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GROWTH AND DIFFERENCE PROPERTIES OF MEROMORPHIC
SOLUTIONS ON DIFFERENCE EQUATIONS

Zong-Xuan Chen and Kwang Ho Shon*

Abstract. Consider the difference Riccati equation f(z + 1) = a(z)f(z)+b(z)
c(z)f(z)+d(z) ,

where a, b, c, d are polynomials, we precisely estimate growth of meromorphic
solutions.

To the difference Riccati equation f(z + 1) = A(z)+f(z)
1−f(z) , where A(z) =

m(z)
n(z)

, m(z), n(z) are irreducible nonconstant polynomials, we precisely estimate
exponents of convergence of zeros and poles of meromorphic solutions f(z), their
differences Δf(z) = f(z + 1) − f(z) and divided differences Δf(z)

f(z) .

1. INTRODUCTION AND RESULTS

Yanagihara [13] studied meromorphic solutions of nonlinear difference equations,
and obtained the following difference analogue of Malmquist’s theorem.

Theorem A. (see [13]). If the first order difference equation

(1.1) w(z + 1) = R(z, w),

where R(z, w) is rational in both arguments, admits a nonrational meromorphic
solution of finite order, then degw(R) = 1.

Equation (1.1) with degw(R) = 1 is called the difference Riccati equation

(1.2) w(z + 1) =
α(z)w(z) + β(z)
γ(z)w(z) + δ(z)

.
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Recently, a number of papers (including [1-6, 8, 9, 11, 12, 15, 16]) focus on
complex difference equations and differences analogues of Nevanlinna’s theory.

Halburd and Korhonen [6] use value distribution theory to single out the difference
Painlevé II equation from a large class of difference equations of the form

y(z + 1) + y(z − 1) =
c2y

2 + c1y + c0

y2 − p2
,

where c′js, p ( �≡ 0) are rational functions. In their proof, Halburd and Korhonen are
concerned with the difference Riccati equation of the form

(1.3) w(z + 1) =
A + δw(z)
δ − w(z)

,

where A is a polynomial, δ = ±1 (see [6, p.197]).
From this, we see that the difference Riccati equation is an important class of

difference equations, it will play an important role for research of difference Painlevé
equations.

Considering the growth of meromorphic solutions of complex difference Riccati
equations is an important problem. In [8], Ishizaki considered growth of transcendental
meromorphic solutions of a difference Riccati equation (1.3) and obtained the following
theorem.

Theorem B. (see [8]). Suppose that A(z) is a rational function, and suppose that
difference Riccati equation

(1.4) f(z + 1) =
A + f(z)
1 − f(z)

,

possesses a rational solution a(z). Then (1.4) has no transcendental meromorphic
solutions of order less than 1/2.

Theorem B is an important result on difference equations, and shows that every
transcendental meromorphic solution of (1.4) satisfies its order of growth ≥ 1/2 if (1.4)
has a rational solution.

In this paper, we assume the reader is familiar with basic notions of Nevanlinna’s
value distribution theory (see [10, 14]). In addition, we use the notation σ(f) to
denote the order of growth of a meromorphic function f ; and λ(f) and λ( 1

f ) to denote,
respectively, the exponents of convergence of zeros and poles of f .

Chen [2] considered the growth of transcendental meromorphic solutions to the
particular difference Riccati equation, the Pielou logistic equation, and obtained the
following theorem.

Theorem C. (see [2]). Let P (z), Q(z), R(z) be polynomials with P (z)Q(z)R(z)
�≡ 0, and y(z) be a transcendental meromorphic solution with finite order of the Pielou
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logistic equation

(1.5) y(z + 1) =
R(z)y(z)

Q(z) + P (z)y(z)
.

Then

(1.6) λ

(
1
y

)
= σ(y) ≥ 1.

The following example shows that result of Theorem C is sharp.

Example 1.1. The function y(z) = z2z

2z−1 satisfies the Pielou logistic equation

y(z + 1) =
2(z + 1)y(z)

z + y(z)
,

where y(z) satisfies

λ(y) = 0 and λ

(
1
y

)
= σ(y) = 1.

Theorem C reminds us to improve result of Theorem B. In this paper, we consider
a more general difference Riccati equation than (1.4), and obtain a more precise result
than one of Theorem B, that is, prove the following Theorem 1.1.

Theorem 1.1. Let a, b, c, d be rational functions, ac �≡ 0 and ad − bc �≡ 0. If
a difference Riccati equation

(1.7) f(z + 1) =
a(z)f(z) + b(z)
c(z)f(z) + d(z)

has a rational solution B(z), then every transcendental meromorphic solution f(z)
with finite order of (1.7) satisfies

(1.8) λ

(
1
f

)
= σ(f) ≥ 1.

Remark 1.1. By Theorems C and 1.1, it seems reasonable to conjecture that in
Theorem 1.1, the condition “(1.7) has a rational solution B(z)” can be omitted.

The other main goal of this paper is to investigate value distribution of a meromor-
phic solution f(z), and its difference Δf(z) = f(z +1)−f(z), and divided difference
Δf(z)
f(z) of (1.4).
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For the meromorphic function f(z) of small growth, zeros of Δf(z) and Δf(z)
f(z)

are investigated in many papers. Bergweiler and Langley [1] obtained the following
theorem.

Theorem D. (see [1]). There exists δ0 ∈ (0, 1/2) with the following property. Let
f be a transcendental entire function with order

σ(f) ≤ σ <
1
2

+ δ0 < 1,

where σ is a nonnegative real number satisfying σ < 1
2 + δ0. Then

G(z) =
Δf(z)
f(z)

=
f(z + 1) − f(z)

f(z)

has infinitely many zeros.

In [1], Bergweiler and Langley raised that it seems reasonable to conjecture that
the conclusion of Theorem D holds for σ(f) < 1. Now this conjecture is still open.
But for an entire function of σ(f) ≥ 1, the conclusion of Theorem D does not hold.
For example, f(z) = ez satisfies Δf(z)

f(z)
= e − 1 which has only finitely many zeros.

When f is meromorphic, Bergweiler and Langley [1] consider the existence of
zeros of the difference Δf(z) = f(z + 1) − f(z), also gave a construction theorem
to show that even if for a transcendental meromorphic function f(z) of lower order 0,
Δf(z) may have only finitely many zeros.

Langley [11] considered existence of zeros of difference and divided difference of
meromorphic functions, and proved the following theorem.

Theorem E. (see [11]). Let f be a transcendental meromorphic function of order
less than 1/6, then at least one of Δf(z) and Δf(z)

f(z) has infinitely many zeros.

Theorem E shows that the condition “order less than 1/6” can only guarantee that
one of Δf(z) and Δf(z)

f(z)
has infinitely many zeros.

From Theorem C and Example 1.1, we see that although every transcendental
meromorphic solution y(z) of (1.5) satisfies λ

(
1
y

)
= σ(y) ≥ 1, y may have only

finitely many zeros. But we discover that for transcendental meromorphic solutions
y(z) of some difference Riccati equations, Δy(z) and Δy(z)

y(z) have infinitely many
zeros, and prove the following theorem.

Theorem 1.2. Let A(z) be a non-constant rational function. Suppose that a
difference Riccati equation

(1.9) f(z + 1) =
A(z) + f(z)

1 − f(z)
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has a rational solution B(z). Suppose that f(z) is a transcendental meromorphic
solution with finite order of (1.9). Then

(i) λ(f) = λ
(

1
f

)
= σ(f) ≥ 1;

(ii) if A(z) = a(z)2, where a(z) is a nonconstant rational function, then

λ(Δf(z)) = λ

(
1

Δf(z)

)
= σ(f) ≥ 1

and
λ

(
Δf(z)
f(z)

)
= λ

(
1

Δf(z)/f(z)

)
= σ(f) ≥ 1.

2. PROOF OF THEOREM 1.1

We need the following lemmas and remark to prove Theorem 1.1.

Lemma 2.1. (see [3]). Let F (z), Pn(z), . . . , P0(z) be polynomials such that
FPnP0 �≡ 0. Suppose that f(z) is a meromorphic solution with infinitely many poles
of

Pn(z)f(z + n) + · · ·+ P1(z)f(z + 1) + P0(z)f(z) = F (z)

or
Pn(z)f(z + n) + · · ·+ P1(z)f(z + 1) + P0(z)f(z) = 0.

Then σ(f) ≥ 1.

Remark 2.1. Following Hayman [7, pp. 75-76], we define an ε-set to be a countable
union of open discs not containing the origin and subtending angles at the origin whose
sum is finite. If E is an ε-set, then the set of r ≥ 1 for which the circle S(0, r) meets
E has finite logarithmic measure, and for almost all real θ the intersection of E with
the ray arg z = θ is bounded.

Lemma 2.2. [1] Let g be a function transcendental and meromorphic in the plane
of order less than 1. Let h > 0. Then there exists an ε-set E such that as z → ∞ in
C \E ,

g′(z + c)
g(z + c)

→ 0,
g(z + c)

g(z)
→ 1 g(z + c) − g(z) = cg′(z)(1 + o(1))

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z not in E the
function g has no zeros or poles in |ζ − z| ≤ h.

Lemma 2.3. [5, 9] Let w(z) be a nonconstant finite order meromorphic solution
of

P (z, w) = 0,
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where P (z, w) is a difference polynomial in w(z). If P (z, a) �≡ 0 for a meromorphic
function a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1
w − a

)
= S(r, w).

Proof of Theorem 1.1. Suppose that f is a transcendental meromorphic solution
with finite order of (1.7). Without less of generality, we may suppose that a, b, c, d
are polynomials. Set

(2.1) y(z) =
1

f(z) − B(z)
,

where B(z) is the rational solution of (1.7). By the condition of the theorem, we clearly
see that B(z) �≡ 0. By (2.1) we have T (r, y) = T (r, f) + S(r, f) and S(r, y) =
S(r, f). Substituting (2.1) into (1.7), and considering B(z + 1) = a(z)B(z)+b(z)

c(z)B(z)+d(z) , we
obtain

(2.2) (c(z)B(z + 1)− a(z))y(z + 1) + (c(z)B(z) + d(z))y(z) + c(z) = 0.

Set B(z) = h(z)
H(z) , where h(z) and H(z) are nonzero polynomials. Substituting B(z) =

h(z)
H(z) into (2.2), we obtain

(2.3)

[c(z)h(z + 1)− a(z)H(z + 1)]H(z)y(z + 1)

+[c(z)h(z) + d(z)H(z)]H(z + 1)y(z)

= −c(z)H(z)H(z + 1).

Now we prove c(z)h(z + 1) − a(z)H(z + 1) �≡ 0. In fact, if c(z)h(z + 1) −
a(z)H(z+1) ≡ 0, then B(z +1) = h(z+1)

H(z+1) = a(z)
c(z) , so that, since B(z) is the solution

of (1.7), by (1.7), we obtain
a(z)
c(z)

=
a(z)a(z − 1) + b(z)c(z − 1)
c(z)a(z − 1) + d(z)c(z − 1)

,

that is,
a(z)d(z)c(z − 1)− c(z)b(z)c(z − 1) ≡ 0.

Since c(z − 1) �≡ 0, we have a(z)d(z)− c(z)b(z) ≡ 0. This contradicts our condition
a(z)d(z)− c(z)b(z) �≡ 0.

Now we prove c(z)h(z) + d(z)H(z) �≡ 0. Suppose that c(z)h(z) + d(z)H(z) ≡
0. Then B(z) = h(z)

H(z) = −d(z)
c(z) . Substituting B(z) = −d(z)

c(z) into (1.7), and noting
a(z)d(z)− c(z)b(z) �≡ 0 and c(z + 1) �≡ 0, we obtain

−d(z + 1)
c(z + 1)

=
a(z)

(
−d(z)

c(z)

)
+ b(z)

c(z)
(
−d(z)

c(z)

)
+ d(z)

=
−a(z)d(z) + b(z)c(z)

0
= ∞.
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It is a contradiction. Hence c(z)h(z) + d(z)H(z) �≡ 0.

Now we divide this into three cases to prove σ(y) ≥ 1.

Case 1. Suppose that y(z) has infinitely many poles. Thus, the equation (2.3)
satisfies the conditions of Lemma 2.1. By Lemma 2.1, we obtain σ(y) ≥ 1.

Case 2. Suppose that y(z) is an entire function. Thus, by (2.3) and results above,
y(z) satisfies the equation

(2.4) A1(z)y(z + 1) + A0(z)y(z) = F (z),

where

A1(z) = [c(z)h(z + 1) − a(z)H(z + 1)]H(z) �≡ 0,

A0(z) = [c(z)h(z) + d(z)H(z)]H(z + 1) �≡ 0,

F (z) = −c(z)H(z)H(z + 1) �≡ 0,

and Aj (j = 0, 1) and F (z) are all nonzero polynomials. In what follows, without
loss of generality, we suppose that deg A1 ≤ deg A0 (if deg A1 ≥ deg A0, then we
can use the same method to prove it).

Suppose that σ(y) < 1. We will deduce a contradiction.
First, suppose that deg A1 < deg A0. By Lemma 2.2 and σ(y) < 1, we see that

there exists an ε-set E1 such that as z → ∞ in C \ E1,

(2.5) y(z + 1) = y(z)(1 + o1(1)),

where o1(1) satisfy o1(1) → 0 as z → ∞ in C \ E1. Set H1 = {|z| = r : z ∈ E1}.
Then by Remark 2.1, H1 is of finite logarithmic measure. We take z such that |z| =
r �∈ H1, |y(z)| = M(r, y). For r sufficiently large,

∣∣∣A1(z)
A0(z)

∣∣∣ < 1
3 . Thus, by (2.4), (2.5)

and
∣∣∣A1(z)
A0(z)

∣∣∣ < 1
3 , it follows that when |y(z)| = M(r, y),

|F (z)| = |A0(z)|M(r, y)
∣∣∣∣1 +

A1(z)
A0(z)

(1 + o1(1))
∣∣∣∣

≥ 1
2
|A0(z)|M(r, y), |z| = r �∈ H1.(2.6)

Since y is transcendental and F, A0 are polynomials, we see (2.6) is a contradiction.
Secondly, we suppose that deg A1 = deg A0. Set

A0(z) = anzn + an−1z
n−1 + · · ·+ a0, A1(z) = bnzn + bn−1z

n−1 + · · ·+ b0,

where an, an−1, . . . , a0; bn, bn−1, . . . , b0 are constants, anbn �= 0. By (2.4) and
(2.5), we have

(2.7) F (z) = y(z)(A0(z) + A1(z)(1 + o1(1))), |z| = r �∈ H1.
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Clearly, A0(z)+A1(z)(1+o1(1)) �≡ 0. We take zr such that |zr| = r �∈ H1, |y(zr)| =
M(r, y). Now we divide this proof into two subcases.

Subcase 2(1). Suppose that there exists a subsequence {zn} ⊂ {zr} satisfying

(2.8) lim
n→∞(A0(zn) + A1(zn)(1 + o1(1))) = A, (0 < |A| < ∞ or A = ∞).

Thus, by (2.7) and (2.8), we obtain when 0 < |A| < ∞, |zn| = rn

|F (zn)| ≥ 1
2
|A|M(rn, y),

or when |A| = ∞, |zn| = rn

|F (zn)| ≥ M(rn, y),

all are contrary.

Subcase 2(2). Now suppose that there do not exist any subsequence {zn} of {zr}
satisfying (2.8). Thus,

lim
r→∞(A0(zr) + A1(zr)(1 + o1(1))) = 0, |zr| = r �∈ H1, |y(zr)| = M(r, y).

So that, we have A0(zr)
A1(zr) → −1, an = −bn and A0(zr) + A1(zr) = −A1(zr)o1(1). We

again divide Subcase 2(2) into two subcases.

Subcase 2(2(i)). Suppose that A0(zr) + A1(zr) = −A1(zr)o1(1) → 0. Then
A0(z) ≡ −A1(z) since A0 and A1 are polynomials. By Lemma 2.2 and σ(y) < 1, we
see that there exists an ε-set E2 such that as z → ∞ in C \ E2,

(2.9) y(z + 1) − y(z) = y′(z)(1 + o2(1)), (o2(1) → 0).

Set H2 = {|z| = r : z ∈ E2}. Then by Remark 2.1, H2 is of finite logarithmic
measure. Thus, by (2.4), (2.9) and A0(z) ≡ −A1(z), we obtain

(2.10) F (z) = −A1(z)y(z) + A1(z)y(z + 1) = A1(z)y′(z)(1 + o2(1)).

We take z such that |z| = r �∈ H2, |y′(z)| = M(r, y′), by (2.10), we have

|F (z)| = |A1(z)y′(z)(1 + o2(1))| ≥ 1
2
|A1(z)|M(r, y′).

It is a contradiction.

Subcase 2(2(ii)). Suppose that A0(zr) + A1(zr) = −A1(zr)o1(1) �→ 0. Then
A0(z) �≡ −A1(z). Since an = −bn, we may suppose that

(2.11) A1(z) = α(z) + β1(z), A0(z) = −α(z) + β0(z),
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where α(z) and βj(z) (j = 0, 1) are polynomials, and deg βj < deg α (j = 0, 1). By
(2.4), (2.5), (2.9) and (2.11), we have that

(2.12)

F (z) = −α(z)y(z) + β0(z)y(z) + α(z)y(z + 1) + β1(z)y(z + 1)

= α(z)y′(z)(1 + o2(1)) + y(z)(β0(z) + β1(z)(1 + o1(1))),

|z| = r �∈ H1

⋃
H2.

By Wiman-Valiron theory (see [10]), we see that there exists a set H3 ⊂ (1, ∞) of
finite logarithmic measure, such that

y′(z)
y(z)

=
ν(r, y)

z
(1 + o3(1)), |z| = r �∈ H3, o3(1) → 0,

where z satisfy |z| = r and |y(z)| = M(r, y), ν(r, y) is the central index of y(z).
So that

(2.13)
∣∣∣∣y

′(z)
y(z)

∣∣∣∣ =
ν(r, y)
|z| |(1 + o3(1))| ≥ 1

2|z|ν(r, y), |z| = r �∈ H3.

By deg βj < deg α (j = 1, 2) and ν(r, y) → ∞, we have that

(2.14)
β0(z) + β1(z)(1 + o1(1))

α(z) 1
2|z|ν(r, y)

→ 0.

Thus, by (2.12)–(2.14), we deduce that as z satisfy |y(z)| = M(r, y), |z| = r �∈
H1

⋃
H2

⋃
H3, r → ∞,

(2.15)

|F (z)| = |y(z)|
∣∣∣∣α(z)

y′(z)
y(z)

(1 + o2(1)) + β0(z) + β1(z)(1 + o1(1))
∣∣∣∣

≥ |y(z)|
∣∣∣∣|α(z)| 1

2|z|ν(r, y) − |β0(z) + β1(z)(1 + o1(1))|
∣∣∣∣

≥ |y(z)||α(z)| 1
4|z|ν(r, y)

= M(r, y)|α(z)| 1
4|z|ν(r, y).

Since y is a transcendental entire function, ν(r, y) → ∞ and F, α are polynomials,
we see (2.15) is a contradiction.

Hence σ(y) ≥ 1.

Case 3. Suppose that y(z) has only finitely many poles. We see that (2.4) holds.
Then set y(z) = y∗(z)

G(z) , where y∗(z) is an entire function, and G(z) is a polynomial.

Substituting y(z) = y∗(z)
G(z) into (2.4), we have

(2.16) A1(z)G(z)y∗(z + 1) + A0(z)G(z + 1)y∗(z) = F (z)G(z)G(z + 1).
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Thus, by the result of Case 2, we obtain σ(y∗) ≥ 1.

Hence, σ(f) = σ(y) = σ(y∗) ≥ 1.
In what follows, we prove λ(1/f) = σ(f). Set y1(z) = 1

f(z)
. Then T (r, y1) =

T (r, f) + O(1). Substituting y1(z) = 1
f(z)

into (1.7), we obtain

1
y1(z + 1)

=
a(z) + b(z)y1(z)
c(z) + d(z)y1(z)

.

Thus, we have that

D(z, y1) := y1(z + 1)(a(z) + b(z)y1(z))− (c(z) + d(z)y1(z)) = 0

and
D(z, 0) = −c(z) �≡ 0.

By Lemma 2.3, we obtain

m

(
r,

1
y1

)
= S(r, y1).

Hence,

N

(
r,

1
y1

)
= T (r, y1) + S(r, y1),

that is, N (r, f) = T (r, f) + O(1) + S(r, y1). By S(r, y1) = o{T (r, y1)}, we see
S(r, y1) = o{T (r, f)}. Thus, N (r, f) = T (r, f)(1+o(1)). Hence, λ(1/f) = σ(f).

Thus, Theorem 1.1 is proved.

3. PROOF OF THEOREM 1.2

We need the following lemmas for proof of Theorem 1.2.

Lemma 3.1. (see [4]). Let δ = ±1 be a constant and A(z) = m(z)
n(z)

be an ir-
reducible non-constant rational function, where m(z) and n(z) are polynomials with
deg m(z) = m and deg n(z) = n. If f(z) is a finite order transcendental meromor-
phic solution of (1.9), then
(i) if σ(f) > 0, then f has at most one Borel exceptional value;
(ii) λ(f) = λ( 1

f ) = σ(f);

(iii) if A(z) �≡ −z2 − z + 1, then the exponent of convergence of fixed points of f

satisfies τ(f) = σ(f).

Lemma 3.2. Suppose that a(z) is a nonconstant rational function and f(z) is a
transcendental meromorphic function. Then, a(z)2 + f(z)2 and 1 − f(z) (or f(z))
have at most finitely many common zeros.
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Proof. Suppose that z0 is a common zero of a(z)2 + f(z)2 and 1 − f(z). Then,
a(z0)2 + f(z0)2 = 0. Thus, f(z0) = ±ia(z0). Substituting f(z0) = ±ia(z0) into
1 − f(z), we obtain 1 ∓ ia(z0) = 0. Since 1 ∓ ia(z) has only finitely many zeros,
we see that a(z)2 + f(z)2 and 1 − f(z) have at most finitely many common zeros.
Similarly, we can prove a(z)2 + f(z)2 and f(z) have at most finitely many common
zeros.

Proof of Theorem 1.2.
Suppose that f is a transcendental meromorphic solution with finite order of (1.9).
(i) By Theorem 1.1 and Lemma 3.1, we have that

λ(f) = λ

(
1
f

)
= σ(f) ≥ 1.

(ii) By (1.9), we obtain

(3.1) Δf(z) =
a(z)2 + f(z)2

1− f(z)
=

(f(z)− ia(z))(f(z) + ia(z))
1− f(z)

.

By (i), we see that λ
(

1
f

)
= σ(f). If z0 is a pole of f(z) of order k0 ≥ 1 (is not a

pole of a(z)), then z0 must be a pole of a(z)2+f(z)2

1−f(z) of order k0. Thus, by (3.1), we

see that z0 is a pole of Δf(z) of order k0. Hence, we obtain λ
(

1
Δf(z)

)
≥ λ

(
1

f(z)

)
.

Combining this and the result of (i), we obtain

λ

(
1

Δf(z)

)
= λ

(
1

f(z)

)
= σ(f(z)).

By Lemma 3.2, we see that a(z)2 +f(z)2 and 1−f(z) have at most finitely many
common zeros. Since a(z) is the rational function and f(z) is transcendental, we see
that zeros of f(z) − ia(z) must not be poles of f(z) + ia(z) except finitely many
exceptional. Thus, to prove λ(Δf(z)) = σ(f(z)), by (3.1), we only need to prove that

(3.2) λ(f(z)− ia(z)) = σ(f(z))

or

(3.3) λ(f(z) + ia(z)) = σ(f(z)).

In what follows, we prove that (3.2) holds. Suppose that

λ(f(z)− ia(z)) = λ1 < σ(f(z)).

Thus, f(z)− ia(z) can be rewritten as the form

(3.4) f(z) − ia(z) = zs p1(z)
q1(z)

eh1(z) =
p(z)
q(z)

eh1(z) =
p(z)
H(z)

,
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where p1(z) and q1(z) are canonical products (or polynomials) formed by nonzero
zeros and poles of f(z)− ia(z), respectively, h1(z) is a nonzero polynomial such that
deg h1(z) ≤ σ(f(z)), s is an integer, if s ≥ 0, then p(z) = zsp1(z), q(z) = q1(z); if
s < 0, then p(z) = p1(z), q(z) = z−sq1(z), so that

(3.5) λ(p(z)) = σ(p(z)) = λ (f(z) − ia(z)) = λ1 < σ(f(z)),

and
λ(q(z)) = σ(q(z)) = λ

(
1

f(z)− ia(z)

)
≤ σ(f(z)),

and H(z) = q(z)e−h1(z) is an entire function. By (3.4) and (3.5), we have σ(H(z)) =
σ(f(z)). By (3.4), we have f(z) = p(z)y1(z) + ia(z), where y1(z) = 1

H(z) . So
σ(y1(z)) = σ(H(z)) = σ(f(z)).

Substituting f(z) = p(z)y1(z) + ia(z) into (1.9), we obtain

D(z, y1(z)) := [ia(z + 1) + p(z + 1)y1(z + 1)][1− ia(z)− p(z)y1(z)]

and

(3.6) −a(z)2 − [ia(z) + p(z)y1(z)] = 0.

By (3.6), we have that

(3.7) D(z, 0) = ia(z +1)(1− ia(z))−a(z)2− ia(z) = (i+a(z))(a(z +1)−a(z)).

If i + a(z) ≡ 0, then a(z) ≡ −i. This contradicts our condition that a(z) is a
nonconstant rational function. If a(z + 1)− a(z) ≡ 0, then a(z) is either a constant or
a periodic function. This also contradicts our condition. Both cases show D(z, 0) �≡ 0
in (3.7).

Thus, by Lemma 2.3 and D(z, 0) �≡ 0, we obtain

m

(
r,

1
y1(z)

)
= S(r, y1(z)).

So that,

N (r, H(z)) = N

(
r,

1
y1(z)

)
= T (r, y1(z)) + S(r, y1(z))

= T (r, H(z)) + S(r, H(z)).

(3.8)

But, since H(z) is the entire function, we have N (r, H(z)) ≡ 0. This contradicts
(3.8). Hence, (3.2) holds, that is,

λ(Δf(z)) = σ(f(z)).
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Finally, we prove that

λ

(
Δf(z)
f(z)

)
= λ

(
1

Δf(z)/f(z)

)
= σ(f) ≥ 1.

By (3.1), we have that

(3.9)
Δf(z)
f(z)

=
a(z)2 + f(z)2

(1 − f(z))f(z)
=

(f(z)− ia(z))(f(z) + ia(z))
(1− f(z))f(z)

.

By Lemma 3.2, we see that a(z)2+f(z)2 and (1−f(z))f(z) have at most finitely many
common zeros. So that, zeros of f(z) must be poles of Δf(z)

f(z) , at most except finitely
many exceptional points. Thus, by the result of (i), we have λ(f(z)) = σ(f(z)), hence,

(3.10) λ

(
1

Δf(z)/f(z)

)
= λ(f(z)) = σ(f(z)).

By Lemma 3.2 and (3.9), we see that to prove λ
(

Δf(z)
f(z)

)
= σ(f(z)), we only need

to prove (3.2) holds. Above, we have proved that (3.2) holds. Hence, λ
(

Δf(z)
f(z)

)
=

σ(f(z)).
Thus, Theorem 1.2 is proved.
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