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OPTIMAL LOWER ESTIMATES FOR EIGENVALUE RATIOS OF
SCHRODINGER OPERATORS AND VIBRATING STRINGS

Chung-Chuan Chen, C. K. Law and F. Y. Sing

Abstract. We obtain optimal lower estimates for the eigenvalue ratios (i‘\—m)

of Dirichlet and Neumann Schrodinger operators with nonpositive potentials
and Dirichlet vibrating string problems with concave and positive densities.
Our results supplement those of Ashbaugh-Benguria [2] and M. J. Huang [5].

1. INTRODUCTION
Consider the one-dimensional Schrodinger operator on [0, 1],
(1.1) —y" +a(@)y = Ay,
and vibrating string problem on [0, 1],
(1.2) —y" = pp(2)y |
subject to linear separated boundary conditions

y(0) cosar + y/(0) sina = 0,
y(1)cos B3+ (1)sin3 =0,

where o = (3 = 0 corresponds to the Dirichlet boundary condition and o« = 3 = 7/2
corresponds to the Neumann boundary condition. Let \,, (1,,) be the nt* eigenvalue
and 7, be the n'® cigenfunction with » — 1 zeros in (0,1). The functions ¢, p €
L'(0, 1) and are called the potential function and density function respectively. The
eigenvalue gaps and eigenvalue ratios of the above systems have been the object of
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many studies. Recently, Lavine [8] proved an optimal lower estimate of the first
eigenvalue gap for Schrodinger operators with convex potentials.

Theorem 1.1. [9] For the Schrodinger operator (1.1) on [0, 1], if q is convex,
then the first Dirichlet (Neumann) eigenvalue gap Ao — A1 satisfies

)\2—>\1237T2 ()\2—>\127T2).

In both cases, equality holds if and only if ¢ = 0 .

Lavine’s theorem is a special case of a conjecture that for convex potentials ¢
defined on any bounded domain in R”, the first Dirichlet eigenvalue gap is smallest
when 7 = 1 and ¢ = 0. His theorem proves the conjecture for n = 1. The general
case is still open. His method involves a variational approach with detailed analysis
on different integrals involving y2 — 3.

Later (M. J.) Huang adapted his method to study the eigenvalue ratios of vibrat-
ing strings [5]. One of the main results is the following Theorem 1.2. It may be
viewed as the dual of Theorem 1.1.

Theorem 1.2. [5] For the vibrating string equation (1.2), if p is concave and
positive, then the first Dirichlet eigenvalue ratio % satisfies

H2 5y,

1
Equality holds if and only if p is constant.

The main objective of this paper is to generalize the above optimal estimate for
the Dirichlet eigenvalue ratio % to arbitrary Z—’: Observe that in [2], Ashbaugh
and Benguria introduced a method involving a modified Pritfer substitution and a
comparison theorem to study the upper bounds of Dirichlet eigenvalue ratios for
Schrodinger operators with nonnegative potentials. The method was then simplified
and generalized to study Sturm-Liouville operators [3] and some general boundary
conditions [6]. The results may be summarized as follows:

Theorem 1.3. [2,6] For the Schrodinger operator (1.1), if ¢ € L*(0,1) and
q > 0 a.e., then for any m > n > 1, the Dirichlet eigenvalue ratios satisfy

2o (e,

An n
and the Neumann eigenvalue ratios satisfy

A 1_-m
)\n: < (25[%” +1)%
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In each case, equality holds if and only if ¢ = 0 and m is a multiple of n (and =
is odd in the Neumann case).

In the above theorem, the floor function of s, |s| = max{k € Z : k < s}. The
ceiling function of s, [s] = min{k € Z : k > s}. It is interesting to see that the
counterpart of the above result is also valid.

Theorem 1.4. For the Schrodinger operator (1.1), if g € L'(0,1), ¢ <0 a.e,
and the Dirichlet, Neumann eigenvalue A ’s are positive, then for any m > n > 1,
(a) the Dirichlet eigenvalue ratios satisfy

== (2

n

Equality holds if and only if ¢ = 0 and m is a multiple of n.

(b) the Neumann eigenvalue ratios satisfy

>\m+1

Zmrl s k2
>\n+1 B
where let s = ||, and
s s when s is odd,
k2[§1_1{s—1 when s is even.

Equality holds if and only if ¢ = 0 and m is an odd multiple of n.

Theorem 1.4 helps in attaining our objective concerning the vibrating strings.
For if p is C?, (1.2) can be transformed [4] to a Schrodinger operator with the
potential function ¢ satisfying

4p"p = 5(p')?

1. 45— _ __f3 gl
(1.3) q 7 e

where f = pfl/ 4. Hence when p is smooth, concave and positive, § has to be
nonpositive, as required in Theorem 1.4.

Theorem 1.5. For the vibrating string equation (1.2), if p is concave and
positive, then for any m > n > 1, the Dirichlet eigenvalue ratios satisfy

Hm m 2

— >—)".

> (12))
In particular, if p is twice differentiable, then equality holds if and only if p is
constant and m is a multiple of n.
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It is open if the optimality result is true without the smoothness assumption on
p. Preliminaries will be given in Section 2. Theorem 1.4 and Theorem 1.5 will be
proved in section 3 and section 4 respectively.

2. PRELIMINARIES

The Prufer substitution [4] for the Schrodinger operator involves
y(@) = r(x)sin p(x)
y'(w) = r(x) cos ¢(w)

where ¢ is the phase function. For the n* Dirichlet eigenfunction y,,, the phase
function ¢,, satisfies ¢,,(0) = 0, ¢,(1) = nw. The modified Prafer substitution
was introduced by Ashbaugh and Benguria [2],

{ y(x) = r(x) sin vV A0(z)
Y (x) = VAr(x) cos vV 0(x)

where the modified phase # satisfies

(2.1)

(2.2) o _ 9w

T sin?(VA0(x)) = F(x, 0, )).

The modified phase 6, satisfies 6,,(0) = 0, 6,,(1) = nr/v/A,. Our method needs
to compare the modified phases (2.2) for different eigenfunctions. Here the term
sin?(vV/A0(z))/X is important. Below we give a simpler proof for the inequality [6,
Theorem 3].

Lemma 2.1. Suppose ¢ > 1,|0| < |¢|n /¢, then
sin?(¢@) < ¢?sin® ©.
Proof.  Clearly it is sufficient to prove the case © > 0. Consider f(©) =
csin® =+ sin(eO), where 0 < © < |¢|n/e. For any critical value O., we have

f/(8.) = 0. That is
cos O, = £ cos(cO,) ,

so that sin ©, = +sin(cO,), which in turn implies
f(©.) =(c£1)sinB, > 0.

Furthermore

f(0) =0, f(le|r/c) = esin(|c]n/c) > 0.
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So we conclude that for all 0 < © < [¢|n/c,

csin® % sin(eO) > 0.

Therefore
¢*sin? © > sin?(cO). |
Clearly 17 < |c|n/c < . Hence if ¢ = ;\\—’I, © = /A0, then for 0] <
BT
(2.3) sin?(v/A,0(z)) < sin2(\/)\19(x))‘

>\n o >\1

Lemma 2.2. Comparison Theorem (cf. [4, p. 30]) Consider two differential
equations on [0, 1],

0 () F(a, 01(x)),

0h(x) = G(z,0z(x)).

Suppose F or G is Lipschitz in 0, and F(x,0) < G(«,0), (z,0) in [0,1] x I for
some interval I. If 01(0) < 02(0) and 02(x) lies in the interval I for every x € (0, 1),
then 01 < 05 on [0,1]. In fact, take any xo € [0, 1], either 01(xg) < O2(xg) or
91 - 92 on [O,xo].

3. SCHRODINGER OPERATORS

We shall divide the proof of Theorem 1.4 into two parts (a) and (b).

Proof of Theorem 1.4(a)

In view of [8], we may assume that ¢ is continuous on [0, 1|. Suppose m = nh.
Use induction on 2. When n = 1, the modified phases #; and 6}, corresponding to
the 1% and A" ecigenfunction respectively, satisfy

Let
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By continuity, there is some w € (0, 1) such that 6 (w) = YR Then by (2.3).

Fh<$,9) S F1<$,0)7

for (x,0) € [0,w] x [0, 2—\7/7)\_1] Thus we may apply Lemma 2.2 to see that for all
x € 10,w], Op(z) < 61(x). In particular

(3.1) O (w) < 01 (w).
Now define
e}@):%_el(x), O1(x) = 6,(1—a) ,
O () — ;—:_h C0u@) . On(w) — Oh(1—2)
and . X -
91(1—&)):91( ):2\/>\_1

Hence both HAh and él satisfy

do 11— 9(1 — ) sin2(\/Xé(9U)) = F(z, é>’

dx A
where . . -
01<O> - 07 01<1) - \/Ty
1
2 2 har
0r.(0) = 0, 6p(1) = Novh
By Lemma 2.1,

Fh('x:é) S F1<$,é)

for (,6) € [0,w] x [0, 2\}7)\_1] Therefore by Lemma 2.2 again,

for z € [0,1 —w|. In particular,

- hrw T 2
3.2 Oh(l—w)=—-20 < —-40 = 1 —w).
(3.2) h(l—w) oy h(w) < " 1(w) = (1 —w)
Therefore by (3.1),
A
(3.3) Zhosop2,
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In general, we follow the method in [3,6]. Fix ¢ € N. For each j < ¢, let
zj(\;) denote the 7% zero for A = \; of (1.1) € (0,1). Letw; = z1(A\,41) and
Wy = Zh<>‘(n+1)h>' If w1 > wa, then consider the Dirichlet problem on (0, w1), and
let 3\; be the A cigenvalue. Then by (3.3)

Atk

> h2.
>\n+1 B

> =

=

If w; < wsy, make the transformation £ = 1 — «, and consider the problem on
(0,1 — wy), then by induction hypothesis,

AtDh o Ao o o

>\n+1 )\n

Hence the statement is valid for m = nh. In general when m is not necessarily a
multiple of n, let A = [ |. Then

S

m >\hn

o -
Ao T A T

(3.4)

If m = nh and ¢ = 0, then it is straightforward that \,, = =n? and \,,;, = n?h2.
Hence ’\/\”h = h2.1f there is some \,, and A, such that 3= = h2, where h = | 2],

then by (3.4), m = nh by the simplicity of the elgenvalues of (1. l) under separated
boundary conditions. Then we use induction on n. When n = 1, i\\h = h?

implies from (3.2) that 0(w) > 601(w) which when combined with (3. l) shows
that 0y, (w) = 61(w). So Fp (2, 0) = Fi(«,0). That means ¢ = 0 on (0, w). Similarly
O (1 —w) = 0;(1 — w) implies that ¢ = 0 on (w, 1), too.

We then compare the position of wy = 21 (A1) and wy = 2, (A(p41))- Without
loss of generality, let wy > wo. Consider the Dirichlet problem on (0, w1). Let 3\; be
the A" eigenvalue. Hence

A1)k

h* =
>\n+1

> h?

> =

=&

which implies ¢ = 0 on (0,w;). Thus w; = wo. It then follows from induction
hypothesis that ¢ = 0 on (wq, 1) too. By continuity ¢ = 0 on [0, 1]. The proof for
part(a) is complete. ]

We note that the indirect method in [2] was used in the proof of Theorem 1.4(a).
The proof of Theorem 1.4(b) is simpler, in the sense that we need to compare the
modified phases only once.
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Proof of Theorem 1.4(b)
Suppose m = nh, use induction on n. Let n =1 < m. As in [6, Theorem 8(a)],
we let the phase function to be centered at 0. Thus the modified phases satisfy

m w
0 O - — 9 0 1 — 5 A~
2(0) 2, () 2V s
L (2m —k)r
br0) = T gy Bm BT
24/ Am+1 2y Amp1
where k = 2[%] — 1 < m.
Suppose Ar;\l_;rl < k. Then 0,11 (O) < 92(0). And let 0,11 (w) = —3 77)\2 for

some w € (0, 1). Since

Fm+1 (.%‘, 0) < FQ('x: 0)

for all (z,0) € |w, 1] X [—ﬁ, ;E] We apply Lemma 2.2 to obtain 6,,+1 < 0o

2
on [w, 1], and hence 6,,11(1) < 02(1). That yields

>\m+1
2m — k —_—
m < Ny
and hence
>\m+1
Ay

k<m<2m—k <

This gives a contradiction. Therefore A’:\’”—;l > k2 . The rest is similar. ]

4. VIBRATING STRING PROBLEMS

The Liouville substitution [4] for the vibrating string involves

1= [ Vit w = A

which, when p is C?, transforms (1.2) into a Schrodinger equation

—w"(t) + g(Hw(t) = pw(t),

where ¢ is given in (1.3). If the original system has Dirichlet boundary conditions,
so does the transformed system. Note that this is not true for Neumann boundary
conditions.
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Proof of Theorem 1.5

If p is C?, positive and concave on [0, 1], (1.2) can be transformed to (1.1) with
¢, which is negative, by the Liouville substitution. Applying Theorem 1.4(a), we
obtain the lower bound as below:

,LLm(p) o Mm@) m 2
pelo)  pta) = Ll

If p is not C?, then we need the following Lemma.

Lemma 4.1. Given p € C|0, 1], positive and concave, for ¢ > 0, there exists
positive C*™ functions p. on [0, 1] such that p. — p in L'(0,1). Furthermore each
pe satisfies p.” < 0 except possibly at two points in [0, 1].

Proof. Choose the approximate identity which is defined as

1 1
k() — cex?1  —1 <9.6<1,Wherec:(feﬁdx)*1.
0 otherwise.

Use the convolution to define p.:

o

Ly
pe(@) = p* ke(x) = / p(x —y)k(y)dy where k. = gk:(z)
—00
It is clear that p. is C'™°, positive and p. — p in L*(0,1).
We show that p. is concave on [¢, 1 —¢|. Foreach z,y € [¢, 1 —¢] and v € [0, 1],

pelyve + (1 =7yl = / plyx+ (1 =)y — zlk(2)dz

—€
€

- / ol —2) + (1 —7)(y — 2)ke(2)dz

—€

> / [vp(x = 2) + (1 = )p(y — 2)lke(2)dz ,

—€
(d

- / " p — ko(2)dz 1 (1— ) / oy — he(2)dz

—€ —€

= p@) + (1 =7)pe(y) -
Hence p, is concave on [e, 1 — ¢]. Now define

pe(@) on [¢,1 — €.

pulz) = { Ln(w) = pc(0) + M“’ on [0, €.
Lofa) = pe() + LU= = Pell)

1—2) on][l—el].
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Then
i@ it < [ 1) - sl o+ [ ok - plollar,
= [ oot [ 1) -l
[ o) — e,
< 2+ [ o) = plallde 0 w5 0,

where M is a positive constant. It is also clear that p, is C* ac., and p.” < 0
except possibly at two points, € and 1 — . ]

Note that p.”” as defined above is piecewise continuous and if

- 4p"pe = 5(p)?
‘ 165.°

2

then ¢. < 0 a.e., while eigenvalues are conserved. Therefore where

. 4p"pe —5(pd)?
Ge 65

<0 a.e.

In addition, the eigenvalues of Sturm-Liouville problem depend continuously on
p [8]. Hence

Hm, (ﬁe) - Hm, <p>

— as ¢ — 0.
Mn(ﬁe) Mn<p>
Combining the results, we obtain
Mm<p> m\a
>(—1)°.
i) = Lad

When p is twice differentiable, then equality implies that § = 0 and m is a
multiple of n. Hence by (1.3), f” = 0 so that f is a linear function. That is, there

exist a, b € R such that
1
= —>0.
p) (ax +b)4
In this case, p”(x) = 20a*(az + b)~® > 0. But p is concave, so a = 0 and p is
constant. The proof is complete. ]
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