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We prove the exponential decay in the case n > 2, as time goes to infinity, of regular so-
lutions for the nonlinear beam equation with memory and weak damping utt + ∆2u−
M(‖∇u‖2

L2(Ωt))∆u +
∫ t

0 g(t − s)∆u(s)ds + αut = 0 in
∧
Q in a noncylindrical domain of

Rn+1 (n ≥ 1) under suitable hypothesis on the scalar functions M and g, and where α
is a positive constant. We establish existence and uniqueness of regular solutions for any
n≥ 1.

1. Introduction

Let Ω be an open bounded domain of Rn containing the origin and having C2 boundary.
Let γ : [0,∞[→R be a continuously differentiable function. See hypotheses (1.24), (1.25),
and (1.26) on γ. Consider the family of subdomains {Ωt}0≤t<∞ of Rn given by

Ωt = T(Ω), T : y ∈Ω 	−→ x = γ(t)y, (1.1)

whose boundaries are denoted by Γt, and let
∧
Q be the noncylindrical domain of Rn+1

given by

∧
Q =

⋃
0≤t<∞

Ωt ×{t} (1.2)

with lateral boundary

∧∑
=

⋃
0≤t<∞

Γt ×{t}. (1.3)

We consider the Hilbert space L2(Ω) endowed with the inner product

(u,v)=
∫
Ω
u(x)v(x)dx (1.4)
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902 Uniform decay for a nonlinear beam equation

and corresponding norm

‖u‖2
L2(Ω) = (u,u). (1.5)

We also consider the Sobolev space H1(Ω) endowed with the scalar product

(u,v)H1(Ω) = (u,v) + (∇u,∇v). (1.6)

We define the subspace of H1(Ω), denoted by H1
0 (Ω), as the closure of C∞0 (Ω) in the

strong topology of H1(Ω). By H−1(Ω), we denote the dual space of H1
0 (Ω). This space

endowed with the norm induced by the scalar product(
(u,v)

)
H1

0 (Ω) = (∇u,∇v) (1.7)

is, owing to the Poincaré inequality

‖u‖2
L2(Ω) ≤ C‖∇u‖2

L2(Ω), (1.8)

a Hilbert space. We define for all 1≤ p <∞,

‖u‖pLp(Ω) =
∫
Ω

∣∣u(x)
∣∣pdx, (1.9)

and if p =∞,

‖u‖L∞(Ω) = sup
x∈Ω

ess
∣∣u(x)

∣∣. (1.10)

In this work, we study the existence and uniqueness of strong solutions as well as the
exponential decay of the energy to the nonlinear beam equation with memory given by

utt +∆2u−M
(
‖∇u‖2

L2(Ωt)

)
∆u+

∫ t
0
g(t− s)∆u(s)ds+αut = 0 in

∧
Q, (1.11)

u= ∂u

∂ν
= 0 on

∧∑
, (1.12)

u(x,0)= u0(x), ut(x,0)= u1(x) in Ω0, (1.13)

where ν= ν(σ , t) is the unit normal at (σ , t)∈
∧∑

directed towards the exterior of
∧
Q. If we

denote by η the outer unit normal to the boundary Γ of Ω, we have, using a parametriza-
tion of Γ,

ν(σ , t)= 1
ν

(
η(ξ),−γ′(t)ξ ·η(ξ)

)
, ξ = σ

γ(t)
, (1.14)

where

ν=
(

1 + γ′(t)
∣∣ξ ·η(ξ)

∣∣2
)1/2

. (1.15)
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Indeed, fix (σ , t) ∈
∧∑

. Let ϕ = 0 be a parametrization of a part
⋃

of Γ,
⋃

containing

ξ = σ/γ(t). The parametrization of a part
⋃

of
∧∑

is ψ(σ , t) = ϕ(σ/γ(t)) = ϕ(ξ) = 0. We
have

∇ψ(σ , t)= 1
γ(t)

(∇ϕ(ξ),−γ′(t)ξ ·∇ϕ(ξ)
)
. (1.16)

From this and observing that η(ξ)=∇ϕ(ξ)/|∇ϕ(ξ)|, expression (1.14) follows. Let ν(·, t)
be the x-component of unit normal ν(·,·), |ν| ≤ 1. Then by relation (1.14), one has

ν(σ , t)= η
(

σ

γ(t)

)
. (1.17)

In this paper, we deal with the nonlinear beam equation with memory in domains with
moving boundary. We show the existence and uniqueness of strong solutions to the initial
boundary value problem (1.11)–(1.13). The method we use to prove the result of exis-
tence and uniqueness is based on transforming our problem into another initial bound-
ary value problem defined over a cylindrical domain whose sections are not time depen-
dent. This is done using a suitable change of variable. Then we show the existence and
uniqueness for this new problem. Our existence result on domains with moving bound-
ary will follow by using the inverse transformation, that is, by using the diffeomorfism

τ :
∧
Q −→Q, (x, t)∈Ωt 	−→ (y, t)=

(
x

γ(t)
, t
)

(1.18)

and τ−1 :Q→
∧
Q defined by

τ−1(y, t)= (x, t)= (γ(t)y, t
)
. (1.19)

Denoting by v the function

v(y, t)= u◦ τ−1(y, t)= u(γ(t)y, t
)
, (1.20)

the initial boundary value problem (1.11)–(1.13) becomes

vtt + γ−4∆2v− γ−2M
(
γn−2‖∇v‖2

L2(Ω)

)
∆v+

∫ t
0
g(t− s)γ−2(s)∆v(s)ds

+αvt −A(t)v+ a1 ·∇∂tv+ a2 ·∇v = 0 in Q,

v|Γ = ∂v

∂ν

∣∣∣∣
Γ
= 0,

v|t=0 = v0, vt|t=0 = v1 in Ω,

(1.21)
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where

A(t)v =
n∑

i, j=1

∂yi
(
ai j∂yj v

)
, (1.22)

ai j(y, t)=−(γ′γ−1)2
yi y j (i, j = 1, . . . ,n)

a1(y, t)=−γ′γ−1y,

a2(y, t)=−γ−2y
(
γ′′γ+ γ′

(
αγ+ (n− 1)γ′

))
.

(1.23)

To show the existence of strong solution, we will use the following hypotheses:

γ′ ≤ 0 n > 2, γ′ ≥ 0 if n≤ 2, (1.24)

γ ∈ L∞(0,∞), inf
0≤t<∞

γ(t)= γ0 > 0, (1.25)

γ′ ∈W2,∞(0,∞)∩W2,1(0,∞). (1.26)

Note that assumption (1.24) means that Q̂ is decreasing if n > 2 and increasing if n ≤ 2
in the sense that when t > t′ and n > 2, then the projection of Ωt′ on the subspace t =
0 contains the projection of Ωt on the same subspace and contrary in the case n ≤ 2.
The above method was introduced by Dal Passo and Ughi [4] to study certain class of
parabolic equations in noncylindrical domains. Concerning the function M ∈ C1[0,∞[,
we assume that

M(τ)≥−m0, M(τ)τ ≥
∧
M(τ) ∀τ ≥ 0, (1.27)

where
∧
M(τ)= ∫ τ0 M(s)ds and

0≤m0 < λ1‖γ‖−2
L∞ , (1.28)

where λ1 is the first eigenvalue of the spectral Dirichlet problem

∆2w = λ1w in Ω, w = ∂w

∂η
= 0 in Γ. (1.29)

We recall also the classical inequality

‖∆w‖L2(Ω) ≥
√
λ1‖∇w‖L2(Ω). (1.30)

Remark 1.1. The hypotheses (1.27) and (1.30) are classic, as one can see, for instance, in
[9, 20, 21] without the term of memory

∫ t
0 g(t− s)∆u(s)ds in fixed domain. In fact, the

hypothesis (1.28) was introduced by the second author with some modifications, due to
the complexity of working in noncylindrical domains in [1].

Unlike the existing papers on stability for hyperbolic equations in noncylindrical do-
main, we do not use the penalty method introduced by Lions [16], but work directly in
our noncylindrical domain Q̂. To see the dissipative properties of the system, we have
to construct a suitable functional whose derivative is negative and is equivalent to the
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first-order energy. This functional is obtained using the multiplicative technique follow-
ing Komornik [10] or Rivera [18]. We only obtained the exponential decay of solution for
our problem for the case n > 2. The main difficult to obtain the decay for n≤ 2 is due to
the geometry of the noncylindrical domain because it affects substantially the problem,

since we work directly in
∧
Q. Therefore the case n≤ 2 is an important open problem. From

the physics point of view, the system (1.11)–(1.13) describes the transverse deflection of
a streched viscoelastic beam fixed in a moving boundary device. The viscoelasticity prop-
erty of the material is characterized by the memory term∫ t

0
g(t− s)∆u(s)ds. (1.31)

The uniform stabilization of plates equations with linear or nonlinear boundary feed-
back was investigated by several authors, see for example [8, 9, 11, 13, 14, 15]. In a fixed
domain, it is well known that if the relaxation function g decays to zero, then the en-
ergy of the system also decays to zero, see [3, 12, 19, 22]. But in a moving domain, the
transverse deflection u(x, t) of a beam which changes its configuration at each instant of
time increases its deformation, and hence increases its tension. Moreover, the horizon-
tal movement of the boundary yields nonlinear terms involving derivatives in the space
variable. To control these nonlinearities, we add in the system a frictional damping, char-
acterized by ut. This term will play an important role in the dissipative nature of the
problem. In [1, 6], a quite complete discussion about the model of transverse deflection
and transverse vibrations can be found, respectively, for the nonlinear beam equation and
elastic membranes. This model was proposed by Woinowsky-Krieger [23] for the case of
cylindrical domains, without the dissipative term and

∫ t
0 g(t− s)∆u(s)ds. See also Eisley

[5] and Burgreen [2] for physics justification and background of the model. Our results
in this paper were more difficult to obtain than the results in [7], due to the introduction
of the terms corresponding to the biharmonic operator ∆2 and to the nonlinear function
of Kirchhoff type M(‖∇u‖2

L2(Ω)), which generated nontrivial problems that were solved
thanks to the hypotheses (1.27), (1.28), and (1.30) and to the hypothesis regarding the
“dilation function”. Besides, in [7], we made only two estimates, while here we had to
make four estimates that introduce some technical ideas with regard to the existence,
uniqueness, and regularity. Regarding the solution decay, we used a similar technical of
[7] but we introduced Lemmas 3.3 and 3.4 to control the terms of energy and to use
with success the technique of multipliers. We use the standard notations which can be
found in Lion’s and Magenes’ books [16, 17]. In the sequel by C (sometimes C1,C2, . . .),
we denote various positive constants which do not depend on t or on the initial data. This
paper is organized as follows. In Section 2, we prove a basic result on existence, regular-
ity, and uniqueness of regular solutions. We use Galerkin approximation, Aubin-Lions
theorem, energy method introduced by Lions [16], and some technical ideas to show ex-
istence regularity and uniqueness of regular solution for problem (1.11)–(1.13). Finally,
in Section 3, we establish a result on the exponential decay of the regular solution to the
problem (1.11)–(1.13). We use the technique of the multipliers introduced by Komornik
[10], Lions [16], and Rivera [18] coupled with some technical lemmas and some technical
ideas.
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2. Existence and regularity

In this section, we will study the existence and regularity of solutions for the system
(1.11)–(1.13). For this, we assume that the kernel g :R+ →R+ is in W2,1(0,∞), and satis-
fies

g,−g′ ≥ 0,
m1

‖γ‖2
L∞
−
∫∞

0
g(s)γ−2(s)ds= β1 > 0, (2.1)

where

m1 =
(

λ1

‖γ‖2
L∞
−m0

)
> 0. (2.2)

To simplify our analysis, we define the binary operator

g�ϕ(t)
γ(t)

=
∫
Ω

∫ t
0
g(t− s)γ−2(s)

∣∣ϕ(t)−ϕ(s)
∣∣2
dsdx. (2.3)

With this notation, we have the following statement.

Lemma 2.1. For v ∈ C1(0,T :H2
0 (Ω)),

∫
Ω

∫ t
0
g(t− s)γ−2(s)∇v(s) ·∇vt(t)dsdx

=−1
2
g(t)
γ2(0)

∫
Ω
|∇v|2dx+

1
2
g′�∇v

γ
− 1

2
d

dt

[
g�∇v

γ
−
(∫ t

0

g(s)
γ2(s)

ds

)∫
Ω
|∇v|2dx

]
,

∫
Ω

∫ t
0
g(t− s)γ−2(s)∆v∆vtdsdx

=−1
2
g(t)
γ2(0)

∫
Ω
|∆v|2dx+

1
2
g′�∆v

γ
− 1

2
d

dt

[
g�∆v

γ
−
(∫ t

0

g(s)
γ2(s)

ds

)∫
Ω
|∆v|2dx

]
.

(2.4)

The proof of this lemma follows by differentiating the terms g�(∇u(t)/γ(t)) and
g�(∆u(t)/γ(t)). The well posedness of system (1.21) is given by the following theorem.

Theorem 2.2. Take v0 ∈ H2
0 (Ω)∩H4(Ω), v1 ∈ H2

0 (Ω), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), and (2.1) hold. Then there exists a unique solu-
tion v of the problem (1.21) satisfying

v ∈ L∞(0,∞ :H2
0 (Ω)∩H4(Ω)

)
,

vt ∈ L∞
(
0,∞ :H1

0 (Ω)
)
,

vtt ∈ L∞
(
0,∞ : L2(Ω)

)
.

(2.5)
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Proof. We denote by B the operator

Bw = ∆2w, D(B)=H2
0 (Ω)∩H4(Ω). (2.6)

It is well known that B is a positive selfadjoint operator in the Hilbert space L2(Ω) for
which there exist sequences {wn}n∈N and {λn}n∈N of eigenfunctions and eigenvalues of B
such that the set of linear combinations of {wn}n∈N is dense in D(B) and λ1 < λ2 ≤ ··· ≤
λn→∞ as n→∞. We denote by

vm0 =
m∑
j=1

(
v0,wj

)
wj , vm1 =

m∑
j=1

(
v1,wj

)
wj. (2.7)

Note that for any (v0,v1)∈D(B)×H2
0 (Ω), we have vm0 → v0 strong in D(B) and vm1 → v1

strong in H2
0 (Ω).

We denote by Vm the space generated by w1, . . . ,wm. Standard results on ordinary dif-
ferential equations imply the existence of a local solution vm of the form

vm(t)=
m∑
j=1

gjm(t)wj , (2.8)

to the system∫
Ω
vmtt wj dy +α

∫
Ω
vmt wj dy +

∫
Ω
γ−4∆2vmwj dy

− γ−2M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)∫
Ω
∆vmwj dy

+
∫
Ω

∫ t
0
g(t− s)γ−2(s)∇vm(s)ds ·∇wj dy +

∫
Ω
A(t)vmwj dy

+
∫
Ω
a1 ·∇vmt wj dy +

∫
Ω
a2 ·∇vmwj dy = 0, ( j = 1, . . . ,m)

(2.9)

vm(x,0)= vm0 , vmt (x,0)= vm1 . (2.10)

The extension of these solutions to the interval [0,∞[ is a consequence of the first estimate
which we are going to prove below.

A priori estimate I. Multiplying (2.9) by g′jm(t), summing up the resulting product in
j = 1,2, . . . ,m, and after some calculations using Lemma 2.1, we get

1
2
d

dt
£m1
(
t,vm

)
+α
∥∥vmt ∥∥2

L2(Ω)−
(n− 2)γ′

2γn+1

×
[
γn−2

∥∥∇vm∥∥2
2M

(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)
−

∧
M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)]
+
∫
Ω
A(t)vmvmt dy +

∫
Ω
a1 ·∇vmt vmt dy +

∫
Ω
a2 ·∇vmvmt dy

=−1
2
g(t)
γ2(0)

∥∥∇vm∥∥2
L2(Ω) +

1
2
g′�∇v

m

γ
− 4

γ′

γ5

∥∥∆vm∥∥2
L2(Ω),

(2.11)
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where

£m1
(
t,vm

)= ∥∥vmt ∥∥2
L2(Ω) +

(
−
∫ t

0
g(s)γ−2(s)ds

)∥∥∇vm∥∥2
L2(Ω)

+ γ−4
∥∥∆vm∥∥2

L2(Ω) + γ−n
∧
M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)
+ g�∇v

m

γ
.

(2.12)

From (1.27), (1.28), and (1.30), it follows that

γ−4
∥∥∆vm∥∥2

L2(Ω) + γ−n
∧
M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)
≥ m1

‖γ‖2
L∞

∥∥∇vm∥∥2
L2(Ω). (2.13)

Taking into account (1.24), (1.27), the last inequality, and (2.1), it follows that the equality
(2.11) can be written as

1
2
d

dt
£m1
(
t,vm

)
+α
∥∥vmt ∥∥2

L2(Ω) ≤ C
(∣∣γ′∣∣+

∣∣γ′′∣∣)£m1 (t). (2.14)

Integrating the inequality (2.14), using Gronwall’s lemma, and taking into account (1.26),
we get

£m1
(
t,vm

)
+
∫ t

0

∥∥vms (s)
∥∥2
L2(Ω)ds≤ C, ∀m∈N, ∀t ∈ [0,T]. (2.15)

A priori estimate II. Now, if we multiply (2.9) by
√
λjg

′
jm(t) and summing up in j =

1, . . . ,m, we get after some calculations

1
2
d

dt

∥∥∇vmt ∥∥2
L2(Ω) +α

∥∥∇vmt ∥∥2
L2(Ω) +

γ−2

2
M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

) d
dt

∥∥∆vm∥∥2
L2(Ω)

+
γ−4

2
d

dt

∥∥∇∆vm∥∥2
L2(Ω)−

∫
Ω

∫ t
0
g(t− s)γ−2(s)∆vm(s)∆vmt dsdy

+
∫
Ω
A(t)vm∆vmt dy +

∫
Ω
a1 ·∇vmt ∆vmt dy +

∫
Ω
a2 ·∇vm∆vmt dy = 0.

(2.16)

Using Lemma 2.1, we obtain

∫
Ω

∫ t
0
g(t− s)γ−2(s)∆vm(s)∆vmt dy

=−1
2
g(t)γ−2(0)

∥∥∆vm∥∥2
L2(Ω) +

1
2
g′�∆vm

γ

− 1
2
d

dt

[
g�∆vm

γ
−
(∫ t

0
g(s)γ−2(s)ds

)∥∥∆vm∥∥2
L2(Ω)

]
.

(2.17)
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Substituting (2.17) into (2.16), we get

1
2
d

dt
£m2 (t) +α

∥∥∇vmt ∥∥2
L2(Ω)

=−1
2
g(t)
γ2(0)

∥∥∆vm∥∥2
L2(Ω) +

1
2
g′�∆vm

γ
− 2γ′

γ5

∥∥∇∆vm∥∥2
L2(Ω)

+
(
A(t)vm,∆vmt

)
+
(
a1 ·∇vmt ,∆vmt

)
+
(
a2 ·∇vm,∆vmt

)
+

1
2
d

dt

(
γ−2M

(
γn−2

∥∥∇vm∥∥2
L2(Ω)

))∥∥∆vm∥∥2
L2(Ω),

(2.18)

where

£m2 (t)= ∥∥∇vmt ∥∥2
L2(Ω) + g�∆vm

γ
−
(∫ t

0
g(s)γ−2(s)ds

)∥∥∆vm∥∥2
L2(Ω)

+ γ−4
∥∥∇∆vm∥∥2

L2(Ω) + γ−2M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)∥∥∆vm∥∥2
L2(Ω).

(2.19)

From (1.27), (1.28), and (1.30), we have

γ−4
∥∥∇∆vm∥∥2

L2(Ω) + γ−2M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)∥∥∆vm∥∥2
L2(Ω) ≥

m1

‖γ‖2
L∞

∥∥∆vm∥∥2
L2(Ω). (2.20)

Using relation (2.18) and taking into account (2.20), we get

£m2 (t) +α
∫ t

0

∥∥∇vms (s)
∥∥2
L2(Ω)ds≤ C1 +C2

∫ t
0

(∣∣γ′∣∣+
∣∣γ′′∣∣)£m2 (s)ds. (2.21)

Using Gronwall’s and taking into account (1.24), we get

£m2 (t) +α
∫ t

0

∥∥∇vms (s)
∥∥2
L2(Ω)ds≤ C ∀t ∈ [0,T], ∀m∈N. (2.22)

A priori estimate III. Differentiating (2.9) with respect to the time, multiplying by g′′jm(t),
and using similar arguments as (2.22), we obtain, after some calculations and taking into
account (2.22),

1
2
d

dt
£m3 (t) +α

∥∥vmtt (t)∥∥2
L2(Ω) ≤ C

(∣∣γ′∣∣+
∣∣γ′′∣∣)∥∥vmt (t)

∥∥2
L2(Ω)

+C
(∣∣γ′∣∣+

∣∣γ′′∣∣)£m3 (t), ∀t ∈ [0,T], ∀m∈N,
(2.23)

where

£m3 (t)= ∥∥vmtt ∥∥2
L2(Ω) + γ−2M

(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)∥∥∇vmt ∥∥2
L2(Ω)

+ g�∇v
m
t

γ
−
(∫ t

0
g(s)γ−2(s)ds

)∥∥∇vmt ∥∥2
L2(Ω).

(2.24)

Using Gronwall’s lemma and relations (2.15), (2.22), we get

£m3 (t) +α
∫ t

0

∥∥∆vm(s)
∥∥2
L2(Ω)ds≤ C, ∀t ∈ [0,T], ∀m∈N. (2.25)
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It easy to see from (2.9) that

∥∥vmtt (0)
∥∥2
L2(Ω) ≤ C ∀m∈N. (2.26)

A priori estimate IV. Setting w = vm(t) in (2.9), we deduce that

1
2
d

dt
£(m)

4 (t)−∥∥vmt ∥∥2
L2(Ω) + γ−4

∥∥∆vm∥∥2
L2(Ω)

+ γ−2M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)∥∥∇vm∥∥2
L2(Ω)

+
∫ t

0
g(t− s)∆vm(s)vm(s)ds≤ C(∣∣γ′∣∣+

∣∣γ′′∣∣)
×
(∥∥vm∥∥2

L2(Ω) +
∥∥∆vm∥∥2

L2(Ω) +
∥∥vmt ∥∥2

L2(Ω)

)
,

(2.27)

where

£m4 (t)= 2
∫
Ω
vmvmt dy +α

∥∥vm∥∥2
L2(Ω). (2.28)

From (1.27), (1.28), and (1.30), we have

γ−4
∥∥∆vm∥∥2

L2(Ω) + γ−n
∧
M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)
≥ m1

‖γ‖2
L∞

∥∥∇vm∥∥2
L2(Ω), (2.29)

where m1 = (λ1/‖γ‖2
L∞ −m0) > 0. Moreover, it is easy to see that choosing k > 2/α (see

also (2.29)), we obtain

k£m1 (t) + £m4 (t)≥
(
k− 2

α

)(∥∥vmt ∥∥2
L2(Ω) +

∥∥vm∥∥2
L2(Ω)

)
+
(
k− 2

α

)(
γ−4

∥∥∆vm∥∥2
L2(Ω) + γ−n

∧
M
(
γn
∥∥∇vm∥∥2

L2(Ω)

))
> 0.

(2.30)

Now, multiplying (2.11) by k and combining with (2.27), we get, taking into account
(2.29),

1
2
d

dt

(
k£m1 (t) + £m4 (t)

)
+ (kα− 1)

∥∥vmt ∥∥2
L2(Ω) + γ−4

∥∥∆vm∥∥2
L2(Ω)

≤ C(∣∣γ′∣∣+
∣∣γ′′∣∣)(k£m1 (t) + £m4 (t)

)
.

(2.31)

From (2.31), using Gronwall’s lemma, we obtain the following estimate:

k£n1(t) + £m4 (t) +
∫ t

0

(∥∥vmt ∥∥2
L2(Ω) +

∥∥∆vm∥∥2
L2(Ω)

)
ds

≤ C
(∥∥v1

∥∥2
L2(Ω) +

∥∥∆v0
∥∥2
L2(Ω)

)
exp

(
C
∫∞

0

(
γ′(t) + γ′′(t)

)
dt
)
.

(2.32)
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In virtue of (2.29) and (1.26), it follows from (2.32) that

∥∥vmt ∥∥2
L2(Ω) +

∥∥∆vm∥∥2
L2(Ω) +

∫ t
0

(∥∥vmt ∥∥2
L2(Ω) +

∥∥∆vm∥∥2
L2(Ω)

)
ds

≤ C(∥∥v1
∥∥2
L2(Ω) +

∥∥∆v0
∥∥2
L2(Ω)

)
.

(2.33)

From estimates (2.15), (2.22), (2.25), and (2.33), it follows that vm converges strongly in
L2(0,∞ : H1(Ω)) to some v ∈ L2(0,∞ : H1(Ω)). Moreover, since M ∈ C1[0,∞) and ∇vm
is bounded in L∞(0,∞ : L2(Ω))∩L2(0,∞ : L2(Ω)), we have∫ t

0

∣∣∣M(γn−2
∥∥∇vm∥∥2

L2(Ω)

)
−M

(
γn−2‖∇v‖2

L2(Ω)

)∣∣∣ds≤ C∫ t
0

∥∥vm− v∥∥2
H1(Ω)ds, (2.34)

where C is a positive constant independent of m and t so that

M
(
γn−2

∥∥∇vm∥∥2
L2(Ω)

)(
∆vm,wj

)−→M
(
γn−2‖∇v‖2

L2(Ω)

)(
∆v,wj

)
. (2.35)

Therefore, we have that v satisfies

v ∈ L∞(0,∞ :H1
0 (Ω)

)∩L2(0,∞ :H2
0 (Ω)

)
,

vt ∈ L∞
(
0,∞ :H1

0 (Ω)
)
,

vtt ∈ L∞
(
0,∞ : L2(Ω)

)
.

(2.36)

Letting m→∞ in (2.9), we conclude that

vtt + γ−4∆2v− γ−2M
(
γn−2‖∇v‖2

L2(Ω)

)
∆v+

∫ t
0
g(t− s)γ−2(s)∆v(s)ds

+αvt −A(t)v+ a1 ·∇∂tv+ a2 ·∇v = 0
(2.37)

in L∞(0,∞ : L2(Ω)). Therefore, we have

v ∈ L∞(0,∞ :H2
0 (Ω)∩H4(Ω)

)
. (2.38)

To prove the uniqueness of solutions of the problem (1.21), we use the method of the
energy introduced by Lions [16], coupled with Gronwall’s inequality and the hypotheses
introduced in the paper about the functions M, g, and the obtained estimates. �

To show the existence in noncylindrical domains, we return to our original problem in
the noncylindrical domains by using the change variable given in (1.18) by (y, t)= τ(x, t),
(x, t)∈ Q̂. Let v be the solution obtained from Theorem 2.2 and u defined by (1.20), then
u belongs to the classes

u∈ L∞(0,∞ :H2
0

(
Ωt
)∩H4(Ωt

))
,

ut ∈ L∞
(
0,∞ :H1

0

(
Ωt
))

,

utt ∈ L∞
(
0,∞ : L2(Ωt

))
.

(2.39)
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Denoting that

u(x, t)= v(y, t)= (v ◦ τ)(x, t), (2.40)

then from (1.20) follows that

utt +∆2u−M
(
‖∇u‖2

L2(Ωt)

)
∆u+

∫ t
0
g(t− s)∆u(s)ds+αut = 0 (2.41)

in L∞ (0,∞ : L2(Ωt)). If u1, u2 are two solutions obtained through the diffeomorphism τ
given by (1.18), then v1, v2 are the solutions to (1.20). By uniqueness result of Theorem
2.2, we have v1 = v2, so u1 = u2. Therefore, we have the following result.

Theorem 2.3. Take u0 ∈H2
0 (Ω0)∩H4(Ω0), u1 ∈H2

0 (Ω0), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), and (2.1) hold. Then there exists a unique solu-
tion u of the problem (1.11)–(1.13) satisfying (2.39) and the equation

utt +∆2u−M
(
‖∇u‖2

L2(Ωt)

)
∆u+

∫ t
0
g(t− s)∆u(s)ds+αut = 0 (2.42)

in L∞(0,∞ : L2(Ωt)).

3. Exponential decay

In this section, we show that the solution of system (1.11)–(1.13) decays exponentially.
To this end, we will assume that the memory g satisfies

g′(t)≤−C1g(t), (3.1)(
m0−

∫∞
0
g(s)ds

)
= β1 > 0, (3.2)

for all t ≥ 0 with positive constants C1. Additionally, we assume that the function γ(·)
satisfies the conditions

γ′ ≤ 0, t ≥ 0, n > 2, (3.3)

0 < max
0≤t<∞

∣∣γ′(t)∣∣≤ 1
d

, (3.4)

where d = diam(Ω). The condition (3.4) (see also (1.17)) implies that our domain are
“time-like” in the sense that

|ν| < |ν|, (3.5)

where ν and ν denote the t-component and x-component of the outer unit normal of
∑̂

.
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Remark 3.1. It is important to observe that to prove the main theorem of this section,
that is, Theorem 3.8 as well as Lemma 3.6, we use the following substantial hypothesis:

M(s)≥m0 > 0, ∀s∈ [0,∞[. (3.6)

This is because we worked directly in our domain with moving boundary, where the ge-
ometry of our domain influences directly the problem, which generated several technical
difficulties in limiting some terms in Lemma 3.6, and consequently in proving Theorem
3.8. To facilitate our calculations, we introduce the following notation:

(g�∇u)(t)=
∫
Ωt

∫ t
0
g(t− s)∣∣∇u(t)−∇u(s)

∣∣2
dsdx. (3.7)

First of all, we will prove the following three lemmas that will be used in the sequel.

Lemma 3.2. Let F(·,·) be the smooth function defined in Ωt × [0,∞[. Then,

d

dt

∫
Ωt

F(x, t)dx =
∫
Ωt

d

dt
F(x, t)dx+

γ′

γ

∫
Γt
F(x, t)(x · ν)dΓt, (3.8)

where ν is the x-component of the unit normal exterior ν.

For the proof, see for example [7].

Lemma 3.3. Let v ∈H2(Ω)∩H1
0 (Ω). Then for all i= 1, . . . ,n,

∂v

∂yi
= ηi ∂v

∂ν
. (3.9)

Proof. We consider r ∈ C2(Ω,Rn) such that

r = ν on Γ. (3.10)

(It is possible to choose such a field r(·) if we consider that the boundary Γ is sufficiently
smooth.) Let θ ∈ �(Γ) and ϕ ∈ Hm(Ω) with m > max(n/2,2) such that ϕ|Γ = θ. Since
�(Γ)⊂Hm−1/2(Γ), such function ϕ exists and we have∫

Ω

∂2

∂yi∂yj

(
vrjϕ

)
dy =

∫
Γ

ν j
∂

∂yj

(
vrjϕ

)
dΓ=

∫
Γ
θνi

∂v

∂ν
dΓ (i, j = 1, . . . ,n). (3.11)

Note that Ω is regular, we also obtain∫
Ω

∂2

∂yj∂yi

(
vrjϕ

)
dy =

∫
Γ

ν j
∂

∂yi

(
vrjϕ

)
dΓ=

∫
Γ
θν2

j
∂v

∂yi
dΓ=

∫
Γ
θ
∂v

∂yi
dΓ. (3.12)

It follows that ∫
Γ
θ
∂v

∂yi
dΓ=

∫
Γ
θ
(

νi
∂v

∂yi

)
dΓ ∀θ ∈�(Γ), (3.13)

which implies (3.9). �
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From Lemma 3.3, it is easy to see that

∇u · ν= ∂u

∂ν
on Γt, (3.14)

and for u∈H2
0 (Ωt)∩H4(Ωt) (see Komornik [10, page 26]), we have

|∇u| = 0,
∂2u

∂ν2 = ∆u− ∂u

∂ν
divν= ∆u on Γt . (3.15)

Lemma 3.4. For any function g ∈ C1(R+) and u∈ C1(0,∞ :H2
0 (Ωt)∩H4(Ωt)),

∫
Ωt

∫ t
0
g(t− s)∇u(s) ·∇ut(t)dsdx

=−1
2
g(t)

∫
Ωt

∣∣∇u(t)
∣∣2
dx+

1
2
g′�∇u

− 1
2
d

dt

[
g�∇u−

(∫ t
0
g(s)ds

)∫
Ωt

|∇u|2
]
.

(3.16)

Proof. Differentiating the term g�∇u and applying Lemma 3.2, we obtain

d

dt
g�∇u=

∫
Ωt

d

dt

∫ t
0
g(t− s)∣∣∇u(t)−∇u(s)

∣∣2
dsdx

+
γ′

γ

∫
Γt

∫ t
0
g(t− s)∣∣∇u(t)−∇u(s)

∣∣2
(x · ν)dsdΓt .

(3.17)

Using (3.15), we have

d

dt
g�∇u=

∫
Ωt

∫ t
0
g′(t− s)∣∣∇u(t)−∇u(s)

∣∣2
dsdx

− 2
∫
Ωt

∫ t
0
g(t− s)∇ut(t) ·∇u(s)dsdx

+
(∫ t

0
g(t− s)ds

)∫
Ωt

d

dt

∣∣∇u(t)
∣∣2
dx

(3.18)

from where it follows that

2
∫
Ωt

∫ t
0
g(t− s)∇ut(t) ·∇u(s)dsdx

=− d

dt

{
g�∇u−

∫ t
0
g(t− s)ds

∫
Ωt

∣∣∇u(t)
∣∣2
dx
}

+
∫
Ωt

∫ t
0
g′(t− s)∣∣∇u(t)−∇u(s)

∣∣2
dsdx− g(t)

∫
Ωt

∣∣∇u(t)
∣∣2
dx.

(3.19)

The proof is now complete. �
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We introduce the functional

E(t)= ∥∥ut∥∥2
L2(Ωt)

+‖∆u‖2
L2(Ωt) +

∧
M
(
‖∇u‖2

L2(Ωt)

)
−
(∫ t

0
g(s)ds

)
‖∇u‖2

L2(Ωt) + g�∇u.
(3.20)

We observe that E(t) > 0 since the hypotheses (2.1), (3.2), and (3.6) are satisfied.

Lemma 3.5. Take u0 ∈ H2
0 (Ω0)∩H4(Ω0), u1 ∈ H2

0 (Ω0), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1), and (3.6) hold. Then there exists a unique
strong global solution of (1.11)–(1.13) satisfying

d

dt
E(t) + 2α

∥∥ut∥∥2
L2(Ωt)

≤−
∫
Ωt

g(t)|∇u|2dx+ g′�∇u. (3.21)

Proof. Multiplying (1.11) by ut, performing an integration by parts over Ωt, and using
Lemma 3.2, we obtain

1
2
d

dt

∥∥ut∥∥2
L2(Ωt)

+
1
2
d

dt
‖∇u‖2

L2(Ωt) +
1
2
d

dt
‖∆u‖2

L2(Ωt)

+
1
2
d

dt

∧
M
(
‖∇u‖2

L2(Ωt)

)
+α
∥∥ut∥∥2

L2(Ωt)
−
∫
Ωt

∫ t
0
g(t− s)∇u(s) ·∇ut dsdx

− γ′

2γ
M
(
‖∇u‖2

L2(Ωt)

)∫
Γt
|∇u|2(ν · x)−

∫
Γt

γ′

2γ
(ν · x)

(∣∣ut∣∣2
+ |∆u|2)dΓt = 0.

(3.22)

Using (3.3), we obtain

− γ
′

2γ
M
(
‖∇u‖2

L2(Ωt)

)∫
Γt
|∇u|2(ν · x)−

∫
Γt

γ′

2γ
(ν · x)

(∣∣ut∣∣2
+ |∆u|2

)
dΓt ≥ 0. (3.23)

Taking into account the above inequality and (3.14) and Lemma 3.4, we obtain the con-
clusion of the lemma. �

We consider the following functional:

ψ(t)= 2
∫
Ωt

utudx+α‖u‖2
L2(Ωt). (3.24)

Lemma 3.6. Take u0 ∈ H2
0 (Ω0)∩H4(Ω0), u1 ∈ H2

0 (Ω0), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1), and (3.6) hold. Then there exists a unique
strong global solution of (1.11)–(1.13) satisfying

1
2
d

dt
ψ(t)≤ ∥∥ut∥∥2

L2(Ωt)−M
(
‖∇u‖2

L2(Ωt)

)
‖∇u‖2

L2(Ωt) +
(∫ t

0
g(s)ds

)
‖∇u‖2

L2(Ωt)

−‖∆u‖2
L2(Ωt) +‖∇u‖L2(Ωt)

(∫ t
0
g(s)ds

)1/2

(g�∇u)1/2.

(3.25)



916 Uniform decay for a nonlinear beam equation

Proof. Multiplying (1.11) by u and integrating over Ωt, we obtain

1
2
d

dt
ψ(t)= ∥∥ut∥∥2

L2(Ωt)
−‖∆u‖2

L2(Ωt)−M
(
‖∇u‖2

L2(Ωt)

)
‖∇u‖2

L2(Ωt)

+
∫
Ωt

∫ t
0
g(t− s)∇u(s) ·∇udsdx.

(3.26)

Noting that

∫
Ωt

∫ t
0
g(t− s)∇u(s) ·∇udsdx =

∫
Ωt

∫ t
0
g(t− s)(∇u(s)−∇u(t)

) ·∇udsdx
+
∫
Ωt

(∫ t
0
g(s)ds

)
|∇u|2dx,

(3.27)

and taking into account that

∣∣∣∣∫
Ωt

∫ t
0
g(t− s)(∇u(s)−∇u(t)

) ·∇udsdx∣∣∣∣≤ ‖∇u‖L2(Ωt)

(∫ t
0
g(s)ds

)1/2

(g�∇u)1/2,

(3.28)

there follows the conclusion of lemma. �

Remark 3.7. We used the hypotheses (1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1),
and (3.6) because we are interested in strong global solution for our problem (1.11)–
(1.13), which was obtained by the existence and uniqueness in Section 2.

We introduce the functional

�(t)=NE(t) +ψ(t), (3.29)

with N > 0. It is not difficult to see that �(t) verifies

k0E(t)≤�(t)≤ k1E(t), (3.30)

for k0 and k1 positive constants. Now we are in a position to show the main result of this
paper.

Theorem 3.8. Take u0 ∈H2
0 (Ω0)∩H4(Ω0), u1 ∈H2

0 (Ω0), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1), (3.1), (3.2), (3.4), and (3.6) hold. Also,
suppose that g ∈W1,2(0,∞). Then the strong solution of the system (1.11)–(1.13) satisfies

E(t)≤ Ce−ξtE(0), ∀t ≥ 0, (3.31)

where C and ξ are positive constants.
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Proof. Using Lemmas 3.5 and 3.6, we get

d

dt
�(t)≤−2Nα

∥∥ut∥∥2
L2(Ωt)−C1Ng�∇u+

∥∥ut∥∥2
L2(Ωt)

−‖∆u‖2
L2(Ωt)− M̂

(
‖∇u‖2

L2(Ωt)

)
+
(∫ t

0
g(s)ds

)
‖∇u‖2

L2(Ωt)

+‖∇u‖2
L2(Ωt)

(∫ t
0
g(s)ds

)1/2

(g�∇u)1/2.

(3.32)

Using (3.1) and Young inequality, we obtain for ε > 0 that

d

dt
�(t)≤−2Nα

∥∥ut∥∥2
L2(Ωt)−C1Ng�∇u+

∥∥ut∥∥2
L2(Ωt)

−‖∆u‖2
L2(Ωt)− M̂

(
‖∇u‖2

L2(Ωt)

)
+
(∫ t

0
g(s)ds

)
‖∇u‖2

L2(Ωt)

+
ε
2
‖∇u‖2

L2(Ωt) +
‖g‖L1(0,∞)

2ε
g�∇u.

(3.33)

Choosing N large enough, ε small, and using hypothesis (3.6), we obtain

d

dt
�(t)≤−λ0E(t), (3.34)

where λ0 is a positive constant independent of t. From (3.30) and (3.34), it follows that

�(t)≤�(0)e−(λ0/k1)t, ∀t ≥ 0. (3.35)

From equivalence relation (3.30) our conclusion follows. The proof now is completed.
�

Remark 3.9. The techniques in this paper may be used to study the problem (1.11)–
(1.13) without the term weak dissipative αut. In this case, we define other appropriate
functionals to prove the exponential and polynomial decay rates of the energy of regular
solutions for the nonlinear beam equations with memory

utt +∆2u−M(‖∇u‖2
2

)
∆u+

∫ t
0
g(t− s)∆u(s)ds= 0 in Q̂, (3.36)

where the functions M, g, and γ satisfy some appropriate conditions. Results concerning
the above equations in domains with moving boundary will appear in a forthcoming
paper.
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[19] J. E. Muñoz Rivera, E. C. Lapa, and R. Barreto, Decay rates for viscoelastic plates with memory,
J. Elasticity 44 (1996), no. 1, 61–87.



M. L. Santos et al. 919

[20] D. C. Pereira, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam
equation, Nonlinear Anal. 14 (1990), no. 8, 613–623.

[21] O. Ramos Ch., Regularity property for the nonlinear beam operator, An. Acad. Brasil. Ciênc. 61
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