GENERIC UNIQUENESS OF A MINIMAL SOLUTION
FOR VARIATIONAL PROBLEMS ON A TORUS
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We study minimal solutions for one-dimensional variational problems on a to-
rus. We show that, for a generic integrand and any rational number «, there ex-
ists a unique (up to translations) periodic minimal solution with rotation num-
ber a.

1. Introduction

In this paper, we consider functionals of the form

b
' (a,b,x) =f f(tx(t),%(t))dt, (1.1)

where a and b are arbitrary real numbers satisfying a < b, x € W"!(a,b) and
f belongs to a space of functions described below. By an appropriate choice of
representatives, W'!(a, b) can be identified with the set of absolutely continuous
functions x : [, b] — R!, and henceforth we will assume that this has been done.

Denote by 91 the set of integrands f = f(t,x, p) : R> — R! which satisfy the
following assumptions:

(A1) f € C?and f(tx, p) has period 1 in t,x;

(A2) 8¢ < fop(t,x, p) < 8}1 for every (t,x, p) € R%;

(A3) | fepl 1 fepl < e (L IpD)s | fral + 1 firl S 5 (14p),
with some constants §7 € (0, 1), cs > 0.
Clearly, these assumptions imply that

Sfpz—éfsf(t,x,p)séjzlp%af (1.2)

for every (t,x, p) € R3 for some constants cr>0 and 0 < Sf < (Sf.
In this paper, we analyse extremals of variational problems with integrands
f € M. The following optimality criterion was introduced by Aubry and Le
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Daeron [2] in their study of the discrete Frenkel-Kontorova model related to
dislocations in one-dimensional crystals.
Let f € M. A function x(-) € WIL’CI (R!) is called an (f)-minimal solution if

U(ab,y)>1/(a,b,x) (1.3)

for each pair of numbers a < b and each y € W'!(a, b) which satisfies y(a) = x(a)
and y(b) = x(b) (see [2,9, 10, 12]).

Our work follows Moser [9, 10], who studied the existence and structure of
minimal solutions in the spirit of Aubry-Mather theory [2, 7].

Consider any f € 9. It was shown in [9, 10] that (f)-minimal solutions
possess numerous remarkable properties. Thus, for every ( f)-minimal solution
x(-), there is a real number « satisfying

sup {|x(t)-at| :teR'} < o0 (1.4)

which is called the rotation number of x(-), and given any real « there exists an
(f)-minimal solution with rotation number a. Senn [11] established the exis-
tence of a strictly convex function E¢ : R — R, which is called the minimal
average action of f such that, for each real a« and each (f)-minimal solution x
with rotation number «,

(Tz—Tl)_IIf(Tl, Tz,X) HEf(()() as Tz—Tl —> CO. (15)

This result is an analogue of Mather’s theorem about the average energy function
for Aubry-Mather sets generated by a diffeomorphism of the infinite cylinder
[8].

In this paper, we show that for a generic integrand f and any rational «, there
exists a unique (up to translations) ( f)-minimal periodic solution with rotation
number a.

Let k > 3 be an integer. Set 90t = MNCF(R?). For f € My and q = (91,92, 93) €
{0,...,k}? satisfying q; + g2+ g3 < k, we set

Di alqlf
|‘Z|—Q1+QZ+Q3, f—m (16)
For N, e > 0 we set
Ex(N,e) ={(f.g) € M x My : |DUf (t,x, p)—Dig(t,x, p)|
<e+emax {|Dif(t,x p)|,|Dig(t,x, p)|}
Yq € {0,1,2} satisfying |q| € {0,2}, V(t,x, p) € R’} (17)

N{(f.g) € M x My : |Df(t,x, p)-Dig(t,x, p)| < e
Yq € {0,..., k)’ satisfying |q| < k, V(t,x, p) € R
such that [p| <N}.
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It is easy to verify that, for the set 9% there exists a uniformity which is deter-
mined by the base E(N, ¢), N, e > 0, and that the uniform space 2 is metriz-
able and complete [3]. We establish the existence of a set &y C 9 which is a
countable intersection of open everywhere dense subsets of 9t such that, for
each f € %y and each rational « € R!, there exists a unique (up to translations)
(f)-minimal periodic solultion with rotation number a.

2. Properties of minimal solutions

Consider any f € 9. We note that, for each pair of integers j and k the trans-
lations (t,x) — (t+ j,x + k) leave the variational problem invariant. Therefore,
if x(+) is an (f)-minimal solution, so is x(- + j) + k. Of course, on the torus, this
represents the same curve as does x(-). This motivates the following terminology
[9, 10].

We say that a function x(-) € Wﬁ)cl (R!) has no self-intersections if for all pairs
of integers j, k the function t — x(t+ j) + k — x(t) is either always positive, or
always negative, or identically zero.

Denote by Z the set of all integers. We have the following result (see [6, Propo-

sition 3.2] and [9, 10]).

ProrosriTioN 2.1. (i) Let f € 9. Given any real « there exists a nonself-inter-
secting ( f )-minimal solution with rotation number a.

(ii) Forany f € M and any (f)-minimal solution x, there is the rotation num-
ber of x.

For each f € 90, each rational number «, and each natural number g satisty-
ing qa € Z, we define
N(e, g) = {x(-) e WEH(RY) 1 x(t+q) = x(t) +agq, te R},

loc

(2.1)
My, q) = {x(-) e N(a, q) :17(0,9,x) <1/ (0,4, y) Vy eN(wq)}.

We have the following result [9, Theorems 5.1, 5.2, 5.4, and Corollaries 5.3
and 5.5].

ProrosiTioN 2.2. Let f € M, let « be a rational number, and let p,q > 1 be
integers satisfying pa, qa € Z. Then Ms (e, q) = My (o, p) # 0, each x € Ms(a, q)
is a nonself-intersecting ( f)-minimal solution with rotation number o and the set
My (i, q) is totally ordered, that is, if x, y € My (a, q), then either x(t) < y(t) for all
t, or x(t) > y(t) for all t, or x(t) = y(t) identically.

For any f € 9 and any rational number o we set Jl/Lp (&) = Ms(a, q), where
q is a natural number satisfying qu € Z.
We have the following result (see [6, Theorem 1.1]).

PrOPOSITION 2.3. Let f € M. Then there exist a strictly convex function Ef : R! —
R! satisfying Ef(a) — oo as || — oo and a monotonically increasing function
[ :(0,00) — [0, 00) such that for each real a, each (f)-minimal solution x with
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rotation number a and each pair of real numbers S and T,
|1/ (S, S+T,x)~Ef(a)T| < Ty (lar]). (2.2)

By Proposition 2.3 for each f € 91 there exists a unique number «a(f) such
that

Ef(a(f)) =min{Es(B): feR'}. (2.3)
Note that assumptions (A1), (A2), and (A3) play an important role in the
proofs of Propositions 2.1, 2.2, and 2.3 (see [9, 10]).
3. The main results

THEOREM 3.1. Let k > 3 be an integer and « be a rational number. Then there
exists a set Fry C My which is a countable intersection of open everywhere dense
subsets of My such that for each f € My the following assertions hold:

(D Ifx,ye A/L;per)((x), then there are integers p, q such that y(t) = x(t+p) —q
forallt e R
(2) Letx € Jl/t}per)(oc) and € > 0. Then there exists a neighborhood W of f in My

such that for each g € W and each y € A/Léper)(oc) there are integers p, q such that
ly(£)—x(t+p)+q| <eforallt e R

It is not difficult to see that Theorem 3.1 implies the following result.

THEOREM 3.2. Let k > 3 be an integer. Then there exists a set Fi, C My which is a
countable intersection of open everywhere dense subsets of MMy such that, for each
f €My and each rational number o the assertions (1) and (2) of Theorem 3.1 hold.

Note that minimal solutions with irrational rotation numbers were studied

in[2,7,9,10, 12].

4. An auxiliary result

Let k > 3 be an integer and f$ € R!. For each f € My, define A f € C*(R?) by
(Af)txu)=ft,xu)-Pu,  (txu) R’ (4.1)

Clearly o4 f € 9y for each f € M.

ProproOSITION 4.1. The mapping sl : 9y, — My is continuous.

Proof. Let f € M and let N, e > 0. In order to prove the proposition, it is suffi-
cient to show that there exists e € (0, €) such that

A({geMi:(f.g) €Ex(N,eo)}) c {heMy: (hsf)e€E(N,e)}. (4.2)
Set

Ao =2(|Bl+1). (4.3)
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Equation (1.2) implies that there exists ¢y > 0 such that
Aolul—co < f(t,x,u) Y(txu) eR’. (4.4)
Choose a number ¢ such that
0<ey<min{l,e}, 4eg+4eo(1—€p)  (4+cp) <e. (4.5)
It follows from (4.3) and (4.4) that for each (t,x, u) € R?,

|f (&, u)=Bul > | f(t,x,u)| = |Bul = | f(tx,u)| - BIA; (f (£ x, 1) +co)
> | f(txu)|(1=1BI1AG") = 1BlAG o (4.6)
>27 f(txu)| -2 o

Assume that

g€M,  (f.g) € Ex(N,e). (4.7)
By (1.7) and (4.7) for each (t,x,u) € R3,

| f(t,x,u)—g(t, x,u)| < eg+eomax {| f(t,x,u)|,|gtxu)|},
max {| f(t,x,u)|, |g(t,x, u) |} —min {| f (t,x, u)]|, |g(t, x, u) |}
<eot+eomax {|f(t,x,u)|, |g(t,xu)|}, (4.8)
(1-eo) max {|f(t,x,u)|,|g(t,x, u)|} <min{|f(t,x,u)|,|g(t,x, u)|} +e€0s
lg(t,x,u)| < (1—60)71|f(t,x,u)|+(1—€0)7160.

We show that (sd f, ddg) € Ex(N,e). It follows from (1.7), (4.1), (4.5), and (4.7)
that, for each q = (q1,92, q3) € {0,..., k}? satisfying |g| < k and each (£, x, p) € R?
satisfying [p| <N,
|DI(Af)(t, x, p)-DU(sAg)(t,x, p)| = |DUf(t,x, p)-Dig(t,x, p)| < eo < €. (4.9)
Let q € {0,1,2}3, |q| € {0,2}, and (t,x, p) € R?. Equation (4.1) implies that
|DI(Af)(t, x, p)—DU(Ag)(t,x, p)| = |DIf(t,x, p)—Dg(t,x, p)|. (4.10)

If |q| = 2, then by (1.7), (4.1), (4.5), (4.7), and (4.10),

|D(sAf)(t, x, p)—DI(AgG)(t,x, p)|
<eg+eomax {|DIf(t,x, p)|, | Dig(t,x, p)|} (4.11)
<e+emax {|DI(Af)(t,x p)|, | DI(Ag)(t,x, p)|}.
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Assume that ¢ = 0. By (1.7), (4.1), (4.5), (4.6), (4.7), and (4.8),
|DI(Af)(t,x, p)—DU(sAg)(t,x, p)|

= |f(tx, p)-g(tx, p)| < eo+eomax {|f(t:x, p)|. |g(t.x p)| }
<eg+eomax {|f(tx p)l, (1—60)_1 |f(txp)|+ (l—eo)_leo}
=€0+€0<1—€0)_1|f(t,x,p)|+€(2)(1—€())_1 (4.12)
< (—:0+e(2)(1—eo)_1 4-(—:()(1—(-:0)_1 [2| f(t,x, p)—Bp| +2co]
<ep+el(1-e0) " +2e0(1-e0) o +2e0(1—e0) | f(tx p)—PBp|
<2e0(1-€) ' [(Af)(t,x, p)|+e < e+e|(sf)(t,x, p).

Equations (4.9), (4.11), and (4.12) imply that (s f, lg) € Ex(N, €). Proposition
4.1 is proved. O

Let —o0 < Ty < T < oo and x € WEI(Ty, T,). By (4.1) we have

T,
(T, Ty, x) =L (f (t,x(), X' (t)) - px'(t)) dt

=If(T1, Tz,x) —IBX(Tz) +ﬁx(T1).

(4.13)

Therefore, each x € Wli)’cl(Rl) is an (s f)-minimal solution if and only if x(-) is
an ( f)-minimal solution.

Let x € Wli)’cl (R!) be an (f)-minimal solution with rotation number r. By

Proposition 2.1 there exists ¢; > 0 such that for all s, t € R!,
|x(t+5)—x(t)—rs| < c1. (4.14)

Proposition 2.3 implies that there exists a constant ¢, > 0 such that for each s €
R! and each t >0,

|If(5,s+t,x)—Ef(r)t| <6, (4.15)
| (s, 5+1,x) B (r)t]| < ca. (4.16)

It follows from (4.13), (4.14), (4.15), and (4.16) that, for each s € R! and each
t>0,

|Esi s (r)t+Btr—Ef ()|
< |Bay (re=I (s s+ ,.0)| + |1V (s,5+6,0) +tr =1 (5,54,
+|1 (s,s+6,x)~Ef(r)t]
<oyt |Btr—Plx(t+s)—x(s)] | +c2 < 2¢2+|Bler.

(4.17)

These inequalities imply that

Egf(r)=Ef(r)—pr vreR. (4.18)
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5. Proof of Theorem 3.1
Let g € M. We define

loc

u(g) = inf { liminf 7-'1#(0, T,x) : x() € W, ([0, 00)) }. (5.1)

In [13, Section 5] we showed that the number p(g) is well defined and proved
the following result [13, Theorem 5.1].

ProrosiTiON 5.1. Let f € 9. Then there exists a constant My > 0 such that:
(i) I1(0, T,x)—u(f)T > —M, for each x € Wﬁ)’cl([O, o)) and each T > 0.

(ii) Foreach a € R! there exists x € W ([0, 00)) such that x(0) = a and

loc
|70, T,%)—u(f)T| <4My VT >0. (5.2)

Note that assertion (ii) of Proposition 5.1 holds by the periodicity of f in x.
Let f € M. A function x € Wﬁ)’cl([O,oo)) is called ( f)-good (see [5]) if

sup{|1f(0,T,x)—pt(f)T| :T€(0,00)} < o0. (5.3)
By [6, Theorem 4.1],

Ef(a(f)) =u(f) Vfem (5.4)
For f €M, x,y, T) € R, and T, > T we set

U/ (Ty, To, x, y) =inf {I/ (Ty, To, v) :v € WEH(Ty, To), v(Th) =x,v(T2) = y ).
(5.5)
It is not difficult to see that for each x, y, T) € R, T > Ty,

Uf(Tl,Tz,X'l'l,y‘f‘l) = Uf(Tl, Tz,x,)/),
UN(Ti+ 1L, Ta+Lx,y) = U/ (T, T x, y), —co< U/ (T), To,x, y) < oo,
inf{Uf(Tl, T5,a,b):a,beR'} > —c0. (5.6)

Denote by 9., the set of all f € M such that a( f) is rational and denote by M,
the set of all g € My, for which there exist an (g)-minimal solution w € C*(R"),
a continuous function 7 : R! — R!, and integers m,n such that the following
properties hold:

(P1) m(x+1) = m(x), x e R

(P2) n>1and a(g) = mn~! is an irreducible fraction;

(P3) w(t+n) =w(t)+mforall t e RY;

(P4) U2(0,1,x, y) —u(g) —m(x)+m(y) >0 for each x, y € R;

(P5) for any u € W'1(0, n), the equality

13(0,n,u) = nu(g) +m (u(0)) —m (u(n)) (5.7)

holds if and only if there are integers i, j such that u(t) = w(t+1) — j for
allt € [0,n].
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Consider the manifold (R!/Z)? and the canonical mapping P : R? — (R!/Z)>.
We have the following result [13, Proposition 6.2].

PrOPOSITION 5.2. Let Q be a closed subset of (R'/Z)?. Then there exists a bounded
nonnegative function ¢ € C*((R/Z)?) such that

Q= {xe (RY/2)*: ¢(x) = 0}. (5.8)

Proposition 5.2 is proved by using [1, Chapter 2, Section 3, Theorem 1] and
the partition of unity (see [4, Appendix 1]).
We also have the following result (see [13, Proposition 6.3]).

PrOPOSITION 5.3. Suppose that f € Mper, a( f) = mn~! is an irreducible fraction
(m,n are integers, n > 1) and w € WIL’CI(Rl) is an (f)-minimal solution satisfy-
ing w(t+n) =w(t)+m forall t € R Let ¢ € C*((RY/Z)?) be as guaranteed in
Proposition 5.2 with

Q={P(t,w(t)):te[0,n]}, (5.9)
and let

gtx,p)=f(tx p)+¢(P(t,x)), (tx p)eR’. (5.10)

Then g € My, and there is a continuous function 7 : R' — R such that the prop-

erties (P1), (P2), (P3), (P4), and (P5) hold with g, w, m, m,n and a(g) = a( f).
In the sequel we need the following two lemmas proved in [13].

LEmMA 5.4 [13, Lemma 6.6]. Assume that k > 3 is an integer, g € imger N MM,
and properties (P1), (P2), (P3), (P4), and (P5) hold with a g-minimal solution
w(-) € C2(RY), a continuous function w : R' — R and integers m, n. Then for each

€ (0, 1), there exists a neighborhood W of g in My such that for each h € U and

each (h)-good function v € Wltcl([O, o)) there are integers p, q such that
|v(t)-w(t+p)—q| <e foralllarge enought. (5.11)

LemMma 5.5 [13, Corollary 6.1]. Assume that k > 3 is an integer, g € 9, N My,
and properties (P1), (P2), (P3), (P4), and (P5) hold with a g-minimal solution
w(-) € C3(RY), a continuous function m : R! — R and integers m, n. Then there
exist a neighborhood AU of g in My and a number L > 0 such that for each h € U
and each (h)-good function v € Wli)’cl([O, o)), the following property holds.

There is a number Ty > 0 such that

|v(t)-v(t)-a(g)(t,-t1)| <L (5.12)

for each t; > Ty and each t, > t;.
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Completion of the proof of Theorem 3.1. Let k > 3 be an integer and let o =
mn~! be an irreducible fraction (n > 1 and m are integers). Let f € 9. By
Proposition 2.2 there exists an (f)-minimal solution w(-) € WILCI (RY) such that

wi(t+n) =ws(t)+m vt e R (5.13)
Choose
B € 0Es(a). (5.14)

Consider a mapping o : My — My defined by (4.1). By Proposition 4.1 the
mapping  is continuous. Clearly there exists a continuous S~ : Iy — M.
Equations (5.14) and (4.18) imply that

0€0Eys(a), Egs(a)=min{Egqs(r):reR'} =pu(sdf) (5.15)

and that Sl f € M,er. It follows from Proposition 5.2 that there exists a bounded
nonnegative function ¢ € C*((R!/Z)?) such that

[xe (RY/Z): ¢(x) =0} = (P(t, w(t) : t € [0,n]). (5.16)
Set f® = s f and for each y € (0, 1) define
Hxu = fbxw+yp(Ptx), (LxweR, [P =d(f). (5.17)
Proposition 5.3 implies that for each y € (0, 1),

()
fyﬁ € mger

fi—f asy—0,, PP asy—0"in M (5.18)

NN,

Fix y € (0,1) and an integer n > 1. By Proposition 5.3 the properties (P1), (P2),
(P3), (P4), and (P5) hold with g = £, a(g) = wand w(-) = wy.

By Lemmas 5.4 and 5.5, there exists an open neighborhood V (£, y, n) of fy(ﬁ )
in 9, and a number L(f, y, n) > 0 such that the following properties hold:

(i) for each h € V(f,y,n) and each (h)-good function v € Wlt)’cl([O,oo)),
there are integers p, g such that

(5.19)

S| =

[v(t)—wy(t+p)-q| <

for all large enough t;
(ii) for each h € V(f,y,n) and each (h)-good function v € Wlt)’cl([O,oo)),
there is a number T such that

lv(t) -v(t) -a( ") (-1)| <L (5.20)

for each t; > Ty and each £, > t;.
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Let h € V(f,y,n) and let v € WIL’CI (R') be an (h)-minimal solution
with rotation number a(h). Then by Proposition 2.3, (2.3), (5.4), and
property (ii), v|j0,e) is an (h)-good function and there is Tj such that
(5.20) holds for each t; > Ty and each t, > t;. Since v € Wlloc1 (RY) has
rotation number a(h) it follows from Proposition 2.1 that there exists
¢1 > 0 such that

|[v(t+s)-v(t)-a(h)s| <c; Vs,teR. (5.21)
Equations (5.15), (5.17), (5.20), and (5.21) imply that
ath) = a(f) = a(f®) = a. (5.22)
Thus we have shown that
alh)=a VYheV(f,y,n). (5.23)
Lethe V(f,y,n)andletve Wllo’c1 (R!) be an (h)-minimal solution with
rotation number «. It follows from Proposition 2.3, (2.3), and (5.4) that

V|[0,00) 1 an (h)-good function. By property (i) there exist integers p, g
such that

S| =

|[v(t)-we(t+p)—q| < for all large enough ¢. (5.24)

Therefore we proved the following property:
(iii) for each h € V(f,y,n) and each (h)-minimal solution v € M} (a), there
exist integers p, g such that

V() -wrlt+p)-q| < Ve (5.25)
Define
WU(f,y,n)=A"(V(f,y,n)). (5.26)
Clearly U( f, y, n) is an open neighborhood of f, in 9. By property (iii)
the following property holds:

(iv) for each & € WU( f, y,n) and each (£)-minimal solution v € A/L?er(oc), there
exist integers p, g such that (5.25) holds.

Define
Fra =052 U{U(f, p,1) : f €My, y€(0,1), i >n}. (5.27)

It is not difficult to see that Fy, is a countable intersection of open everywhere
dense subsets of Miy.
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Letg € Fppe€(0,1)andx, y € A/Léper) (). Choose a natural number # > 8¢™!.
By (5.27) there exist f € My, y € (0, 1) and an integer i > n such that

gEWU(S,y.1). (5.28)

It follows from (5.28) and property (iv) that there exist integers pi, q1, p2> 92
such that

|x(t)=wr(t+p1)—qi] g% vteRY, (5.29)
1
ly(6)=ws(t+p2) - qa| §? vt e R, (5.30)

where wy € J(/L;Per)(oc).
It follows from (5.29) and (5.30) that for all t € R!,

|xU_PQ_”70%%h|S%,
ly(t=p2)-ws(t)-qa| < % o)
[x(=pr=a0)-((t=p) )| < 3 |
|x(t+p2=p1) = y(t)—q1+qa| < % < % <e.

Since e is any number in (0, 1), we conclude that there exist integers p, g such
that

x(t+p)—q=y(t) VteRL (5.32)

Assume that & € U(f,y,i) and z € M;per) (). By the property (iv) there exist
integers ps, g3 such that

% vt e R (5.33)

|z(t)—wy(t+ps)—as| < -

Combined with (5.29) this inequality implies that

<e (5.34)

2
|z(t=ps3) gz —x(t=p1) +q1| < 7S

S|

for all t € R!. This completes the proof of Theorem 3.1.
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