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1. Introduction and main results

A crossed product type construction due to Murray and von Neumann [MvN] associates
with any free ergodic probability-measure-preserving (pmp) action Γy(X,µ) of a count-
able group Γ, a II1 factor denoted L∞(X)oΓ and called the group measure space algebra
of ΓyX. A more general groupoid-version of this construction associates a II1 fac-
tor LR with any countable ergodic pmp equivalence relation R on (X,µ) ([FM]). The
two algebras coincide when R is given by the orbits of the free ergodic action ΓyX,
showing that group actions having the same orbits give the same II1 factor. Moreover,
both L∞(X)oΓ and LR contain L∞(X) as a Cartan subalgebra, i.e. a maximal abelian
∗-subalgebra whose normalizer generates the II1 factor, while by [FM] two countable er-
godic pmp equivalence relations R1 and R2 are isomorphic if and only if there exists an
isomorphism of the associated II1 factors taking the corresponding Cartan subalgebras
one onto the other.

The classification of the algebras L∞(X)oΓ and LR in terms of their building data,
ΓyX and R, is a notoriously hard problem which, over the years, has led to a fruitful
interplay between operator algebras and functional analysis, group theory (geometric,
measured, etc.), representation theory, Lie group theory, ergodic theory, etc.

The dichotomy amenable/non-amenable is particularly strong in this framework: by
a celebrated theorem of Connes [C], all II1 factors L∞(X)oΓ and LR, with Γ and R
amenable, are isomorphic (in fact, by [CFW], there is just one amenable equivalence
relation R!); but non-amenable group actions “tend to be” recognizable from the iso-
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morphism class of their associated algebra. In fact, the prevailing point of view in recent
years has been to approach the non-amenable case of this classification problem as a
rigidity paradigm, seeking to prove that an isomorphism of group measure space II1
factors forces the corresponding building data (e.g., Γ and R) to share some common
properties, or even coincide.

There has been intense activity in this direction over the last decade, with the emer-
gence of new tools of investigation and the discovery of many surprising rigidity results.
But one of the most intriguing questions in this area, asking whether an isomorphism
L∞(X)oFn'L∞(Y )oFm, arising from two arbitrary free ergodic pmp actions FnyX

and FmyY of the free groups with n and respectively m generators, forces n=m, has re-
mained open. There was supporting evidence for this conjecture from results in [Po2] and
[OP1], showing that this is indeed the case if the two actions are either HT or compact.
But this was not known for other actions, such as the Bernoulli actions Fny[0, 1]Fn .

We solve this problem here, in the affirmative. More precisely, we prove that any
group measure space II1 factor M=L∞(X)oFn, arising from an arbitrary free ergodic
pmp action FnyX, “remembers” the associated equivalence relation RFn . We do this by
showing that M has a unique Cartan subalgebra, up to conjugacy by a unitary operator
in M . This in turn reduces the problem to whether equivalence relations arising from
free ergodic pmp actions of free groups with different number of generators are always
non-isomorphic, which does hold true by a well-known result in [G1] and [G2]. Note that
our result gives an answer to the wreath product version of the famous free group factor
problem: if L(ZoFn)'L(ZoFm) then n=m. In fact, by combining our theorem with the
work in [Bo1] and [Bo2], we obtain a complete classification of the amplifications of II1
factors arising from Bernoulli actions of free groups, (L∞([0, 1]Fn)oFn)t, for which we
show that the number (n−1)/t is a complete invariant.

Note that our result provides the first groups Γ with the property that any group
measure space II1 factor L∞(X)oΓ, arising from an arbitrary free ergodic pmp Γ-action,
has a unique Cartan subalgebra, up to unitary conjugacy, a class of groups that we call
C-rigid. Indeed, the results in [OP1], which were the first to provide a class of factors
with unique Cartan decomposition up to unitary conjugacy, only covered group measure
space II1 factors arising from profinite actions of Fn.

We in fact prove C-rigidity for much larger classes of groups Γ than the free groups.
For instance, we show that any weakly amenable group Γ with non-zero first `2-Betti
number, β(2)

1 (Γ)>0, is C-rigid. We conjecture that in fact any Γ with at least one non-zero
`2-Betti number, β(2)

n (Γ)>0, is C-rigid. Note that if this conjecture would be true then,
since the `2-Betti numbers of groups are invariant under orbit equivalence (cf. [G2]), it
would follow that β(2)

n (Γ) are isomorphism invariants for arbitrary group measure space
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II1 factors L∞(X)oΓ.
There is further supporting evidence for the above conjecture. For instance, in [PV4]

we proved that a fairly large class of free product groups Γ=Γ1∗Γ2, including all those
where Γ1 is an infinite property (T) group and Γ2 is non-trivial, has the property that
L∞(X)oΓ has a unique group measure space Cartan subalgebra(1) for any Γ-action. We
call groups Γ with this property Cgms-rigid. More generally, it was established in [CP]
that all groups that have at the same time a non-vanishing first `2-Betti number and
a non-amenable subgroup with the relative property (T), are Cgms-rigid (see also the
expository paper [V2]). Very recently it was shown in [I2] that L∞(X)oΓ has a unique
group measure space Cartan subalgebra if β(2)

1 (Γ)>0 and Γy(X,µ) is a rigid (in the
sense of [Po2]) free ergodic pmp action.

One should point out that the unique Cartan decomposition results for profinite
actions of [OP1] and [OP2] have been generalized in [CS] and [CSU] to show that group
measure space II1 factors L∞(X)oΓ arising from profinite free ergodic pmp actions
of any hyperbolic group or direct product of hyperbolic groups, have a unique Cartan
subalgebra up to unitary conjugacy. In the follow-up paper [PV5], the main innovations
of our article (§4 and §5) are combined with the methods of [CS] and [CSU] to prove that
any product of hyperbolic groups is C-rigid. So, the uniqueness of the Cartan subalgebra
of L∞(X)oΓ holds without assuming the profiniteness of the action Γy(X,µ).

While a characterization of all C-rigid groups seems even difficult to guess, it would
be very interesting to find other sufficient conditions for this property to hold. As for
necessary conditions, let us point out that in [CJ] it was shown that any direct product
Γ=H×G between a non-amenable group G and a certain type of locally finite infinite
non-commutative group H, is not C-rigid. Another class of groups that are not C-rigid
was found in [OP2] and it consists of certain semidirect products Γ=HoG, with H

abelian, notably Γ=Z2oSL(2,Z). More generally, it was shown in [PV4, §5.5] that a
semidirect product Γ=HoG with H infinite abelian, is never C-rigid. We believe that
in fact groups Γ with an infinite amenable normal subgroup are never C-rigid. Since
by [CG] (see also [L, Theorem 7.2 (2)]) all `2-Betti numbers of such groups Γ vanish,
this is compatible with the conjecture that all groups with at least one non-zero `2-Betti
number are C-rigid, as formulated above. On the other hand, it would be interesting
to find examples of non-C-rigid groups that admit no infinite amenable quasi-normal
subgroup.

To state our results in more details, we first need some terminology.

(1) A maximal abelian subalgebra A of a II1 factor M is a group measure space Cartan subalgebra
if M can be decomposed as a crossed product M=AoΛ. Not all Cartan subalgebras in II1 factors are
of this form.



144 s. popa and s. vaes

Definition 1.1. A Herz–Schur multiplier on a countable group Γ is a map f : Γ!C
such that the corresponding map ug 7!f(g)ug extends to a normal completely bounded
map mf :L(Γ)!L(Γ). In that case we write ‖f‖cb :=‖mf‖cb. A countable group Γ
is weakly amenable (see [CH]) if it admits a sequence of finitely supported Herz–Schur
multipliers fn: Γ!C that tend to 1 pointwise and that satisfy lim supn!∞ ‖fn‖cb<∞. If
{fn}n∈N can be chosen in such a way that lim supn!∞ ‖fn‖cb=1, we say that Γ has the
complete metric approximation property (CMAP), see [Ha].

Let Γ be a countable group and η: Γ!O(KR) be an orthogonal representation. A
1-cocycle for Γ into the orthogonal representation η is a map c: Γ!KR satisfying

c(gh) = c(g)+ηgc(h) for all g, h∈Γ.

We say that c is proper if ‖c(g)‖!∞ whenever g!∞.

Following [Be, Definition 1.1], we say that a unitary representation η: Γ!U(K)
is amenable if B(K) admits an (Ad ηg)g∈Γ-invariant state. A unitary representation
η: Γ!U(K) is mixing if for all ξ, ξ′∈K we have that 〈ηgξ, ξ

′〉!0 whenever g!∞, i.e.
when the matrix coefficients of η tend to zero at infinity.

Theorem 1.2. For all of the following groups Γ, all group measure space II1 factors
M :=L∞(X)oΓ with respect to arbitrary free ergodic pmp actions Γy(X,µ) have L∞(X)
as their unique Cartan subalgebra up to unitary conjugacy.

(1) All weakly amenable groups Γ such that β(2)
1 (Γ)>0. More generally, all weakly

amenable groups Γ that admit an unbounded 1-cocycle into a mixing non-amenable rep-
resentation.

(2) All weakly amenable groups Γ that admit a proper 1-cocycle into a non-amenable
representation.

Actually a more general statement holds: whenever A⊂M is a maximal abelian
subalgebra whose normalizer is a finite index subfactor of M , we must have that A is
unitarily conjugate to L∞(X).

Remark 1.3. Theorem 1.2 covers a rather large family of groups. In [OP2, Defi-
nition 1] a countable group Γ is said to have the property (HH)+ if Γ has the CMAP
and if Γ admits a proper 1-cocycle into a non-amenable representation. Obviously all
groups with the property (HH)+ belong to the second family of Theorem 1.2. By [OP2,
Theorem 2.3], the class (HH)+ contains all lattices in SL(2,R), SL(2,C), SO(n, 1) with
n>2, and SU(n, 1). Furthermore the class (HH)+ contains the free groups Fn, 26n6∞,
and contains all free products Λ1∗Λ2 of amenable groups Λ1 and Λ2 with |Λ1|>2 and
|Λ2|>3. Also, the class (HH)+ is stable under free products and direct products.
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Definition 1.4. We say that a countable group Γ is C-rigid (Cartan-rigid) if for every
free ergodic pmp action Γy(X,µ), the II1 factor L∞(X)oΓ has L∞(X) as its unique
Cartan subalgebra up to unitary conjugacy.

In view of [OP1, Proposition 4.12] we say that a countable group Γ is Cs-rigid(2)
if for every free ergodic pmp action Γy(X,µ), the II1 factor M=L∞(X)oΓ has the
following property: every maximal abelian subalgebra A⊂M whose normalizer NM (A)′′

is a finite-index subfactor of M is unitarily conjugate to L∞(X).

As already mentioned above, Theorem 1.2 has some immediate consequences in the
classification of free group measure space II1 factors. Recall that, if M is a II1 factor and
s>0, then Ms denotes the Murray–von Neumann amplification of M by s.

Theorem 1.5. (1) If n 6=m and Fny(X,µ) and Fmy(Y, η) are arbitrary free er-
godic pmp actions, then

L∞(X)oFn 6∼=L∞(Y )oFm.

(2) If (X0, µ0) and (Y0, η0) are non-trivial standard probability spaces, then, for
26n,m6∞ and s, t>0, we have

(L∞(XFn
0 )oFn)s∼=(L∞(Y Fm

0 )oFm)t if and only if
n−1
s

=
m−1
t

.

In particular for the wreath product groups ZoFn=Z(Fn)oFn we get that

L(ZoFn)s∼=L(ZoFm)t if and only if
n−1
s

=
m−1
t

.

(i) If R1 is a treeable ergodic pmp equivalence relation and if LR1
∼=LR2 for some

other pmp equivalence relation R2, then R1
∼=R2.

Theorem 1.2 also has a number of consequences for the fundamental groups of group
measure space II1 factors. Recall that the fundamental group F(M) of a II1 factor M
is the group of positive real numbers s>0 such that Ms∼=M . In [PV3] we introduced
the invariants Sfactor(Γ) and Seqrel(Γ) of a countable group Γ, as the set of subgroups
of R+ that can arise as the fundamental group of a group measure space II1 factor
L∞(X)oΓ, resp. an orbit-equivalence relation R(ΓyX), for some free ergodic pmp
action of Γ. In [PV2] we proved that Sfactor(F∞) and Seqrel(F∞) are huge. They for
instance contain subgroups of R+ that can have any Hausdorff dimension between 0
and 1. On the other hand, from [G2, Théorème 6.3] we know that Seqrel(Fn)={{1}} for
all 26n<∞. Whenever Γ is a C-rigid group we have Sfactor(Γ)=Seqrel(Γ). So it follows

(2) The notation Cs-rigid can be read as “strongly Cartan-rigid”, but also as “stably Cartan-rigid”
because of the stability results in [OP1, Proposition 4.12].
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from Theorem 1.2 that also Sfactor(Fn)={{1}} for all 26n<∞, confirming our conjecture
in [PV3].

Throughout this article we say that (M, τ) is a tracial von Neumann algebra if M
is a von Neumann algebra equipped with a faithful normal tracial state τ .

Following [O1] a tracial von Neumann algebra (M, τ) is called solid if the relative
commutant A′∩M of any diffuse von Neumann subalgebra A⊂M is amenable. It is
shown in [O1] that the group von Neumann algebras LΓ of any hyperbolic group is
solid. Then in [OP1], (M, τ) is called strongly solid if even the normalizer of any diffuse
amenable subalgebra of M is still amenable, and it is shown that the free group factors
LFn are strongly solid. It has been recently proved in [CS] that in fact all group von
Neumann algebras LΓ of arbitrary hyperbolic groups are strongly solid.

Crossed products BoΓ are of course typically not strongly solid, but we establish the
following relative strong solidity property: for certain groups Γ we prove the dichotomy
that an amenable subalgebra A of an arbitrary crossed product BoΓ with B amenable
either embeds intoB (in the sense of intertwining-by-bimodules, see Definition 2.1), or has
an amenable normalizer. More generally one can replace “amenability” by “amenability
relative to B” in the sense of Definition 2.2, resulting in the following statement.

Theorem 1.6. Let Γ be a weakly amenable group that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the regular representation.
Let Γ

σy(B, τ) be any trace-preserving action on a tracial von Neumann algebra (B, τ).
Set M=BoΓ and let A⊂M be a von Neumann subalgebra such that A is amenable
relative to B.

Either A≺MB or the normalizer P :=NM (A)′′ is amenable relative to B.

Theorem 1.6 immediately implies that, for all II1 factors B and all 26n6∞, the
tensor product B
⊗LFn has no Cartan subalgebra, thus improving [OP1, Corollary 2]
which required B to have the complete metric approximation property.

If Γ=Γ1×...×Γn is a direct product of n>2 non-amenable groups, Theorem 1.6 does
not hold since, for instance, the relative commutant of a subalgebra of L(Γ1) contains
L(Γ2). Nevertheless we obtain the following precise description of what exactly can
happen. The notion of strong intertwining A≺f

MQ is explained in Definition 2.1.

Theorem 1.7. Let Γ=Γ1×...×Γn be a direct product of weakly amenable groups
such that every Γi admits a proper 1-cocycle into an orthogonal representation that
is weakly contained in the regular representation of Γi. Let Γ

σy(B, τ) be any trace-
preserving action on a tracial von Neumann algebra (B, τ). Set M=BoΓ and let A⊂M
be a von Neumann subalgebra that is amenable relative to B. Denote by P :=NM (A)′′

the normalizer of A inside M .
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Then there exist projections p0, ..., pn∈Z(P ), some of which might be zero, such that
p0∨...∨pn=1 and

• Pp0 is amenable relative to B;
• for every i=1, ..., n we have Api≺f

MBoΓ̂i, where Γ̂i is the product of all Γj , j 6=i.

Note that each Γ covered by Theorem 1.7 with the factors Γi being non-amenable,
also belongs to the second family of Theorem 1.2 and hence is C-rigid and Cs-rigid.

We obtain the following similar result for crossed products BoΓ by arbitrary actions
of weakly amenable free products Γ=Λ1∗Λ2. Note that these groups belong to the first
family in Theorem 1.2 and hence also are C-rigid and Cs-rigid.

Theorem 1.8. Let Γ=Λ1∗Λ2 be any weakly amenable free product group (e.g. the
free product of two groups with the CMAP). Let Γ

σy(B, τ) be any trace-preserving action
on a tracial von Neumann algebra (B, τ). Set M=BoΓ and let A⊂M be a von Neumann
subalgebra that is amenable relative to B. Denote by P :=NM (A)′′ the normalizer of A
inside M .

Then there exist projections q, p0, p1, p2∈Z(P ), some of which might be zero, such
that q∨p0∨p1∨p2=1 and

• Aq≺f
MB;

• Pp0 is amenable relative to B;
• Ppi≺f

MBoΛi for i=1, 2.

All the results above will follow from a key technical theorem that we state as
Theorem 3.1 in §3.

As a consequence of the above uniqueness theorems for Cartan subalgebras, we
obtain several W ∗-superrigidity results. Recall that a free ergodic pmp action Γy(X,µ)
is W ∗-superrigid if the group measure space II1 factor L∞(X)oΓ “remembers” the group
action Γy(X,µ): any other group measure space construction yielding an isomorphic II1
factor must come from an isomorphic group and a conjugate action (see §12 for precise
definitions). In [Pe2] the existence of virtually W ∗-superrigid group actions was proven.
In [PV4] we obtained the first concrete W ∗-superrigidity theorem, for Bernoulli actions
of a large class of amalgamated free product groups. In [I1] it was shown that Bernoulli
actions of icc property (T) groups areW ∗-superrigid. In the present paper, a combination
of our unique Cartan decomposition (Theorem 1.2) and the OE superrigidity theorems
in [Po4] and [Po5] will allow us to deduce the following result (see also Theorem 12.1 and
Remark 12.3 thereafter).

Theorem 1.9. Let Λ, Γ1 and Γ2 be weakly amenable icc groups that admit a proper
1-cocycle into a non-amenable representation.

• Put Γ=Γ1×Γ2. All free actions of Γ that arise as a quotient of the Bernoulli
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action Γy[0, 1]Γ are W ∗-superrigid.
• Consider Λ×ΛyΛ by left-right multiplication. All free actions of Λ×Λ that arise

as a quotient of the generalized Bernoulli action Λ×Λy[0, 1]Λ are W ∗-superrigid.

We finally deduce a strong rigidity theorem for crossed products by outer actions.
Recall that an action (αg)g∈Γ by automorphisms of a factor R is outer if no αg, g∈e,
is an inner automorphism Adu, u∈U(R). Two outer actions α: ΓyP and β: ΛyQ are
cocycle conjugate if there exists an isomorphism π:P!Q, an isomorphism δ: Γ!Λ and
a map w: Γ!U(P ) such that

π(wgαg(x)w∗g) =βδ(g)(π(x)) and wgh =wgαg(wh) for all g, h∈Γ and x∈P .

Theorem 1.10. If Γ and Λ are icc groups in one of the families of Theorem 1.2
and if ΓyR and ΛyR are outer actions on the hyperfinite II1 factor R such that
RoΓ∼=RoΛ, then Γ∼=Λ and the actions ΓyR and ΛyR are cocycle conjugate.

Comments on the proofs

In order to explain the main ideas of the paper, we outline the proof of the following
special case of Theorem 1.6. Assume that Γ is a group with the CMAP and with a proper
1-cocycle into the infinite multiple `2R(Γ)⊕∞ of the regular representation. Note that the
free groups Γ=Fn satisfy these properties. Assume that Γy(B, τ) is an arbitrary trace-
preserving action on the tracial von Neumann algebra (B, τ) and put M=BoΓ. Let
A⊂M be a von Neumann subalgebra that we assume, in this rough sketch, to be plainly
amenable. Put P :=NM (A)′′. We want to prove that either A≺MB or that P is amenable
relative to B.

Step 1. Reduction to the trivial action. As we will see in Lemma 4.1, we may assume
that Γy(B, τ) is the trivial action. To make this reduction from arbitrary actions to
the trivial action, we use the comultiplication trick. So denote by ∆:M!M
⊗L(Γ)
the normal ∗-homomorphism defined by ∆(bug)=bug⊗ug for all b∈B and g∈Γ. We
view M
⊗L(Γ) as the crossed product of Γ acting trivially on M . We consider ∆(A)⊂
M
⊗L(Γ). As we will see, it is rather straightforward to prove that

• A≺MB if and only if ∆(A)≺M
⊗L(Γ)M⊗1;
• P is amenable relative to B if and only if ∆(P ) is amenable relative to M⊗1.
So the result for arbitrary actions is an immediate consequence of the result for the

trivial action.
From now on we will assume that ΓyB is the trivial action. Hence M equals the

tensor product M=B
⊗L(Γ).
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Step 2. Weak compactness relative to B. The most important novelty of this paper
is the proof that the action NM (A)yA satisfies a relative version with respect to B of
the weak compactness property of [OP1, Definition 3.1]. For this we only use the CMAP
of Γ. So take a sequence of finitely supported Herz–Schur multipliers fn: Γ!C that
tend to 1 pointwise and that satisfy lim supn!∞ ‖fn‖cb=1. Denote by ϕn:M!M the
associated completely bounded maps given by ϕn(b⊗ug)=fn(g)b⊗ug for all b∈B and
g∈Γ. The formula

µn:M⊗minP
op−!C,

x⊗yop 7−! τ(ϕn(x)EA(y)) for x∈M and y ∈P ,

provides a sequence of continuous functionals on the C∗-algebra M⊗minP
op satisfying

• lim supn!∞ ‖µn‖=1;
• limn!∞ ‖µn�Ad(u⊗ū)−µn‖=0 for all u∈NM (A), where ū=(uop)∗.

Since moreover µn(1)!1, it follows that ‖µn−ωn‖!0, where ωn denotes the state on
M⊗minP

op defined as ωn=‖µn‖−1|µn|.
A crucial point in the continuation of the argument will be to construct a von

Neumann algebra completion N of M⊗minP
op with the following two properties:

• the states ωn are normal on N ;
• the von Neumann algebra N splits as a tensor product N=N
⊗L(Γ), with the

natural copy of L(Γ) inside M⊂N corresponding to the copy of L(Γ) inside N
⊗L(Γ).

Choosing a standard representation of N on the Hilbert space H, it follows that N
is standardly represented on H⊗`2(Γ). The states ωn are then implemented by canonical
positive vectors ξn∈H⊗`2(Γ). These vectors ξn inherit the almost invariance properties
of ωn.

Step 3. Applying a malleable deformation (αt)t∈R to the vectors ξn. The group Γ
admits a proper 1-cocycle c: Γ!`2R(Γ)⊕∞ into an infinite multiple of the regular represen-
tation. Associated with c is a one-parameter family (ψt)t>0 of unital completely positive
maps on N given by

ψt(x⊗ug) = exp(−t‖c(g)‖2)(x⊗ug) for all x∈N and g ∈Γ.

By [S] the one-parameter family (ψt)t>0 dilates as a malleable deformation (αt)t∈R by
automorphisms of a larger von Neumann algebra Ñ ⊃N . This construction comes with
a conditional expectation E: Ñ!N such that

ψt2/2(x) =E(αt(x)) for all x∈N and t∈R.
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The dichotomy in the conclusion of the theorem then arises as follows.
• Either the deformation (αt)t∈R significantly moves the vectors ξn. Since these

vectors ξn have a certain almost invariance property under all u∈NM (A), this will lead
to the amenability of P relative to B.

• Or the deformation (αt)t∈R does not significantly move the vectors ξn. By the
properness of the 1-cocycle c, this will lead to A≺MB.

2. Preliminaries

To make this article as self-contained as possible we have chosen to include a rather
extensive section with preliminaries.

2.1. Terminology

As we said above, we call (M, τ) a tracial von Neumann algebra if M is a von Neumann
algebra equipped with a faithful normal tracial state τ .

Whenever M is a von Neumann algebra and A⊂M is a von Neumann subalgebra,
we denote by NM (A) the group of unitary elements u∈U(M) that satisfy uAu∗=A. We
call the von Neumann algebra NM (A)′′ the normalizer of A inside M . We say that
A⊂M is regular if its normalizer equals M . A Cartan subalgebra of a II1 factor M is a
maximal abelian regular von Neumann subalgebra.

Let (M, τ) and (Q, τ) be tracial von Neumann algebras. A right Q-module is any
Hilbert space equipped with a normal ∗-anti-representation of Q. An M-Q-bimodule is
any Hilbert space equipped with a normal ∗-representation of M and a normal ∗-anti-
representation of Q with commuting ranges. We usually simply write x·ξ ·y to denote
the left and right module actions of x∈M and y∈Q on the vector ξ.

IfN is a von Neumann algebra andM⊂N is a von Neumann subalgebra, a functional
Ω on N is M -central if Ω(Sx)=Ω(xS) for all S∈N and x∈M .

A tracial von Neumann algebra (M, τ) is amenable if there exists an M -central state
on B(L2(M)) whose restriction to M equals τ . We refer to §2.5 for more background on
amenability.

2.2. Intertwining by bimodules

We recall from [Po3, Theorem 2.1 and Corollary 2.3] the theory of intertwining-by-
bimodules, summarized in the following definition.
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Definition 2.1. Let (M, τ) be a tracial von Neumann algebra and P,Q⊂M be (pos-
sibly non-unital) von Neumann subalgebras. We write P≺MQ, and say that P embeds
into Q inside M , when one of the following equivalent conditions is satisfied:

• there exist projections p∈P and q∈Q, a normal ∗-homomorphism ϕ: pPp!qQq
and a non-zero partial isometry v∈pMq such that xv=vϕ(x) for all x∈pPp;

• it is impossible to find a net of unitary elements un∈U(P ) satisfying

‖EQ(xuny
∗)‖2! 0 for all x, y ∈ 1QM1P .

We write P≺f
MQ if Pp≺MQ for every projection p∈P ′∩1PM1P .

2.3. Basic construction, Jones index, Connes tensor product

Let (Q, τ) be a tracial von Neumann algebra and KQ be a right Hilbert Q-module.
Then the von Neumann algebra N :=B(K)∩(Qop)′ carries a canonical semifinite faithful
normal trace Tr that can be characterized as follows: first recall that a vector ξ∈K is right
bounded if there exists a �>0 such that ‖ξx‖6�‖x‖2 for all x∈Q. When ξ∈K is right
bounded we denote by Lξ∈B(L2(Q),K) the operator defined as Lξx=ξx for all x∈Q.
For all right bounded vectors ξ, η∈K we have that LξL

∗
η∈N , while L∗ηLξ∈Q. The right

bounded vectors form a dense subspace of K and the corresponding elements LξL
∗
η∈N

span a dense ∗-subalgebra of N . The trace Tr on N can be characterized by the formula

Tr(LξL
∗
η) = τ(L∗ηLξ) for all right bounded vectors ξ, η ∈K.

When Q⊂(M, τ) is a von Neumann subalgebra, we denote by eQ the orthogonal pro-
jection of L2(M) onto L2(Q). Jones’ basic construction 〈M, eQ〉 is the von Neumann
algebra generated by M and eQ on the Hilbert space L2(M). We have

〈M, eQ〉=B(L2(M))∩(Qop)′.

So, applying the above construction to the right Q-module L2(M)Q, we recover the usual
semifinite faithful normal trace Tr on 〈M, eQ〉 characterized by

Tr(xeQy) = τ(xy) for all x, y ∈M .

The number Tr(1) is called the Jones index of Q⊂M and is denoted by [M :Q].
We also recall the Connes tensor product of bimodules. Assume that MKQ and QHP

are bimodules between tracial von Neumann algebras M , Q and P . Denote by K0⊂K
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the subspace of right Q-bounded vectors in K. The separation/completion of K0⊗algH
with respect to the scalar product

〈ξ⊗Qη, ξ
′⊗Qη

′〉 := 〈(L∗ξ′Lξ)η, η′〉,

together with the bimodule action

x·(ξ⊗Qη)·y :=xξ⊗Qηy,

yields an M-P -bimodule that is denoted by K⊗QH.

If MKQ is an M-Q-bimodule between the tracial von Neumann algebras (M, τ) and
(Q, τ), we denote by Q

	KM the contragredient bimodule on the adjoint Hilbert space 	K
of K with bimodule action

x·ξ̄ ·y :=�y∗ξx∗ for all ξ ∈K, x∈Q and y ∈M .

Assume that MKQ is an M-Q-bimodule between the tracial von Neumann algebras
(M, τ) and (Q, τ). Set as above N :=B(K)∩(Qop)′, equipped with its canonical semifinite
normal faithful trace Tr as explained above. Denote by K0⊂K the subspace of right Q-
bounded vectors. One checks that the formula

K0⊗alg
	K0−!L2(N ,Tr),

ξ⊗Q η̄ 7−!LξL
∗
η,

extends to an M-M -bimodular unitary operator of K⊗Q
	K onto L2(N ,Tr).

Finally assume that M=BoΓ is the crossed product of a countable group Γ with a
trace-preserving action Γy(B, τ). Whenever %: Γ!U(K) is a unitary representation, we
consider the M-M -bimodule MK%

M on the Hilbert space K%=K⊗L2(M) with bimodule
action

(bug)·(ξ⊗x)·y= %gξ⊗bugxy for all b∈B, g ∈Γ, ξ ∈K and x, y ∈M . (2.1)

If % and η are unitary representations, one has

M(K%⊗MKη)M ∼= MK%⊗η
M

as M-M -bimodules.
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2.4. Weak containment of representations and bimodules

If %: Γ!U(K) and π: Γ!U(H) are unitary representations of a countable group Γ, one
says that % is weakly contained in π if ‖%(a)‖6‖π(a)‖ for all a∈CΓ. Similarly, if MKQ

and MHQ are bimodules between tracial von Neumann algebras (M, τ) and (Q, τ), we
say that K is weakly contained in H if ‖πK(x)‖6‖πH(x)‖ for all x∈M⊗algQ

op, where
we denote by πK, resp. πH, the obvious ∗-representation associated with the bimodule
structure.

Weak containment of bimodules is well behaved with respect to the Connes tensor
product. If MKQ is weakly contained in MHQ, then K⊗QL is weakly contained in H⊗QL
for all Q-P -bimodules L. A similar statement holds for weak containment in the second
variable.

If M=BoΓ is a crossed product von Neumann algebra by a trace-preserving action
Γy(B, τ) and if %: Γ!U(K) and π: Γ!U(H) are unitary representations, then % is
weakly contained in π if and only if the M-M -bimodule K% described in (2.1) is weakly
contained in the M-M -bimodule Kπ.

2.5. Relative amenability of subalgebras and left amenability of bimodules

A tracial von Neumann algebra (M, τ) is amenable if there exists an M -central state on
B(L2(M)) whose restriction to M equals τ . Connes’ fundamental theorem in [C] says
that a tracial von Neumann algebra M is amenable if and only if M is hyperfinite, i.e. M
admits an increasing net of finite-dimensional von Neumann subalgebras whose union is
weakly dense in M . Also, M is amenable if and only if the trivial bimodule ML

2(M)M
is weakly contained in the coarse bimodule M(L2(M)⊗L2(M))M.

Definition 2.2. ([OP1, §2.2]) Let (M, τ) be a tracial von Neumann algebra and let
P⊂pMp and Q⊂M be von Neumann subalgebras. We say that P is amenable relative to
Q if the von Neumann algebra p〈M, eQ〉p admits a P -central positive functional whose
restriction to pMp coincides with τ .

Recall that the basic construction von Neumann algebra 〈M, eQ〉 coincides with
the commutant of Qop acting on L2(M). Replacing in the above definition 〈M, eQ〉=
(Qop)′∩B(L2(M)) by (Qop)′∩B(K) for an arbitrary M-Q-bimodule K, we arrive at the
following definition (cf. [S, Theorem 2.2]).

Definition 2.3. Let (M, τ) and (Q, τ) be tracial von Neumann algebras and P⊂M
be a von Neumann subalgebra. We say that an M-Q-bimodule MKQ is left P -amenable
if there exists a P -central state Ω on B(K)∩(Qop)′ whose restriction to M equals τ .
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So by definition, for P⊂pMp and Q⊂M we have that P is amenable relative to
Q if and only if the pMp -Q-bimodule pMppL

2(M)Q is left P -amenable. Even more
specifically, recall from [Po1, Definition 3.2.1] and [A, Definition 2.1] that a von Neumann
subalgebra Q⊂M is co-amenable if the whole of M is amenable relative to Q. So Q⊂M
is co-amenable if and only if the bimodule ML

2(M)Q is left M -amenable.
Next note that Definition 2.3 generalizes the notion of left amenability of bimodules

introduced in [A]. More precisely, anM-Q-bimodule MKQ is leftM -amenable in the sense
of Definition 2.3 if and only if MKQ is left amenable in the sense of [A, Definition 2.1].
This follows immediately from Proposition 2.4 below.

Finally left amenability of bimodules has its origin in the concept of an amenable
representation, see [Be]. To make this link explicit, assume that M :=BoΓ is the crossed
product of a countable group by a trace-preserving action Γy(B, τ). Every unitary
representation %: Γ!U(K) gives rise to an M-M -bimodule K% given by (2.1). This M-
M -bimodule K% is left M -amenable if and only if % is an amenable representation in the
sense of [Be, Definition 1.1], i.e. if and only if B(K) admits an (Ad %g)g∈Γ-invariant state
(see e.g. [A, Proposition 3.3]).

The proof of the following proposition is almost identical to the proof of [OP1,
Theorem 2.1]. Part of the proposition also appears in [S, Theorem 2.2]. We nevertheless
provide full details for the convenience of the reader. We refer to §2.3 and §2.4 for the
relevant terminology on bimodules, tensor products and weak containment.

Proposition 2.4. Let (M, τ) and (Q, τ) be tracial von Neumann algebras, P⊂M
be a von Neumann subalgebra, MKQ be an M-Q-bimodule and set N :=B(K)∩(Qop)′,
with its canonical semifinite trace Tr as in §2.3. Define the contractive linear map

T :L1(N ,Tr)−!L1(M, τ)

by
τ(T (S)x) =Tr(Sx) for S ∈N and x∈M .

Then the following statements are equivalent :
(1) The M-Q-bimodule MKQ is left P -amenable.
(2) There exists a net ξn∈L2(N ,Tr)+ satisfying the following properties:

• 06T (ξ2n)61 for all n and limn!∞ ‖T (ξ2n)−1‖1=0;
• For all y∈P we have limn!∞ ‖yξn−ξny‖2=0.

(3) The M-P -bimodule ML
2(M)P is weakly contained in the M-P -bimodule K⊗Q

	K.
(4) There exists a Q-P -bimodule QHP such that ML

2(M)P is weakly contained in
the M-P -bimodule K⊗QH.

(5) There exists a tracial von Neumann algebra (N, τ) and a Q-N -bimodule QHN

such that the M-N -bimodule K⊗QH is left P -amenable.
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Proof. Assume that condition (1) holds. Take a P -central state Ω∈N ∗ whose restric-
tion to M equals τ . Identifying N∗=L1(N ,Tr), we can take a net of positive elements
Sn∈L1(N ,Tr)+ such that Tr(Sn)=1 for all n and such that Sn!Ω in the weak∗ topol-
ogy on N ∗. It follows that T (Sn)!1 in the weak topology on L1(M, τ) and that for all
y∈P we have that ySn−Sny!0 in the weak topology on L1(N ,Tr). After a passage
to convex combinations we have ‖T (Sn)−1‖1!0 and ‖ySn−Sny‖1!0 for all y∈P . We
will further modify the net (Sn)n in such a way that 06T (Sn)61 for all n. For this we
need the following standard functional calculus manipulations.

For every ε>0 and every n denote by pε,n∈M the spectral projection

pε,n :=χ[0,1+ε](T (Sn)).

Since ‖1−T (Sn)‖1!0, one checks that for every fixed ε>0 we have

‖S1/2
n pε,n−S1/2

n ‖22 =Tr((1−pε,n)Sn) = τ((1−pε,n)T (Sn))! 0 as n!∞.

So, for every fixed ε>0, we have limn ‖pε,nSnpεn
−Sn‖1=0. Put

Tε,n := (1+ε)−1pε,nSnpε,n.

Then, for every ε>0, we have, for all n,

lim sup
n

‖Tε,n−Sn‖1 6 ε and 0 6 T (Tε,n) 6 1.

Reorganizing the Tε,n we find a net Ti∈L1(N ,Tr)+ such that 06T (Ti)61 for all i and
such that ‖T (Ti)−1‖1!0 and ‖yTi−Tiy‖1!0 for all y∈P .

Defining ξi :=T
1/2
i , we obtain a net in L2(N ,Tr)+ which, due to the Powers–Størmer

inequality, satisfies condition (2) in the formulation of the proposition.
Next assume that (ξn)n is a net in L2(N ,Tr)+ satisfying condition (2). Recall from

§2.3 that L2(N ,Tr) can be identified with K⊗Q
	K as an M-M -bimodule. Viewing ξn as

a net of vectors K⊗Q
	K, we get that

〈xξny, ξn〉! τ(xy) for all x∈M and y ∈P .

Hence the M-P -bimodule ML
2(M)P is weakly contained in the M-P -bimodule K⊗Q

	K.
So condition (3) holds.

It is trivial that condition (3) implies condition (4).
We next prove that condition (4) implies condition (1). Condition (4) yields a net

(ξn)n in an infinite multiple of K⊗QH satisfying

〈xξn, ξn〉! τ(x) for all x∈M and ‖yξn−ξny‖! 0 for all y ∈P .
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The formula S(ξ⊗Qη)=Sξ⊗Qη provides a normal representation of N on K⊗QH that
commutes with the right P -module action on K⊗QH. Choosing a state Ω∈N ∗ as a
weak∗ limit point of the net of states S 7!〈Sξn, ξn〉, we have found a P -central state Ω
on N whose restriction to M equals τ . So condition (1) holds.

We finally prove the equivalence of conditions (1) and (5). One implication being
trivial by taking N=Q and H=L2(Q), assume that the M-N -bimodule L:=K⊗QH is
left P -amenable. The formula S(ξ⊗Qη)=Sξ⊗Qη provides a normal ∗-homomorphism

Θ:B(K)∩(Qop)′−!B(L)∩(Nop)′

whose restriction to M is the identity. Given a P -central state Ω on B(L)∩(Nop)′ with
Ω|M =τ , the composition Ω�Θ is a P -central state on B(K)∩(Qop)′ whose restriction to
M equals τ . So condition (1) holds and the proposition is proven.

Corollary 2.5. Let (M, τ) and (Q, τ) be tracial von Neumann algebras and P⊂M
be a von Neumann subalgebra. Let MKQ and MK′Q be M-Q-bimodules. If MKQ is left
P -amenable and weakly contained in MK′Q, then also MK′Q is left P -amenable.

Proof. Since weak containment of bimodules is transitive and preserved under the
Connes tensor product of bimodules, this is a direct consequence of the characterization
of left P -amenability by condition (3) in Proposition 2.4.

Corollary 2.6. Let (M, τ) and (Q, τ) be tracial von Neumann algebras, P1, P2⊂M
be von Neumann subalgebras and MKQ be an M-Q-bimodule.

If MKQ is left P1-amenable and if P2 is amenable relative to P1, then MKQ is also
left P2-amenable.

In particular, if P1⊂P2 is an inclusion of finite index and if MKQ is left P1-
amenable, then MKQ is also left P2-amenable.

Proof. By condition (3) in Proposition 2.4, we have that ML
2(M)P1

is weakly con-
tained in K⊗Q

	K. Hence

M(L2(M)⊗P1L
2(M))M is weakly contained in M(K⊗Q

	K⊗P1K⊗Q
	K)M.

Since P2 is amenable relative to P1, we know from condition (3) in Proposition 2.4 that

ML
2(M)P2

is weakly contained in M(L2(M)⊗P1L
2(M))P2

. In combination with the
previous line and writing QHP2

:=Q(	K⊗P1K⊗Q
	K)P2

, we conclude that

ML
2(M)P2

is weakly contained in M(K⊗QH)P2
.

Condition (4) in Proposition 2.4 implies that MKQ is left P2-amenable.
If P1⊂P2 has finite index, then P2 is trivially amenable relative to P1, and hence

also the final statement is proven.
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We next prove a result where the amenability of P relative to two subalgebras Q1

and Q2 implies the amenability of P relative to Q1∩Q2. Obviously such a result cannot
hold if Q1 and Q2 are in a generic position where typically Q1∩Q2=C1. So recall that
two von Neumann subalgebras of a tracial von Neumann algebra (M, τ) are said to
form a commuting square if EQ1 �EQ2 =EQ2 �EQ1 , where EQi denotes the unique trace-
preserving conditional expectation of M onto Qi. In that case EQ1 �EQ2 is the unique
trace-preserving conditional expectation of M onto Q1∩Q2.

Proposition 2.7. Let (M, τ) be a tracial von Neumann algebra with von Neumann
subalgebras Q1, Q2⊂M . Assume that Q1 and Q2 form a commuting square and that Q1

is regular in M .
If a von Neumann subalgebra P⊂pMp is amenable relative to both Q1 and Q2, then

P is amenable relative to Q1∩Q2.

Proof. We define
Ti:L1(〈M, eQi〉)−!L1(M)

by
τ(Ti(S)x) =Tr(Sx) for S ∈L1(〈M, eQi〉) and x∈M .

Since P is amenable relative to Q1 and relative to Q2, condition (2) in Proposition 2.4
provides nets µi∈pL2(〈M, eQ1〉)+p and ξj∈pL2(〈M, eQ2〉)+p satisfying the following prop-
erties:

0 6 T1(µ2
i ) 6 p for all i, ‖T1(µ2

i )−p‖1! 0 and ‖yµi−µiy‖2! 0 for all y ∈P ,

and similarly for (ξj)j .
Consider the M-M -bimodule

H :=L2(〈M, eQ1〉)⊗ML2(〈M, eQ2〉).

We will prove below that H admits a net of vectors ηk∈pHp such that

‖yηk−ηky‖! 0 for all y ∈P and 〈xηk, ηk〉! τ(x) for all x∈ pMp. (2.2)

Note that for every µ∈L2(〈M, eQ1〉) and every j, the vector µ⊗M ξj∈H is well defined
and satisfies

‖µ⊗M ξj‖= 〈µT2(ξ2j ), µ〉1/2 6 ‖µ‖2. (2.3)

Similarly, for every ξ∈L2(〈M, eQ2〉) and every i, the vector µi⊗M ξ is well defined and
satisfies

‖µi⊗M ξ‖6 ‖ξ‖2. (2.4)
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Fix finite subsets F⊂P , G⊂pMp and fix ε>0. We will produce a vector η∈pHp such
that

‖yη−ηy‖6 2ε for all y ∈F , (2.5)

|〈xη, η〉−τ(x)|6 2ε for all x∈G. (2.6)

Once these two statements are proven, we find a net (ηk)k in H satisfying conditions
(2.2).

First fix i such that ‖yµi−µiy‖26ε for all y∈F and |〈xµi, µi〉−τ(x)|6ε for all x∈G.
Since 06T1(µ2

i )6p, it follows that, for every x∈M , the element T1(µixµi)∈L1(M)
is bounded in the uniform norm and hence belongs to pMp. Put G′ :={T1(µixµi):x∈G}.
Then fix j such that ‖yξj−ξjy‖26ε for all y∈F and |〈xξj , ξj〉−τ(x)|6ε for all x∈G′.

Put η: =µi⊗M ξj . Note that η∈pHp. We now prove that η satisfies (2.5) and (2.6).
Take y∈F . As ‖yµi−µiy‖26ε, it follows from (2.3) that ‖yη−µiy⊗M ξj‖6ε. Note that
µiy⊗M ξj =µi⊗M yξj . As ‖yξj−ξjy‖26ε, it follows from (2.4) that ‖µi⊗M yξj−ηy‖6ε.
So (2.5) holds.

To prove (2.6), take x∈G. Note that

〈xη, η〉= 〈xµi⊗M ξj , µi⊗M ξj〉= 〈T1(µixµi)ξj , ξj〉.

Since T1(µixµi)∈G′, it follows from our choice of j that

|〈xη, η〉−τ(T1(µixµi))|6 ε.

But τ(T1(µixµi))=Tr(µixµi)=〈xµi, µi〉 and also |〈xµi, µi〉−τ(x)|6ε. Hence also (2.6)
follows.

So we have proven the existence of a net (ηk)k in pHp satisfying the conditions
(2.2). It follows that the bimodule pMpL

2(pMp)P is weakly contained in the bimodule

pMp(pHp)P .
We claim that the M-M -bimodule H is contained in a multiple of ML

2(〈M, eQ〉)M
with Q=Q1∩Q2. Whenever u, v∈NM (Q1), denote by Hu,v⊂H the closed linear span of
the vectors {xeQ1u⊗M veQ2y :x, y∈M}. Note that Hu,v is an M-M -sub-bimodule of H.
The commuting square condition together with the formula Ad(uv)∗�EQ1 =EQ1 �Ad(uv)∗

guarantees that the formula

xeQ1u⊗M veQ2y 7−!xuv⊗Qy

defines an M-M -bimodular unitary operator of Hu,v onto L2(〈M, eQ〉). Since Q1 is
regular in M , the sub-bimodules {Hu,v :u, v∈NM (Q1)} span a dense subspace of H. It
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then follows that H is indeed contained in a multiple of L2(〈M, eQ〉), and the claim is
proven.

Using the claim, it follows that the bimodule pMpL
2(pMp)P is weakly contained in

the bimodule

pMp(pL2(〈M, eQ〉)p)P = pMp(pL2(M)⊗QL
2(M)p)P .

By condition (3) in Proposition 2.4 this means that P is amenable relative to Q.

We finally prove the following easy lemma. Its proof is almost identical to the proof
of [OP1, Lemma 3.6].

Lemma 2.8. Assume that (M, τ) is a tracial von Neumann algebra with von Neu-
mann subalgebra A⊂M . Let Λ<NM (A) be a countable subgroup. Assume that Λ is
amenable. Then (A∪Λ)′′ is amenable relative to A.

Note that the von Neumann algebra (A∪Λ)′′ need not be a crossed product AoΛ.
In the extreme (and uninteresting) case we might even have that Λ⊂U(A).

Proof. Define

K := {Ω∈ 〈M, eA〉∗ : Ω is an A-central state satisfying Ω|M = τ}.

Equipped with the weak∗ topology, K is compact and convex. Also K is non-empty since
the state on 〈M, eA〉⊂B(L2(M)) implemented by the vector 1∈L2(M) belongs to K.

The formula αg(Ω)=g ·Ω·g∗ defines an action of Λ on K by affine weak∗ home-
omorphisms. Since Λ is amenable, this action has a fixed point Ω∈K. So Ω is a
state on 〈M, eA〉 that is x-central for all x∈span{ag :a∈A and g∈Λ} and that satis-
fies Ω|M =τ . It remains to prove that Ω is (A∪Λ)′′-central. This follows immediately
as span{ag :a∈A and g∈Λ} is ‖ · ‖2-dense in (A∪Λ)′′ and since the Cauchy–Schwarz in-
equality implies that for all x, y∈M we have

‖x·Ω−y ·Ω‖6Ω((x−y)∗(x−y))1/2 = ‖x−y‖2,

and similarly ‖Ω·x−Ω·y‖6‖x−y‖2.

2.6. A lemma on non-normal states

The following lemma is distilled from [OP1, Corollary 2.3] and [O2, Lemma 5], with a
very similar proof but a more generic formulation of the result.

Lemma 2.9. Let N be a von Neumann algebra and M⊂N be a von Neumann
subalgebra. Let G1⊂G2⊂U(N ) be subgroups such that all u∈G2 normalize M . Assume
that τ is a faithful normal tracial state on M that is (Adu)u∈G2-invariant.
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Assume that, for every non-zero (Adu)u∈G2-invariant projection p∈M , there ex-
ists a (typically non-normal) positive functional Ψ on N satisfying the following three
properties:

(1) Ψ(vp)=Ψ(p) for all v∈G1;
(2) Ψ�Adu=Ψ for all u∈G2;
(3) either Ψ|pMp is normal and non-zero, or Ψ|pMp is faithful in the sense that

Ψ(q)>0 for all non-zero projections q∈pMp.
Then there exists a state Ω on N such that Ω(v)=1 for all v∈G1, Ω�Adu=Ω for

all u∈G2 and Ω(x)=τ(x) for all x∈M .

Proof. We first claim that for every non-zero (Adu)u∈G2-invariant projection p∈M ,
there exists a non-zero (Adu)u∈G2-invariant projection p0∈pMp and a positive functional
Ψ0 on p0Np0 such that

• Ψ0(vp0)=Ψ0(p0) for all v∈G1;
• Ψ0�Adu=Ψ0 for all u∈G2;
• the restriction of Ψ0 to p0Mp0 is normal and faithful.
Given a non-zero (Adu)u∈G2-invariant projection p∈M , take a positive functional

Ψ on N satisfying properties (1)–(3) in the formulation of the lemma. First assume that
Ψ|pMp is normal and non-zero. Since Ψ|pMp is (Adu)u∈G2-invariant, the support of the
non-zero normal positive functional Ψ|pMp is also (Adu)u∈G2-invariant. We denote this
support by p0 and define Ψ0(S):=Ψ(p0Sp0). Note that p0 is a non-zero projection in pMp

and that Ψ(p−p0)=0. Hence the Cauchy–Schwarz inequality implies that Ψ(v(p−p0))=0
for all v∈G1. We conclude that Ψ0(vp0)=Ψ0(p0) for all v∈G1. The other conditions are
obvious and we have shown the claim in the case where Ψ|pMp is normal and non-zero.

Next assume that Ψ|pMp is faithful. Replacing Ψ by Ψ(p·p), properties (1) and (2)
in the formulation of the lemma remain valid and Ψ(S)=Ψ(Sp)=Ψ(pS) for all S∈N .
Still Ψ|pMp is faithful. We prove now that the claim holds with p0=p.

We consider the bidual von Neumann algebras M∗∗ and N ∗∗. We view M (resp. N )
as weakly dense C∗-subalgebras of M∗∗ (resp. N ∗∗). We denote by θ:M∗∗!N ∗∗ the
bidual of the inclusion M⊂N . Then θ is the unique normal ∗-homomorphism satisfying
θ(x)=x for all x∈M . We denote by π:M∗∗!M the unique normal ∗-homomorphism
satisfying π(x)=x for all x∈M . Define the central projection z∈M∗∗ as the support
projection of π. Recall from [Ta1, Definition III.2.15] that for all ω∈M∗ we have that
ω=ω ·z+ω ·(1−z) corresponds to the unique decomposition of ω as a sum of a normal
and a singular functional on M .

Whenever α∈Aut(M), we denote by α∗∗ the bidual automorphism of M∗∗. Since
α�π=π�α∗∗, it follows that α∗∗(z)=z for all α∈Aut(M). For every u∈G2, we define
αu∈Aut(M) given by αu(x)=uxu∗ for all x∈M . Note that uθ(x)u∗=θ(αu(x)) for all
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u∈G2 and x∈M . Hence we get that uθ(x)u∗=θ(α∗∗u (x)) for all x∈M∗∗. It follows in
particular that uθ(z)u∗=θ(z) for all u∈G2.

Define the positive functional Ψ0 on pNp by the formula Ψ0(S)=Ψ(θ(z)Sθ(z)). Note
that the projection θ(z) commutes with x=θ(x) for all x∈M . So, since Ψ(1−p)=0, also
Ψ0(1−p)=0 and Ψ0(S)=Ψ0(Sp)=Ψ0(pS) for all S∈N . As explained above, θ(z) also
commutes with all u∈G2. Since Ψ�Adu=Ψ for all u∈G2, also Ψ0�Adu=Ψ0 for all u∈G2.

Next take v∈G1. Set d=1− 1
2 (v+v∗). Note that d is a positive element in N and

that Ψ(d)=Ψ(dp)=0. Since θ(z) commutes with v, we also have that θ(z) commutes
with d. Therefore, using the Cauchy–Schwarz inequality,

Ψ0(d)2 = |Ψ(θ(z)dθ(z))|2 = |Ψ(θ(z)d)|2 6Ψ(θ(z)d1/2θ(z))Ψ(d) = 0.

We conclude that Ψ0(vp)=Ψ0(v)=Ψ0(1)=Ψ0(p) for all v∈G1.
Denote by ω the restriction of Ψ to pMp. Denote by ω=ωn+ωs the unique decom-

position of ω as the sum of a normal and a singular functional. As observed above the
restriction of Ψ0 to pMp equals ωn. We know that ω is faithful on pMp. It remains to
show that ωn is still faithful. Assume that q∈pMp is a projection and that ωn(q)=0. We
have to prove that q=0. By [Ta1, Theorem III.3.8] we can take an increasing sequence
of projections pk∈M such that pk!1 strongly and ωs(pk)=0 for all k. Consider the
projections q∧pk and note that q∧pk!q strongly. Indeed, since the projection q−q∧pk

is equivalent with the projection q∨pk−pk, we have

τ(q−q∧pk) = τ(q∨pk)−τ(pk) 6 1−τ(pk)! 0.

As q∧pk6q and ωn(q)=0, we have ωn(q∧pk)=0 for all k. Since q∧pk6pk and ωs(pk)=0,
we have ωs(q∧pk)=0 for all k. Hence, ω(q∧pk)=0 for all k. As ω is faithful on pMp,
we conclude that q∧pk=0 for all k. Since q∧pk!q strongly, also q=0. So we have
established the claim in the beginning of the proof.

Using Zorn’s lemma take a maximal sequence {(pn,Ψn)}n∈N where the pn are mutu-
ally orthogonal (Adu)u∈G2-invariant non-zero projections in M and the Ψn are positive
functionals on pnNpn such that Ψn(vpn)=Ψn(pn) for all v∈G1, Ψn�Adu=Ψn for all
u∈G2 and the restriction of Ψn to pnMpn is a faithful normal positive functional ωn.

By the claim in the beginning of the proof and by the maximality of the family
(pn,Ψn), it follows that

∑∞
n=1 pn=1. Define the normal faithful (Adu)u∈G2-invariant

state ω on M given by

ω(x) =
∞∑

k=1

τ(pk)
ωk(pk)

ωk(pkxpk).

Define the sequence of positive functionals Φn on N given by the formula

Φn(S) :=
n∑

k=1

τ(pk)
Ψk(pk)

Ψk(pkSpk).
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Choose a state Φ on N as a weak∗ limit point of the sequence {Φn}n∈N. By construction,
we have that Φ(v)=Φ(1) for all v∈G1, that Φ�Adu=Φ for all u∈G2 and that Φ|M =ω.

Take h∈L1(M)+ such that ω(x)=τ(xh) for all x∈M . Note that the kernel of h is
trivial because ω is a faithful normal state on M . Since both ω and τ are (Adu)u∈G2-
invariant, it follows that h is (Adu)u∈G2-invariant. Define Ω∈N ∗ as any weak∗ limit
point of the sequence of positive functionals

S 7−!Φ
((

h+
1
k

)−1/2

S

(
h+

1
k

)−1/2)
.

By construction Ω(x)=τ(x) for all x∈M . As both Φ and (h+1/k)−1/2 are (Adu)u∈G2-
invariant, also Ω�Adu=Ω for all u∈G2. Finally, take v∈G1 and put d:=1− 1

2 (v+v∗).
Since G1⊂G2, we see that d commutes with (h+1/k)−1/2 for all k. Using the Cauchy–
Schwarz inequality we get for every k that

Φ
((

h+
1
k

)−1/2

d

(
h+

1
k

)−1/2)2

=
∣∣∣∣Φ((

h+
1
k

)−1

d

)∣∣∣∣2
6Φ

((
h+

1
k

)−1

d

(
h+

1
k

)−1)
Φ(d) = 0.

So also Ω(d)=0 and hence Ω(v)=1 for all v∈G1.

3. Formulation of the key technical theorem

If c: Γ!KR is a 1-cocycle into the orthogonal representation η: Γ!O(KR), the function
g 7!‖c(g)‖2 is conditionally of negative type. By Schoenberg’s theorem, the formula

ψt: Γ−!R,

g 7−! exp(−t‖c(g)‖2),

defines a one-parameter family (ψt)t>0 of functions of positive type on Γ.
Let M=BoΓ be a crossed product of Γ by a trace-preserving action Γy(B, τ).

Associated with the 1-cocycle c: Γ!KR, we get a one-parameter group (ψt)t>0 of unital
completely positive normal trace-preserving maps

ψt:M −!M,

bug 7−! exp(−t‖c(g)‖2)bug for b∈B and g ∈Γ.
(3.1)

Recall from (2.1) that we associated with every unitary representation η: Γ!U(K)
an M-M -bimodule Kη defined by

Kη :=K⊗L2(M),

(bug)·(ξ⊗x)·y=ηgξ⊗bugxy for b∈B, g ∈Γ, ξ ∈K and x, y ∈M .
(3.2)
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Whenever KR is a real Hilbert space, we denote by K its complexification. If

η: Γ−!O(KR)

is an orthogonal representation, we still denote by η the corresponding unitary represen-
tation on K.

Theorem 3.1. Let Γ be a weakly amenable group and c: Γ!KR be a 1-cocycle into
the orthogonal representation η: Γ!O(KR).

Let Γ
σy(B, τ) be any trace-preserving action on a tracial von Neumann algebra

(B, τ). Set M=BoΓ. We consider the M-M -bimodule Kη associated with the complex-
ification of η as in (3.2). We denote by (ψt)t>0 the one-parameter group of completely
positive maps associated with c: Γ!KR as in (3.1).

Let q∈M be a projection and A⊂qMq be any von Neumann subalgebra that is
amenable relative to B. Denote by P :=NqMq(A)′′ its normalizer. Then at least one of
the following statements holds:

• the qMq-M -bimodule qMq(qKη)M is left P -amenable in the sense of Definition 2.3;
• or there exist t, δ>0 such that ‖ψt(a)‖2>δ for all a∈U(A).

4. Proof of Theorem 3.1: reduction to Γ acting trivially

Lemma 4.1. It suffices to prove Theorem 3.1 for the trivial action Γy(B, τ) on
arbitrary tracial von Neumann algebras (B, τ).

Proof. Assume that Theorem 3.1 holds for the trivial action of Γ on an arbitrary
tracial von Neumann algebra. Let then Γy(B, τ) be an any trace-preserving action. Set
M=BoΓ and let A⊂qMq be a von Neumann subalgebra that is amenable relative to
B. Denote by P :=NqMq(A)′′ the normalizer of A inside qMq. As in the formulation of
Theorem 3.1, we consider the M-M -bimodule Kη on the Hilbert space Kη=K⊗L2(M),
and we consider the one-parameter group (ψt)t>0 of completely positive maps on M ,
associated with the 1-cocycle c: Γ!KR.

Put M:=M
⊗L(Γ) and view M as the crossed product of M with the trivial action
of Γ. Define

∆:M −!M,

bug 7−! bug⊗ug for b∈B and g ∈Γ.

Define q̃ :=∆(q), A:=∆(A) and P :=Nq̃Mq̃(A)′′. Note that ∆(P )⊂P.
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We prove that A is amenable relative to M⊗1. Since A is amenable relative to
B, it follows from Proposition 2.4 (3) that the bimodule qMqL

2(qMq)A is weakly con-
tained in the bimodule qMq(qL2(M)⊗BL

2(M)q)A. We take on the left the Connes ten-
sor product with the bimodule q̃Mq̃L

2(q̃Mq̃)∆(qMq), in which the right-module action
of x∈qMq is given by the right multiplication with ∆(x). It follows that the bimodule

q̃Mq̃L
2(q̃Mq̃)∆(A) is weakly contained in the bimodule

q̃Mq̃LA := (q̃Mq̃L
2(q̃Mq̃)∆(qMq))⊗qMq (qMq(qL2(M)⊗BL

2(M)q)A).

The following direct computation shows that the map

S⊗qMq (x⊗By) 7−!S∆(x)⊗M⊗1∆(y)

extends to a bimodular isometry of q̃Mq̃LA into the bimodule

q̃Mq̃(q̃L2(M)⊗M⊗1L
2(M)q̃)∆(A).

Indeed, for all S, T∈q̃Mq̃, x, a∈qM and y, b∈Mq, we have

〈S⊗qMq (x⊗By), T⊗qMq (a⊗B b)〉= τ((b∗⊗1)EB⊗1(∆(a∗)T ∗S∆(x))(y⊗1))

= τ((EB(yb∗)⊗1)∆(a∗)T ∗S∆(x))

= τ(EM⊗1(∆(yb∗))∆(a∗)T ∗S∆(x))

= τ(∆(yb∗)EM⊗1(∆(a∗)T ∗S∆(x)))

= 〈S∆(x)⊗M⊗1∆(y), T∆(a)⊗M⊗1∆(b)〉.

So the bimodule q̃Mq̃(q̃L2(M)⊗M⊗1L
2(M)q̃)∆(A) weakly contains q̃Mq̃L

2(q̃Mq̃)∆(A).
Proposition 2.4 (3) then says that ∆(A) is amenable relative to M⊗1.

For the trivial crossed product M, we also consider the M-M-bimodule K̃η on the
Hilbert space K̃η=K⊗L2(M), and the one-parameter group of completely positive maps
(ψ̃t)t>0 on M. Since we assumed that Theorem 3.1 holds for the trivial action and since
we have proven above that A is amenable relative to M⊗1, at least one of the following
statements is true:

• the q̃Mq̃-M-bimodule q̃K̃η is left P-amenable;
• or there exist t, δ>0 such that ‖ψ̃t(a)‖2>δ for all a∈U(A).
We now prove that these options lead respectively to the left P -amenability of

qMq(qKη)M, or the inequality ‖ψt(a)‖2>δ for all a∈U(A). Once this is proven, also
the lemma is proven.

First assume that the q̃Mq̃-M-bimodule q̃K̃η is left P-amenable. View K̃η as an
M -M-bimodule using the left module action by ∆(x), x∈M . So a fortiori qMq(q̃K̃η)M
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is left P -amenable. Viewing L2(M) as an M -M-bimodule by using also here the left
module action by ∆(x), x∈M , we observe that MK̃η

M is canonically isomorphic with

M(Kη⊗ML2(M))M. We conclude that the bimodule qMq(qKη⊗ML2(M))M is left P -
amenable. By condition (5) in Proposition 2.4, we get that also qMq(qKη)M is left P -
amenable.

Since ψ̃t�∆=∆�ψt, the inequality ‖ψ̃t(a)‖2>δ for all a∈U(A) immediately implies
that ‖ψt(a)‖2>δ for all a∈U(A).

5. Weak amenability produces almost invariant states

We prove the following theorem, which will be the first step towards the proof of Theo-
rem 3.1. We use the notation ū:=(uop)∗.

Theorem 5.1. Let Γ be a weakly amenable group and (B, τ) be any tracial von Neu-
mann algebra. Write M :=B
⊗L(Γ) and assume that A⊂M is a von Neumann subalgebra
that is amenable relative to B. Denote its normalizer by P :=NM (A)′′. Define N as the
von Neumann algebra generated by B and P op on the Hilbert space L2(M)⊗AL

2(P ).
Put N :=N
⊗L(Γ) and define the tautological embeddings

π:M−!N , and θ:P op−!N ,

b⊗ug 7−! b⊗ug, yop 7−! yop⊗1,

for b∈B, g∈Γ and y∈P .
Then there exists a net of normal states ωi∈N∗ satisfying the following properties:
• ωi(π(x))!τ(x) for all x∈M ;
• ωi(π(a)θ(ā))!1 for all a∈U(A);
• ‖ωi�Ad(π(u)θ(ū))−ωi‖!0 for all u∈NM (A).

5.1. Easy proof of Theorem 5.1 when Γ has the CMAP

In the case where Γ has the CMAP, the proof of Theorem 5.1 is very similar to the proof
of [OP1, Theorem 3.5].

Fix a sequence fn: Γ!C of finitely supported functions tending to 1 pointwise and
satisfying lim supn!∞ ‖fn‖cb=1. Let mn:L(Γ)!L(Γ) be the corresponding normal com-
pletely bounded maps given by mn(ug)=fn(g)ug for all g∈Γ. We also define ϕn:M!M
by ϕn=id⊗mn.

Define the von Neumann algebrasN andN , together with the embeddings π:M!N
and θ:P op!N as in the formulation of Theorem 5.1. Note that π(M) commutes with
θ(P op) and that together they generate N .
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Proof of Theorem 5.1 in the case when Γ has the CMAP. Let MKM be the M-M -
bimodule K:=L2(M)⊗BL

2(M) and explicitly denote by λ:M!B(K) and %:Mop!B(K)
the normal ∗-homomorphisms given by the left- and the right-bimodule actions. Define
the von Neumann algebra SA :=λ(M)∨%(Aop).

We claim that there exists a normal completely positive unital map E :N!SA sat-
isfying

E(π(x)θ(yop))=λ(x)%(EA(y)op) for all x∈M and y ∈P .

To prove this claim, recall that N is defined as the von Neumann algebra acting on
(L2(M)⊗AL

2(P ))⊗`2(Γ) generated by π(M) and θ(P op). The formula

V :K−! (L2(M)⊗AL
2(P ))⊗`2(Γ),

(b⊗ug)⊗Bx 7−! (bx⊗A1)⊗δg for b∈B, g ∈Γ and x∈M ,

yields a well-defined isometry and E can be defined by the formula E(z)=V ∗zV for all
z∈N . This proves the claim.

We next claim that there exists a sequence of normal functionals µA
n ∈(SA)∗ satisfying

µA
n (λ(x)%(aop))= τ(ϕn(x)a) for all x∈M and a∈A.

This claim follows from a direct computation and the formula

µA
n (T ) =

∑
g∈supp fn

fn(g)〈T (1⊗B (1⊗ug)), ((1⊗ug)⊗B1)〉 for all T ∈SA,

which is meaningful because fn is finitely supported.
We define γn∈N∗ by the formula γn=µA

n �E and put ωn :=‖γn‖−1|γn|. We will prove
that ωn∈N∗ is a sequence of normal states that satisfies the conclusion of Theorem 5.1.
Note that, by definition,

γn(π(x)θ(yop))= τ(ϕn(x)EA(y)) for all x∈M and y ∈P . (5.1)

For every u∈NM (A) the expression Ad(λ(u)%(ū)) defines an automorphism of SA.
We will prove the following two statements:

(1) lim supn!∞ ‖µA
n ‖=1;

(2) limn!∞ ‖µA
n �Ad(λ(u)%(ū))−µA

n ‖=0 for all u∈NM (A).
Once these two statements are proven, we get lim supn!∞ ‖γn‖=1 because γn=µA

n �E .
As γn(1)!1, it will follow that ‖γn−ωn‖!0. Since E �Ad(π(u)θ(ū))=Ad(λ(u)%(ū))�E
for all u∈NM (A), we also get that

lim
n!∞

‖γn�Ad(π(u)θ(ū))−γn‖=0 for all u∈NM (A).
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Then the same holds for ωn instead of γn and all the required properties of ωn are proven,
or follow directly from (5.1) and the fact that ‖γn−ωn‖!0.

It remains to prove statements (1) and (2) above. Define SA as the C∗-algebra
acting on K generated by λ(M) and %(Aop). Note that SA is a dense C∗-subalgebra
of SA. Since the norm of a normal functional coincides with the norm of its restriction
to a dense C∗-subalgebra, we from now on consider µA

n as a continuous functional on SA

and compute all norms inside S∗A.
Whenever Q⊂P is a von Neumann subalgebra, we define SQ as the C∗-algebra

acting on K generated by λ(M) and %(Qop). As with µA
n above, the formula

µQ
n :SQ−!C,

λ(x)%(yop) 7−! τ(ϕn(x)y) for x∈M and y ∈Q,

defines a sequence of continuous functionals µQ
n on SQ. We claim that, if Q is amenable

relative to B, then lim supn!∞ ‖µQ
n ‖=1. The special case Q=A then yields statement (1)

above. To prove this claim, first observe that there is a sequence of completely bounded
maps ϕ̃n:SQ!SQ satisfying

ϕ̃n(λ(x)%(yop))=λ(ϕn(x))%(yop) for all x∈M and y ∈Q

and
‖ϕ̃n‖cb = ‖fn‖cb.

To see this, it suffices to consider the unitary operator

U :K−!L2(B)⊗`2(Γ)⊗`2(Γ),

(b⊗ug)⊗B (c⊗uh) 7−! bc⊗δg⊗δh for b, c∈B and g, h∈Γ,

which satisfies Uλ(b⊗ug)U∗=b⊗ug⊗1 for all b∈B and g∈Γ, and

U%(Qop)U∗⊂B(L2(B))
⊗1
⊗B(`2(Γ)).

We can then define ϕ̃n(z)=U∗(id⊗mn⊗id)(UzU∗)U for all z∈SQ.
Since Q is amenable relative to B, we know from point (3) in Proposition 2.4 that

the bimodule ML
2(M)Q is weakly contained in the bimodule MKQ. Denoting by λL2(M)

and %L2(M) the left- and right-module actions of M and Mop on L2(M), we then get a
continuous ∗-homomorphism Θ:SQ!B(L2(M)) satisfying

Θ(λ(x)%(yop))=λL2(M)(x)%L2(M)(yop) for all x∈M and y ∈Q.
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Since
µQ

n (z) = 〈Θ(ϕ̃n(z))1, 1〉 for all z ∈Q,

the above claim follows and also statement (1) is proven.
To prove statement (2), fix u∈NM (A) and define Q⊂P as the von Neumann algebra

generated by A and u. By Lemma 2.8, Q is amenable relative to A. Since A is amenable
relative to B, it then follows from Corollary 2.6 that also Q is amenable relative to B.
Therefore we have lim supn!∞ ‖µQ

n ‖=1. The definition of µQ
n immediately gives us

µQ
n (1)= τ(ϕn(1))! 1

as well as
µQ

n (λ(u)%(ū))= τ(ϕn(u)EQ(u∗))= τ(ϕn(u)u∗)! 1,

since u∈Q. As lim supn!∞ ‖µQ
n ‖=1, it follows that

‖µQ
n �Ad(λ(u)%(ū))−µQ

n ‖! 0.

Restricting the functionals µQ
n �Ad(λ(u)%(ū)) and µQ

n to SA, statement (2) follows.
As explained above, the proof of statements (1) and (2) concludes the proof of the

theorem.

5.2. Proof of Theorem 5.1 for arbitrary weakly amenable Γ

For arbitrary weakly amenable groups Γ, our proof of Theorem 5.1 follows very closely
the proof of [O2, Theorem B]. We start by the following adaptation of [O2, Lemma 6].

Lemma 5.2. Let M=B
⊗D be the tensor product of two tracial von Neumann alge-
bras. Let A⊂M be a von Neumann subalgebra that is amenable relative to B. Consider
the M -A-bimodule K:=L2(M)⊗BL

2(M) and denote by λ(x) and %(aop) the left- and
the right-module actions of x∈M and a∈A. Denote by SA the C∗-algebra generated by
λ(M) and %(Aop).

We say that a normal completely bounded map ψ:M!M is adapted if there exists a
4-tuple (π,H, V,W ) consisting of a ∗-representation π of the C∗-algebra SA on a Hilbert
space H and bounded maps V,W :NM (A)!H such that

τ(w∗ψ(x)va) = 〈π(λ(x)%(aop))V (v),W (w)〉 for all x∈M , a∈A and v, w∈NM (A).
(5.2)

Here we write ‖V ‖∞ :=sup{‖V (v)‖:v∈NM (A)}. Following the discussion after Lemma 6
in [O2], we define ‖ψ‖A as the infimum of all ‖V ‖∞‖W‖∞, where (π,H, V,W ) ranges
over all 4-tuples satisfying (5.2).

(1) If m:D!D is a normal completely bounded map, then id⊗m:M!M is adapted
and ‖id⊗m‖A6‖m‖cb.
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(2) If ψ:M!M is an adapted normal completely bounded map, u1, u2∈NM (A) and
x1, x2∈M , then also the normal completely bounded map x 7!u∗1ψ(x∗1xx2)u2 is adapted.

Proof. We start by proving the first statement. Assume that m:D!D is a normal
completely bounded map. The formula

U :K−!L2(B)⊗L2(D)⊗L2(D),

(b⊗d)⊗B (b′⊗d′) 7−! bb′⊗d⊗d′,

yields a unitary operator satisfying Uλ(b⊗d)U∗=b⊗d⊗1 for all b∈B and d∈D, and

U%(Aop)U∗⊂B(L2(B))
⊗1
⊗B(L2(D)).

So the formula ψ̃(z):=U∗(id⊗m⊗id)(UzU∗)U provides a normal completely bounded
map ψ̃:SA!SA satisfying

ψ̃(λ(x)%(aop))=λ((id⊗m)(x))%(aop) for all x∈M and a∈A.

Note that ‖ψ̃‖cb=‖m‖cb.
Since A is amenable relative to B, we know from point (3) in Proposition 2.4 that the

bimodule ML
2(M)A is weakly contained in the bimodule MKA. So we have a continuous

∗-homomorphism Θ:SA!B(L2(M)) satisfying

Θ(λ(x)%(aop))=λL2(M)(x)%L2(M)(aop) for all x∈M and a∈A.

We now apply a Stinespring-type factorization theorem (see, e.g., [BO, Theorem B.7])
to the completely bounded map Θ�ψ̃:SA!B(L2(M)). We find a ∗-representation

π:SA−!B(H)

of SA on a Hilbert space H and bounded operators V,W :L2(M)!H such that

Θ(ψ̃(z))=W ∗π(z)V for all z ∈SA and ‖V ‖ ‖W‖= ‖Θ�ψ̃‖cb 6 ‖ψ̃‖cb = ‖m‖cb.

Define V,W :NM (A)!H given by restricting V and W to NM (A)⊂L2(M). We have

‖V ‖∞‖W‖∞6 ‖V ‖ ‖W‖6 ‖m‖cb.

A direct computation yields that (5.2) holds for ψ=id⊗m. So id⊗m is adapted and

‖id⊗m‖A 6 ‖V ‖∞‖W‖∞6 ‖m‖cb.

The proof of the second statement is straightforward. Assume that (π,H, V,W ) sat-
isfies (5.2) with respect to ψ. Define ψ̃(x)=u∗1ψ(x∗1xx2)u2. Put Ṽ (v)=π(λ(x2))(V (u2v))
and W̃ (w)=π(λ(x1))(V (u1w)). It is straightforward to check that property (5.2) holds
for (π,H, Ṽ , W̃ ) with respect to ψ̃. So ψ̃ is adapted.
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Definition 5.3. Let (M, τ) be a tracial von Neumann algebra and B⊂M be a von
Neumann subalgebra. We say that a linear map ψ:M!M has finite rank relative to B if
ψ can be written as a finite linear combination of the maps {ψy,z,r,t :y, z, r, t∈M}, where

ψy,z,r,t:M −!M,

x 7−! yEB(zxr)t,

and where EB :M!B denotes the unique trace-preserving conditional expectation.

We call a net of linear maps ψi:M!M an approximate identity relative to B if all
the ψi are completely bounded, of finite rank relative to B, and if they satisfy

sup
i
‖ψi‖cb<∞ and lim

i
‖ψi(x)−x‖2 =0 for all x∈M .

The following proposition follows by a straightforward “relativization to B” of the
proof of [O2, Proposition 7]. For completeness we nevertheless give a detailed proof.

Proposition 5.4. Let Γ be a weakly amenable group and (B, τ) be a tracial von
Neumann algebra. Put M=B
⊗L(Γ) and let A⊂M be a von Neumann subalgebra that is
amenable relative to B. Consider the M -A-bimodule K:=L2(M)⊗BL

2(M) and denote
by λ(x) and %(aop) the left- and the right-module actions of x∈M and a∈A. Denote by
SA the C∗-algebra generated by λ(M) and %(Aop).

Then M admits an approximate identity relative to B, denoted by ψi:M!M , such
that all the ψi are adapted in the sense of Lemma 5.2 and such that the functionals
µi∈S∗A given by

µi:SA−!C,

λ(x)%(aop) 7−! τ(ψi(x)a) for x∈M and a∈A,

satisfy
• supi ‖µi‖<∞;
• limi ‖µi�Ad(λ(u)%(ū))−µi‖=0 for all u∈NM (A);
• limi ‖(λ(v)%(v̄))·µi−µi‖=0 for all v∈U(A), where the functional (λ(v)%(v̄))·µi in

S∗A is defined by the formula ((λ(v)%(v̄))·µi)(z)=µi(zλ(v)%(v̄)) for all z∈SA.

Proof. Whenever ψi:M!M is a normal completely bounded map that is adapted
in the sense of Lemma 5.2, it follows from (5.2) that the corresponding functional µi on
SA is well defined and continuous, and satisfies ‖µi‖6‖ψi‖A. Here, and in the rest of
the proof, we use the notation ‖ψi‖A introduced in Lemma 5.2.
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As Γ is weakly amenable, we can take a sequence fn: Γ!C of finitely supported func-
tions that tend to 1 pointwise and satisfy lim supn!∞ ‖fn‖cb<∞. Let mn:L(Γ)!L(Γ)
be the corresponding completely bounded maps given by mn(ug)=fn(g)ug for all g∈Γ.
Then id⊗mn:M!M forms an approximate identity relative to B. From Lemma 5.2 (1)
we know that id⊗mn is adapted and that

lim sup
n!∞

‖id⊗mn‖A 6 lim sup
n!∞

‖mn‖cb = lim sup
n!∞

‖fn‖cb<∞.

Denote by �>1 the infimum of all the numbers lim supi ‖ψi‖A where (ψi)i ranges
over all adapted approximate identities of M relative to B. Because we have the adapted
approximate identity relative to B given as {id⊗mn}n∈N, we know that �<∞.

Then M admits an adapted approximate identity relative to B, denoted ψi:M!M ,
and 4-tuples (πi,Hi, Vi,Wi) satisfying (5.2) with respect to ψi and satisfying

lim
i
‖Vi‖∞=

√
�= lim

i
‖Wi‖∞.

We will prove that the net (ψi)i satisfies the conclusion of the proposition.
First fix u∈NM (A) and define

ψu
i :M −!M,

x 7−!ψi(xu∗)u.

Note that every ψu
i still has finite rank relative to B in the sense of Definition 5.3. Hence

(ψu
i )i and also

(
1
2 (ψi+ψu

i )
)
i

are approximate identities of M relative to B. Define

V u
i (v) :=πi(λ(u))∗Vi(v) for all v ∈NM (A).

A direct computation shows that (πi,Hi, V
u
i ,Wi) satisfies (5.2) with respect to ψu

i . So
the 4-tuple

(
πi,Hi,

1
2 (Vi+V u

i ),Wi

)
also satisfies (5.2) with respect to 1

2 (ψi+ψu
i ). We

conclude that 1
2 (ψi+ψu

i ), and all its subnets, are adapted approximate identities relative
to B. It follows that lim infi

∥∥ 1
2 (ψi+ψu

i )
∥∥

A
>�, which implies that

�6 lim inf
i

∥∥ 1
2 (ψi+ψu

i )
∥∥

A
6 lim inf

i

∥∥ 1
2 (Vi+V u

i )
∥∥
∞‖Wi‖∞=

√
� lim inf

i

∥∥ 1
2 (Vi+V u

i )
∥∥
∞.

So we can choose vi∈NM (A) such that

lim inf
i

∥∥ 1
2 (Vi(vi)+V u

i (vi))
∥∥>

√
�.

Since ‖Vi(vi)‖6‖Vi‖∞!
√
� and also ‖V u

i (vi)‖6‖V u
i ‖∞=‖Vi‖∞!

√
�, the parallelo-

gram law implies that ‖Vi(vi)−V u
i (vi)‖!0.
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Now define the functionals µu
i ∈S∗A that are associated with ψu

i by the formula

µu
i :SA−!C,

λ(x)%(aop) 7−! τ(ψi(xu∗)ua) for x∈M and a∈A.

One computes that, for all x∈M , a∈A and all i,

(µu
i �Ad(%(v̄i)))(λ(x)%(aop))= τ(ψi(xu∗)uviav

∗
i ) = 〈πi(λ(x)%(aop))V u

i (vi),Wi(vi)〉,

(µi�Ad(%(v̄i)))(λ(x)%(aop))= τ(ψi(x)viav
∗
i ) = 〈πi(λ(x)%(aop))Vi(vi),Wi(vi)〉.

Hence,

‖µu
i −µi‖= ‖(µu

i −µi)�Ad(%(v̄i))‖6 ‖V u
i (vi)−Vi(vi)‖ ‖Wi(vi)‖! 0.

Starting from the approximate identity relative to B given by ψu
i , we can similarly con-

sider the approximate identity relative to B given by u(ψu
i ):x 7!u∗ψu

i (ux)=u∗ψi(uxu∗)u.
The net of functionals corresponding to (u(ψu

i ))i is precisely µi�Ad(λ(u)%(ū)). So, by
symmetry,

lim
i
‖µi�Ad(λ(u)%(ū))−µu

i ‖=0.

Since we have already shown that limi ‖µu
i −µi‖=0, we arrive at the required result that

lim
i
‖µi�Ad(λ(u)%(ū))−µi‖=0

for all u∈NM (A).
Finally, if v∈U(A), we have (λ(v∗)%(vop))·µi=µv

i . Since v∈U(A) certainly normal-
izes A, we have already shown that ‖µv

i −µi‖!0. Hence also

lim
i
‖(λ(v∗)%(vop))·µi−µi‖=0,

and the proposition is proven.

Finally we are ready to prove Theorem 5.1

Proof of Theorem 5.1. Take an adapted approximate identity (ψi)i of M relative to
B satisfying the conclusion of Proposition 5.4. This means that the continuous function-
als

µi:SA−!C,

λ(x)%(aop) 7−! τ(ψi(x)a) for x∈M and a∈A,
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satisfy supi ‖µi‖<∞,

lim
i
‖µi�Ad(λ(u)%(ū))−µi‖=0 for all u∈NM (A)

and

lim
i
‖(λ(a)%(ā))·µi−µi‖=0 for all a∈U(A).

Define the von Neumann algebra SA :=λ(M)∨%(Aop) acting on the Hilbert space
K=L2(M)⊗BL

2(M). Observe that SA is a weakly dense C∗-subalgebra of SA. We
claim that the functionals µi∈S∗A are normal on SA. The ψi have finite rank relative
to B in the sense of Definition 5.3. Using the notation introduced in Definition 5.3, in
order to prove the claim, it suffices to construct for every y, z, r, t∈M a normal functional
µy,z,r,t∈(SA)∗ satisfying

µy,z,r,t(λ(x)%(aop))= τ(ψy,z,r,t(x)a) for all x∈M and a∈A.

SinceK=L2(M)⊗BL
2(M), a straightforward computation yields that we can take µy,z,r,t

of the form

µy,z,r,t(T ) = 〈T (r⊗B t), z∗⊗By
∗〉 for all T ∈SA.

This proves the claim on the normality of the functionals µi.
We next claim that there exists a normal completely positive unital map E :N!SA

satisfying

E(π(x)θ(yop))=λ(x)%(EA(y)op) for all x∈M and y ∈P .

To prove this claim, recall that N is defined as the von Neumann algebra acting on
(L2(M)⊗AL

2(P ))⊗`2(Γ) generated by π(M) and θ(P op). The formula

V :K−! (L2(M)⊗AL
2(P ))⊗`2(Γ),

(b⊗ug)⊗Bx 7−! (bx⊗A1)⊗δg,

yields a well-defined isometry and E can be defined by the formula E(z)=V ∗zV for all
z∈N . This proves the claim.

Define the normal functionals γi∈N∗ by the formula γi :=µi�E . Note that

γi(π(x)θ(yop))= τ(ψi(x)EA(y)) for all x∈M and y ∈P . (5.3)

By the defining property (5.3) we have that γi(π(x))!τ(x) for all x∈M . We also have
‖γi‖6‖µi‖, and hence supi ‖γi‖<∞.
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Since, for all u∈NM (A), we have E �Ad(π(u)θ(ū))=Ad(λ(u)%(ū))�E , we conclude
that, for all u∈NM (A),

‖γi�Ad(π(u)θ(ū))−γi‖6 ‖µi�Ad(λ(u)%(ū))−µi‖! 0.

A similar reasoning yields, for all a∈U(A), that

‖(π(a)θ(ā))·γi−γi‖! 0.

Choose Θ∈N ∗ as a weak∗ limit point of the net (γi)i. By construction,
• Θ(π(x))=τ(x) for all x∈M ,
• (π(a)θ(ā))·Θ=Θ for all a∈U(A),
• Θ�Ad(π(u)θ(ū))=Θ for all u∈NM (A).

Define the positive functional Ψ∈N ∗
+ given by Ψ:=|Θ|. For all u∈NM (A) we have

|Θ|�Ad(π(u)θ(ū))= |Θ�Ad(π(u)θ(ū))|= |Θ|,

meaning that Ψ is (Ad(π(u)θ(ū)))u∈NM (A)-invariant.
For all a∈U(A), we have

(π(a)θ(ā))·Θ= Θ. (5.4)

Take a partial isometry V ∈N ∗∗ such that Ψ(x)=Θ(V x) for all x∈N . Applying V to
the equality (5.4), we conclude that Ψ(π(a)θ(ā))=Ψ(1) for all a∈U(A).

We finally prove that the restriction of Ψ to π(M) is faithful. Let p∈M be a non-zero
projection. For every x∈N we have |Θ(x)|26‖Θ‖Ψ(x∗x). So we get

τ(p)2 = |Θ(π(p))|2 6 ‖Θ‖Ψ(p).

Hence Ψ(p)>0.
Define the subgroups G1,G2⊂U(N ) by

G1 := {π(a)θ(ā) : a∈U(A)} and G2 := {π(u)θ(ū) :u∈NM (A)}.

Observe that the unitary elements in G2 normalize π(M) and implement an automor-
phism on π(M) that is inner and hence preserves the trace τ . Lemma 2.9 provides us
now with a state Ω∈N ∗

+ such that
• Ω(π(x))=τ(x) for all x∈M ,
• Ω(π(a)θ(ā))=1 for all a∈U(A),
• Ω�Ad(π(u)θ(ū))=Ω for all u∈NM (A).
Take a net of normal states ωi∈N∗ such that ωi!Ω in the weak∗ topology. Therefore

ωi(π(x))!τ(x) for all x∈M and ωi(π(a)θ(ā))!1 for all a∈U(A). Also, for all u∈NM (A)
we have that

ωi�Ad(π(u)θ(ū))−ωi! 0 weakly in N∗.

After a passage to convex combinations, we find a net of normal states satisfying all the
required conditions.



ii1 factors arising from arbitrary actions of free groups 175

6. Proof of Theorem 3.1

By Lemma 4.1 it suffices to prove Theorem 3.1 for the trivial action of Γ on (B, τ).
Moreover, for notational convenience, we assume that the projection q in the formulation
of Theorem 3.1 equals 1. In Remark 6.3 at the end of this section, we explain the necessary
changes that are needed to deal with the general case. These changes are only cosmetic,
but notationally cumbersome.

We fix a weakly amenable group Γ, a tracial von Neumann algebra (B, τ) and a 1-
cocycle c: Γ!KR into the orthogonal representation η: Γ!O(KR). Write M :=B
⊗L(Γ)
and fix a von Neumann subalgebra A⊂M that is amenable relative to B. Denote by
P :=NM (A)′′ its normalizer. We denote by (ug)g∈Γ the canonical unitary elements in
L(Γ).

As in Theorem 5.1, we denote by N the von Neumann algebra generated by B and
P op on the Hilbert space L2(M)⊗AL

2(P ). We always view B and P op as commuting
subalgebras of N that together generate N . We fix a standard Hilbert space H for N
and view N as acting on H. This standard representation comes with the anti-unitary
involution J :H!H.

We define N :=N
⊗L(Γ) and, as in Theorem 5.1, we consider the tautological em-
beddings

π:M−!N , and θ:P op−!N ,

b⊗ug 7−! b⊗ug, yop 7−! yop⊗1,

for all b∈B, g∈Γ and y∈P . Clearly π(M) commutes with θ(P op) and together they
generate N . Being the tensor product of N and L(Γ), the von Neumann algebra N is
standardly represented on H:=H⊗`2(Γ) by the formula

(x⊗ug)·(ξ⊗δh) =xξ⊗δgh for all x∈N , g, h∈Γ and ξ ∈H.

The corresponding anti-unitary involution J :H!H is given by J (ξ⊗δg)=Jξ⊗δg−1 .
Take a net of normal states ωn∈N∗ satisfying the conclusions of Theorem 5.1. Denote

by ξn∈H the canonical positive unit vectors that implement ωn. Whenever u∈NM (A),
it follows from [Ta2, Theorem IX.1.2 (iii)] that the vector

π(u)θ(ū)J π(u)θ(ū)J ξn
is the canonical positive vector that implements ωn�Ad(π(u∗)θ(uop)). Using the Powers–
Størmer inequality (see, e.g., [Ta2, Theorem IX.1.2 (iv)]), the conclusion of Theorem 5.1
can now be rewritten as follows in terms of the net (ξn)n:

〈π(x)ξn, ξn〉=ωn(π(x))! τ(x) for all x∈M , (6.1)

‖π(a)θ(ā)ξn−ξn‖! 0 for all a∈U(A), (6.2)

‖π(u)θ(ū)J π(u)θ(ū)J ξn−ξn‖! 0 for all u∈NM (A). (6.3)
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To prove Theorem 3.1 we make use of the malleable deformation (αt)t∈R of N that
was associated as follows in [S] with the 1-cocycle c: Γ!KR. We apply this malleable
deformation (αt)t∈R to the net (ξn)n. With a proof that is very similar to [OP1, Theo-
rem 4.9], we will reach the conclusion of Theorem 3.1.

First apply the Gaussian construction to the real Hilbert space KR, yielding a tra-
cial abelian von Neumann algebra (D, τ), generated by unitary elements ω(ξ), ξ∈KR,
satisfying

ω(ξ+ξ′) =ω(ξ)ω(ξ′), ω(ξ)∗=ω(−ξ) and τ(ω(ξ))= exp
(
− 1

2‖ξ‖
2
)

for all ξ, ξ′∈KR. The orthogonal representation η: Γ!O(KR) yields a trace-preserving
action of Γ on D, denoted by (σg)g∈Γ and given by σg(ω(ξ))=ω(ηgξ) for all g∈Γ and
ξ∈KR.

Set Ñ :=N
⊗(DoΓ) and view N=N
⊗L(Γ) as a von Neumann subalgebra of Ñ in
the natural way. We put M̃ :=B
⊗(DoΓ) and extend the embedding π:M!N to the
still tautological embedding π: M̃!Ñ given by

π(b⊗dug) = b⊗dug for all b∈B, d∈D and g ∈Γ.

We still get

θ:P op−! Ñ ,

yop 7−! yop⊗1 for y ∈P .

We have that π(M̃) commutes with θ(P op) and together they generate Ñ .
The 1-cocycle c: Γ!KR yields the malleable deformation (αt)t∈R of [S, §3], which is

the one-parameter group of automorphisms of Ñ given by

αt(x⊗dug) =x⊗dω(tc(g))ug for all x∈N , d∈D, g ∈Γ and t∈R. (6.4)

Note that αt globally preserves the subalgebra π(M̃)⊂Ñ . We also denote by αt the
corresponding deformation of M̃ . Hence αt�π=π�αt. Repeating (3.1) we denote by

ψt:M −!M,

b⊗ug 7−! exp(−t‖c(g)‖2)(b⊗ug) for b∈B and g ∈Γ,
(6.5)

the one-parameter group of completely positive maps associated with the 1-cocycle c.
We note the crucial formula

ψt2/2(x) =EM (αt(x)) for all x∈M and t∈R.
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Define H̃:=H⊗L2(D)⊗`2(Γ). Then Ñ is standardly represented on H̃ by

(x⊗dug)·(ξ⊗d′⊗δh) =xξ⊗dσg(d′)⊗δgh

for all x∈N , d, d′∈D, g, h∈Γ and ξ∈H. The corresponding anti-unitary involution

J̃ : H̃−! H̃

is given by
J̃ (ξ⊗d⊗δg) =Jξ⊗σg−1(d)∗⊗δg−1

for all ξ∈H, d∈D and g∈Γ.
For later use, we record the following formulae:

π(b⊗ug)·(ξ⊗d⊗δh) = bξ⊗σg(d)⊗δgh,

J̃ π(b⊗ug)J̃ ·(ξ⊗d⊗δh) =JbJξ⊗d⊗δhg−1 ,

θ(aop)·(ξ⊗d⊗δh) = aopξ⊗d⊗δh,

J̃ θ(aop)J̃ ·(ξ⊗d⊗δh) =JaopJξ⊗d⊗δh,

(6.6)

for all b∈B, g, h∈Γ, d∈D and ξ∈H.
The canonical unitary implementation (Vt)t∈R of the malleable deformation (αt)t∈R

of Ñ is given by
Vt(ξ⊗d⊗δg) = ξ⊗dω(tc(g))⊗δg

for all ξ∈H, d∈D and g∈Γ, and satisfies J̃ Vt=VtJ̃ for all t∈R.
Denote by e: H̃!H the orthogonal projection, where we identify H=H⊗`2(Γ) with

the subspace H⊗C1⊗`2(Γ) of H̃=H⊗L2(D)⊗`2(Γ). We write e⊥ :=1−e.
We distinguish the following two cases, which are each other’s negation.

Case 1. For every non-zero central projection p∈Z(P ) and for every t>0 we have

lim sup
n

‖e⊥Vtπ(p)ξn‖> 1
8‖p‖2.

Case 2. There exists a non-zero central projection p∈Z(P ) and a t>0 such that

lim sup
n

‖e⊥Vtπ(p)ξn‖6 1
8‖p‖2.

Denote by γ: Γ!U(L2(D	C1)) the Koopman representation for ΓyD	C1. Denote
by Kγ the associated M-M -bimodule on the Hilbert space Kγ :=L2(D	C1)⊗L2(M) as
in (3.2).

We first prove in Lemma 6.1 below that in case 1, the M-M -bimodule Kγ is left
P -amenable and that this implies the left P -amenability of the M-M -bimodule Kη as-
sociated with the original orthogonal representation η: Γ!O(KR). We next prove in
Lemma 6.2 below that in case 2 there exist t, δ>0 such that ‖ψt(a)‖2>δ for all a∈U(A).

So, once both Lemmas 6.1 and 6.2 are proven, also Theorem 3.1 is proven.
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Lemma 6.1. In case 1 the M-M -bimodule Kη is left P -amenable.

Proof. Throughout the proof we write K̃ :=L2(D	C1).
The main part of the proof consists in showing the left P -amenability of the M-

M -bimodule Kγ . From the definition of the M-M -bimodule Kγ in (3.2), we see that
B(Kγ)∩(Mop)′ can be identified with B(K̃)
⊗M in such a way that the left M -module
action on Kγ corresponds to the embedding

∆γ :M −!B(K̃)
⊗M,

b⊗ug 7−! γ(g)⊗b⊗ug.

So to prove the left P -amenability of Kγ , we have to produce a ∆γ(P )-central state Ω
on B(K̃)
⊗M satisfying Ω(∆γ(x))=τ(x) for all x∈M .

As P is the normalizer of A inside M , we have P ′∩M=Z(P ). We apply Lemma 2.9
to the von Neumann algebra B(K̃)
⊗M with von Neumann subalgebra ∆γ(M) and groups
of unitary elements G1={1} and G2=∆γ(U(P )). To prove the left P -amenability of
Kγ , by Lemma 2.9 it suffices to find for every non-zero central projection p∈Z(P ) a
∆γ(P )-central positive functional on B(K̃)
⊗M whose restriction to ∆γ(M) is normal
and non-zero on ∆γ(p). Fix a non-zero central projection p∈Z(P ).

Consider the unitary operator

U : K̃⊗H⊗`2(Γ)−! H̃	H=H⊗L2(D	C1)⊗`2(Γ),

d⊗ξ⊗δg 7−! ξ⊗d⊗δg

for d∈D	C1, ξ∈H and g∈Γ. Consider id⊗π: B(K̃)
⊗M!B(K̃)
⊗N and then define

Ψ:B(K̃)
⊗M −!B(H̃	H),

S 7−!U(id⊗π)(S)U∗.

For x∈M we can view π(x) as an element of Ñ . As such π(x) acts on H̃	H and with
this point of view we have Ψ(∆γ(x))=π(x) for all x∈M . Further note that

Ψ(B(K̃)
⊗M) =B
⊗B(L2(D	C1))
⊗{λg : g ∈Γ}′′.

Using formulae (6.6), it follows that

θ(P op)∨J̃ π(M)J̃ ∨J̃ θ(P op)J̃ =(P op∨JBJ∨JP opJ)
⊗1
⊗{%g : g ∈Γ}′′.

Hence,
Ψ(B(K̃)
⊗M) commutes with θ(P op)∨J̃ π(M)J̃ ∨J̃ θ(P op)J̃ . (6.7)
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We claim that there exists a net of vectors µi∈H̃	H such that ‖µi‖61 for all i and

lim
i
‖π(u)θ(ū)J̃ π(u)θ(ū)J̃ µi−µi‖=0 for all u∈NM (A), (6.8)

lim sup
i

‖π(x)µi‖6 ‖x‖2 for all x∈M , (6.9)

lim inf
i

‖π(p)µi‖> 1
16‖p‖2. (6.10)

Once this claim is proven and after a passage to a subnet of (µi)i, we may assume that
the net of positive functionals on B(K̃)
⊗M given by S 7!〈Ψ(S)µi, µi〉 converges weakly∗

to a positive functional Ω on B(K̃)
⊗M .
We first prove that (6.7) and (6.8) imply that Ω�Ad∆γ(u)=Ω for all u∈NM (A).

Fix S∈B(K̃)
⊗M and u∈NM (A). Since Ψ(∆γ(x))=π(x) for all x∈M , by (6.8) and (6.7)
we get that

Ω(∆γ(u)S∆γ(u)∗) = lim
i
〈Ψ(S)π(u)∗µi, π(u)∗µi〉

= lim
i
〈Ψ(S)θ(ū)J̃ π(u)θ(ū)J̃ µi, θ(ū)J̃ π(u)θ(ū)J̃ µi〉

= lim
i
〈Ψ(S)µi, µi〉

=Ω(S).

As Ψ(∆γ(x))=π(x) for all x∈M , the formulae (6.9) and (6.10) imply that

Ω(∆γ(x))6 τ(x) for all x∈M+

and that Ω(∆γ(p))> 1
256τ(p). In particular the restriction of Ω to ∆γ(M) is normal and

non-zero on ∆γ(p).
We finally show that Ω is ∆γ(P )-central. Choose x∈P and S∈B(K̃)
⊗M such that

‖x‖61 and ‖S‖61. We need to prove Ω(∆γ(x)S)=Ω(S∆γ(x)). To prove this formula,
choose ε>0. Take a finite linear combination y of unitary elements u∈NM (A) such that
‖x−y‖26ε. Since Ω�Ad∆γ(u)=Ω for all u∈NM (A), we get Ω(∆γ(y)S)=Ω(S∆γ(y)).
The Cauchy–Schwarz inequality, the inequality Ω(∆γ(z))6τ(z) for all z∈M+, and the
choice of ‖S‖61 imply that

|Ω(∆γ(x)S)−Ω(∆γ(y)S)|2 = |Ω(∆γ(x−y)S)|2

6Ω(∆γ((x−y)(x−y)∗))Ω(S∗S) 6 ‖x−y‖22 6 ε2.

We similarly get that |Ω(S∆γ(x))−Ω(S∆γ(y))|6ε. So we have shown that

|Ω(∆γ(x)S)−Ω(S∆γ(x))|6 2ε
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for all ε>0. Hence the required formula Ω(∆γ(x)S)=Ω(S∆γ(x)) follows and we have
proven the ∆γ(P )-centrality of Ω. As observed in the first paragraph this concludes the
proof of the left P -amenability of Kγ .

It remains to prove the claim above, i.e. the existence of a net of vectors µi∈H̃	H
satisfying ‖µi‖61 for all i and satisfying (6.8)–(6.10). Take finite subsets F⊂NM (A),
G⊂M and ε>0. It suffices to find a vector µ∈H̃	H such that ‖µ‖61 and

‖π(u)θ(ū)J̃ π(u)θ(ū)J̃ µ−µ‖6 3ε for all u∈F , (6.11)

‖π(x)µ‖6 ‖x‖2+ε for all x∈G, (6.12)

‖π(p)µ‖> 1
16‖p‖2−ε. (6.13)

We will find µ of the form µ:=e⊥Vtπ(p)ξn by first choosing t>0 small enough and then
choosing n large enough.

Take t>0 small enough such that

‖α−t(u)−u‖2 6 ε for all u∈F and ‖α−t(p)−p‖2 6 1
16‖p‖2.

Define µn :=e⊥Vtπ(p)ξn. We prove that µ:=µn, for certain n large enough, satisfies the
conditions (6.11)–(6.13) above.

The projection e⊥ commutes with π(M), θ(P op) and with J̃ . The unitary element
Vt implements αt on π(M) and commutes with θ(P op) and with J̃ . So we get that

π(u)θ(ū)J̃ π(u)θ(ū)J̃ µn = e⊥Vtθ(ū)J̃ θ(ū)J̃ π(α−t(u)p)J̃ π(α−t(u))J̃ ξn.

Since J̃ ξn=ξn and using (6.1) we have for all u∈F that

lim sup
n

‖J̃ π(α−t(u))J̃ ξn−J̃ π(u)J̃ ξn‖= ‖α−t(u)−u‖2 6 ε.

We apply π(α−t(u)p) and first observe that

π(α−t(u)p)J̃ π(u)J̃ ξn = J̃ π(u)J̃ π(α−t(u)p)ξn.

Again by (6.1) we have

lim sup
n

‖π(α−t(u)p)ξn−π(up)ξn‖= ‖α−t(u)p−up‖2 6 ε.

Altogether it follows that, for all u∈F ,

lim sup
n

‖π(u)θ(ū)J̃ π(u)θ(ū)J̃ µn−µn‖

6 2ε+lim sup
n

‖π(p)(π(u)θ(ū)J π(u)θ(ū)J ξn−ξn)‖.
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By (6.3) the lim sup on the right-hand side is 0 and we conclude that (6.11) holds for all
µ:=µn with n large enough.

Next observe that, for all x∈M ,

lim sup
n

‖π(x)µn‖6 lim sup
n

‖π(α−t(x)p)ξn‖= ‖α−t(x)p‖2 6 ‖x‖2.

Hence also (6.12) holds for all µ:=µn with n large enough.
Finally, by the assumption of case 1 we know that lim supn ‖µn‖> 1

8‖p‖2. Noticing
that

lim sup
n

‖π(p)µn−µn‖6 lim sup
n

‖π(α−t(p)p−p)ξn‖= ‖α−t(p)p−p‖2 6 1
16‖p‖2,

we conclude that
lim sup

n
‖π(p)µn‖> 1

16‖p‖2.

So (6.13) holds for certain µ:=µn where n can be chosen arbitrarily large. Altogether
there indeed exists an n such that µ:=µn satisfies all the conditions (6.11)–(6.13).

So we have proven that Kγ is a left P -amenable M-M -bimodule. It remains to prove
that also Kη is a left P -amenable M-M -bimodule. Denote by ε the trivial representation
of Γ and define the unitary representation ζ of Γ as the direct sum of ε and all tensor
powers η⊗k, k>1. The Koopman representation γ: Γ!U(L2(D	C1)) is isomorphic to
the direct sum of all the k-fold (k>1) symmetric tensor powers of η. Hence γ is a
subrepresentation of the tensor product representation η⊗ζ. By Corollary 2.5, it follows
that Kη⊗ζ also is a left P -amenable M-M -bimodule. But

MKη⊗ζ
M
∼= M(Kη⊗MKζ)M.

Condition (5) in Proposition 2.4 now implies the left P -amenability of MKη
M.

Lemma 6.2. In case 2 there exist t, δ>0 such that ‖ψt(a)‖2>δ for all a∈U(A).

Proof. Fix a non-zero central projection p∈Z(P ) and a t>0 such that

lim sup
n

‖e⊥Vtπ(p)ξn‖6 1
8‖p‖2.

A direct computation yields the transversality property of [Po5, Lemma 2.1]:

‖V√2tµ−µ‖=
√

2‖e⊥Vtµ‖ for all µ∈H⊂H̃.

Replacing t by
√

2t, we have found a non-zero central projection p∈Z(P ) and a t>0 such
that

lim sup
n

‖Vtπ(p)ξn−π(p)ξn‖6 1
4‖p‖2.
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Recall from (6.5) the definition of the unital completely positive maps ψt:M!M .
Also recall that ψs2/2(x)=EM (αs(x)) for all x∈M and s∈R. We prove that

‖ψt2/2(a)‖2 > 1
2‖p‖2 for all a∈U(A). (6.14)

Once this inequality is proven, also the lemma is proven.
To prove (6.14) fix a unitary element a∈U(A). First notice that for all µ∈H⊂H̃

and for all x∈M , we have

eπ(α−t(x))µ=π(ψt2/2(x))µ.

Using this formula we next prove that

lim sup
n

|〈π(a)θ(ā)Vtπ(p)ξn, Vtπ(p)ξn〉|6 ‖ψt2/2(a)‖2‖p‖2. (6.15)

Indeed, since Vt commutes with θ(ā) and implements αt on π(M), we observe that

〈π(a)θ(ā)Vtπ(p)ξn, Vtπ(p)ξn〉= 〈π(α−t(a)p)ξn, θ(aop)π(p)ξn〉

= 〈eπ(α−t(a)p)ξn, θ(aop)π(p)ξn〉

= 〈π(ψt2/2(a)p)ξn, θ(aop)π(p)ξn〉.

Using (6.1) the lim sup of the absolute value of the last expression is less than or equal
to

lim sup
n

‖π(ψt2/2(a)p)ξn‖ ‖π(p)ξn‖= ‖ψt2/2(a)p‖2‖p‖2 6 ‖ψt2/2(a)‖2‖p‖2.

So (6.15) is proven.
Secondly, the fact that

lim sup
n

‖Vtπ(p)ξn−π(p)ξn‖6 1
4‖p‖2, while lim sup

n
‖Vtπ(p)ξn‖2 = ‖p‖2,

implies that

lim sup
n

|〈π(a)θ(ā)Vtπ(p)ξn, Vtπ(p)ξn〉−〈π(a)θ(ā)π(p)ξn, π(p)ξn〉|6 1
2τ(p).

Since moreover by (6.1) and (6.2) we have

〈π(a)θ(ā)π(p)ξn, π(p)ξn〉! τ(p),

we conclude that

lim inf
n

|〈π(a)θ(ā)Vtπ(p)ξn, Vtπ(p)ξn〉|> 1
2τ(p).

In combination with (6.15) we find (6.14) and this ends the proof of the lemma.
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Remark 6.3. Above we only proved Theorem 3.1 in the special case where the pro-
jection q in the formulation of the theorem equals 1. Assume now that q is an arbitrary
non-zero projection and that A⊂qMq is a von Neumann subalgebra that is amenable
relative to B. Lemma 4.1 was proven for arbitrary q so that we can still assume that
Γ acts trivially on (B, τ). Denote by P :=NqMq(A)′′ the normalizer of A inside qMq.
Define N as the von Neumann algebra generated by B and P op on the Hilbert space
L2(M)q⊗AL

2(P ). Put N :=N
⊗L(Γ) and define the tautological embeddings

π:M−!N , and θ:P op−!N ,

b⊗ug 7−! b⊗ug, yop 7−! yop⊗1,

for all b∈B, g∈Γ and y∈P .

With literally the same proof as the one of Theorem 5.1, we find a net of normal
positive functionals ωi∈(π(q)Nπ(q))∗ satisfying the following properties:

• ωi(π(x))!τ(x) for all x∈qMq;
• ωi(π(a)θ(ā))!1 for all a∈U(A);
• ‖ωi�Ad(π(u)θ(ū))−ωi‖!0 for all u∈NqMq(A).

Again we take the canonical implementation of the functionals ωi by positive vectors
(ξi)i in a standard Hilbert space for N . We proceed with these vectors in exactly the
same way as above.

7. Proof of Theorem 1.2

Using [Po2, Theorem A.1], Theorem 1.2 is an immediate consequence of the following
result.

Theorem 7.1. Let Γ be any of the groups in the formulation of Theorem 1.2. Take
an arbitrary trace-preserving action Γy(B, τ) and put M=BoΓ. Assume that q∈M is
a projection and that A⊂qMq is a von Neumann subalgebra that is amenable relative to
B and whose normalizer P :=NqMq(A)′′ has finite index in qMq. Then A≺MB.

Proof. If η: Γ!O(KR) is an orthogonal representation, we consider its complexifi-
cation η: Γ!U(K) and the corresponding M-M -bimodule Kη given by (3.2). Whenever
c: Γ!KR is a 1-cocycle into η, we consider the one-parameter family of completely pos-
itive maps (ψt)t>0 on M given by (3.1).

We first prove that if η: Γ!U(K) is a unitary representation such that the P -M -
bimodule qKη is left P -amenable, then η is an amenable representation.
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So assume that qKη is a left P -amenable P -M -bimodule. Since P⊂qMq has finite
index, it follows from Corollary 2.6 that qKη is also left qMq-amenable. Defining

∆η:M −!B(K)
⊗M,

bug 7−! ηg⊗bug for b∈B and g ∈Γ,

the left qMq-amenability of qKη precisely amounts to the existence of a positive func-
tional Ω on B(K)
⊗M with the following properties:

• Ω(1−∆η(q))=0 and Ω(∆η(x))=τ(x) for all x∈qMq;
• Ω(S∆η(x))=Ω(∆η(x)S) for all S∈B(K)
⊗M and x∈qMq.
Choose partial isometries v1, ..., vn∈M such that v∗i vi6q for all i and such that∑n

i=1 viv
∗
i is a non-zero central projection z∈Z(M). Define the positive functional Ω̃ on

B(K)
⊗M by the formula

Ω̃(S) :=
n∑

i=1

Ω(∆η(v∗i )S∆η(vi)) for all S ∈B(K)
⊗M .

A direct computation yields Ω̃(∆η(x))=τ(x) for all x∈Mz and Ω̃(1−∆η(z))=0.
We now prove that Ω̃(S∆η(x))=Ω̃(∆η(x)S) for all S∈B(K)
⊗M and x∈M . Since z

is central, we have xvi=zxvi and v∗jxz=v
∗
jx for all i and j. Also observe that v∗jxvi∈qMq

for all x∈M and all i and j. So we get that

Ω̃(S∆η(x))=
n∑

i=1

Ω(∆η(v∗i )S∆η(xvi))

=
n∑

i=1

Ω(∆η(v∗i )S∆η(zxvi))

=
n∑

i,j=1

Ω(∆η(v∗i )S∆η(vj)∆η(v∗jxvi))

=
n∑

i,j=1

Ω(∆η(v∗jxviv
∗
i )S∆η(vj))

=
n∑

j=1

Ω(∆η(v∗jxz)S∆η(vj))

=
n∑

j=1

Ω(∆η(v∗jx)S∆η(vj))

= Ω̃(∆η(x)S).

Define the state Ψ on B(K) by the formula Ψ(S)=Ω̃(1)−1Ω̃(S⊗1). The following
computation shows that Ψ is (Ad ηg)g∈Γ-invariant, and hence that η is an amenable
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representation:

Ω̃(1)Ψ(Sηg) = Ω̃(Sηg⊗1) = Ω̃((S⊗u∗g)∆η(ug))

= Ω̃(∆η(ug)(S⊗u∗g))= Ω̃(ηgS⊗1) = Ω̃(1)Ψ(ηgS).

We are now ready to prove that for both families of groups Γ in the formulation of
Theorem 1.2, we get that A≺MB. If β(2)

1 (Γ)>0, we know that Γ is non-amenable and
that Γ admits an unbounded 1-cocycle c into a multiple of the regular representation.
The regular representation is mixing and is non-amenable by the non-amenability of Γ.
So, to cover the first family of groups in Theorem 1.2 it suffices to consider a weakly
amenable group Γ that admits an unbounded 1-cocycle c: Γ!KR into a non-amenable
mixing representation η: Γ!O(KR). From the discussion above we know that the P -M -
bimodule qKη is not left P -amenable. So, from Theorem 3.1 we get t, δ>0 such that
‖ψt(a)‖2>δ for all a∈U(A).

As in formula (6.4), we consider the malleable deformation (αt)t∈R of the tracial
von Neumann algebra M̃ :=(B
⊗D)oΓ, where Γy(D, τ) is the Gaussian action corre-
sponding to

η: Γ−!O(KR),

and where ΓyB
⊗D diagonally. Since η is mixing and ‖ψt(a)‖2>δ for all a∈U(A), we
get from [V2, Proposition 3.9] a non-zero central projection p∈Z(P ) such that αt!id
uniformly in ‖ · ‖2 on the unit ball of Ap. If A 6≺MB, it follows from(3) [V2, Theorem 3.10]
that αt!id uniformly in ‖ · ‖2 on the unit ball of Pp. Since P⊂qMq has finite index,
also Pp⊂pMp has finite index. Using a Pimsner–Popa basis,(4) it follows that αt!id
uniformly in ‖ · ‖2 on the unit ball of pMp. Denoting by z∈Z(M) the central support of
p, it follows that αt!id uniformly in ‖ · ‖2 on the unit ball of Mz. This means that also
ψt!id uniformly in ‖ · ‖2 on the unit ball ofMz. If t!0, we know that ‖ψt(xz)−ψt(x)z‖2
is small uniformly in x belonging to the unit ball of M . So we can fix a t>0 such that

‖ψt(x)z‖2 > 1
2‖z‖2 for all x∈U(M).

Since c: Γ!KR is unbounded, we can take a sequence gn∈Γ such that ‖c(gn)‖!∞.
It follows that ‖ψt(ugn)‖2!0 as n!∞. Hence also ‖ψt(ugn)z‖2!0, contradicting the
previous estimate. So we have shown that actually A≺MB.

(3) We refer here to [V2] where the notation and formulation is exactly suited for our purposes.
Note however that the quoted result is due to Peterson [Pe1, Theorem 4.5] and Chifan–Peterson [CP,
Theorem 2.5].

(4) See [PP, Proposition 1.3] and [V1, Proposition A.2] for a non-factorial version that can be
readily applied here.
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Next consider the case where Γ is a weakly amenable group that admits a proper
1-cocycle c: Γ!KR into a non-amenable representation η: Γ!O(KR). From the first
paragraphs of the proof we know that the P -M -bimodule qKη is not left P -amenable.
So, from Theorem 3.1 we get t, δ>0 such that ‖ψt(a)‖2>δ for all a∈U(A). Whenever
x∈M , we denote by

x=
∑
g∈Γ

xgug, with xg ∈B for all g ∈Γ, (7.1)

the Fourier decomposition of x. A direct computation yields

‖ψt(x)‖22 =
∑
g∈Γ

exp(−2t‖c(g)‖2)‖xg‖22 (7.2)

for all x∈M and t>0.

If A 6≺MB, Definition 2.1 yields a sequence of unitary elements ak∈U(A) such that
for every fixed g∈Γ, the sequence of gth Fourier coefficients (ak)g∈B, defined by (7.1),
satisfies limk!∞ ‖(ak)g‖2=0. The properness of the 1-cocycle c: Γ!KR, together with
formula (7.2), implies that limk!∞ ‖ψt(ak)‖2=0. This is a contradiction to the property
that

‖ψt(ak)‖2 > δ for all k.

So we also get A≺MB when Γ belongs to the second family of groups in Theorem 1.2.

To finally conclude that A≺f
MB, observe that [V2, Proposition 2.5] provides a pro-

jection q0∈Z(P ) such that Aq0≺f
MB and A(q−q0) 6≺MB. Applying the above to the

subalgebra A(q−q0)⊂(q−q0)M(q−q0) implies that q−q0=0.

8. Proof of Theorem 1.6

Take M=BoΓ as in the formulation of Theorem 1.6. Let A⊂M be a von Neumann
subalgebra that is amenable relative to B and denote by P :=NM (A)′′ its normalizer.

By our assumptions, Γ is weakly amenable and we have a proper 1-cocycle c: Γ!KR

into an orthogonal representation η: Γ!O(KR) that is weakly contained in the regular
representation. We consider the M -M -bimodule Kη associated with η as in (3.2) and we
consider the one-parameter group (ψt)t>0 of completely positive maps on M associated
with the 1-cocycle c as in (3.1). Theorem 3.1 says that

• either the M-M -bimodule Kη is left P -amenable,
• or there exist t, δ>0 such that ‖ψt(a)‖2>δ for all a∈U(A).
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First assume that Kη is a left P -amenable M-M -bimodule. Since η is weakly con-
tained in the regular representation λ, it follows that Kη is weakly contained in Kλ as M-
M -bimodules. Corollary 2.5 then implies that Kλ is a left P -amenable M-M -bimodule.
As an M-M -bimodule, Kλ is isomorphic with the M-M -bimodule L2(M)⊗BL

2(M).
So M(L2(M)⊗BL

2(M))M is left P -amenable. By condition (5) in Proposition 2.4 also

ML
2(M)B is left P -amenable. This means exactly that P is amenable relative to B.
Finally assume that we have t, δ>0 such that ‖ψt(a)‖2>δ for all a∈U(A). We repeat

a paragraph from the proof of Theorem 1.2, using the Fourier decomposition of x∈M
as in (7.1). If A 6≺MB, Definition 2.1 yields a sequence of unitary elements ak∈U(A)
such that for every fixed g∈Γ we have that limk!∞ ‖(ak)g‖2=0. The properness of
the 1-cocycle c: Γ!KR, together with formula (7.2), implies that limk!∞ ‖ψt(ak)‖2=0.
This is a contradiction to the property that ‖ψt(ak)‖2>δ for all k. So, A≺MB and the
theorem is proven.

9. Proof of Theorem 1.7

Using e.g. [V2, Proposition 2.5], we find projections pi∈Z(P ) such that Api≺f
MBoΓ̂i

and A(1−pi) 6≺MBoΓ̂i for all i=1, ..., n. Of course, some or even all of the pi could
be zero. Define p0 :=1−(p1∨...∨pn). We consider the subalgebra Ap0⊂p0Mp0, whose
normalizer is given by Pp0. We need to prove that Pp0 is amenable relative to B.

By construction, for every i we have that Ap0 6≺MBoΓ̂i. Viewing M as the crossed
product M=(BoΓ̂i)oΓi, it then follows from Theorem 1.6 that Pp0 is amenable relative
to BoΓ̂i for every i=1, ..., n.

All the subalgebras BoΓ̂i⊂M are regular and all the crossed products of B by a
certain number of the Γi’s are in commuting square position with respect to each other.
So, by Proposition 2.7, we conclude that Pp0 is amenable relative to B.

10. Proof of Theorem 1.8

Let Γ=Λ1∗Λ2 be any weakly amenable free product group and consider M=BoΓ as
in the formulation of the theorem. Let A⊂M be a von Neumann subalgebra that is
amenable relative to B. Denote by P :=NM (A)′′ its normalizer. Using e.g. [V2, Propo-
sition 2.5], we can take projections q, p1, p2∈Z(P ) such that

• Aq≺f
MB and A(1−q) 6≺MB;

• Ppi≺f
MBoΛi and P (1−pi) 6≺MBoΛi for all i=1, 2.

As above, some or all of the q, p1 and p2 might be zero. Set p0=1−(q∨p1∨p2). We
have to prove that Pp0 is amenable relative to B.
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For g∈Γ denote by |g| the length of g, i.e. the number of elements needed to write
g as an alternating product of elements in Λ1\{e} and Λ2\{e}. Consider the direct
sum KR :=`2R(Γ)⊕`2R(Γ) of two copies of the regular representation of Γ and denote this
orthogonal representation by η. Define the unique 1-cocycle c: Γ!KR satisfying

c(g) = (δg−δe, 0) for all g ∈Λ1 and c(h) = (0, δh−δe) for all h∈Λ2.

One easily computes that ‖c(g)‖2=2|g| for all g∈Γ.
We denote by Kη the M-M -bimodule associated with η as in (3.2). We consider

the one-parameter group (ψt)t>0 of completely positive maps on M associated with the
1-cocycle c as in (3.1). We apply Theorem 3.1 to the subalgebra Ap0⊂p0Mp0. Note that
the normalizer of Ap0 inside p0Mp0 is precisely Pp0. So, by Theorem 3.1, either p0Kη

is a left Pp0-amenable p0Mp0 -M -bimodule, or there exist t, δ>0 such that ‖ψt(a)‖2>δ

for all a∈U(Ap0).
Because by construction Ap0 6≺MB and Pp0 6≺MBoΛi for all i=1, 2, it follows from

one of the main results in [IPP] (and actually by literally applying the version that
we presented as [PV4, Theorem 5.4]) that it is impossible to have ‖ψt(a)‖2>δ for all
a∈U(Ap0). So p0Kη is a left Pp0-amenable p0Mp0 -M -bimodule. Since η is a multiple of
the regular representation, this implies in the same way as in the proof of Theorem 1.6,
that Pp0 is amenable relative to B.

11. Stability under measure-equivalence subgroups

Consider the following strengthening of Cs-rigidity involving measure-preserving actions
on potentially infinite measure spaces.

Definition 11.1. We say that a countable group Γ has property (∗) if the following
holds: for every measure-preserving action Γy(X,µ) on a standard, possibly infinite,
measure space (X,µ) and for every abelian von Neumann subalgebra A⊂qMq where
M=L∞(X)oΓ and q∈L∞(X) is a projection of finite measure, we have the dichotomy
that either A≺qMqL

∞(X)q or the normalizer NqMq(A)′′ is amenable.

Obviously every non-amenable group Γ satisfying property (∗) is Cs-rigid.
We first prove that any weakly amenable group Γ that admits a proper 1-cocycle

into an orthogonal representation that is weakly contained in the regular representation,
has property (∗). Then we will show that property (∗) is preserved under the passage to
measure-equivalence subgroups (ME-subgroups). Also weak amenability is stable under
the passage to ME-subgroups. Interestingly enough, it is not known whether having a
proper 1-cocycle into an orthogonal representation that is weakly contained in the regular
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representation, is stable under ME-subgroups (or even under measure equivalence). To
prove such a stability result one needs an integrability condition on the associated orbit-
equivalence cocycle (cf. [Th, Theorem 5.10]).

Recall that a countable group Λ is an ME-subgroup of a countable group Γ if Γ×Λ ad-
mits a measure-preserving action on a, typically infinite, standard measure space (Ω,m)
such that both the actions ΓyΩ and ΛyΩ are free and admit a fundamental domain,
with the fundamental domain of ΓyΩ having finite measure. If the actions can be chosen
in such a way that also the fundamental domain of ΛyΩ has finite measure, the groups
Γ and Λ are measure equivalent.

Theorem 11.2. Let Γ be a weakly amenable group that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the regular representation.
Then Γ has property (∗) in the sense of Definition 11.1.

Proof. Choose a measure-preserving action Γy(X,µ). Put B=L∞(X) and let q∈B
be a projection of finite measure. Put M=BoΓ and let A⊂qMq be an abelian von
Neumann subalgebra. Denote by P :=NqMq(A)′′ the normalizer of A inside qMq. Define
the normal ∗-homomorphism

∆:M −!M
⊗L(Γ),

bug 7−! bug⊗ug for b∈B and g ∈Γ.

So ∆(A) is an abelian von Neumann subalgebra of qMq
⊗L(Γ). Since qMq has a finite
trace, we can apply Theorem 1.6 with B=qMq and ΓyB being the trivial action. This
means that either ∆(A)≺qMq
⊗L(Γ)qMq⊗1 or that ∆(P ) is amenable relative to qMq⊗1.
With exactly the same argument as in the proof of Lemma 4.1, it follows that either
A≺qMqBq or P is amenable relative to Bq, which implies that P is plainly amenable.

Proposition 11.3. If Γ is a countable group satisfying property (∗), then also all
ME-subgroups of Γ satisfy property (∗).

Proof. Part 1. In order to establish property (∗), it suffices to consider free measure-
preserving actions Γy(X,µ). Indeed, assume that property (∗) holds for all free measur-
preserving actions of Γ and let Γy(X,µ) be any measure-preserving action. Put M=
L∞(X)oΓ. Assume that q∈L∞(X) is a projection of finite measure and that A⊂qMq

is an abelian von Neumann subalgebra. We have to prove that either A≺qMqL
∞(X)q or

NqMq(A)′′ is amenable.
Let ΓyY be any free pmp action, e.g. a Bernoulli action. Then the diagonal action

ΓyY ×X is free. Put M̃=L∞(Y ×X)oΓ and view M⊂M̃ in the obvious way. Then
q̃=1⊗q is a projection of finite measure and we can view A as a subalgebra of q̃M̃ q̃.
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Since property (∗) holds for free actions, we have that either A≺q̃M̃ q̃L
∞(Y ×X)q̃ or that

Nq̃M̃ q̃(A)′′ is amenable. In the first case, it follows that A≺qMqL
∞(X)q, while in the

second case also the subalgebra NqMq(A)′′ of Nq̃M̃ q̃(A)′′ is amenable. This ends the proof
of part 1.

Part 2. If Γ has property (∗), then Γ×G has property (∗) for every finite group G.
By part 1, it suffices to consider free measure-preserving actions Γ×GyY . It follows that
L∞(Y )o(Γ×G) is isomorphic with (L∞(X)oΓ)n, where n=|G|, X=Y/G and we use
the notation Qn :=Mn(C)⊗Q. Moreover, under this isomorphism, L∞(Y ) corresponds to
Dn(C)⊗L∞(X), where Dn(C)⊂Mn(C) denotes the subalgebra of diagonal matrices. So
take a free measure-preserving action Γy(X,µ), write B=L∞(X) and take an integer
n and a projection of finite measure q∈Dn(C)⊗B. Write M :=BoΓ and assume that
A⊂qMnq is an abelian von Neumann subalgebra. Assume that A 6≺qMnqqB

nq. Set
P :=NqMnq(A)′′. We must prove that P is amenable.

Denote by D⊂L∞(X) the subalgebra of Γ-invariant functions. Since ΓyX is free,
we have D=Z(M) and (1⊗D)q=Z(qMnq). Set Ã=A∨(1⊗D)q. Obviously Ã is abelian
and Ã 6≺qMnqqB

nq. Set P̃ :=NqMnq(Ã)′′. Every unitary element u∈U(qMnq) that nor-
malizes A, commutes with (1⊗D)q and hence, also normalizes Ã. So P⊂P̃ .

Since q∈Dn(C)⊗B, we write q=
∑n

i=1 eii⊗qi, where qi∈B are projections of finite
measure. We claim that there exist orthogonal projections pi∈Ã, with sum q, such that,
inside qMnq, the projections pi and eii⊗qi are equivalent for all i=1, ..., n. To prove
this claim, it suffices to show that “Ã is diffuse over the center (1⊗D)q”, i.e. it suffices
to show that there is no non-zero projection p∈Ã such that Ãp=(1⊗D)p. This follows
immediately since (1⊗D)q⊂qBnq and since we assumed that Ã 6≺qBnq.

By the claim in the previous paragraph, we can take partial isometries v1, ..., vn∈
M1,n(C)⊗M such that viv

∗
i =qi and such that v∗i vi=pi, where the pi are orthogonal

projections in Ã with sum q. Define Ai :=viÃv
∗
i and Pi :=viP̃ v

∗
i . By [Po3, Lemma 3.5],

Pi is the normalizer of Ai inside qiMqi. Since Ã 6≺qBnq, we also have Ai 6≺qiMqiBqi.
As property (∗) holds for Γ, it follows that Pi is amenable for every i. Hence, piP̃ pi

is amenable for every i. Since
∑n

i=1 pi=q and q is the unit of P̃ , it follows that P̃ is
amenable. Because P⊂P̃ , this concludes the proof of part 2.

Part 3. Property (∗) is stable under ME-subgroups. Assume that Γ satisfies property
(∗) and that Λ is an ME-subgroup of Γ. Take a measure-preserving action Γ×Λy(Ω,m)
such that the actions ΓyΩ and ΛyΩ are free and both admit a measurable funda-
mental domain, with the fundamental domain of ΓyΩ having finite measure. Taking
the diagonal product of Γ×ΛyΩ with a free pmp action of Γ×Λ, we may assume that
Γ×ΛyΩ is free. Choosing an ergodic component, we may further assume that Γ×ΛyΩ
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is ergodic. Put Z=Ω/Λ, Y =Ω/Γ and consider the natural measure-preserving actions
ΓyZ and ΛyY , with the measure on Y being finite. Note that both actions are free
and ergodic.

As in [F1, Lemma 3.2 and Theorem 3.3], the free ergodic measure-preserving actions
ΓyZ and ΛyY are by construction stably orbit equivalent. Let t=m(Z)/m(Y ) be the
compression constant of this stable orbit equivalence, where, by convention, t=∞ if Z
has infinite measure. If t<1, we replace ΓyZ by Γ×Z/nZyZ×Z/nZ for n large enough
such that 1/n6t. By part 2 of the proof, Γ×Z/nZ still has property (∗). So we may
assume that t>1. This means that we can find a subset Z0⊂Z of finite measure and a
measure-scaling isomorphism θ:Z0!Y such that θ(Z0∩Γ·z)=Λ·θ(z) for a.e. z∈Z0.

Since ΓyZ is ergodic and Z0⊂Z is non-negligible, we can choose a measurable
map p:Z!Z0 such that p(z)=z for a.e. z∈Z0 and p(z)∈Γ·z for a.e. z∈Z. Denote by
ω: Γ×Z!Λ the 1-cocycle for the action ΓyZ with values in Λ determined by

θ(p(g ·z))=ω(g, z)·θ(p(z)) for all g ∈Γ and a.e. z ∈Z.

Let Λy(X,µ) be any measure-preserving action on a standard measure space (X,µ).
Put B=L∞(X) and M=BoΛ. Let q∈B be a projection of finite measure. Assume that
A⊂qMq is an abelian von Neumann subalgebra. We have to prove that either A≺qMqBq

or that the normalizer NqMq(A)′′ is amenable.
Define the free measure-preserving action ΓyZ×X given by

g ·(z, x) = (g ·z, ω(g, z)·x).

Put B̃ :=L∞(Z×X) and M̃ :=B̃oΓ. We write p=χZ0∈L∞(Z). By construction, the
restriction of the orbit-equivalence relation of ΓyZ×X to the subset Z0×X is isomor-
phic, through θ×id, with the orbit-equivalence relation of the diagonal action ΛyY ×X.
So we find an isomorphism of von Neumann algebras

Ψ: (p⊗1)M̃(p⊗1)−!L∞(Y ×X)oΛ

satisfying Ψ(F )=F �θ−1 for all F∈L∞(Z0×X). In particular, Ψ−1(1⊗q)=p⊗q. Note
that p⊗q is a projection of finite measure in B̃. Put Ã:=Ψ−1(1⊗A) and note that Ã
is an abelian von Neumann subalgebra of (p⊗q)M̃(p⊗q). Since Γ has property (∗),
we conclude that either Ã embeds into (p⊗q)B̃(p⊗q) inside (p⊗q)M̃(p⊗q), or Ã has
an amenable normalizer inside (p⊗q)M̃(p⊗q). Transporting back with Ψ, we get that
either 1⊗A embeds into L∞(Y ×X)(1⊗q) inside (1⊗q)(L∞(Y ×X)oΛ)(1⊗q), or that
the normalizer of 1⊗A is amenable. In the first case, it follows that A embeds into
L∞(X)q inside qMq. In the second case, we get that NqMq(A)′′ is amenable.
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12. Applications to W ∗-superrigidity and classification results

We start this section by proving Theorem 1.5.

Proof of Theorem 1.5. (1) If L∞(X)oFn
∼=L∞(Y )oFm, it follows from Theorem 1.2

that the free ergodic pmp actions FnyX and FmyY are orbit equivalent. It then follows
from [G2, Théorème 3.2] that n=m.

(2) In one direction the isomorphism of the II1 factors together with Theorem 1.2
implies that the actions FnyXFn

0 and FmyY Fm
0 are stably orbit equivalent with com-

pression constant s/t. By [G2, Théorème 6.3] we get that (n−1)/(m−1)=s/t. Con-
versely assume that (n−1)/s=(m−1)/t. Combining [Bo1, Corollary 1.2] and [Bo2, The-
orem 1.1], we know that the actions FnyXFn

0 and FmyY Fm
0 are stably orbit equivalent

with compression constant (n−1)/(m−1)=s/t. Hence the crossed product II1 factors
are stably isomorphic with amplification constant s/t. The result applies in particular
to L(ZoFn)∼=L∞([0, 1]Fn)oFn.

(3) Assume that R1 is a treeable countable ergodic pmp equivalence relation and
that LR1

∼=LR2 for another pmp equivalence relation R2. Let c∈[1,∞] be the cost
of R1. If c=1, it follows that R1 is amenable. Hence also LR1

∼=LR2 is amenable, so
that R2 is amenable. Thus R1

∼=R2. If c∈(1,∞], take s>0 such that n:=(c−1)/s is a
positive integer or ∞. By [G1, Proposition 2.6], the amplification Rs

1 is treeable with
cost n+1. By [Hj, Corollary 1.2], the equivalence relation Rs

1 can be implemented by a
free action of Fn+1. This implies that L(Rs

1)=L
∞(Z)oFn+1 for some free ergodic pmp

action Fn+1yZ. Since L(Rs
1)∼=L(Rs

2), it follows from Theorem 1.2 that Rs
1
∼=Rs

2, i.e.
that R1

∼=R2.

As in [PV4, Definition 6.1], a free ergodic pmp action Γy(X,µ) is W ∗-superrigid if
the following property holds: whenever Λy(Y, η) is another free ergodic pmp action and
Θ:L∞(X)oΓ!L∞(Y )oΛ is an isomorphism, the groups Γ and Λ must be isomorphic,
their actions must be conjugate and Θ is implemented by this conjugacy. More precisely,
we find an isomorphism of groups δ: Γ!Λ and an isomorphism of probability spaces
∆:X!Y such that

• ∆(g ·x)=δ(g)·∆(x) for all g∈Γ and a.e. x∈X;
• UΘ(aug)U∗=∆∗(aωg)uδ(g) for all a∈L∞(X) and g∈Γ, where U∈L∞(Y )oΛ is a

unitary element and (ωg)g∈Γ is a family of unitary elements in L∞(X) defining a 1-cocycle
for ΓyX with values in T.

To formulate the next theorem recall that a pmp action Γy(X,µ) is said to be
a quotient (or factor) of the pmp action Γy(Y, η) if there exists a measure-preserving
map p:Y!X such that p(g ·y)=g ·p(y) for all g∈Γ and a.e. y∈Y . Also recall that a
group is icc if it has infinite conjugacy classes. Finally recall that a subgroup Λ<Γ
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is co-amenable if Γ/Λ admits a Γ-invariant mean. By [MP, Proposition 6], a subgroup
Λ<Γ is co-amenable if and only if the subalgebra L(Λ)⊂L(Γ) is co-amenable in the sense
explained in §2.5.

Theorem 12.1. Let Γ1 and Γ2 be icc weakly amenable groups that admit a proper
1-cocycle into a non-amenable representation. Put Γ=Γ1×Γ2. Let ΓyI be a transitive
action and i0∈I. Assume that

• Γ1∩Stab i0<Γ1 is not co-amenable;
• Γ2∩Stab i0<Γ2 is not of finite index.

Then any free ergodic pmp action Γy(X,µ) that arises as a quotient of the gener-
alized Bernoulli action Γy[0, 1]I is W ∗-superrigid.

Theorem 12.1 will be a consequence of the following similar result for quotients of a
Gaussian action Γy(Yπ, µπ) associated with an orthogonal representation π of Γ.

Theorem 12.2. Let Γ1 and Γ2 be icc weakly amenable groups that admit a proper
1-cocycle into a non-amenable representation. Put Γ=Γ1×Γ2. Let π: Γ!O(KR) be any
orthogonal representation with corresponding Gaussian action Γy(Yπ, µπ). Assume that

• π|Γ1 is a non-amenable representation;
• π|Γ2 is a weakly mixing representation, i.e. a representation without non-zero

finite-dimensional invariant subspaces.

Then any free ergodic pmp action Γy(X,µ) that arises as a quotient of the Gaussian
action Γy(Yπ, µπ) is W ∗-superrigid.

Remark 12.3. Theorem 12.1 provides large new families of W ∗-superrigid actions.
• In [I1, Theorem A] it was shown that a Bernoulli action Γy(X,µ) isW ∗-superrigid

whenever Γ is an icc property (T) group. In [IPV, Theorem 10.1] the same was established
when Γ=Γ1×Γ2 is a direct product of a non-amenable icc group Γ1 and an infinite icc
group Γ2. The conditions on Γ1 and Γ2 in Theorem 12.1 are of course much stricter, but
we now also get W ∗-superrigidity for generalized Bernoulli actions and their quotients.

• The following is an interesting class of generalized Bernoulli actions covered by
Theorem 12.1. Assume that Γ is an icc weakly amenable group that admits a proper
1-cocycle into a non-amenable representation. Consider the left-right action of Γ×Γ on
I=Γ. Since both Γ×{e} and {e}×Γ act freely on Γ, the conditions of Theorem 12.1 are
satisfied and it follows that all free quotient actions of Γ×Γy[0, 1]Γ are W ∗-superrigid.

• Generalized Bernoulli actions typically admit a lot of non-conjugate quotient ac-
tions. Indeed, whenever K is a second countable compact group, consider the diagonal
action of K on KI which commutes with the generalized Bernoulli action ΓyKI . Then
ΓyKI/K is a quotient action of ΓyKI .
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When Γ and its action ΓyI satisfy the conditions of Theorem 12.1, we will see in
the proof of Theorem 12.2 that ΓyKI is cocycle superrigid. Hence it follows from [PV1,
Lemma 5.2] that varying K, the actions ΓyKI/K are non-conjugate for non-isomorphic
compact groups K. So by Theorem 12.1 also their crossed product II1 factors are non-
isomorphic when K varies.

• As mentioned above, in [I1, Theorem A] it was shown that the Bernoulli action
Γy(X,µ) is W ∗-superrigid for all icc property (T) groups Γ. Theorem 12.1 does not
cover property (T) groups, but in our forthcoming paper [PV5], we will cover generalized
Bernoulli actions of hyperbolic property (T) groups, as well as all their quotient actions.

Proof of Theorem 12.2. Let Γy(X,µ) be a free ergodic pmp action that arises as
the quotient of a Gaussian action Γy(Yπ, µπ) satisfying the assumptions in the theorem.
Note that also Γ=Γ1×Γ2 is a weakly amenable group that admits a proper 1-cocycle
into a non-amenable representation. Thus, because of Theorem 1.2, any isomorphism
Θ:L∞(X)oΓ!L∞(Y )oΛ with another group measure space construction satisfies, after
a unitary conjugacy, Θ(L∞(X))=L∞(Y ). This means that Θ is given by a scalar 1-
cocycle (i.e. an automorphism of L∞(X)oΓ that is the identity on L∞(X)) and an
isomorphism coming from an orbit equivalence between ΓyX and ΛyY . It therefore
only remains to argue that Γy(X,µ) is OE superrigid, i.e. that this orbit equivalence
between ΓyX and ΛyY comes from a conjugacy of the actions.

We claim that the action ΓyYπ satisfies the hypotheses of [Po5, Theorem 1.1]. By
[F2, Theorem 1.2], this Gaussian action is s-malleable. Next we have to check that
Γ1yYπ has stable spectral gap, i.e. that the unitary representation

Γ1 yL2(Yπ)	C1

is non-amenable. This unitary representation is the direct sum of all k-fold (k>1) sym-
metric tensor powers of π|Γ1 . Hence it is a subrepresentation of π|Γ1⊗%, where % is
defined as the direct sum of all k-fold (k>0) tensor powers of π|Γ1 . Since π|Γ1 is non-
amenable, also π|Γ1⊗% is non-amenable and it follows that Γ1yYπ has stable spectral
gap. Finally we have to check that Γ2yYπ is weakly mixing, i.e. that the unitary repre-
sentation Γ2yL2(Yπ)	C1 has no non-zero finite-dimensional invariant subspaces. This
follows with a similar reasoning by using that π|Γ2 is weakly mixing.

So it follows from [Po5, Theorem 1.1] that ΓyYπ is cocycle superrigid with countable
(and even more generally, Ufin) target groups. Since Γ is icc and since ΓyYπ is weakly
mixing (because even Γ2yYπ is weakly mixing as explained above), it follows from [Po4,
Theorem 5.6] that Γy(X,µ) is OE superrigid. So the theorem is proven.

Proof of Theorem 12.1. The generalized Bernoulli action Γy[0, 1]I is isomorphic to
the Gaussian action associated with the representation Γ

πy`2R(I). Since ΓyI is transi-
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tive, one has for any i0∈I that π|Γ1 is a multiple of Γ1y`2(Γ1/(Γ1∩Stab i0)) and that
π|Γ2 is a multiple of Γ2y`2(Γ2/(Γ2∩Stab i0)). We conclude that

• π|Γ1 is non-amenable if and only if Γ1∩Stab i0<Γ1 is not co-amenable,
• π|Γ2 is weakly mixing if and only if Γ2∩Stab i0<Γ2 is not of finite index.
So Theorem 12.1 is a direct consequence of Theorem 12.2.

Our unique Cartan decomposition (Theorem 1.2) can also be coupled with the
work of Monod and Shalom [MS] yielding the result below. To formulate it, recall
that an ergodic pmp action Γy(X,µ) is aperiodic if all finite-index subgroups of Γ
still act ergodically. Following [MS, Definition 1.8], an ergodic pmp action Λy(Y, η) is
mildly mixing if there are no non-trivial recurrent subsets: if A⊂Y is measurable and
lim infg!∞ η(g ·A4A)=0, then η(A)=0 or η(A)=1. Note that, for a mildly mixing action
Λy(Y, η), all infinite subgroups of Λ act ergodically on (Y, η).

Theorem 12.4. Let Γ=Fn×Fm, for some 26n,m6∞. Assume that Γy(X,µ) is
a free ergodic pmp action that is aperiodic and irreducible, meaning that both Fn and Fm

act ergodically on (X,µ).
If L∞(X)oΓ∼=L∞(Y )oΛ for any free mildly mixing pmp action Λy(Y, η), then

Γ∼=Λ and the actions ΓyX and ΛyY are conjugate.

Proof. Since Γ is a product of free groups, Theorem 1.2 applies. So the existence of
an isomorphism L∞(X)oΓ∼=L∞(Y )oΛ implies that Γy(X,µ) and Λy(Y, η) are orbit
equivalent. Since free groups belong to the class Creg of Monod and Shalom, it follows
from [MS, Theorem 1.10] that the groups Γ and Λ must be isomorphic and that their
actions must be conjugate.

We finally prove Theorem 1.10.

Proof of Theorem 1.10. Assume that θ:RoΓ!RoΛ is a ∗-isomorphism. As in the
proof of Theorem 1.2 it follows that θ(R)≺R and R≺θ(R). By [IPP, Lemma 8.4],
the subfactors θ(R) and R are unitarily conjugate. So after a unitary conjugacy we may
assume that θ(R)=R. This precisely means that the actions ΓyR and ΛyR are cocycle
conjugate.

Remark 12.5. Theorems 1.5 and 1.10 say that for n 6=m we have PoFn 6∼=QoFm,
both in the case of free ergodic pmp actions on abelian von Neumann algebras, and in
the case of outer actions on the hyperfinite II1 factor. As illustrated by the following
natural example, the result fails for arbitrary properly outer trace-preserving actions.

Let π: F2!Z/2Z be a surjective homomorphism and let Z/2Z act non-trivially on
a set with two points. Denote the composition with π by (σg)g∈F2 . Take any outer
action (αg)g∈F2 of F2 on the hyperfinite II1 factor R. Consider the action αg⊗σg of F2
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on R⊗C2. Identify F3=Kerπ and consider the action id⊗αg of F3 on M2(C)⊗R. One
canonically has

(R⊗C2)oF2
∼=(M2(C)⊗R)oF3.
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