI. Let
ACM be a von Neumann subalgebra that we assume, in this rough sketch, to be plainly
amenable. Put P:=N;(A)”. We want to prove that either A<j; B or that P is amenable

relative to B.

Step 1. Reduction to the trivial action. As we will see in Lemma 4.1, we may assume
that I'v(B,7) is the trivial action. To make this reduction from arbitrary actions to
the trivial action, we use the comultiplication trick. So denote by A: M —M®L(T)
the normal s-homomorphism defined by A(bugy)=buy®uy for all be B and gel'. We
view M ®L(I") as the crossed product of I' acting trivially on M. We consider A(A)C
M®L(T). As we will see, it is rather straightforward to prove that

e A<y B if and only if A(A)<ygrLmyM®1;

e P is amenable relative to B if and only if A(P) is amenable relative to M ®1.

So the result for arbitrary actions is an immediate consequence of the result for the
trivial action.

From now on we will assume that '~ B is the trivial action. Hence M equals the
tensor product M=B® L(T).
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Step 2. Weak compactness relative to B. The most important novelty of this paper
is the proof that the action Njs(A)~A satisfies a relative version with respect to B of
the weak compactness property of [OP1, Definition 3.1]. For this we only use the CMAP
of I'. So take a sequence of finitely supported Herz—Schur multipliers f,,:T'—C that
tend to 1 pointwise and that satisfy limsup,, ., ||fn]lcb=1. Denote by ¢,: M —M the
associated completely bounded maps given by ¢, (b®ug)=fr(g)b®u, for all be B and
gel'. The formula

,LLn:M®minP0p—>(Cv
xRYP—T(pn(x)Ea(y)) forz€M and y€ P,

provides a sequence of continuous functionals on the C*-algebra M ®y,i, P°P satisfying

o limsup, . [|m(=1;

o lim, o || tnoAd(u®u) — iy, || =0 for all ue Npr(A), where a=(u°P)*.
Since moreover p,(1)—1, it follows that ||u, —wn || —0, where w, denotes the state on
M @pmin PP defined as wy, = || || |-

A crucial point in the continuation of the argument will be to construct a von
Neumann algebra completion N of M ®yi, P°P with the following two properties:

e the states w,, are normal on N;

e the von Neumann algebra A splits as a tensor product N'=N®L(T"), with the
natural copy of L(T") inside M CN corresponding to the copy of L(T) inside N®L(T).

Choosing a standard representation of N on the Hilbert space H, it follows that A/
is standardly represented on H®¢?(T"). The states w,, are then implemented by canonical
positive vectors &, € H®¢%(T'). These vectors &, inherit the almost invariance properties

of wy,.

Step 3. Applying a malleable deformation (cu)ier to the vectors &,. The group T
admits a proper 1-cocycle ¢: I'—¢3(I')®° into an infinite multiple of the regular represen-
tation. Associated with ¢ is a one-parameter family (1;);s0 of unital completely positive

maps on N given by
Ye(r@uy) = exp(—tlc(g)||?)(r@u,) forallz€ N and g€T.

By [S] the one-parameter family (¢;)¢~o dilates as a malleable deformation (ay)icr by
automorphisms of a larger von Neumann algebra N DON. This construction comes with
a conditional expectation E: N =N such that

Vg2 jo(x) = E(oy(x)) for all € N and teR.
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The dichotomy in the conclusion of the theorem then arises as follows.

e Either the deformation (ay)ier significantly moves the vectors &,. Since these
vectors &, have a certain almost invariance property under all u€AN;(A), this will lead
to the amenability of P relative to B.

e Or the deformation (ay)ter does not significantly move the vectors &,. By the

properness of the 1-cocycle ¢, this will lead to A< B.

2. Preliminaries

To make this article as self-contained as possible we have chosen to include a rather

extensive section with preliminaries.

2.1. Terminology

As we said above, we call (M, 1) a tracial von Neumann algebra if M is a von Neumann
algebra equipped with a faithful normal tracial state 7.

Whenever M is a von Neumann algebra and ACM is a von Neumann subalgebra,
we denote by My (A) the group of unitary elements uelf (M) that satisfy uAu*=A. We
call the von Neumann algebra Njs(A)” the normalizer of A inside M. We say that
ACM is regular if its normalizer equals M. A Cartan subalgebra of a II; factor M is a
maximal abelian regular von Neumann subalgebra.

Let (M,7) and (@, ) be tracial von Neumann algebras. A right Q-module is any
Hilbert space equipped with a normal *-anti-representation of Q). An M-Q-bimodule is
any Hilbert space equipped with a normal *-representation of M and a normal x-anti-
representation of () with commuting ranges. We usually simply write z-£-y to denote
the left and right module actions of x€ M and y€@ on the vector &.

If N is a von Neumann algebra and M CA is a von Neumann subalgebra, a functional
Q on N is M-central if Q(Sz)=Q(zS) for all SEN and reM.

A tracial von Neumann algebra (M, 7) is amenable if there exists an M-central state
on B(L?(M)) whose restriction to M equals 7. We refer to §2.5 for more background on

amenability.

2.2. Intertwining by bimodules

We recall from [Po3, Theorem 2.1 and Corollary 2.3] the theory of intertwining-by-

bimodules, summarized in the following definition.
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Definition 2.1. Let (M, 7) be a tracial von Neumann algebra and P, Q C M be (pos-
sibly non-unital) von Neumann subalgebras. We write P<jsQ, and say that P embeds
into @ inside M, when one of the following equivalent conditions is satisfied:

e there exist projections pe P and ¢€(@), a normal *-homomorphism ¢: pPp—qQq
and a non-zero partial isometry v€pMgq such that zv=vp(z) for all z€pPp;

e it is impossible to find a net of unitary elements u,, €U (P) satisfying
|Eq(zuny™)|l2—0 forall z,y€lgM1lp.

We write P—<§\C4Q if Pp=<ysQ for every projection pe P’N1pM1p.

2.3. Basic construction, Jones index, Connes tensor product

Let (@, 7) be a tracial von Neumann algebra and g be a right Hilbert Q-module.
Then the von Neumann algebra A':=B(K)N(Q°P)’ carries a canonical semifinite faithful
normal trace Tr that can be characterized as follows: first recall that a vector £ €K is right
bounded if there exists a >0 such that ||{z| <s||x|2 for all z€Q. When €K is right
bounded we denote by Le€B(L?*(Q),K) the operator defined as Lez=Ex for all z€Q.
For all right bounded vectors {, n€X we have that L¢ Ly eN, while L} Le€@. The right
bounded vectors form a dense subspace of K and the corresponding elements Lng;E/\/'

span a dense *-subalgebra of . The trace Tr on A can be characterized by the formula
Tr(L¢Ly)=7(L;L¢) for all right bounded vectors &, 7 € K.

When QC(M,7) is a von Neumann subalgebra, we denote by eg the orthogonal pro-
jection of L?(M) onto L?*(Q). Jones’ basic construction (M, egq) is the von Neumann
algebra generated by M and eg on the Hilbert space L?(M). We have

(M, eq) =B(L*(M))N(Q")".

So, applying the above construction to the right @-module L?(M)g, we recover the usual

semifinite faithful normal trace Tr on (M, eq) characterized by
Tr(zeqy) =7(zy) forall x,ye M.

The number Tr(1) is called the Jones index of QCM and is denoted by [M:Q)].
We also recall the Connes tensor product of bimodules. Assume that K¢ and gHp
are bimodules between tracial von Neumann algebras M, @ and P. Denote by KoCK
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the subspace of right @-bounded vectors in XC. The separation/completion of Ko®aisH

with respect to the scalar product
(E@qn, & @qn') = (L Le)n,n'),
together with the bimodule action
z-(E®qn) -y :==xERQNY,;

yields an M-P-bimodule that is denoted by K®@qH.
If pKq is an M-Q-bimodule between the tracial von Neumann algebras (M, 7) and
(Q,T), we denote by QKM the contragredient bimodule on the adjoint Hilbert space K

of K with bimodule action

x-&y=y*éx* forall €K, x€Q and y € M.

Assume that /K is an M-Q-bimodule between the tracial von Neumann algebras
(M, 7) and (Q, 7). Set as above N:=B(K)N(Q°P)’, equipped with its canonical semifinite
normal faithful trace Tr as explained above. Denote by [y C/KC the subspace of right Q-

bounded vectors. One checks that the formula

,CO ®algl€0 — L2 (N7 TI‘),
§®qinr— LeLy,

extends to an M-M-bimodular unitary operator of K®gK onto L?(N, Tr).

Finally assume that M =B %I is the crossed product of a countable group I" with a
trace-preserving action I' (B, 7). Whenever o: ' -U(K) is a unitary representation, we
consider the M-M-bimodule ;K¢ on the Hilbert space K=K ® L?(M) with bimodule

action
(bug)-(€®x)-y =04 @bugzy forallbe B, geT', {€ K and z,y€ M. (2.1)
If p and n are unitary representations, one has
M(Ke@m KM a2 iK%y

as M-M-bimodules.
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2.4. Weak containment of representations and bimodules

If 0:T—U(K) and m:T'—U(H) are unitary representations of a countable group I', one
says that o is weakly contained in 7 if |[o(a)||<||7(a)|| for all acCT". Similarly, if »/Kq
and j/Hg are bimodules between tracial von Neumann algebras (M, 7) and (Q,7), we
say that K is weakly contained in H if ||mic ()| <||mn (z)|| for all €M ®a1,Q°P, where
we denote by 7i, resp. 7wy, the obvious #-representation associated with the bimodule
structure.

Weak containment of bimodules is well behaved with respect to the Connes tensor
product. If 3/K¢ is weakly contained in p,Hg, then K®¢g L is weakly contained in H®g L
for all @-P-bimodules £. A similar statement holds for weak containment in the second
variable.

If M=BxT is a crossed product von Neumann algebra by a trace-preserving action
I'~(B,7) and if ¢g:T—U(K) and m:T'—U(H) are unitary representations, then o is
weakly contained in 7 if and only if the M-M-bimodule K¢ described in (2.1) is weakly
contained in the M-M-bimodule K.

2.5. Relative amenability of subalgebras and left amenability of bimodules

A tracial von Neumann algebra (M, 1) is amenable if there exists an M-central state on
B(L?(M)) whose restriction to M equals 7. Connes’ fundamental theorem in [C] says
that a tracial von Neumann algebra M is amenable if and only if M is hyperfinite, i.e. M
admits an increasing net of finite-dimensional von Neumann subalgebras whose union is
weakly dense in M. Also, M is amenable if and only if the trivial bimodule p;L?(M )y,
is weakly contained in the coarse bimodule 5;(L?(M)®L?(M)) ;.

Definition 2.2. ([OP1, §2.2]) Let (M, 7) be a tracial von Neumann algebra and let
PCpMp and QC M be von Neumann subalgebras. We say that P is amenable relative to
@ if the von Neumann algebra p(M, eq)p admits a P-central positive functional whose

restriction to pMp coincides with 7.

Recall that the basic construction von Neumann algebra (M, eqg) coincides with
the commutant of Q°P acting on L?(M). Replacing in the above definition (M,eq)=
(Q°P)'NB(L?3(M)) by (Q°P)'NB(K) for an arbitrary M-Q-bimodule K, we arrive at the
following definition (cf. [S, Theorem 2.2]).

Definition 2.3. Let (M, 7) and (@, ) be tracial von Neumann algebras and PC M
be a von Neumann subalgebra. We say that an M-Q-bimodule y/Kg is left P-amenable
if there exists a P-central state  on B(K)N(Q°P)" whose restriction to M equals 7.
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So by definition, for PCpMp and QCM we have that P is amenable relative to
Q if and only if the pMp-Q-bimodule pMppLz(M )q is left P-amenable. Even more
specifically, recall from [Pol, Definition 3.2.1] and [A, Definition 2.1] that a von Neumann
subalgebra Q C M is co-amenable if the whole of M is amenable relative to (). So QC M
is co-amenable if and only if the bimodule p,L?(M)g is left M-amenable.

Next note that Definition 2.3 generalizes the notion of left amenability of bimodules
introduced in [A]. More precisely, an M-@-bimodule 3, is left M-amenable in the sense
of Definition 2.3 if and only if ,;K¢ is left amenable in the sense of [A, Definition 2.1].
This follows immediately from Proposition 2.4 below.

Finally left amenability of bimodules has its origin in the concept of an amenable
representation, see [Be]. To make this link explicit, assume that M:=BxT is the crossed
product of a countable group by a trace-preserving action '~ (B, 7). Every unitary
representation o: T'—U(K) gives rise to an M-M-bimodule K¢ given by (2.1). This M-
M-bimodule K¢ is left M-amenable if and only if o is an amenable representation in the
sense of [Be, Definition 1.1], i.e. if and only if B(K') admits an (Ad g,4)ger-invariant state
(see e.g. [A, Proposition 3.3]).

The proof of the following proposition is almost identical to the proof of [OP1,
Theorem 2.1]. Part of the proposition also appears in [S, Theorem 2.2]. We nevertheless
provide full details for the convenience of the reader. We refer to §2.3 and §2.4 for the

relevant terminology on bimodules, tensor products and weak containment.

PROPOSITION 2.4. Let (M, 7) and (Q,7) be tracial von Neumann algebras, PC M
be a von Neumann subalgebra, p/K¢o be an M-Q-bimodule and set N:=B(K)N(Q°P)’,

with its canonical semifinite trace Tr as in §2.3. Define the contractive linear map
T:LYN,Tr) — LY (M, 7)

by
7(7(S)x)=Tr(Sz) for SEN and xe€ M.
Then the following statements are equivalent:
(1) The M-Q-bimodule rKq is left P-amenable.
(2) There exists a net &,€L?(N, Tr)* satisfying the following properties:
e 0<7 (£2)<1 for all n and lim,, . |7 (£€2) 1], =0;
e For all yeP we have lim,,_, ||y&, —&nyll2=0.
(3) The M-P-bimodule y;L*(M)p is weakly contained in the M-P-bimodule K®gK.
(4) There exists a Q-P-bimodule gHp such that yL*(M)p is weakly contained in
the M-P-bimodule K@g™H.
(5) There exists a tracial von Neumann algebra (N, T) and a Q-N-bimodule oHy
such that the M-N-bimodule KQgH is left P-amenable.
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Proof. Assume that condition (1) holds. Take a P-central state Q€N * whose restric-
tion to M equals 7. Identifying NV,=L'(N,Tr), we can take a net of positive elements
S, €LY (N, Tr)" such that Tr(S,,)=1 for all n and such that S, — in the weak* topol-
ogy on N*. Tt follows that 7(S,)—1 in the weak topology on L'(M,7) and that for all
y€P we have that yS, —S,y—0 in the weak topology on L'(N,Tr). After a passage
to convex combinations we have || 7(S,)—1||1—0 and ||yS, —Sny|1—0 for all yc P. We
will further modify the net (S,), in such a way that 0<7(S,,)<1 for all n. For this we
need the following standard functional calculus manipulations.

For every >0 and every n denote by p. , €M the spectral projection
Pen = X[0,14¢] (7 (Sn))-
Since ||[1—=7(S,)|l1—0, one checks that for every fixed e>0 we have
1S 2p. = SL/2 )12 = Tr((1=pe.n)Sn) =7((1=pen)T(Sn)) =0 as n— oo.
So, for every fixed >0, we have lim,, ||pe nSnpe, —Sn|1=0. Put

Te,n = (1+5)_1p5,n‘9np5,n-
Then, for every e>0, we have, for all n,

limsup ||Tz n—Sn|l1 <e and 0<7(T.,) <L

Reorganizing the 7. ,, we find a net 7;€ L' (N, Tr)"™ such that 0<7 (7;)<1 for all i and
such that ||7(7;)—1|1 —0 and ||yT; —T;y||1 —0 for all yeP.

Defining &; ::Til/ 2, we obtain a net in L?(AN, Tr)*™ which, due to the Powers—Stgrmer
inequality, satisfies condition (2) in the formulation of the proposition.

Next assume that (&), is a net in L?(A\, Tr)" satisfying condition (2). Recall from
§2.3 that L2(W\, Tr) can be identified with K®g K as an M-M-bimodule. Viewing &, as
a net of vectors K®q K, we get that

(x€ny,&n) — 7(xy) for all z€ M and y € P.

Hence the M-P-bimodule p,L*(M)p is weakly contained in the M-P-bimodule K®q K.
So condition (3) holds.

It is trivial that condition (3) implies condition (4).

We next prove that condition (4) implies condition (1). Condition (4) yields a net
(€n)n in an infinite multiple of K®qH satisfying

(xn,&n) = 7(x) forall z€e M and  ||y&,—&ny|| — 0 for all y € P.



156 S. POPA AND S. VAES

The formula S({®gn)=5{®¢n provides a normal representation of N on K&oH that
commutes with the right P-module action on K®gH. Choosing a state QeN™ as a
weak™ limit point of the net of states S+ (SE,,&,), we have found a P-central state 2
on N whose restriction to M equals 7. So condition (1) holds.

We finally prove the equivalence of conditions (1) and (5). One implication being
trivial by taking N=@Q and H=L?(Q), assume that the M-N-bimodule L:=K®gH is
left P-amenable. The formula S({®¢gn)=5{®¢gn provides a normal *-homomorphism

0: B(K)N(Q°P) — B(L)N(N°PY’

whose restriction to M is the identity. Given a P-central state © on B(L)N(N°P)" with
Q|pr=7, the composition Q-0 is a P-central state on B(K)N(Q°P)" whose restriction to

M equals 7. So condition (1) holds and the proposition is proven. O

COROLLARY 2.5. Let (M,7) and (Q,T) be tracial von Neumann algebras and PC M
be a von Neumann subalgebra. Let Kg and yK'q be M-Q-bimodules. If pIKCq is left

P-amenable and weakly contained in pK'g, then also yK'q is left P-amenable.

Proof. Since weak containment of bimodules is transitive and preserved under the
Connes tensor product of bimodules, this is a direct consequence of the characterization

of left P-amenability by condition (3) in Proposition 2.4. O

COROLLARY 2.6. Let (M, 7) and (Q, T) be tracial von Neumann algebras, Py, PoC M
be von Neumann subalgebras and »/Kq be an M-Q-bimodule.

If MKq is left Pi-amenable and if P> is amenable relative to Py, then K¢ is also
left Py-amenable.

In particular, if PiCP, is an inclusion of finite index and if yKq is left Pi-

amenable, then yKq is also left Pr-amenable.

Proof. By condition (3) in Proposition 2.4, we have that »,L?(M)p

, is weakly con-
tained in K®qo K. Hence

m(LA(M)®p, L>(M))y; is weakly contained in /(K@ K®p, K& K) -

Since P; is amenable relative to P, we know from condition (3) in Proposition 2.4 that
mL?*(M)p, is weakly contained in »;(L?(M)®p, L?*(M))p,. In combination with the
previous line and writing gHp,'=o(K®p, K& K)p,, we conclude that

mL?*(M)p, is weakly contained in  p(K®@¢o™H)p,.

Condition (4) in Proposition 2.4 implies that /K¢ is left Pr-amenable.
If P, C P5 has finite index, then P, is trivially amenable relative to Py, and hence

also the final statement is proven. O
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We next prove a result where the amenability of P relative to two subalgebras (1
and @5 implies the amenability of P relative to Q1 NQ2. Obviously such a result cannot
hold if @1 and @2 are in a generic position where typically @1 NQ2=C1. So recall that
two von Neumann subalgebras of a tracial von Neumann algebra (M, ) are said to
form a commuting square if Eg,cFq,=FEq,°Fq,, where Eg, denotes the unique trace-
preserving conditional expectation of M onto @;. In that case Fg,oEg, is the unique

trace-preserving conditional expectation of M onto Q1 NQs.

PROPOSITION 2.7. Let (M,T) be a tracial von Neumann algebra with von Neumann
subalgebras Q1,Q2C M. Assume that Q1 and Qo form a commuting square and that Q1
s reqular in M.

If a von Neumann subalgebra PCpMp is amenable relative to both Q1 and Q2, then
P is amenable relative to Q1NQs.

Proof. We define
Ti: L'((M, eq,)) — L'(M)

by
7(7:(S)x) =Tr(Sz) for Se€ L'((M,eq,)) and x € M.

Since P is amenable relative to Q1 and relative to ()2, condition (2) in Proposition 2.4
provides nets p; €pL*((M, eq,)) pand £ €pL?({M, eq,)) " p satisfying the following prop-

erties:
0<Ti(pf) <p for alld, [Ti(pf)—pli—0 and |yui—piyl2 =0 for all y € P,

and similarly for (&;);.
Consider the M-M-bimodule

H:= L2(<M7 Q. >)®ML2(<M7 6Q2>)'
We will prove below that H admits a net of vectors n; € pHp such that
lyme —nryl| =0 for all ye P and  (xny, nk) — 7(z) for all z € pMp. (2.2)

Note that for every ueL?((M,eq,)) and every j, the vector p®p&;€H is well defined
and satisfies
lp@néll = (WTa(€5), 1) < |2 (2.3)

Similarly, for every £€L?((M,eq,)) and every i, the vector p;®p & is well defined and
satisfies

s @&l < NI€]l2- (2.4)
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Fix finite subsets FC P, GCpMp and fix e>0. We will produce a vector n€pHp such
that

lyn—nyll<2e  forallyeF, (2.5)
[{(zn,n)—7(z)| <2 forall z€G. (2.6)

Once these two statements are proven, we find a net (ng)r in H satisfying conditions
(2.2).

First fix ¢ such that ||yp; —pyll2<e for all yeF and |{zu;, ;) —7(x)|<e for all z€g.

Since 0< 77 (12)<p, it follows that, for every z€ M, the element 77 (p;zpu;)€ L (M)
is bounded in the uniform norm and hence belongs to pMp. Put G":={7; (u;xp;):x€G}.
Then fix j such that ||y&; —&;y|l2<e for all yeF and [(x¢;,&;) —7(x)|<e for all z€g’.

Put n: =p;@p&;. Note that nepHp. We now prove that 7 satisfies (2.5) and (2.6).
Take yeF. As |lyp;—piyll2<e, it follows from (2.3) that |jyn—pyQumé;||<e. Note that
wiy@mEi=pi@myE;. As ||y&;—E&yll2<e, it follows from (2.4) that ||u; @ayé; —nyll<e.
So (2.5) holds.

To prove (2.6), take z€G. Note that

(xn,m) = (2@ &5 i a0 &;) = (T (i) €, &)

Since 71 (pizp;)€G’, it follows from our choice of j that

[(@n,n) =7 (T1 (nswp))| <e.

But 7(71 (psxps)) =Tr(pxp;)={xp;, ;) and also |(xu;, p;)—7(x)|<e. Hence also (2.6)
follows.

So we have proven the existence of a net (ng)r in pHp satisfying the conditions
(2.2). It follows that the bimodule ,,L*(pMp)p is weakly contained in the bimodule
pMp(PHD) p.

We claim that the M-M-bimodule H is contained in a multiple of p,L*((M,eq))n
with Q=Q1NQ2. Whenever u, veNy(Q1), denote by H, , CH the closed linear span of
the vectors {zeg, u@nveq,y:x, yeM}. Note that H, , is an M-M-sub-bimodule of H.
The commuting square condition together with the formula Ad(uv)*e Eq, =Eg, cAd(uv)*
guarantees that the formula

TeQ, UK M VEQ,Y > TUVRQY

defines an M-M-bimodular unitary operator of H,, onto L?({M,eq)). Since Q is
regular in M, the sub-bimodules {H,, ,:u,v€N(Q1)} span a dense subspace of H. It
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then follows that H is indeed contained in a multiple of L2((M,eq)), and the claim is
proven.

Using the claim, it follows that the bimodule pMpL2 (pMp)p is weakly contained in
the bimodule

pp(PL*((M, €Q))p) p = prp(pL* (M) @ L*(M)p) p.
By condition (3) in Proposition 2.4 this means that P is amenable relative to Q. O

We finally prove the following easy lemma. Its proof is almost identical to the proof
of [OP1, Lemma 3.6].

LEMMA 2.8. Assume that (M, T) is a tracial von Neumann algebra with von Neu-
mann subalgebra ACM. Let A<Ny;(A) be a countable subgroup. Assume that A is

amenable. Then (AUA)" is amenable relative to A.

Note that the von Neumann algebra (AUA)” need not be a crossed product AxA.

In the extreme (and uninteresting) case we might even have that ACU(A).

Proof. Define
K:={Qe(M,ea)":Q is an A-central state satisfying Q| =7}

Equipped with the weak™ topology, K is compact and convex. Also K is non-empty since
the state on (M, e4) CB(L?*(M)) implemented by the vector 1€ L?(M) belongs to K.

The formula ay(Q)=g-Q-¢g* defines an action of A on K by affine weak* home-
omorphisms. Since A is amenable, this action has a fixed point Q€K. So Q is a
state on (M,es) that is z-central for all xespan{ag:acA and geA} and that satis-
fies Q|pr=7. It remains to prove that Q is (AUA)"”-central. This follows immediately
as span{ag:a€ A and g€A} is || - ||2-dense in (AUA)” and since the Cauchy—Schwarz in-
equality implies that for all z,y€ M we have

lo-2-y-0 <Q(z—y)"(2-9))> = |2y,

and similarly ||Q-2—Q-y||<|lz—y]|2. O

2.6. A lemma on non-normal states

The following lemma is distilled from [OP1, Corollary 2.3] and [O2, Lemma 5], with a

very similar proof but a more generic formulation of the result.

LEMMA 2.9. Let N be a von Neumann algebra and M CN be a von Neumann
subalgebra. Let Gy CGa CU(N) be subgroups such that all u€Gs normalize M. Assume

that 7 is a faithful normal tracial state on M that is (Ad u)yuecg, -invariant.
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Assume that, for every non-zero (Adu),eg,-invariant projection pe M, there ex-
ists a (typically non-normal) positive functional ¥ on N satisfying the following three
properties:

(1) U(vp)=¥(p) for all vegy;

(2) UoAdu=Y for all u€Gs;

(3) either W|pnrp is normal and non-zero, or VU|,np is faithful in the sense that
U(q)>0 for all non-zero projections q€EpMp.

Then there ezists a state Q@ on N such that Q(v)=1 for all v€Gy, QoAdu=Q for
all ueGy and Q(z)=7(x) for all zeM.

Proof. We first claim that for every non-zero (Ad u)ycg,-invariant projection pe M,
there exists a non-zero (Ad u),eg,-invariant projection po €pMp and a positive functional
Uq on poN'pg such that

o Uy(vpg)=To(po) for all veGy;

e Voo Adu=Yg for all u€Go;

e the restriction of Wy to pgMpg is normal and faithful.

Given a non-zero (Adw),eg,-invariant projection p€ M, take a positive functional
U on N satisfying properties (1)—(3) in the formulation of the lemma. First assume that
U|,np is normal and non-zero. Since U|,asp is (Ad u)yeg,-invariant, the support of the
non-zero normal positive functional ¥|,as, is also (Adu)yeg,-invariant. We denote this
support by pg and define Wy (.S):=W(ppSpo). Note that pg is a non-zero projection in pMp
and that ¥(p—pg)=0. Hence the Cauchy—Schwarz inequality implies that ¥ (v(p—pg))=0
for all veGy. We conclude that Wo(vpg)=T(pg) for all v€G;. The other conditions are
obvious and we have shown the claim in the case where ¥|,as, is normal and non-zero.

Next assume that W,z is faithful. Replacing ¥ by ¥(p-p), properties (1) and (2)
in the formulation of the lemma remain valid and ¥(S)=U(Sp)="(pS) for all SEN.
Still W|parp is faithful. We prove now that the claim holds with po=p.

We consider the bidual von Neumann algebras M** and N**. We view M (resp. )
as weakly dense C*-subalgebras of M** (resp. N**). We denote by 6: M** — N ** the
bidual of the inclusion M CN. Then 6 is the unique normal *-homomorphism satisfying
O(x)=x for all xe M. We denote by 7: M**— M the unique normal *-homomorphism
satisfying m(x)=x for all ze€M. Define the central projection z€ M** as the support
projection of 7. Recall from [Tal, Definition I11.2.15] that for all we M™* we have that
w=w-z+w-(1—2z) corresponds to the unique decomposition of w as a sum of a normal
and a singular functional on M.

Whenever a€Aut(M), we denote by a** the bidual automorphism of M**. Since
aem=moa™, it follows that a**(z)=z for all € Aut(M). For every u€Gs, we define
ay €Aut(M) given by oy, (z)=uzu* for all x€ M. Note that uf(z)u*=0(c,(z)) for all
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u€Gs and x€M. Hence we get that uf(x)u*=60(a)*(z)) for all ze M**. It follows in
particular that uf(z)u*=46(z) for all u€gs.

Define the positive functional ¥y on pA'p by the formula ¥o(S)=¥(0(2)S50(z)). Note
that the projection 6(z) commutes with x=60(x) for all z€ M. So, since ¥(1—p)=0, also
Uo(1—p)=0 and ¥y(S)=U((Sp)=To(pS) for all SEN. As explained above, 0(z) also
commutes with all u€Gs. Since Yo Adu=Y for all u€Gs, also VgoAdu=Y for all u€Gs.

Next take v€G;. Set d=1—1(v+v*). Note that d is a positive element in N and
that U(d)=%(dp)=0. Since 0(z) commutes with v, we also have that 0(z) commutes
with d. Therefore, using the Cauchy—-Schwarz inequality,

Wo(d)? =W (0(2)db(=2))[* = |T(8(2)d)[* < W(8(2)d"/6(2)) ¥ (d) =O0.

We conclude that WUq(vp)=To(v)=To(1)=T((p) for all veG;.

Denote by w the restriction of ¥ to pMp. Denote by w=w, +ws the unique decom-
position of w as the sum of a normal and a singular functional. As observed above the
restriction of ¥g to pMp equals w,. We know that w is faithful on pMp. It remains to
show that wy, is still faithful. Assume that g€pMp is a projection and that w,(g)=0. We
have to prove that ¢=0. By [Tal, Theorem III.3.8] we can take an increasing sequence
of projections pp€M such that pp—1 strongly and ws(p;)=0 for all k. Consider the
projections g Apy and note that ¢Apr— ¢ strongly. Indeed, since the projection ¢—qApx

is equivalent with the projection qVpi—px, we have

T(g—aApr) =7(qVpr) —7(Pk) <1—=7(pr) = 0.
As gApr<q and w,(q)=0, we have w, (qApx)=0 for all k. Since gApr <pr and w,(pr)=0,
we have w,(gApk)=0 for all k. Hence, w(gApx)=0 for all k. As w is faithful on pMp,
we conclude that gApr=0 for all k. Since qApx—>q strongly, also ¢=0. So we have
established the claim in the beginning of the proof.

Using Zorn’s lemma take a maximal sequence {(p,, ¥,,)}nen where the p,, are mutu-
ally orthogonal (Adu),eg,-invariant non-zero projections in M and the ¥,, are positive
functionals on p,Np, such that U, (vp,)=Y,(p,) for all veG,, ¥,cAdu=7,, for all
u€Gy and the restriction of ¥,, to p, Mp,, is a faithful normal positive functional w,,.

By the claim in the beginning of the proof and by the maximality of the family
(pn, ¥,), it follows that Y, p,=1. Define the normal faithful (Adu),cg,-invariant
state w on M given by

w(z) = Z 7(Pk) Wi (PrTPE)-

— wi(pr)

Define the sequence of positive functionals ®,, on N given by the formula

$a(9):=3 g, oy ulpeS).
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Choose a state ® on A as a weak* limit point of the sequence {®,, },en. By construction,
we have that ®(v)=®(1) for all veGy, that PoAdu=> for all u€G, and that @|y =w.
Take he L*(M)* such that w(x)=7(xh) for all z€ M. Note that the kernel of h is
trivial because w is a faithful normal state on M. Since both w and 7 are (Adu)yueg,-
invariant, it follows that h is (Adu)y,ecg,-invariant. Define QEN™ as any weak* limit

point of the sequence of positive functionals

1\"1/2 1\"1/2
S%q>((h+k> s(mk) )

By construction Q(z)=7(z) for all z€ M. As both ® and (h+1/k)~/2 are (Adu)yueg,-
invariant, also QeAdu=Q for all u€G,. Finally, take v€G; and put d:i=1—1(v+v*).
Since G; CGo, we see that d commutes with (h+1/k)~1/2 for all k. Using the Cauchy—

Schwarz inequality we get for every k that
1\1/2 1\1/2N2 Nt
O [ h+- dl h+— =|®|(h+-) d
() a0z) ) =Jol((5) )
1\ 1!
<<I>(<h+k> d(h+k> )@(d):o.

So also ©(d)=0 and hence Q(v)=1 for all veG. O

2

3. Formulation of the key technical theorem

If :T— Kg is a 1-cocycle into the orthogonal representation n: T'—O(Kg), the function

g le(g)||? is conditionally of negative type. By Schoenberg’s theorem, the formula

1/1t1 T —)R,
g exp(~tlle(g)|1*),

defines a one-parameter family (1;);>0 of functions of positive type on T'.

Let M=BxTI be a crossed product of I' by a trace-preserving action I'»(B, 7).
Associated with the 1-cocycle ¢: T'— K, we get a one-parameter group (¢)¢~o of unital
completely positive normal trace-preserving maps

¢t5 M — M,
(3.1)
bugy — exp(—t|c(g)||*)bu, for b€ B and g€T.

Recall from (2.1) that we associated with every unitary representation n: I'—U(K)
an M-M-bimodule K" defined by

K":=K®L*(M),

(3.2)
(bug)-(€®x)-y=ny€@bugry forbe B, gel, £€ K and z,ye M.
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Whenever Ky is a real Hilbert space, we denote by K its complexification. If
n: T — O(KR)

is an orthogonal representation, we still denote by n the corresponding unitary represen-

tation on K.

THEOREM 3.1. Let T be a weakly amenable group and c:T'— Kg be a 1-cocycle into
the orthogonal representation n:T—O(KR).

Let F/‘\V(B,T) be any trace-preserving action on a tracial von Neumann algebra
(B, 7). Set M=BxT. We consider the M-M-bimodule K" associated with the complex-
ification of 1 as in (3.2). We denote by (Y¢)i>0 the one-parameter group of completely
positive maps associated with ¢:T'— Ky as in (3.1).

Let qeM be a projection and ACqMq be any von Neumann subalgebra that is
amenable relative to B. Denote by P:=Nynq(A)” its normalizer. Then at least one of
the following statements holds:

o the gMq-M-bimodule 4nrq(qK") s is left P-amenable in the sense of Definition 2.3;

o or there exist t,0>0 such that ||¢(a)|2=0 for all acU(A).

4. Proof of Theorem 3.1: reduction to I' acting trivially

LEMMA 4.1. It suffices to prove Theorem 3.1 for the trivial action T'~(B,7) on

arbitrary tracial von Neumann algebras (B, T).

Proof. Assume that Theorem 3.1 holds for the trivial action of I" on an arbitrary
tracial von Neumann algebra. Let then I'~ (B, 7) be an any trace-preserving action. Set
M=BxTI and let ACqMgq be a von Neumann subalgebra that is amenable relative to
B. Denote by P:=Ngq(A)” the normalizer of A inside ¢Mgq. As in the formulation of
Theorem 3.1, we consider the M-M-bimodule K" on the Hilbert space K=K @ L?(M),
and we consider the one-parameter group (;):~o of completely positive maps on M,
associated with the 1-cocycle c:I'— K.

Put M:=M®L(I") and view M as the crossed product of M with the trivial action
of I. Define

A:M— M,

bug — bug®@u, forbe B and g€l

Define ¢:=A(q), A:=A(A) and P:=N;mg(A)". Note that A(P)CP.
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We prove that A is amenable relative to M ®1. Since A is amenable relative to
B, it follows from Proposition 2.4 (3) that the bimodule ,y;,L?(¢Mq)4 is weakly con-
tained in the bimodule ,ps,(qL?(M)®pL?*(M)gq) 4. We take on the left the Connes ten-
sor product with the bimodule quLQ((jM(j)A(qu), in which the right-module action
of x€qMgq is given by the right multiplication with A(z). It follows that the bimodule
imgL?(GMG)a(a) is weakly contained in the bimodule

amala = (maLl® (GM)a(grr) @anrg (qrrg(4L* (M) @ L*(M)q) 4)-
The following direct computation shows that the map
S@qmq(x®@pY) — SA()@nme1 Ay)
extends to a bimodular isometry of 5a5L4 into the bimodule
ima(GL* (M) @p1e1 L2 (M)§) aca).
Indeed, for all S, T€gMq, x,acqM and y,be Mq, we have

b*®1)Epe1(A(a”)T"SA(z))(y©1))
Ep(yb*)@1)A(a*)T*SA(x))
Enme1(A(yb"))A(a")T"SA(z))
A(yb") Enei(Aa”)T"SA(x)))

= (SA(z)@me1A(Y), TA(a) ®nme1 A(D)).

<S®qu (z®pY), T®qnmq (a®pb)) =7

—~~

=T

So the bimodule jag(GL*(M)®@nre1 L2 (M)G)aca) weakly contains gagL?(GMG)a(a).
Proposition 2.4 (3) then says that A(A) is amenable relative to M ®1.

For the trivial crossed product M, we also consider the M-M-bimodule K" on the
Hilbert space Kn=K®L? (M), and the one-parameter group of completely positive maps
(?/;t)t>0 on M. Since we assumed that Theorem 3.1 holds for the trivial action and since
we have proven above that A4 is amenable relative to M ®1, at least one of the following
statements is true:

o the gM¢g-M-bimodule cjl%" is left P-amenable;

e or there exist ¢, >0 such that [|¢;(a)||2>4 for all acld(A).

We now prove that these options lead respectively to the left P-amenability of
qMq(aKC")ar, or the inequality |4y (a)|2=>6 for all acUd(A). Once this is proven, also
the lemma is proven.

First assume that the gMg-M-bimodule zjl%” is left P-amenable. View K7 as an
M-M-bimodule using the left module action by A(z), x€ M. So a fortiori qu((jI%")M
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is left P-amenable. Viewing L?(M) as an M-M-bimodule by using also here the left
module action by A(z), x€ M, we observe that MI%’7 M is canonically isomorphic with
m(K"®n L (M) pm. We conclude that the bimodule r,(¢K7®n L2(M)) pq s left P-
amenable. By condition (5) in Proposition 2.4, we get that also 4a74(¢K")as is left P-

amenable.
Since 1,0 A=As1)y, the inequality ||t (a)|2>0 for all acld(A) immediately implies
that || (a)||2 =0 for all aclU(A). O

5. Weak amenability produces almost invariant states

We prove the following theorem, which will be the first step towards the proof of Theo-

rem 3.1. We use the notation @:=(u°P)*.

THEOREM 5.1. Let T be a weakly amenable group and (B, T) be any tracial von Neu-
mann algebra. Write M:=B®L(T") and assume that ACM is a von Neumann subalgebra
that is amenable relative to B. Denote its normalizer by P:=Ny;(A)”. Define N as the
von Neumann algebra generated by B and P°P on the Hilbert space L?*(M)®4L*(P).
Put N:=N®L(T') and define the tautological embeddings

mM— N, and 0: P°P— N,

bRugs— bR1ug, YoP— P ®1,

for beB, g€l and yeP.
Then there exists a net of normal states w; €N, satisfying the following properties:
o w;(n(z))—=7(x) for all xeM;
e w;(m(a)f(@))—1 for all acU(A);
o ||wicAd(m(u)0(a))—w;||—0 for all ue Ny (A).

5.1. Easy proof of Theorem 5.1 when I' has the CMAP

In the case where I' has the CMAP, the proof of Theorem 5.1 is very similar to the proof
of [OP1, Theorem 3.5].

Fix a sequence f,:I'—=C of finitely supported functions tending to 1 pointwise and
satisfying lim sup,, . |[fn]lcb=1. Let m,,: L(I')— L(T") be the corresponding normal com-
pletely bounded maps given by m,, (ug)=fn(g)uy for all geI'. We also define ¢,,: M —M
by v, =id@m,,.

Define the von Neumann algebras N and A, together with the embeddings m: M — N
and 0: P°° - N as in the formulation of Theorem 5.1. Note that 7(M) commutes with
6(P°P) and that together they generate N.
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Proof of Theorem 5.1 in the case when I" has the CMAP. Let 3Ky be the M-M-
bimodule K:=L?(M)®p L*(M) and explicitly denote by A: M —B(K) and g: M°P —B(K)
the normal *-homomorphisms given by the left- and the right-bimodule actions. Define
the von Neumann algebra Sa:=A(M)V o(A°P).

We claim that there exists a normal completely positive unital map £: N —S4 sat-
isfying

E(m(x)0(y°P)) = A(x)o(FEa(y)°?) for all x€ M and y € P.

To prove this claim, recall that A is defined as the von Neumann algebra acting on
(L2(M)®4 L?(P))®£*(T) generated by m(M) and §(P°P). The formula

VK — (L*(M)®4L*(P))®6%(T),
(b@ug)@pr— (bz®41)®d, forbe B,gel and x € M,

yields a well-defined isometry and £ can be defined by the formula £(2)=V"*2V for all
z€N. This proves the claim.

We next claim that there exists a sequence of normal functionals uZ € (S4). satisfying
A (M) o(a®®)) =7(pn(x)a) for all z€ M and a € A.
This claim follows from a direct computation and the formula

pr (M= " fa(g{TA®p(10u,)), (10uy)@pl)) for all T € Sa,

gESupp fn

which is meaningful because f, is finitely supported.

We define v, €N, by the formula v, = & and put wy,: =7, " yn|- We will prove
that w, €N, is a sequence of normal states that satisfies the conclusion of Theorem 5.1.
Note that, by definition,

Yo (7 (2)0(y°P)) =T (pn(x)Ea(y)) for all z€ M and y € P. (5.1)

For every u€Np(A) the expression Ad(A(u)o(@)) defines an automorphism of S4.
We will prove the following two statements:

(1) limsup,, o [ ]1=1;

(2) limy, oo |2 e Ad(AN(u)o(@)) — || =0 for all ue Ny (A).
Once these two statements are proven, we get limsup,,_, . [|[7.[|=1 because v, =p4o&.
As v, (1)—1, it will follow that ||y, —wy,||—0. Since EcAd(m(u)f(u))=Ad(A(u)o(@))-E
for all ue Ny (A), we also get that

lim Yo Ad(m(w)f(@))—n]| =0 for all ue Ny(A).
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Then the same holds for w,, instead of 7,, and all the required properties of w,, are proven,
or follow directly from (5.1) and the fact that ||y, —w,|—0.

It remains to prove statements (1) and (2) above. Define S4 as the C*-algebra
acting on K generated by A(M) and o(A°P). Note that S is a dense C*-subalgebra
of §4. Since the norm of a normal functional coincides with the norm of its restriction
to a dense C*-subalgebra, we from now on consider u/ as a continuous functional on S
and compute all norms inside S7%.

Whenever QCP is a von Neumann subalgebra, we define S as the C*-algebra
acting on K generated by A(M) and o(Q°P). As with u2 above, the formula

ILLSZ SQ —C,
Ax)o(y°P) — T(on(x)y) for z€ M and y €Q,
defines a sequence of continuous functionals u&@ on Sg. We claim that, if Q is amenable
relative to B, then limsup,, ... ||#%||=1. The special case Q=A then yields statement (1)

above. To prove this claim, first observe that there is a sequence of completely bounded

maps ¢p: Sg—Sq satistying

Pn(A(@)o(y°?)) = A(pn(z))o(y™) for allz€ M and y€Q

and
@nllcb = |l fallen-
To see this, it suffices to consider the unitary operator
U:K — L*(B)@*(T)@0*(T),
(b®ug) @B (c@up) — bRy @0y, for b,ce B and g,heT,

which satisfies UN(b®@uy)U*=b&uy®1 for all be B and gel’, and
Uo(Q°P)U* C B(L*(B))®1®B(¢(T)).

We can then define @, (2)=U*(id®@m,,®1d)(UzU*)U for all z€Sg.

Since @ is amenable relative to B, we know from point (3) in Proposition 2.4 that
the bimodule 5,L?(M )@ is weakly contained in the bimodule 5,Kq. Denoting by Ar2(arn
and or2(pr) the left- and right-module actions of M and M°P on L?(M), we then get a
continuous *-homomorphism ©: Sg—B(L?(M)) satisfying

O(A(x)o(y°?)) = Ar2(ary(x)or2(any (y°P)  for all z€ M and y € Q.
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Since
42(2) = (O@a(2)1,1) for all z€Q,
the above claim follows and also statement (1) is proven.
To prove statement (2), fix u€ Ny (A) and define Q C P as the von Neumann algebra
generated by A and u. By Lemma 2.8, ) is amenable relative to A. Since A is amenable
relative to B, it then follows from Corollary 2.6 that also @ is amenable relative to B.

Therefore we have limsup,,_, . ||#2||=1. The definition of u% immediately gives us

pR (1) =7(pn(1)) =1
as well as
p? (M) o(@) = 7(n(u) Eq(u*)) = 7(pn(u)u*) = 1,
since u€Q. As limsup,,_, ||u%]|=1, it follows that

1> Ad(A(w)o(@)) — 7 | = 0.

Restricting the functionals u@oAd(\(u)o(@)) and u% to Sa, statement (2) follows.
As explained above, the proof of statements (1) and (2) concludes the proof of the

theorem. 0

5.2. Proof of Theorem 5.1 for arbitrary weakly amenable T

For arbitrary weakly amenable groups I', our proof of Theorem 5.1 follows very closely
the proof of [02, Theorem B]. We start by the following adaptation of [O2, Lemma 6].

LEMMA 5.2. Let M=B®D be the tensor product of two tracial von Neumann alge-
bras. Let ACM be a von Neumann subalgebra that is amenable relative to B. Consider
the M-A-bimodule K:=L*(M)®pL?*(M) and denote by \(z) and o(a°®) the left- and
the right-module actions of €M and a€ A. Denote by Sa the C*-algebra generated by
AM) and o(A°P).

We say that a normal completely bounded map 1: M — M is adapted if there exists a
4-tuple (w,H,V,W) consisting of a *-representation m of the C*-algebra S4 on a Hilbert
space H and bounded maps V,W: Ny (A)—H such that

T(w*(z)va) = (r(A(z)e(a®®))V (v), W (w)) for all xeM, a€ A and v,w e Ny (A).
(5.2)
Here we write |V ||oo:=sup{||V (v)||:v€NM(A)}. Following the discussion after Lemma 6
in [02], we define ||Y]|a as the infimum of all |V eo||W]|oo, where (m,H,V,W) ranges
over all 4-tuples satisfying (5.2).
(1) If m: D—D is a normal completely bounded map, then id®@m: M — M is adapted
and ||id@m|| a<||m|leb-
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(2) If ¥: M— M is an adapted normal completely bounded map, uy,us ENy(A) and

x1,x2€ M, then also the normal completely bounded map x—uip(xizze)us is adapted.

Proof. We start by proving the first statement. Assume that m: D— D is a normal

completely bounded map. The formula
U:K— L*(B)®L*(D)® L*(D),
(bad)@p (V' @d ) — b @ded,
yields a unitary operator satisfying UN(b@d)U*=b®d®1 for all b€ B and d€ D, and
Uo(A°PYU* ¢ B(L*(B))®1®B(L?(D)).

So the formula $(z):=U*(id@m®id)(UzU*)U provides a normal completely bounded
map 1&: S4— 5S4 satisfying

Y(A(x)o(a’®)) =A((ide@m)(x))o(a?) for all z€ M and a € A.

Note that |[¢)]|en=]|m[cb.

Since A is amenable relative to B, we know from point (3) in Proposition 2.4 that the
bimodule »;L?(M) 4 is weakly contained in the bimodule ;K 4. So we have a continuous
*-homomorphism ©:54—B(L?(M)) satisfying

O(M(x)o(a)) = A2y (w)or2(ary (@) for all z € M and a € A.

We now apply a Stinespring-type factorization theorem (see, e.g., [BO, Theorem B.7])
to the completely bounded map ©otp: S, —B(L?(M)). We find a *-representation

m:S4 — B(H)
of S4 on a Hilbert space H and bounded operators V, W: L?(M)—H such that
O(2)=W'n(2)V forallz€Sa and V|| [WI[|= 0D |t < [[$llct, = [[m]cb.
Define V, W: Ny (A)—H given by restricting V and W to Ny (A)C L?(M). We have
IV llse W oo < IVIHIWI < lIm]leb-
A direct computation yields that (5.2) holds for ¢y=id®m. So id®m is adapted and
id@mlla <[V llso[Wlleo < llmfle-

The proof of the second statement is straightforward. Assume that (7w, H, V, W) sat-
isfies (5.2) with respect to . Define ¢(z)=ult)(zizzs)us. Put V(v)=m(A(22))(V (ug0v))
and W(w):ﬂ'()\(xl))(V(ulw)). It is straightforward to check that property (5.2) holds
for (7, H, v, W) with respect to 1. So ¥ is adapted. O
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Definition 5.3. Let (M,T) be a tracial von Neumann algebra and BC M be a von
Neumann subalgebra. We say that a linear map ¥: M — M has finite rank relative to B if

1 can be written as a finite linear combination of the maps {¢,, . r+:y, 2,7, t€ M}, where

1py,z,r,t: M — M,

r+—yEp(zar)t,

and where Ep: M — B denotes the unique trace-preserving conditional expectation.
We call a net of linear maps v;: M — M an approximate identity relative to B if all
the ; are completely bounded, of finite rank relative to B, and if they satisfy

sup [[¢il[eb <oo and  lim [|¢i(z) —x|]2 =0 for all z € M.

The following proposition follows by a straightforward “relativization to B” of the

proof of [02, Proposition 7]. For completeness we nevertheless give a detailed proof.

PROPOSITION 5.4. Let T' be a weakly amenable group and (B,T) be a tracial von
Neumann algebra. Put M=B®L(I") and let ACM be a von Neumann subalgebra that is
amenable relative to B. Consider the M-A-bimodule K:=L?(M)®pL?(M) and denote
by A(x) and p(a®P) the left- and the right-module actions of x€M and a€A. Denote by
S4 the C*-algebra generated by AN(M) and o(A°P).

Then M admits an approximate identity relative to B, denoted by ;: M— M, such
that all the v; are adapted in the sense of Lemma 5.2 and such that the functionals
Wi €5% given by

it SA —>(C7
A@)o(a®?) — 7(Yi(x)a)  for €M and a € A,

satisfy

o sup, [Juill<oo;

o lim; ||pio Ad(A(w)o(@)) — s ||=0 for all ueNy (A);

o lim; ||(A(v)o())- i — pi]| =0 for all veld(A), where the functional (A(v)o(D))-p; in
S*% is defined by the formula (A (v)o(D))- ;) (2)=pi(zA(v)0(0)) for all z€Sa4.

Proof. Whenever v;: M — M is a normal completely bounded map that is adapted
in the sense of Lemma 5.2, it follows from (5.2) that the corresponding functional p; on
S 4 is well defined and continuous, and satisfies ||u;]|<||%:]|4. Here, and in the rest of

the proof, we use the notation ||1);||4 introduced in Lemma 5.2.
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AsT is weakly amenable, we can take a sequence f,,: I'—C of finitely supported func-
tions that tend to 1 pointwise and satisfy limsup,, .o || fnllcb <o0. Let my,: L(I")— L(T)
be the corresponding completely bounded maps given by m,,(uy)=fn(g)u, for all geT.
Then id®m,,: M — M forms an approximate identity relative to B. From Lemma 5.2 (1)
we know that id®m,, is adapted and that

lim sup |lid®@my, || 4 <limsup ||my, ||en = limsup || fr]|cb < c0.
n—o0 n—o0 n—o0

Denote by »>1 the infimum of all the numbers limsup, [|[¢;]|a where (1;); ranges
over all adapted approximate identities of M relative to B. Because we have the adapted
approximate identity relative to B given as {id®my, }nen, we know that s <oc.

Then M admits an adapted approximate identity relative to B, denoted ¥;: M — M,
and 4-tuples (m;, H;, Vi, W;) satisfying (5.2) with respect to 1; and satisfying

lim || V;|| oo = /3¢ = lim || W; || oo -
1 1

We will prove that the net (1);); satisfies the conclusion of the proposition.
First fix ue Ny (A) and define

it M — M,

x— i (zu*)u.

Note that every 9} still has finite rank relative to B in the sense of Definition 5.3. Hence
(¥); and also (%(%4—#}?)% are approximate identities of M relative to B. Define

Vi (v) i=m;(A(w))*Vi(v) for all ve Ny (A).

A direct computation shows that (m;, H;, V;*, W;) satisfies (5.2) with respect to ¢¥. So
the 4-tuple (m,Hi, %(V,+VZ“),W1) also satisfies (5.2) with respect to %(%Jﬂ[’?)- We
conclude that %(Z/Jﬂrl//?), and all its subnets, are adapted approximate identities relative
to B. It follows that lim infiH %(wi—mbg‘)HA}%, which implies that

zglimiian%(quilzi“)HA glimiian%(ViJrVi“)HOOHWiHOO :\/QIimiian%(ViJrViu)Hoo.
So we can choose v; ENjr(A) such that
lim}inf“%(Vi(vi)—l—\/;“(vi))H >/

Since ||Vi(vi)||<||Villoo =/ and also ||V (v)|| <[V |loo=||Villoo—> /¢, the parallelo-
gram law implies that ||V;(v;)—V*(v;)||—0.
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Now define the functionals pj'€S% that are associated with ;" by the formula

wit: Sy —C,

Ax)o(a®P) — 7(;(zu”)ua) for x € M and a € A.
One computes that, for all rte M, a€ A and all 4,

(o Ad(0(5:))) (M) o(a°P)) = 7 (b (wu* Juviavy) = (s (M) o(@™)) Vi (v3), Wi(w:)),
(i Ad(0(8:))) (Ma)e(a)) = 7(s(@)viav) = (ms(A(@) (™)) Vi (vy), Wi(vy)).

Hence,
[l = pall = 1 (eif = i) o Ad (o)) | < V3" (0i) = Vi (wi) || Wi (w3) | = O

Starting from the approximate identity relative to B given by v}, we can similarly con-
sider the approximate identity relative to B given by “(¢#): z—u* ¢} (ux) =u*¢; (uru™)u.
The net of functionals corresponding to (“(1¥)); is precisely u;cAd(A(u)o(@)). So, by
symmetry,

lim [[pio Ad(A(u)o(@)) = pi'[| = 0.

Since we have already shown that lim; || ¥ — p;||=0, we arrive at the required result that
lim [[pie Ad(A(w)o(@) = pil| =0

for all ue Ny (A).
Finally, if veld(A), we have (A(v*)o(v°P))-p;=py. Since veU(A) certainly normal-

izes A, we have already shown that ||u? —u;||—0. Hence also
lim [|(A(0")(o°P)) -3 — | = 0,

and the proposition is proven. O
Finally we are ready to prove Theorem 5.1

Proof of Theorem 5.1. Take an adapted approximate identity (¢;); of M relative to
B satisfying the conclusion of Proposition 5.4. This means that the continuous function-

als

it SA —>C7
A(x)o(a®?) — 7(¢i(x)a) for x € M and a € A,
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satisfy sup; ||| <oo,
lim || i o Ad(A(w) o(@)) — || =0 for all ue Ny (A)

and
lim [[(AMa)e(a))-pi—psl| =0 for all a €U(A).

Define the von Neumann algebra Sa:=A(M)Vp(A°P) acting on the Hilbert space
K=L?*(M)®pL*(M). Observe that S4 is a weakly dense C*-subalgebra of S4. We
claim that the functionals p;€S5% are normal on S4. The 1); have finite rank relative
to B in the sense of Definition 5.3. Using the notation introduced in Definition 5.3, in

order to prove the claim, it suffices to construct for every y, z,r,t€ M a normal functional

Wy, zrt €(Sa)s satisfying
oy, 2t (A(@)0(a°P)) =T (¢y 2t (z)a) for all x.€ M and a € A.

Since K=L?*(M)®p L*(M), a straightforward computation yields that we can take i, . 1

of the form
py 2ot (T)=(T(re@pt),z*@py*) forall TeSj4.

This proves the claim on the normality of the functionals p;.
We next claim that there exists a normal completely positive unital map £&: N =Sy
satisfying
E(m(z)0(y°P)) = A(z)o(Ea(y)°?) for all x € M and y € P.

To prove this claim, recall that A is defined as the von Neumann algebra acting on
(L2(M)®4 L%*(P))®/¢*(T) generated by (M) and §(P°P). The formula

V:K— (L*(M)®4L*(P))@0*(T),
(b@ug)Q@pr— (bx®41)®0y,

yields a well-defined isometry and £ can be defined by the formula £(2)=V*zV for all
z€N. This proves the claim.
Define the normal functionals v; €N, by the formula v;:=p;°€. Note that

i (m(2)0(y°P)) =7 (i (x)Ea(y)) forallz€ M and y € P. (5.3)

By the defining property (5.3) we have that v;(7(z))—7(z) for all ze M. We also have
[[7ill<[lpeill, and hence sup; [|7;]| <oc.
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Since, for all ue Ny (A), we have EcAd(m(u)f(a))=Ad(A(u)o(n))=E, we conclude

that, for all ue Ny (A),
[yie Ad(m(w)0(@)) =il < llpi o Ad(A(w) o(w)) = pral| = 0.

A similar reasoning yields, for all acl/(A), that
|(w(a)0(a))-vi—il = 0.

Choose @€ N* as a weak* limit point of the net (7;);. By construction,

o O(m(x))=7(zx) for all ze M,

o (m(a)f(a))-©=0 for all acld(A),

o OcAd(m(u)f(u))=0 for all ue Ny (A).
Define the positive functional e N given by W:=|0|. For all ue N;(A) we have

1Bl Ad((u)0(u)) = [0=Ad(m (u)0(a))| = 6],

meaning that ¥ is (Ad(7m(u)0(%)))uen,, (4)-invariant.
For all acU(A), we have
(r(a)f(a))-©=06. (5.4)
Take a partial isometry VeN** such that U(z)=0(Vz) for all zeN. Applying V to
the equality (5.4), we conclude that ¥(7(a)f(a))="(1) for all acl(A).
We finally prove that the restriction of ¥ to w(M) is faithful. Let p€ M be a non-zero
projection. For every €N we have |O(x)|?><||O||¥(z*z). So we get

7(p)* =10(x(p))I* < [©] T (p).

Hence ¥(p)>0.
Define the subgroups Gy, G CU(N) by

G :={m(a)f(a):acU(A)} and Go:={m(uw)(u):ueNy(A)}.
Observe that the unitary elements in G normalize 7(M) and implement an automor-
phism on 7(M) that is inner and hence preserves the trace 7. Lemma 2.9 provides us
now with a state Q€N such that

o Q(n(z))=7(x) for all ze M,

o Q(m(a)f(a))=1 for all acl(A),

e QoAd(m(u)f(u))=0 for all ue N (A).

Take a net of normal states w; €N, such that w; — in the weak* topology. Therefore
wi(m(z))—7(z) for all xe M and w;(7(a)f(a))—1 for all acU(A). Also, for all ue N (A)
we have that

wioAd(m(u)0(w)) —w; —0 weakly in N,.
After a passage to convex combinations, we find a net of normal states satisfying all the

required conditions. O
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6. Proof of Theorem 3.1

By Lemma 4.1 it suffices to prove Theorem 3.1 for the trivial action of I" on (B, 7).
Moreover, for notational convenience, we assume that the projection ¢ in the formulation
of Theorem 3.1 equals 1. In Remark 6.3 at the end of this section, we explain the necessary
changes that are needed to deal with the general case. These changes are only cosmetic,
but notationally cumbersome.

We fix a weakly amenable group T, a tracial von Neumann algebra (B, 7) and a 1-
cocycle ¢:I'— Kg into the orthogonal representation n: I'—O(Kg). Write M:=B®L(T")
and fix a von Neumann subalgebra ACM that is amenable relative to B. Denote by
P:=Ny(A)" its normalizer. We denote by (ug)ger the canonical unitary elements in
L(D).

As in Theorem 5.1, we denote by N the von Neumann algebra generated by B and
P°P on the Hilbert space L?(M)®4 L?(P). We always view B and P°P as commuting
subalgebras of N that together generate N. We fix a standard Hilbert space H for N
and view N as acting on H. This standard representation comes with the anti-unitary
involution J: H—H.

We define N:=N®L(T') and, as in Theorem 5.1, we consider the tautological em-
beddings

mM— N, and 0: PP— N,

bRugs— bRy, YP— yP®1,
for all beB, gl and yeP. Clearly m(M) commutes with §(P°P) and together they
generate N. Being the tensor product of N and L(T"), the von Neumann algebra A is
standardly represented on H:=H ®¢*(T) by the formula

(xQug)-(ER0p) =2€R0,, forallze N, g,hel and (€ H.
The corresponding anti-unitary involution J:H—H is given by J({®64)=JE®0g-1.

Take a net of normal states w,, €N, satisfying the conclusions of Theorem 5.1. Denote
by &, €H the canonical positive unit vectors that implement w,,. Whenever ue N (A),
it follows from [Ta2, Theorem IX.1.2 (iii)] that the vector

m(w)f(w) T m(u)b(a) T En
is the canonical positive vector that implements wy,, e Ad(m(u*)0(u°P)). Using the Powers—

Stgrmer inequality (see, e.g., [Ta2, Theorem IX.1.2 (iv)]), the conclusion of Theorem 5.1

can now be rewritten as follows in terms of the net (&,),:
(m(x)&n, &n) =wn(m(x)) = 7(x)  forall z€ M, (6.1)
|7 (a)8(@)én—E&nll — 0 for all a €U (A), (6.2)
|l (w)6(u) T (w)0 (@) T En—Enll — 0 for all u e Ny (A). (6.3)



176 S. POPA AND S. VAES

To prove Theorem 3.1 we make use of the malleable deformation (a)er of N that
was associated as follows in [S] with the 1-cocycle ¢:I'— Kg. We apply this malleable
deformation (a:)ier to the net (§,),. With a proof that is very similar to [OP1, Theo-
rem 4.9], we will reach the conclusion of Theorem 3.1.

First apply the Gaussian construction to the real Hilbert space Kg, yielding a tra-
cial abelian von Neumann algebra (D, 7), generated by unitary elements w(§), £€ Kk,

satisfying

wEHE) =w(@w(€), w(@) =w(=€§) and T(W(E)=exp(~5lEl?)

for all £, ¢’€ Kg. The orthogonal representation 7: I'—O(KRg) yields a trace-preserving
action of I' on D, denoted by (04)ger and given by og(w(§))=w(ng€) for all geI' and
(e K.

Set N:=N®(DxT) and view N=N®L(T) as a von Neumann subalgebra of A in
the natural way. We put M::B®(D><1F) and extend the embedding m: M — N to the
still tautological embedding 7: M—N given by

m(b®@duy) =b®du, forallbe B,deD and g€l
We still get
0: P°P —>./\7,
yPr—y°P®1 for ye P.

We have that (M) commutes with §(P°P) and together they generate N
The 1-cocycle ¢: T'— K§ yields the malleable deformation (a)ter of [S, §3], which is

the one-parameter group of automorphisms of /\N/' given by
a(z®@duy) =x®@dw(te(g))uy forallzeN,deD, geT and teR. (6.4)

Note that «; globally preserves the subalgebra 71'(]\7[ ) CN. We also denote by «; the

corresponding deformation of M. Hence ayem=mooy. Repeating (3.1) we denote by

Y M — M,
(6.5)
b@uy — exp(—t|c(g9)||*) (b@uy) for be B and g€T,

the one-parameter group of completely positive maps associated with the 1-cocycle c.
We note the crucial formula

VY2 jo(w) = Epr(o(x)) for all € M and t €R.
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Define H:=H®L*(D)®/2(T). Then N is standardly represented on H by
(2@duy)- (§@d' ®@6,) =2£Rdoy(d')Rbgn
for all zeN, d,d' €D, g,hel’ and £€ H. The corresponding anti-unitary involution
j: 'Fl — 'Fl
is given by
TJ(E®@dR6g) =JE@0,-1(d)* @64-1
for all £e H, de D and gel.
For later use, we record the following formulae:
w(b@ug)-@@d@éh) =bl®0y(d)®dgn,

TIr(bQuy)T - (E@d®8),) = JbJERA®0p4-1,
0(a)-(£®d®6p) = a®PERAR 0y,
J0(aP) T - (£2d®6,) = JaP JE@d 3y,
for all be B, g, hel’, deD and £€H.

The canonical unitary implementation (V;);cr of the malleable deformation (ay):er
of N is given by
Vi(§®@d®dy) =E@dw(te(g)) @6,
for all E€H, deD and g€l’, and satisfies JV,=V,J for all teR.
Denote by e: H—H the orthogonal projection, where we identify H=H ®/?(I") with
the subspace H@C1&/2(T) of H=H®L3(D)®/*(T). We write el :=1—e.

We distinguish the following two cases, which are each other’s negation.
Case 1. For every non-zero central projection p€ Z(P) and for every ¢>0 we have

limsup [|e-Vim ()&l > £1p]l2-

n

Case 2. There exists a non-zero central projection p€ Z(P) and a ¢t>0 such that
limsup [l V,m(p)&a || < gllp]l2-
n

Denote by v: I —U(L?(D&C1)) the Koopman representation for '~ D& C1. Denote
by K" the associated M-M-bimodule on the Hilbert space K?:=L?(DoSC1)®L*(M) as
n (3.2).

We first prove in Lemma 6.1 below that in case 1, the M-M-bimodule K7 is left
P-amenable and that this implies the left P-amenability of the M-M-bimodule K7 as-
sociated with the original orthogonal representation n:I'—O(Kg). We next prove in
Lemma 6.2 below that in case 2 there exist ¢, >0 such that ||¢1(a)||2>¢ for all acld(A).

So, once both Lemmas 6.1 and 6.2 are proven, also Theorem 3.1 is proven.
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LEMMA 6.1. In case 1 the M-M-bimodule K" is left P-amenable.

Proof. Throughout the proof we write K:=L? (DeCl).

The main part of the proof consists in showing the left P-amenability of the M-
M-bimodule K. From the definition of the M-M-bimodule K in (3.2), we see that
B(K7)N(M°P)’ can be identified with B(K)®M in such a way that the left M-module
action on K7 corresponds to the embedding

A M —B(K)®M,
b@ug — v(g) @bRuy.

So to prove the left P-amenability of X7, we have to produce a A, (P)-central state {2
on B(K)®M satisfying Q(A (x))=7(z) for all z€ M.

As P is the normalizer of A inside M, we have P’"NM =Z(P). We apply Lemma 2.9
to the von Neumann algebra B(K)® M with von Neumann subalgebra A, (M) and groups
of unitary elements G;={1} and Go=A,(U(P)). To prove the left P-amenability of
K7, by Lemma 2.9 it suffices to find for every non-zero central projection p€ Z(P) a
A, (P)-central positive functional on B(K)®M whose restriction to A, (M) is normal
and non-zero on A, (p). Fix a non-zero central projection pe Z(P).

Consider the unitary operator

U:K@H@P(T) — HoH=HL*(DoCl)®%(T),
dRERG, — ERARJ,

for de DeC1, £€H and gel'. Consider id®@m: B(K)®M —B(K)®N and then define
U:B(K)®M —s B(HOH),
S— U(iden)(S)U™.

For z€M we can view m(z) as an element of A'. As such m(z) acts on H&H and with
this point of view we have W(A, (z))=n(z) for all z€ M. Further note that

U(B(K)®M)=BEB(L*(DoC1))®{\,:gcT}".
Using formulae (6.6), it follows that
O(PP)V Tr(M)TVITO(PP)T = (P°PVJBJVJIPPJ)@1&{0,:geT}".

Hence,
U(B(K)®M) commutes with 6(P°P)V T (M)JTVIO(PP)J. (6.7)
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We claim that there exists a net of vectors y; € HEH such that [|p]|<1 for all i and

lim || (w)0(@) T 7 (w)6(@) T i — pi|| =0 for all ue Ny (A), (6.8)
lim sup |7 (@) p: || < ||z]|2 for all x € M, (6.9)

%
lim inf ||7(p) | > 15 [Ipll2- (6.10)

Once this claim is proven and after a passage to a subnet of (u;);, we may assume that

the net of positive functionals on B(K)®M given by S+ (U(S)u;, ;) converges weakly*

to a positive functional 2 on B(K)® M.

We first prove that (6.7) and (6.8) imply that QocAd A, (u)=Q for all ue Ny (A).
Fix SeB(K)@M and ue Ny (A). Since W(A,(x))=n(z) for all z€ M, by (6.8) and (6.7)
we get that

QA () S A (1)) =lim (¥ () (w)* jui, ()" )
=lim (W (S)0(@) T (u)6(@)T i, 6(w) T m(w)6(@) T pii)
= HZI.n<\II(S)Ni7 14i)

=Q(9).
As U(A,(z))=mn(z) for all z€ M, the formulae (6.9) and (6.10) imply that
QAL (z))<7(z) forallze M™*

and that Q(A,(p))>52:7(p). In particular the restriction of 2 to A, (M) is normal and
non-zero on A (p).

We finally show that €2 is A (P)-central. Choose z:€ P and S€B(K)&M such that
|z||<1 and ||S||<1. We need to prove Q(A,(x)S)=Q(SA,(z)). To prove this formula,
choose £>0. Take a finite linear combination y of unitary elements u €Ny (A) such that
lz—yll2<e. Since QoAdA,(u)=Q for all ue Ny (A), we get QA (y)S)=Q(SA,(y)).
The Cauchy-Schwarz inequality, the inequality (A, (z))<7(z) for all ze M™*, and the
choice of ||S]|<1 imply that

|24 (2)8) = QA4 () 9)* = 1A, (z ) S) ?
<A, ((z=y)(z =) NS S) < [la—yl5 <.

We similarly get that |Q(SA,(x))—Q(SA,(y))|<e. So we have shown that

QA (2)5) ~QASA (2))] < 2¢
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for all e>0. Hence the required formula Q(A,(x)S)=Q(SA,(z)) follows and we have
proven the A, (P)-centrality of Q. As observed in the first paragraph this concludes the
proof of the left P-amenability of 7.

It remains to prove the claim above, i.e. the existence of a net of vectors ulE’I'N{@H
satisfying ||u;||<1 for all i and satisfying (6.8)—(6.10). Take finite subsets FCNp(A),
GCM and £>0. Tt suffices to find a vector p€ HOH such that ||u]<1 and

7 ()0 (@) T (w)0(@) T p— ]| < 3e for all ue T, (6.11)
I (z)pl < ||z||l2+e for all z € G, (6.12)
17 (p)ull = 75 pll2—e. (6.13)

We will find p of the form p:=elV;m(p)&, by first choosing ¢>0 small enough and then
choosing n large enough.
Take t>0 small enough such that

la—i(u)—ullz<e forallue F and [la—i(p)—pll2 < 15llpl2-

Define yi,,:=e*V;m(p)&,. We prove that p:=p,, for certain n large enough, satisfies the
conditions (6.11)—(6.13) above.

The projection e+ commutes with (M), (P°P) and with 7. The unitary element
V; implements oy on 7(M) and commutes with (P°P) and with 7. So we get that

7 (w)0(@) T (w)0(0) T pt = e Vif(@) TO(0) T (v (w)p) T (- (1)) T
Since J &, =&, and using (6.1) we have for all ueF that
lim sup 1T (o4 () Tn— T (1) T &nl| = llo—s(u) —ull2 <e.
We apply m(a_q(u)p) and first observe that
(o (Wp) T () T = Tm(u) T (i (u)p)én-
Again by (6.1) we have
lim sup |17 (et (u)p)én — 7 (up)énl| = lla—t(u)p—upll2 <e.
Altogether it follows that, for all ueF,
lim sup 7 (u)0() T (u) () T 1~ |

< 2+l sup | (p) (r(u)0() T () 0(0) T =) |
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By (6.3) the limsup on the right-hand side is 0 and we conclude that (6.11) holds for all
w:=p, with n large enough.
Next observe that, for all x€ M,

lim sup [|7(2) pn || < Tim sup || (a—i(2)p)énll = i (@)pll2 < [|2]l2-

Hence also (6.12) holds for all p:=pu,, with n large enough.
Finally, by the assumption of case 1 we know that limsup,, ||t || >§Hp||2. Noticing
that

lim sup ||7(p) pn — || < limsup || (a—¢ (p)p—p)&nll = la—t (p)p—pll2 < 751IPll2,
n n

we conclude that

limsup |7 (p) | = 15 |Ipll2-
n

So (6.13) holds for certain p:=p,, where n can be chosen arbitrarily large. Altogether
there indeed exists an n such that p:=p, satisfies all the conditions (6.11)—(6.13).

So we have proven that 7 is a left P-amenable M-M-bimodule. It remains to prove
that also K" is a left P-amenable M-M-bimodule. Denote by ¢ the trivial representation
of I' and define the unitary representation ¢ of I as the direct sum of € and all tensor
powers n®* k>1. The Koopman representation v:I'—U(L?(D&C1)) is isomorphic to
the direct sum of all the k-fold (k>1) symmetric tensor powers of 1. Hence v is a
subrepresentation of the tensor product representation n®¢. By Corollary 2.5, it follows
that K"®¢ also is a left P-amenable M-M-bimodule. But

MK 0 2 0 (KT @0 K g

Condition (5) in Proposition 2.4 now implies the left P-amenability of 5,7 ;. O
LEMMA 6.2. In case 2 there exist t,6>0 such that ||[¢(a)||2=0 for all acU(A).

Proof. Fix a non-zero central projection p€ Z(P) and a t>0 such that
lim sup et Vim(p)énll < g lpl2-
A direct computation yields the transversality property of [Po5, Lemma 2.1]:
Vgl = V2]t Vipl|~ for all peH CH.

Replacing ¢ by v/2t, we have found a non-zero central projection p€ Z(P) and a t>0 such
that

limsup ||V (p)&n —7(p)Enll < X Ipll2-
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Recall from (6.5) the definition of the unital completely positive maps 1;: M — M.
Also recall that 1,2 5 (7)=FEnr(as(w)) for all z€ M and s€R. We prove that

2 a(a)]l2 > Lplla for all a €U(A). (6.14)

Once this inequality is proven, also the lemma is proven.
To prove (6.14) fix a unitary element aclf(A). First notice that for all ue HCH
and for all x€ M, we have

en(a(@))p = 2(2).

Using this formula we next prove that

limsup [(7(a)0(a)Vim(p)&n, Vi (p)&n)| < llthiz2(a) [l2]lpll2- (6.15)

n

Indeed, since V; commutes with 6(a) and implements a; on 7(M), we observe that

(m(a)0(@)Vir (p)&n, Vim(p)én) = (m(a—t(a)p)én, 0(a°P )7 (p)€n)
= (em(a—t(a)p)én, 0(a’®)m(p)&n)
= (m(2/2(a)p)&n, 0(a”)m(p)&n)-

Using (6.1) the limsup of the absolute value of the last expression is less than or equal

to

lim sup 7 (¥e2 s2(@)p)&n | 17 (P)6n || = 022 j2(a)pll2llpll2 < [[¥2 2(a) |2 2-

So (6.15) is proven.
Secondly, the fact that

limsup ||[Vim(p)én —m(p)&nll < $lpll2,  while limsup [[Vim(p)&nll2 = [Ipll2:

implies that

limsup | (7(a)0(@) Vi (p)&n, Vi (p)€n) — (m(a)0(@)7 (p)én, 7 (P)én) | < 57 (p)-

n

Since moreover by (6.1) and (6.2) we have

(m(a)0(@)m(p)&n, 7(P)&n) — 7(p),

we conclude that

lim inf |(7(a)0(a)Vim(p)&n, Vim(p)én)| = 27(p).

n

In combination with (6.15) we find (6.14) and this ends the proof of the lemma. O
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Remark 6.3. Above we only proved Theorem 3.1 in the special case where the pro-
jection ¢ in the formulation of the theorem equals 1. Assume now that ¢ is an arbitrary
non-zero projection and that ACgMgq is a von Neumann subalgebra that is amenable
relative to B. Lemma 4.1 was proven for arbitrary ¢ so that we can still assume that
I' acts trivially on (B, 7). Denote by P:=Ngyrq(A)” the normalizer of A inside ¢Mg.
Define N as the von Neumann algebra generated by B and P°P on the Hilbert space
L3(M)q® 4 L?(P). Put N:==N®L(T) and define the tautological embeddings

mM—N, and 6: PP— N,

b@ug— bRy, yoP— 1P ®1,

for all be B, g€l and yeP.

With literally the same proof as the one of Theorem 5.1, we find a net of normal
positive functionals w; € (7(q)N'm(q))« satisfying the following properties:

o w;(m(x))—7(x) for all zegMg;

o w;(m(a)f(a))—1 for all acl(A);

o ||lwicAd(m(u)f(u)) —w;||—0 for all ue Ngarq(A).

Again we take the canonical implementation of the functionals w; by positive vectors
(&); in a standard Hilbert space for /. We proceed with these vectors in exactly the

same way as above.

7. Proof of Theorem 1.2

Using [Po2, Theorem A.1], Theorem 1.2 is an immediate consequence of the following

result.

THEOREM 7.1. Let T be any of the groups in the formulation of Theorem 1.2. Take
an arbitrary trace-preserving action T~ (B, 1) and put M=BxT'. Assume that g€ M is
a projection and that ACqMq is a von Neumann subalgebra that is amenable relative to
B and whose normalizer P:=Nynq(A)” has finite index in ¢gMgq. Then A< B.

Proof. If n:T—O(Kpg) is an orthogonal representation, we consider its complexifi-
cation 7: I'-U(K) and the corresponding M-M-bimodule K" given by (3.2). Whenever
c:T'— Kpg is a 1-cocycle into 7, we consider the one-parameter family of completely pos-
itive maps (1¢);>0 on M given by (3.1).

We first prove that if 7:T—U(K) is a unitary representation such that the P-M-

bimodule ¢k is left P-amenable, then 7 is an amenable representation.
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So assume that gk is a left P-amenable P-M-bimodule. Since PCqgMgq has finite
index, it follows from Corollary 2.6 that ¢/ is also left ¢ M g-amenable. Defining

Ay M —B(K)®M,
bug — ng®@bug forbe B and g7,

the left ¢M g-amenability of ¢gK" precisely amounts to the existence of a positive func-
tional © on B(K)®M with the following properties:

e Q(1-A,(¢q))=0 and Q(A,(z))=7(x) for all z€qMyg;

o Q(SA,(2))=(A,(x)S) for all SEB(K)®M and xeqMgq.

Choose partial isometries vy,...,v, €M such that vfv;<g for all ¢ and such that
> i, v;vf is a non-zero central projection z€ Z(M). Define the positive functional Q on
B(K)®M by the formula

Q(8):=> QA (v])SA(vs)) for all S € B(K)@M.
i=1
A direct computation yields Q(An(:c)):T(x) for all ze Mz and (NZ(I—AW(Z)):O.

We now prove that Q(SAW(JC))ZQ(AW(I)S) for all SeB(K)®M and z€M. Since z
is central, we have zv;=zzv; and v;zz=vjz for all i and j. Also observe that vizv; €qMq
for all te M and all 7 and j. So we get that

QSA, () = Z QA (v7) S Ay (zv;))
= Z QA (v7)S Ay (2av:))

= QA (V])SA, () Ay (v} zv;))

Define the state ¥ on B(K) by the formula ¥(5)=0Q(1)"1Q(S®1). The following

computation shows that ¥ is (Adn,)ger-invariant, and hence that n is an amenable
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representation:

Q1) ¥(Sny) = USn,©1) = A(S&u3) A, (1))
= QA (1) (S213)) = 1 S©1) = A1) T (1, 5).

We are now ready to prove that for both families of groups I" in the formulation of
Theorem 1.2, we get that A<y B. If ﬂ§2)(I‘)>0, we know that I' is non-amenable and
that I' admits an unbounded 1-cocycle ¢ into a multiple of the regular representation.
The regular representation is mixing and is non-amenable by the non-amenability of I".
So, to cover the first family of groups in Theorem 1.2 it suffices to consider a weakly
amenable group I' that admits an unbounded 1-cocycle ¢:T'— Ky into a non-amenable
mixing representation n: I'—+O(Kg). From the discussion above we know that the P-M-
bimodule ¢K" is not left P-amenable. So, from Theorem 3.1 we get ¢,>0 such that
le(a)]|2=6 for all acld(A).

As in formula (6.4), we consider the malleable deformation (a:)ier of the tracial
von Neumann algebra M:=(B®D)xT, where [~ (D, ) is the Gaussian action corre-
sponding to

n: T — O(KRr),

and where 'y B®D diagonally. Since 7 is mixing and ||1(a)||2>¢ for all aclf(A), we
get from [V2, Proposition 3.9] a non-zero central projection p€ Z(P) such that a;—id
uniformly in || - ||2 on the unit ball of Ap. If A4y, B, it follows from(?) [V2, Theorem 3.10]
that a;—id uniformly in || - ||2 on the unit ball of Pp. Since PCgMgq has finite index,
also PpCpMp has finite index. Using a Pimsner—Popa basis,(*) it follows that a;—id
uniformly in || - ||2 on the unit ball of pMp. Denoting by z€ Z(M) the central support of
p, it follows that a;—id uniformly in || - ||2 on the unit ball of Mz. This means that also
1y —id uniformly in || - ||2 on the unit ball of M z. If t—0, we know that ||¢;(x2) — 1 (z)z]|2

is small uniformly in = belonging to the unit ball of M. So we can fix a t>0 such that
|e(2)z]]2 > %||z||2 for all z eU(M).

Since ¢:I'— Kg is unbounded, we can take a sequence g, €I such that ||c(gn)|—o0.
It follows that |1 (ug, )||2—0 as n—oo. Hence also |9 (ug, )z||2—0, contradicting the

previous estimate. So we have shown that actually A<y B.

(®) We refer here to [V2] where the notation and formulation is exactly suited for our purposes.
Note however that the quoted result is due to Peterson [Pel, Theorem 4.5] and Chifan—Peterson [CP,
Theorem 2.5].

(4) See [PP, Proposition 1.3] and [V1, Proposition A.2] for a non-factorial version that can be
readily applied here.



186 S. POPA AND S. VAES

Next consider the case where I' is a weakly amenable group that admits a proper
1-cocycle ¢:I'— Kg into a non-amenable representation 7:I'—O(Kg). From the first
paragraphs of the proof we know that the P-M-bimodule ¢ is not left P-amenable.
So, from Theorem 3.1 we get ¢,0>0 such that ||¢1(a)||2>¢ for all acld(A). Whenever
x€M, we denote by

x:ngug, with g€ B for all geT, (7.1)
ger

the Fourier decomposition of z. A direct computation yields

lee(@) 3= exp(=2¢]le(g)|*) 113 (7.2)

gel

for all e M and ¢>0.

If A4y B, Definition 2.1 yields a sequence of unitary elements ax €U (A) such that
for every fixed g€T', the sequence of gth Fourier coefficients (ay),€ B, defined by (7.1),
satisfies limg_,00 ||(ak)gll2=0. The properness of the 1-cocycle c:I'— Kg, together with
formula (7.2), implies that limy_, ||4¢(ax)|]2=0. This is a contradiction to the property
that

e (ar)|l2 =6 for all k.

So we also get A<y B when T" belongs to the second family of groups in Theorem 1.2.
To finally conclude that A%& B, observe that [V2, Proposition 2.5] provides a pro-

jection go€ Z(P) such that Agg %&B and A(q—qo)Am B. Applying the above to the

subalgebra A(qg—qo)C(¢—q0)M (¢—qo) implies that ¢—go=0. O

8. Proof of Theorem 1.6

Take M=BxT as in the formulation of Theorem 1.6. Let ACM be a von Neumann
subalgebra that is amenable relative to B and denote by P:=A;(A)” its normalizer.

By our assumptions, I' is weakly amenable and we have a proper 1-cocycle c: I'— Ky
into an orthogonal representation 7:I'—O(KR) that is weakly contained in the regular
representation. We consider the M-M-bimodule K7 associated with 7 as in (3.2) and we
consider the one-parameter group (¢;)¢~o of completely positive maps on M associated
with the 1-cocycle ¢ as in (3.1). Theorem 3.1 says that

e cither the M-M-bimodule K7 is left P-amenable,

e or there exist ¢,0>0 such that ||¢1(a)||2>¢ for all aclf(A).
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First assume that K" is a left P-amenable M-M-bimodule. Since n is weakly con-
tained in the regular representation ), it follows that K is weakly contained in X as M-
M-bimodules. Corollary 2.5 then implies that K* is a left P-amenable M-M-bimodule.
As an M-M-bimodule, K* is isomorphic with the M-M-bimodule L?(M)®pL?(M).
So y(L*(M)®pL*(M))yy is left P-amenable. By condition (5) in Proposition 2.4 also
v L?(M)p is left P-amenable. This means exactly that P is amenable relative to B.

Finally assume that we have ¢, >0 such that ||¢;(a)||2 > for all acU(A). We repeat
a paragraph from the proof of Theorem 1.2, using the Fourier decomposition of z€ M
as in (7.1). If A£p B, Definition 2.1 yields a sequence of unitary elements ap €l (A)
such that for every fixed g€I' we have that limg_ o ||(ar)gll2=0. The properness of
the 1-cocycle ¢:I'— Kx, together with formula (7.2), implies that limy_,e ||t (ak)|2=0.
This is a contradiction to the property that ||1;(ax)||2>¢ for all k. So, A<ps B and the

theorem is proven.

9. Proof of Theorem 1.7

Using e.g. [V2, Proposition 2.5], we find projections p; € Z(P) such that Ap,%LBNf,’
and A(l—pi)%MBNfi for all 1=1,...,n. Of course, some or even all of the p; could
be zero. Define pg:=1—(p1V...Vp,). We consider the subalgebra ApyCpoMpy, whose
normalizer is given by Ppgy. We need to prove that Ppg is amenable relative to B.

By construction, for every ¢ we have that ApgA B L. Viewing M as the crossed
product M =(Bx ﬁ) xT';, it then follows from Theorem 1.6 that Ppg is amenable relative
to Bxfi for every i=1,...,n.

All the subalgebras BxfiCM are regular and all the crossed products of B by a
certain number of the I';’s are in commuting square position with respect to each other.

So, by Proposition 2.7, we conclude that Ppg is amenable relative to B.

10. Proof of Theorem 1.8

Let '=A;%xAy be any weakly amenable free product group and consider M =BT as
in the formulation of the theorem. Let ACM be a von Neumann subalgebra that is
amenable relative to B. Denote by P:=N;(A)” its normalizer. Using e.g. [V2, Propo-
sition 2.5], we can take projections ¢, p1,p2 € Z(P) such that

. Aq<{wB and A(1—q)An B;

° Ppi<fV[B><1Ai and P(1—p;) Ay BxA,; for all i=1,2.

As above, some or all of the ¢, p; and py might be zero. Set po=1—(qVp1Vps). We

have to prove that Ppg is amenable relative to B.
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For geT" denote by |g| the length of g, i.e. the number of elements needed to write
g as an alternating product of elements in A;\{e} and As\{e}. Consider the direct
sum Kg:=(3(T)®/3(T) of two copies of the regular representation of I' and denote this
orthogonal representation by 7. Define the unique 1-cocycle c: I'— Kg satisfying

c(g)=(64—10c,0) for all ge Ay and c¢(h)=(0,0,—0d.) for all h e As.

One easily computes that ||c(g)||?=2|g| for all geT.

We denote by K" the M-M-bimodule associated with n as in (3.2). We consider
the one-parameter group (¢)¢~o of completely positive maps on M associated with the
1-cocycle ¢ as in (3.1). We apply Theorem 3.1 to the subalgebra ApyCpoMpy. Note that
the normalizer of Apq inside poMpq is precisely Ppg. So, by Theorem 3.1, either pok”
is a left Ppg-amenable poM po-M-bimodule, or there exist ¢,6>0 such that |[¢):(a)||2=d
for all aclU(Apy).

Because by construction Apg#Ay B and Ppg#Aay BxA; for all i=1,2, it follows from
one of the main results in [IPP] (and actually by literally applying the version that
we presented as [PV4, Theorem 5.4]) that it is impossible to have ¢ (a)||2>¢ for all
a€U(Apg). So poK" is a left Ppo-amenable po Mpy-M-bimodule. Since 7 is a multiple of
the regular representation, this implies in the same way as in the proof of Theorem 1.6,

that Ppg is amenable relative to B.

11. Stability under measure-equivalence subgroups

Consider the following strengthening of C,-rigidity involving measure-preserving actions

on potentially infinite measure spaces.

Definition 11.1. We say that a countable group I' has property (x) if the following
holds: for every measure-preserving action '~ (X, ) on a standard, possibly infinite,
measure space (X, u) and for every abelian von Neumann subalgebra ACgMgq where
M=L>(X)xT and g€ L*>(X) is a projection of finite measure, we have the dichotomy
that either A<gaqL%°(X)g or the normalizer Nyarq(A)” is amenable.

Obviously every non-amenable group I satisfying property (x) is Cs-rigid.

We first prove that any weakly amenable group I' that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the regular representation,
has property (x). Then we will show that property (x) is preserved under the passage to
measure-equivalence subgroups (ME-subgroups). Also weak amenability is stable under
the passage to ME-subgroups. Interestingly enough, it is not known whether having a

proper 1-cocycle into an orthogonal representation that is weakly contained in the regular
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representation, is stable under ME-subgroups (or even under measure equivalence). To
prove such a stability result one needs an integrability condition on the associated orbit-
equivalence cocycle (cf. [Th, Theorem 5.10]).

Recall that a countable group A is an ME-subgroup of a countable group I' if I' x A ad-
mits a measure-preserving action on a, typically infinite, standard measure space (£2,m)
such that both the actions I'vQ and A~Q are free and admit a fundamental domain,
with the fundamental domain of I' ~€2 having finite measure. If the actions can be chosen
in such a way that also the fundamental domain of A~ {2 has finite measure, the groups

I' and A are measure equivalent.

THEOREM 11.2. Let I' be a weakly amenable group that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the reqular representation.

Then T has property (x) in the sense of Definition 11.1.

Proof. Choose a measure-preserving action I'» (X, u). Put B=L*°(X) and let g€ B
be a projection of finite measure. Put M=BxTI and let ACqMgq be an abelian von
Neumann subalgebra. Denote by P:=Narq(A)” the normalizer of A inside ¢Mg. Define

the normal *-homomorphism

A: M — ML),

bug — buy®@u, forbe B and gl

So A(A) is an abelian von Neumann subalgebra of ¢M¢®L(I"). Since ¢Mq has a finite
trace, we can apply Theorem 1.6 with B=¢qMq and I' ~ B being the trivial action. This
means that either A(A)<garqmn ) ¢Mq®1 or that A(P) is amenable relative to gMg®1.
With exactly the same argument as in the proof of Lemma 4.1, it follows that either

A=<gmqBgq or P is amenable relative to Bg, which implies that P is plainly amenable. [

PropoSITION 11.3. If T is a countable group satisfying property (x), then also all
ME-subgroups of T' satisfy property (x).

Proof. Part 1. In order to establish property (%), it suffices to consider free measure-
preserving actions I' (X, u). Indeed, assume that property (*) holds for all free measur-
preserving actions of I" and let I ~(X, 1) be any measure-preserving action. Put M=
L>®(X)xI. Assume that g€ L*°(X) is a projection of finite measure and that ACqMgq
is an abelian von Neumann subalgebra. We have to prove that either A<gnrq L™°(X)q or
Nynq(A)” is amenable.

Let 'Y be any free pmp action, e.g. a Bernoulli action. Then the diagonal action
IAY x X is free. Put M=L>(Y x X)xT and view M CM in the obvious way. Then

G=1®q is a projection of finite measure and we can view A as a subalgebra of q~]\7[ q.
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Since property () holds for free actions, we have that either A-<§A7I§L°° (Y x X)q or that
Niirg(A)” is amenable. In the first case, it follows that A=<garqL>°(X)g, while in the
second case also the subalgebra Ngarq(A)” of N 17.(A)" is amenable. This ends the proof

of part 1.

Part 2. I T has property (x), then I'x G has property (%) for every finite group G.
By part 1, it suffices to consider free measure-preserving actions I' x G Y. It follows that
L>(Y)x(T'xG) is isomorphic with (L°(X)xTI)", where n=|G|, X=Y/G and we use
the notation Q™:=M,, (C)®Q. Moreover, under this isomorphism, L>(Y") corresponds to
D, (C)®L>*(X), where D,,(C)CM,,(C) denotes the subalgebra of diagonal matrices. So
take a free measure-preserving action I'~ (X, u), write B=L*(X) and take an integer
n and a projection of finite measure ¢€D,,(C)®@B. Write M:=BxTI and assume that
ACgM™"q is an abelian von Neumann subalgebra. Assume that AA;anqqB™q. Set
P:=Ngnnq(A)”. We must prove that P is amenable.

Denote by DC L (X) the subalgebra of I'-invariant functions. Since ' X is free,
we have D=2Z(M) and (19 D)q=2Z(qM"q). Set A=AV (1®D)q. Obviously A is abelian
and AA,nmqaqB"q. Set P:=Nypmg(A)”. Every unitary element uelf(gM™q) that nor-
malizes A, commutes with (1&D)q and hence, also normalizes A. So PCP.

Since ¢€D,,(C)® B, we write ¢g=) .-, €;;®¢;, where ¢;E€B are projections of finite
measure. We claim that there exist orthogonal projections piefl, with sum ¢, such that,
inside gM™q, the projections p; and e;; ®q; are equivalent for all i=1,...,n. To prove
this claim, it suffices to show that “A is diffuse over the center (1®D)q”, i.e. it suffices
to show that there is no non-zero projection pefl such that flpz(l@D)p. This follows
immediately since (19 D)qC¢gB"q and since we assumed that fl%qB”q.

By the claim in the previous paragraph, we can take partial isometries vy, ..., v, €
M; ,(C)®M such that v;vf=g¢; and such that vjv;=p;, where the p; are orthogonal
projections in A with sum q. Define AiI:’UiAU;-k and Pi::viﬁv;‘. By [Po3, Lemma 3.5],
P, is the normalizer of A; inside ¢;Mg;. Since A£gB"q, we also have Ai Agivq; B
As property (%) holds for T, it follows that P; is amenable for every i. Hence, piﬁpi
is amenable for every ¢. Since Y ., p;=q and ¢ is the unit of 15, it follows that P is

amenable. Because P Cﬁ, this concludes the proof of part 2.

Part 3. Property (x) is stable under ME-subgroups. Assume that I" satisfies property
() and that A is an ME-subgroup of I'. Take a measure-preserving action I'x A~ (Q, m)
such that the actions ') and A~Q are free and both admit a measurable funda-
mental domain, with the fundamental domain of I' () having finite measure. Taking
the diagonal product of I'x A~ with a free pmp action of I"x A, we may assume that

I'x A Q is free. Choosing an ergodic component, we may further assume that I'x A~Q
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is ergodic. Put Z=Q/A, Y=Q/T and consider the natural measure-preserving actions
I'yZ and A~Y, with the measure on Y being finite. Note that both actions are free
and ergodic.

Asin [F1, Lemma 3.2 and Theorem 3.3], the free ergodic measure-preserving actions
I'Z and A~Y are by construction stably orbit equivalent. Let t=m(Z)/m(Y") be the
compression constant of this stable orbit equivalence, where, by convention, t=cc if Z
has infinite measure. If t<1, we replace '~ Z by ' x Z/nZ~Z x Z/nZ for n large enough
such that 1/n<t. By part 2 of the proof, I'xZ/nZ still has property (*). So we may
assume that t>1. This means that we can find a subset ZyC Z of finite measure and a
measure-scaling isomorphism 6: Zp—Y such that 0(ZyNI'-z)=A-0(z) for a.e. z€ Zj.

Since I'vZ is ergodic and ZyCZ is non-negligible, we can choose a measurable
map p: Z— Zy such that p(z)==z for a.e. z€Zy and p(z)€Tl'-z for a.e. z€Z. Denote by
w:I'x Z— A the 1-cocycle for the action I'»Z with values in A determined by

0(p(g-2))=w(g,2)-0(p(z)) forall gel and a.e. z€ Z.

Let A~ (X, i) be any measure-preserving action on a standard measure space (X, u1).
Put B=L>(X) and M=BxA. Let ¢ B be a projection of finite measure. Assume that
ACqgMgq is an abelian von Neumann subalgebra. We have to prove that either A< ;54 Bg
or that the normalizer N p4(A)” is amenable.

Define the free measure-preserving action I'»Z x X given by

9-(z,2) = (9-2,w(g, 2) ).

Put B:=L>(ZxX) and M:=BxT. We write =Xz, €L>*(Z). By construction, the
restriction of the orbit-equivalence relation of I'»Z x X to the subset Zyx X is isomor-
phic, through 6 xid, with the orbit-equivalence relation of the diagonal action A~Y x X.

So we find an isomorphism of von Neumann algebras

U: (p@1) M (p@1) — L®(Y x X ) x A

satisfying W(F)=F-0~! for all FEL>®(Zyx X). In particular, ¥~!(1®q)=p®q. Note
that p®gq is a projection of finite measure in B. Put A:=U"1(1®A) and note that A
is an abelian von Neumann subalgebra of (p®q)]\7[(p®q). Since T has property (x),
we conclude that either A embeds into (p®q)B(p®q) inside (pq)M(pRq), or A has
an amenable normalizer inside (p®q)]\~4 (p®q). Transporting back with ¥, we get that
either 1® A embeds into L (Y x X)(1®q) inside (1®¢q)(L>®(Y xX)xA)(1®q), or that
the normalizer of 1® A is amenable. In the first case, it follows that A embeds into

L*>(X)q inside ¢Mgq. In the second case, we get that Nyaq(A)” is amenable. O
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12. Applications to W*-superrigidity and classification results
We start this section by proving Theorem 1.5.

Proof of Theorem 1.5. (1) If L>®(X)xF, =L (Y)xF,,, it follows from Theorem 1.2
that the free ergodic pmp actions F,, X and F,,, ~Y are orbit equivalent. It then follows
from [G2, Théoreme 3.2] that n=m.

(2) In one direction the isomorphism of the II; factors together with Theorem 1.2
implies that the actions anXgF " and F,, mYOF’" are stably orbit equivalent with com-
pression constant s/t. By [G2, Théoréme 6.3] we get that (n—1)/(m—1)=s/t. Con-
versely assume that (n—1)/s=(m—1)/t. Combining [Bol, Corollary 1.2] and [Bo2, The-
orem 1.1], we know that the actions anXgF ™ and meYOF’” are stably orbit equivalent
with compression constant (n—1)/(m—1)=s/t. Hence the crossed product II; factors
are stably isomorphic with amplification constant s/t. The result applies in particular
to L(ZF,,)=L>([0,1]F) xF,,.

(3) Assume that R is a treeable countable ergodic pmp equivalence relation and
that LR1= LRy for another pmp equivalence relation Ro. Let c€[1,00] be the cost
of Ry. If c=1, it follows that R, is amenable. Hence also LR = LR, is amenable, so
that Ro is amenable. Thus R12=R,. If c€(1, 00], take s>0 such that n:=(c—1)/s is a
positive integer or co. By [G1, Proposition 2.6], the amplification Rf is treeable with
cost n+1. By [Hj, Corollary 1.2], the equivalence relation R can be implemented by a
free action of F, ;. This implies that L(R;)=L>(Z)xF, 11 for some free ergodic pmp
action F,1~Z. Since L(R;)=L(R3), it follows from Theorem 1.2 that R{=R3, i.e.
that R =Rs. O

As in [PV4, Definition 6.1], a free ergodic pmp action T~ (X, 1) is W*-superrigid if
the following property holds: whenever A~ (Y, n) is another free ergodic pmp action and
©: L>°(X)xT'—=L>(Y)xA is an isomorphism, the groups I and A must be isomorphic,
their actions must be conjugate and © is implemented by this conjugacy. More precisely,
we find an isomorphism of groups §:I'—A and an isomorphism of probability spaces
A: X —Y such that

o A(g-x)=0(g)-A(x) for all g’ and a.e. x€X;

o UO(auy)U*=A,(awg)usg for all ac L>°(X) and g€T', where U€L>®(Y)x A is a
unitary element and (wg)ger is a family of unitary elements in L (X') defining a 1-cocycle
for ' X with values in T.

To formulate the next theorem recall that a pmp action I'v(X, ) is said to be
a quotient (or factor) of the pmp action I'~(Y,n) if there exists a measure-preserving
map p: Y —X such that p(g-y)=g-p(y) for all g€l and a.e. y€Y. Also recall that a

group is icc if it has infinite conjugacy classes. Finally recall that a subgroup A<T
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is co-amenable if I'/A admits a [-invariant mean. By [MP, Proposition 6], a subgroup
A<T is co-amenable if and only if the subalgebra L(A)C L(T") is co-amenable in the sense
explained in §2.5.

THEOREM 12.1. Let T'y and T’y be icc weakly amenable groups that admit a proper
1-cocycle into a non-amenable representation. Put I'=1"y xI'y. Let '~ 1 be a transitive
action and ig€l. Assume that

e I'yNStabig<I'y is not co-amenable;

o ['xsNStabig<I'y is not of finite indez.

Then any free ergodic pmp action '~ (X, 1) that arises as a quotient of the gener-

alized Bernoulli action T ~[0,1]1 is W*-superrigid.

Theorem 12.1 will be a consequence of the following similar result for quotients of a

Gaussian action I'(Yr, pur) associated with an orthogonal representation 7 of T'.

THEOREM 12.2. Let T'y and T’y be icc weakly amenable groups that admit a proper
1-cocycle into a non-amenable representation. Put T=T1 xTy. Let m:T—=O(Kg) be any
orthogonal representation with corresponding Gaussian action T (Yy, pr). Assume that

e 7|r, is a non-amenable representation;

e 7|r, is a weakly mixing representation, i.e. a representation without non-zero
finite-dimensional invariant subspaces.

Then any free ergodic pmp action '~ (X, p) that arises as a quotient of the Gaussian

action D (Yo, pur) is W*-superrigid.

Remark 12.3. Theorem 12.1 provides large new families of W*-superrigid actions.

e In[I1, Theorem A] it was shown that a Bernoulli action I'» (X, p) is W*-superrigid
whenever I is an icc property (T) group. In [IPV, Theorem 10.1] the same was established
when I'=T"y xI's is a direct product of a non-amenable icc group I'y and an infinite icc
group I's. The conditions on I'; and I'; in Theorem 12.1 are of course much stricter, but
we now also get W*-superrigidity for generalized Bernoulli actions and their quotients.

e The following is an interesting class of generalized Bernoulli actions covered by
Theorem 12.1. Assume that I' is an icc weakly amenable group that admits a proper
1-cocycle into a non-amenable representation. Consider the left-right action of I'xIT" on
I=T". Since both I'x{e} and {e} xT" act freely on T, the conditions of Theorem 12.1 are
satisfied and it follows that all free quotient actions of I' xI'~[0,1]1" are W*-superrigid.

e Generalized Bernoulli actions typically admit a lot of non-conjugate quotient ac-
tions. Indeed, whenever K is a second countable compact group, consider the diagonal
action of K on K! which commutes with the generalized Bernoulli action ' ~ K. Then
I'~K!/K is a quotient action of T~ K.
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When T" and its action I'~I satisfy the conditions of Theorem 12.1, we will see in
the proof of Theorem 12.2 that '~ K is cocycle superrigid. Hence it follows from [PV1,
Lemma 5.2] that varying K, the actions '~ K /K are non-conjugate for non-isomorphic
compact groups K. So by Theorem 12.1 also their crossed product II; factors are non-
isomorphic when K varies.

e As mentioned above, in [I1, Theorem A] it was shown that the Bernoulli action
I~ (X, p) is W*-superrigid for all icc property (T) groups I'. Theorem 12.1 does not
cover property (T) groups, but in our forthcoming paper [PV5], we will cover generalized

Bernoulli actions of hyperbolic property (T) groups, as well as all their quotient actions.

Proof of Theorem 12.2. Let T'~(X, 1) be a free ergodic pmp action that arises as
the quotient of a Gaussian action I'~ (Y}, 1) satisfying the assumptions in the theorem.
Note that also I'=I"1 xI'y is a weakly amenable group that admits a proper 1-cocycle
into a non-amenable representation. Thus, because of Theorem 1.2, any isomorphism
O: L>®(X)xI'— L>*(Y) x A with another group measure space construction satisfies, after
a unitary conjugacy, O(L*°(X))=L*>(Y). This means that © is given by a scalar 1-
cocycle (i.e. an automorphism of L*°(X)xI' that is the identity on L°°(X)) and an
isomorphism coming from an orbit equivalence between I'» X and A~Y. It therefore
only remains to argue that I'» (X, u) is OF superrigid, i.e. that this orbit equivalence
between ' X and A~Y comes from a conjugacy of the actions.

We claim that the action 'Y satisfies the hypotheses of [Po5, Theorem 1.1]. By
[F2, Theorem 1.2], this Gaussian action is s-malleable. Next we have to check that

'y ~Y, has stable spectral gap, i.e. that the unitary representation
'~ L*(Y,)oCl

is non-amenable. This unitary representation is the direct sum of all k-fold (k>1) sym-
metric tensor powers of m|p,. Hence it is a subrepresentation of m|r, ® 0, where g is
defined as the direct sum of all k-fold (k>0) tensor powers of m|r,. Since 7|r, is non-
amenable, also 7|r, ® ¢ is non-amenable and it follows that I'y ~Y; has stable spectral
gap. Finally we have to check that I'os Y} is weakly mixing, i.e. that the unitary repre-
sentation Ty~ L?(Y,;)©C1 has no non-zero finite-dimensional invariant subspaces. This
follows with a similar reasoning by using that 7|, is weakly mixing.

So it follows from [Po5, Theorem 1.1] that I' Y} is cocycle superrigid with countable
(and even more generally, Us,) target groups. Since I' is icc and since 'Y, is weakly
mixing (because even 'y VY is weakly mixing as explained above), it follows from [Po4,

Theorem 5.6] that '~ (X, ) is OE superrigid. So the theorem is proven. O

Proof of Theorem 12.1. The generalized Bernoulli action I'~[0,1]7 is isomorphic to

the Gaussian action associated with the representation Frﬂxéé(l ). Since I'»vI is transi-
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tive, one has for any ig€/ that 7|, is a multiple of 'y ~¢2(T;/(T'1NStabig)) and that
7|, is a multiple of Ty~ ¢2(I'y/(T2NStabig)). We conclude that

e 7|r, is non-amenable if and only if I';y NStabig<T'; is not co-amenable,

e 7|, is weakly mixing if and only if I'sNStabig <y is not of finite index.

So Theorem 12.1 is a direct consequence of Theorem 12.2. O

Our unique Cartan decomposition (Theorem 1.2) can also be coupled with the
work of Monod and Shalom [MS] yielding the result below. To formulate it, recall
that an ergodic pmp action I'~»(X, ) is aperiodic if all finite-index subgroups of T
still act ergodically. Following [MS, Definition 1.8], an ergodic pmp action A~ (Y,n) is
mildly mizing if there are no non-trivial recurrent subsets: if ACY is measurable and
liminfy o n(g- AAA)=0, then n(A)=0 or n(A)=1. Note that, for a mildly mixing action
A (Y, n), all infinite subgroups of A act ergodically on (Y, 7).

THEOREM 12.4. Let I'=F, xF,,, for some 2<n, m<oo. Assume that T (X, u) is
a free ergodic pmp action that is aperiodic and irreducible, meaning that both F,, and F,,
act ergodically on (X, ).

If L®(X)xI=L>®(Y)xA for any free mildly mizing pmp action A~(Y,n), then
I'=A and the actions X and A~Y are conjugate.

Proof. Since I' is a product of free groups, Theorem 1.2 applies. So the existence of
an isomorphism L>(X)xT'=L>(Y)x A implies that T~ (X, u) and A~ (Y, n) are orbit
equivalent. Since free groups belong to the class Crog of Monod and Shalom, it follows
from [MS, Theorem 1.10] that the groups I" and A must be isomorphic and that their

actions must be conjugate. O
We finally prove Theorem 1.10.

Proof of Theorem 1.10. Assume that 0: RxI'— R XA is a #-isomorphism. As in the
proof of Theorem 1.2 it follows that (R)<R and R<6(R). By [IPP, Lemma 8.4],
the subfactors §(R) and R are unitarily conjugate. So after a unitary conjugacy we may
assume that §(R)=R. This precisely means that the actions I'~ R and A~ R are cocycle

conjugate. O

Remark 12.5. Theorems 1.5 and 1.10 say that for n#m we have PxF,2Q xF,,,
both in the case of free ergodic pmp actions on abelian von Neumann algebras, and in
the case of outer actions on the hyperfinite II; factor. As illustrated by the following
natural example, the result fails for arbitrary properly outer trace-preserving actions.

Let 7:Fo—7Z/27 be a surjective homomorphism and let Z/2Z act non-trivially on
a set with two points. Denote the composition with = by (04)4er,. Take any outer

action (oyg)ger, of Fo on the hyperfinite II; factor R. Consider the action ay®0, of Fo
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on R®C?. Identify F3=Kerm and consider the action id®ay of F3 on M2(C)®R. One

canonically has

[A]
[Be]
[Bol]
[Bo2]
[BO]
[CG]
[CP]
[CS]

[CSU]

€]

[CFW]

[CJ]
[CH]
[FM]

[F1]
[F2]

[G1]
[G2]
[Ha]

[Hj]

(R®C?)xFy = (My(C)QR) xFs.
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