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OSCILLATION’S THEOREM FOR ONE BOUNDARY VALUE PROBLEM

G. G. Sahakyan

Abstract. A theorem is proved on oscillation of the components of the
eigenvector-functions of a one boundary value problem for the canonical one-
dimentional Dirac system.

1. INTRODUCTION

We consider the following value problem for Dirac’s canonical system (e.g., [1,
p. 236])

(1)

{
y′2 + p(t)y1 + q(t)y2 = λy1,

−y′1 + q(t)y1 − p(t)y2 = λy2,

(2) y1(0) sinα + y2(0) cosα = 0,

(3) y1(π) sinβ + y2(π) cosβ = 0,

where p, q ∈ CR(0, π), α and β are real numbers and λ is a parameter.
If the boundary value problem (1)-(3) has a non-trivial solution

y(t) =
(

y1(t, λ)
y2(t, λ)

)

for some λ = λ0, then the number λ0 is an eigenvalue and corresponding solution
y(t, λ0)is an eigenvector-function of the problem.

It is known (e.g.,[1,p.243]) that eigenvalues of the boundary value problem (1)-
(3) are real, the values range from −∞ to +∞ and can be numerated in increasing
order.
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Among papers generalizing Sturm’s theorem on oscillation properties of the so-
lutions of the Sturm-Liouville equation we mention [2]-[4]. However, the oscillation
properties of the solutions of Dirac system require more investigation.

This paper is mainly aimed at investigation of the problem (1)-(3), using the
Theorems 1 and 2 from [6]. The following systems of the differential equations
will be referred to:

(4)

{
y′1 = pi(t)y2,

y′2 = ri(t)y1,

where pi, ri ∈ CR[0, π](i = 1, 2).

Theorem 1. (On comparison). Let

u(t) =
(

u1(t)
u2(t)

)
and v(t) =

(
v1(t)
v2(t)

)

be some non-trivial solutions of the system (4) for i = 1 and i = 2 respectively,
which satisfy the same initial conditions

u1(a) = v1(a) and u2(a) = v2(a)

and let
p1(t)p2(t) > 0, r1(t)r2(t) > 0,

pi(t)ri(t) < 0, (i = 1, 2),

|p2(t)| ≥ |p1(t)|, |r2(t)| ≥ |r1(t)|.
Under these assumptions, if one of the components u(t) has l zeros in an interval
[a, b], then one of the components v(t) has not less than l zeros in the same interval,
and the k-th zero of this component v(t) is not greater than the k-th zero of the
component u(t).

Theorem 2. (On alternation of zeros). If in (4) pi(t)ri(t) �= 0, t ∈ [a, b], then
only one zero of a component of a non-trivial solution of (4) lies between any
neighboring zeros of the other component of the same solution.

The main result of this paper is the following theorem on the problem (1)-(3).

Theorem 3. For any natural number n, there exist a number µn such that
if an eigenvalue of the problem (1)-(3) satisfies the inequality |λ| ≥ µ n, then any
component of the eigenvector-function of the problem (1)-(3) has at least n zeros
in the interval [0, π].

Proof. Rewrite the system (1) in the form
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(5)

{
y′1 = q(t)y1 − [p(t) + λ]y2,

y′2 = [λ − p(t)]y1 − q(t)y2.

Using the

(6a) z1(t) = y1(t)e−2
∫ t
0 q(τ )dτ ,

(6b) z2(t) = y2(t)e2
∫ t
0 q(τ )dτ ,

we can rewrite the system (5) in the form

(7)

{
z′1 = p0(t)z2,

z′2 = r0(t)z1,

where

(8) p0(t) = −[p(t) + λ]e−2
∫ t
0 q(τ )dτ , r0(t) = [λ − p(t)]e2

∫ t
0 q(τ )dτ .

Note that according to (6a) and (6b) the zeros of yi(t) and zi(t) coinside.
For a given natural number n we choose another natural number s so that

s ≥ n + 1 and then choose a pair of natural numbers m and k so that s = mk. If
we define

ϕ(t) = e−2
∫ t
0 q(τ )dτ ,

then we note that ϕ(t) �= 0. Further, functions p(t), ϕ(t) and 1
ϕ(t)

are continuous on

interval [0, π], then the functions m2

ϕ(t) − p(t) and p(t) + k2ϕ(t) are also continuous
too on interval [0, π], and, that implies their boundedness, i.e. there exist some
numbers l1, l2, L1 and L2, so that

l1 ≤ m2

ϕ(t)
− p(t) ≤ L1

and
l2 ≤ p(t) + k2ϕ(t) ≤ L2.

In accordance with the properties of the eigenvalues of the problem (1)-(3) one can
choose an eigenvalue λn of the problem (1)-(3) to have

(9) λn ≥ m2

ϕ(t)
− p(t)

and

(10) λn ≥ p(t) + k2ϕ(t).
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For example, we can choose the value λn which satisfies the following condition

λn ≥ max (L1, L2) .

Such a selection is always possible due to peculiarity of arrangement of proper
values on numerical line. Then, taking into account that ϕ(t) > 0, and according
to (9) and (10), we obtain

(11) −[p(t) + λn]ϕ(t) ≤ −m2 < 0,
λn − p(t)

ϕ(t)
≥ k2 > 0.

Now we compare (7) with the system

(12)

{
u′

1 = −m2u2,

u′
2 = k2u1.

It is known (e.g., [7]) that the general solution

u(t) =
(

u1(t)
u2(t)

)

of the system (12) can be written in the form

u1(t) = A cos(mkt + φ),

u2(t) =
Ak

m
sin(mkt + φ),

where A and φ are arbitrary constants.
Suppose that

y(t) =
(

y1(t)
y2(t)

)
is an eigenvector-function of the problem (1)-(3), which corresponds to the eigen-

value λn, and hence z(t) =
(

z1(t)
z2(t)

)
is the solution of the corresponding system

(7), and let

(13) z1(0) = z10, z2(0) = z20,

where z10 and z20 are real numbers. It is obvious that one can choose some values
of A and φ for which corresponding particular solution u of the system (12) satisfies
the condition

u1(0) = z10, u2(0) = z20

(such a selection is always possible according to the theorem on the existence and
unity of the Cashi problem for linear homogeneous systems). It is obvious that each
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of components of this solution on interval [0, π] will have at least mk = s ≥ n + 1
zeros. Further, if we define

p1(t) = −m2, r1(t) = k2, p2(t) = p0(t), r2 = r0(t),

then, according to (8) and (11), we obtain that

p2(t) = −(p(t) + λn)e−2
∫ t
0 q(τ )dτ = −(p(t) + λn)ϕ(t) ≤ −m2 = p1(t) < 0,

r2(t) = [λn − p(t)]e2
∫ t
0 q(τ )dτ =

λn − p(t)
ϕ(t)

≥ k2 = r1(t) > 0.

Let us note that with respect to the systems (7) and (12 ) and the corresponding
solutions z(t) and u(t) the conditions of the theorem 1 take place and as each of the
component of solution u(t) has on interval [0, π] at least n+1 zeros, then applying
Theorem 1, we conclude that one of the components of the eigenvector-function
z(t, λn) and corresponding components of y(t, λn) has at least n+1 zeros in [0, π].
Consequently (Theorem 2), the other component of the same eigenvector-function
has at least n zeros in [0, π], and the quantity of zeros can only grow for λ ≥ λn.

Further, we choose an eigenvalue λ′
n of the problem (1)-(3) such that

(14) λ′
n ≤ min

0≤t≤π

(
− m2

ϕ(t)
− p(t), p(t)− k2ϕ(t)

)
.

We set

p1(t) = m2, r1(t) = −k2, p2(t) = p0(t), r2(t) = r0(t).

Then, according to (14), we have

p2(t) = −[p(t) + λ
′
n]ϕ(t) ≤ −m2 = p1(t) < 0,

r2(t) =
λ′

n − p(t)
ϕ(t)

≥ k2 = r2(t) > 0.

Now comparing (7) with system

(15)

{
y′1 = m2y2,

y′2 = −k2y1,

general solution of which may be written in form

u1(t) = A sin(mkt + φ),

u2(t) =
Ak

m
cos(mkt + φ).



2356 G. G. Sahakyan

From that solution let us select now the particular solution
(

u1(t)
u2(t)

)
that satisfies

the conditions
u1(0) = y10, u2(0) = y20.

Applying again Theorems 1 and 2 and taking into account that the components of
a solution of the system (15) have at least n + 1 zeros in [0, π], we obtain that any
component of the eigenvector-function of the problem (1)-(3) has at least n zeros
in [0, π], and the quantity of zeros can only increase when λ ≤ λ′

n. Thus, putting

µn = max{|λn|, |λ′
n|},

we complete the proof.
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