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NODAL SOLUTIONS FOR A CLASS

OF DEGENERATE ONE DIMENSIONAL BVP’S

Julián López-Gómez — Paul H. Rabinowitz

Abstract. In [7], a family of degenerate one dimensional boundary value

problems was studied and the existence of positive (and negative) solutions

and solutions that possess one interior node was shown for a range of values
of a parameter, λ. It was conjectured that there is a natural extension of

these results giving solutions with any prescribed number of interior nodes.

This conjecture will be established here.

1. Introduction

In the recent papers [7], [8] and [9], the existence of nodal solutions for the

degenerate boundary value problem

(1.1)

−du′′ = λu− a(x)f(u)u for x ∈ [0, L],

u(0) = u(L) = 0,

was studied. The functions a and f satisfy

(1.2) 0 ≤ a ∈ C[0, 1], a−1(0) = [α, β], 0 < α < β < L,
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and

(1.3) f ∈ C1(R), f(0) = 0, ξf ′(ξ) > 0 for ξ 6= 0, and lim
|ξ|→∞

f(ξ) =∞.

By (1.3), f(ξ) > 0 for ξ 6= 0.

In (1.1), d is a positive constant, which without lost of generality can be set

equal to 1. Thus instead of (1.1), the problem

(1.4)

−u′′ = λu− a(x)f(u)u for x ∈ [0, L],

u(0) = u(L) = 0,

will be considered. Problem (1.4) is degenerate in the sense that the function

a vanishes on a subinterval of [0, L]. The analysis of the classical case when

a(x) > 0 for all x ∈ [0, L] can be found in [12], where it was established that for

every integer n ≥ 1, (1.4) admits a solution with n−1 (interior) zeroes, or nodes,

in (0, L) if and only if λ > (nπ/L)2, the n-th eigenvalue of −D2, D = d/dx, in

(0, L) under Dirichlet boundary conditions. Later it was shown in [2] that the

degenerate problem (1.4) admits a positive solution if and only if(
π

L

)2

< λ <

(
π

β − α

)2

.

Note that (π/(β − α))2 is the first eigenvalue of −D2 in (α, β) under Dirichlet

boundary conditions. More recent results, Theorems 4.1 and 4.2 of [7], tell us

that (1.4) has a solution with one node in (0, L) if and only if(
2π

L

)2

< λ <

(
2π

β − α

)2

.

It was further conjectured in [7] that in the general case when n ≥ 1, (1.4)

possesses a solution with n− 1 (interior) nodes in (0, L) if and only if

(1.5)

(
nπ

L

)2

< λ <

(
nπ

β − α

)2

.

Note that for every n ≥ 1, (nπ/L)2 and (nπ/(β − α))2 are the n-th eigenvalues

of −D2 in (0, L) and (α, β), respectively, under Dirichlet boundary conditions.

Our main goal here is to establish this conjecture as well as to further study the

structure of the set of solutions of (1.4). To do so, first some preliminaries will

be carried out in Section 2. Then, to obtain the conjecture, some nonstandard

a priori bounds for solutions will be obtained in Section 3 and the existence argu-

ment, which employs Leray–Schauder degree theory, will be given in Section 4.

In fact a stronger result will be obtained: for each λ satisfying (1.5), (1.4) has at

least two solutions with n− 1 interior nodes, u+ and u−, such that (u+)′(0) > 0

and (u−)′(0) < 0.

To describe our further results and state our main result precisely, some

definitions and notation are required. Throughout this paper, the solutions
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of (1.4) are regarded as pairs, (λ, u) ∈ R × C2[0, L]. As in [7], for every integer

n ≥ 1, S±n stands for the set of functions u ∈ C2[0, L] with ±u′(0) > 0 such that

u has exactly n − 1 simple zeroes in (0, L). If u ∈ S±n solves (1.4), then all its

zeroes must be simple due to the uniqueness of the solution to the initial value

problem for (1.4). In particular if u has a double zero, i.e. u(ξ) = 0 = u′(ξ), then

u ≡ 0.

Let P be the λ-projection operator: P(λ, u) = λ, for (λ, u) ∈ R×C[0, L]. Set

(1.6) T±n ≡ {(λ, u) ∈ R× S±n : (λ, u) is a solution of (1.4)}

and

Λn :=

((
nπ

L

)2

,

(
nπ

β − α

)2)
.

Now our main result can be stated:

Theorem 1.1. P(T±n ) = Λn for all n ≥ 1.

The analysis carried out in [7] showed that when n ≥ 2, the problem of

determining the structure of T±n is subtle. Indeed, by Proposition 4.1 of [2]

and Corollaries 3.1 and 3.2 of [7], T±1 consists of a differentiable curve, (λ, u±λ ),

bifurcating from the family of trivial solutions, {(λ, 0) : λ ∈ R} at λ = (π/L)2

with

lim
λ↑(π/(β−α))2

u±λ = ±∞ in [α, β].

However, when n = 2, there are (numerical) examples, [9], where T±2 consists of

at least two components, C±2 and D±2 , such that

(1.7) P
(
C±2 \

{((
2π

L

)2

, 0

)})
=

((
2π

L

)2

,

(
π

β − α

)2)
and, for some σ > 0,

(1.8) P(D±2 ) =

[(
π

β − α

)2

− σ,
(

2π

β − α

)2)
.

A component is a closed and connected subset of T±n maximal with respect

to inclusion. Naturally, C±2 ∩ D±2 = ∅ if C±2 6= D±2 . Thus, although T±1 is

always connected, T±n can have two or more components if n ≥ 2. Studying the

topological structure of T±n in the general case when n ≥ 2 is the second problem

treated in this paper. Our main result, a partial one, sharpens Theorems 4.1

and 4.2 of [7] by establishing that, in the general case when n ≥ 2, T±n might

consist of several unbounded components. More precisely, let j ∈ {1, . . . , n} be

the unique integer for which

(1.9)

[
(j − 1)π

β − α

]2
≤
(
nπ

L

)2

<

(
jπ

β − α

)2

,
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or equivalently

(1.10)
(j − 1)L

n
≤ β − α < jL

n
.

Then, T±n might consist (at least) of n + 1 − j unbounded components. The

components are unbounded at some, or several, of the eigenvalues (iπ/(β − α))2.

Whether any of these possible situations can actually occur is an extremely

challenging open problem that is being investigated numerically by M. Molina-

Meyer, [10]. Her numerical experiments for n = 3 led us to the results presented

here in Section 5.

2. Preliminary results

In this section, some preliminary results about nodal solutions and their

properties will be obtained. For the remainder of this paper, by a non-trivial

solution of (1.4) we mean a classical solution (λ, u) with u 6≡ 0. Let S denote the

closure in R×C2[0, L] of the set of non-trivial solutions of (1.4). By Theorem 2.1

of [7], for every solution (λ, u) ∈ S, there is an integer n ≥ 1 such that u possesses

n− 1 simple zeroes in (0, L) and hence, u ∈ S±n . Moreover, in such a case, (1.5)

holds. Since the special case when n = 1 is well understood, throughout the rest

of this paper, it will be assumed that n ≥ 2.

The next result, Theorem 2.4 of [7], gives us some partial information about

the sets T±n .

Theorem 2.1. Suppose a and f satisfy (1.2)–(1.3). Then, for each integer

n ≥ 2, there is a component Cn of S such that if C±n ≡ Cn ∩ T
±
n , then

C+
n ∩ C−n =

{((
nπ

L

)2

, 0

)}
, C±n \

{((
nπ

L

)2

, 0

)}
⊂ T±n ,

and C±n is unbounded in S.

The numerical experiments of [9] reveal that, even for the simplest case of

n = 2, P(C±n ) can be a proper subinterval of

(2.1) Λn :=

((
nπ

L

)2

,

(
nπ

β − α

)2)
, n ≥ 1.

Thus, in order to establish that

(2.2) P(T±n ) = Λn for all n ≥ 2,

the first goal of this paper, more global information about T±n is needed. In this

direction, the next result provides us with a component of T±n , denoted by D±n ,

which may be different from C±n .
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Theorem 2.2. Suppose a and f satisfy (1.2)–(1.3), n ≥ 2, and

(2.3)

(
nπ

L

)2

<

[
(n− 1)π

β − α

]2
, λ ∈ In−1 :=

[[
(n− 1)π

β − α

]2
,

(
nπ

β − α

)2)
.

(a) Then there exists a unique solution, (λ, u±λ ), of (1.4) in T±n and the n−1

interior zeroes of u±λ lie in (α, β).

(b) Each of the curves, λ 7→ u±λ , λ ∈ In−1, is continuous.

(c) There is a (connected) component of S, D±n , such that D±n ⊂ T±n and

(λ, u±λ ) ∈ D±n for all λ ∈ In−1.
(d) As λ→ (nπ/(β − α))2, ‖u±λ ‖L∞[0,L] →∞.

Proof. Assertions (a) and (d) follow directly from results in [7] and the sets

D±n are the components of T±n to which the curves belong so (c) is a consequence

of (a) and (b). Thus the only novelty here is (b). We will prove the + case, the

other proof being the same. These continuity properties are based on the fact

that the solutions of (1.4) can be regarded as fixed points for a compact operator

and on the existence of a priori bounds for u±λ in any compact subset of In−1.

To be more precise, let G denote the Green’s function for −D2 under 0

boundary conditions on [0, L]. Then, (1.4) is equivalent to the nonlinear integral

equation

(2.4) u =

∫ L

0

G( · , y)[λ− a(y)f(u(y))]u(y) dy ≡ T (λ, u),

where u ∈ E ≡ {u ∈ C1[0, L] : u(0) = 0 = u(L)}. It is well known that

T : R× E → E is a compact operator. Thus to prove (b), let λk ∈ In−1, k ≥ 1,

be such that

(2.5) λ∞ := lim
k→∞

λk ∈ In−1.

Then

(2.6) uλ∞ = lim
k→∞

uλk
in E

provided {uλk
}k≥1 is bounded in C[0, L]. Indeed, if {uλk

}k≥1 is bounded in

C[0, L], the problem (1.4) shows that the sequence is also bounded in C2[0, L].

Hence, {uλk
}k≥1 is bounded in E and the compactness of T and (2.4) then show

that along some subsequence, also labeled by k,

u∞ := lim
k→∞

uλk
in C2[0, L]

and (λ∞, u∞) is a solution of (1.4). By (2.3), λ∞ > (nπ/L)2. Thus, u∞ 6≡ 0,

since ((nπ/L)2, 0) is the unique bifurcation point from (λ, 0) for solutions in T±n .

Consequently, (λ∞, u∞) ∈ T+
n so by the uniqueness assertion of (a), u∞ = uλ∞ ,

completing the proof of (2.6), because the same argument can be repeated along

any subsequence.
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To establish the continuity of λ 7→ uλ, it remains to prove that, for every

sufficiently small ε > 0, there exists a constant Cε such that

(2.7) ‖uλ‖L∞[0,L] ≤ Cε for all λ ∈ Iεn−1 ≡
[[

(n− 1)π

β − α

]2
,

(
nπ

β − α

)2

− ε
]
.

Arguing indirectly, suppose there is a sequence of solutions, (λk, uk) ∈ T+
n , where

uk := uλk
, such that

(2.8) lim
k→∞

λk = µ, lim
k→∞

‖uk‖C[0,L] =∞

and

(2.9) µ <

(
nπ

β − α

)2

.

We will show that this is impossible using variants of arguments from [7]. Let

zk,i, 1 ≤ i ≤ n− 1, denote the n− 1 interior zeroes of uk, k ≥ 1, ordered so that

(2.10) α < zk,1 < . . . < zk,n−1 < β.

By Corollary 5.3 of [7],

(2.11) ζi := lim
k→∞

zk,i = α+
β − α
n

i, 1 ≤ i ≤ n− 1.

Therefore

(2.12) µ <

(
nπ

β − α

)2

=

(
π

ζ1 − α

)2

.

Then, there are constants δ > 0 and σ > 0 such that

µ+ δ <

(
π

ζ1 + σ − α

)2

.

Thus, due to Theorems 2.2 and 3.1 of [7], the problem−v′′ = (µ+ δ)v − af(v)v in (0, ζ1 + σ),

v(0) = v(ζ1 + σ) = 0,

has a unique positive solution v on (0, ζ1 +σ). Moreover, for sufficiently large k,

say k ≥ k0, v satisfies−v′′ = (µ+ δ)v − af(v)v > λkv − af(v)v in (0, ζ1 + σ),

v(0) = 0, v(zk,1) > 0.

Hence v is a positive supersolution of

(2.13)

−w′′ = λkw − af(w)w in (0, zk,1),

w(0) = w(zk,1) = 0
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so by a standard comparison argument, see e.g. [5, Theorem 3.5], v ≥ uk in

[0, zk,1]. Therefore

(2.14) ‖uk‖C[0,zk,1] ≤ ‖v‖C[0,ζ1+σ]

which with (2.11) shows that functions uk are uniformly bounded in [0, α]. By

(1.4), the same is true of u′′k and hence u′k. Observing that −u′′k = λkuk in [α, β],

and multiplying this equation by u′k gives

(2.15) (u′k(x))2 + λku
2
k(x) = (u′k(zk,i))

2 = (u′k(α))2 + λku
2
k(α)

for all k ≥ k0, 1 ≤ i ≤ n − 1, and x ∈ [α, β]. Now (2.14)–(2.15) and (1.4) give

the existence of k-independent L∞ bounds for uk, u
′
k and u′′k in [0, β]. This to-

gether with the basic existence-uniqueness theorem for the initial value problem

for ordinary differential equations implies that there are constants M,η > 0,

independent of k, such that

(2.16) ‖uk‖C[0,β+η] ≤M.

Thus (2.8) and (2.16) imply lim
k→∞

‖uk‖C[β+η,L] = ∞. Consequently, for suffi-

ciently large k, say k ≥ k1 ≥ k0, the solution uk has a positive maximum or

negative minimum at a point ξk ∈ (β + η, L) with

(2.17) lim
k→∞

|uk(ξk)| =∞.

The arguments being essentially the same, suppose uk(ξk) > 0. Then, since

u′k(ξk) = 0 and u′′k(ξk) ≤ 0, by (1.4),(
min

[β+η,L]
a
)
f(uk(ξk)) ≤ a(ξk)f(uk(ξk)) ≤ λk ≤ µ+ δ

so

uk(ξk) ≤ f−1
(

(µ+ δ)/ min
[β+η,L]

a
)
,

contradicting (2.17). Thus (2.12) and (2.9) are impossible and (b) has been

verified. �

By (d), D±n becomes unbounded as λ ↑ (nπ/(β − α))2. Even in the simplest

situation when n = 2, there are (numerical) examples where C±n ∩D±n = ∅, or,

alternatively, C±n = D±n , [9].

The next result complements Theorem 2.2, items (a) and (b) being con-

tained in Theorem 5.4 of [7], (c) following from the argument of the proof of

Theorem 2.2, and (d) from (a)–(c).

Theorem 2.3. Suppose a and f satisfy (1.2)–(1.3), n ≥ 2, and

(2.18)

[
(n− 1)π

β − α

]2
≤
(
nπ

L

)2

, λ ∈ J :=

((
nπ

L

)2

,

(
nπ

β − α

)2)
.

(a) Then there exists a unique solution, (λ, u±λ ), of (1.4) in T±n .
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(b) The n− 1 interior zeroes of u±λ lie in (α, β).

(c) Each of the curves λ 7→ u±λ , λ ∈ J , is continuous so

(2.19) C±n = {(λ, u±λ ) : λ ∈ J} = T±n .

(d) In particular, lim
λ↓(nπ/L)2

u±λ = 0 uniformly in [0, L] and (2.2) holds.

Remark 2.4. The first estimate of (2.18) can be rewritten as

(2.20) β − α ≥ n− 1

n
L,

which cannot be satisfied for sufficiently large n ≥ 2.

Theorem 2.3 provides a proof of our main result when (2.20) holds. It remains

to prove (2.2) when

(2.21) β − α < n− 1

n
L,

which is equivalent to the first estimate of (2.3). So, without lost of generality,

(2.21) can be assumed for what follows.

3. A priori bounds for the nodal solutions

In this section, a priori L∞ bounds will be obtained for the solutions of (1.4),

the bounds depending on λ and the number of nodes. As a tool, we will use the

next result that provides us with such bounds for any non-trivial solution, (λ, u),

of (1.4) in terms of the positive and negative solutions of (1.4) in the interval

where they exist. It is a direct consequence of Theorem 2.2 and Corollary 3.1

of [7].

Theorem 3.1. Suppose a and f satisfy conditions (1.2)–(1.3) and λ ∈
((π/L)2, (π/(β − α))2). Let u±λ,1 denote the unique solution of the problem (1.4)

with ±u±λ,1 > 0. Then, for every solution (λ, u) of (1.4),

(3.1) u−λ,1 ≤ u ≤ u
+
λ,1.

Remark 3.2. For the special case where(
nπ

L

)2

<

(
π

β − α

)2

,

as a consequence of Theorem 3.1, we have

(3.2)

((
nπ

L

)2

,

(
π

β − α

)2)
⊂ P(C±n ).

Since, by Corollary 3.2 of [7], the mappings λ 7→ u±λ,1 are of class C1, for each λ ∈
((π/L)2, (π/(β − α))2) and every solution (λ, u) of (1.4), the following estimate

holds:

(3.3) ‖u‖C[0,L] ≤ (‖u+λ,1‖L∞[0,L] + ‖u−λ,1‖L∞[0,L]) ≡M(λ).
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Note that M(λ) is continuous.

The next result gives us a priori bounds for any solution (λ, u) with λ ∈ In−1
provided that the number of nodes of u in (0, L) is at least n−1. It makes strong

use of the uniqueness portion of Theorem 2.2, and extends the estimate (3.3) to

the setting that will be needed in the next section.

Theorem 3.3. Under the assumptions of Theorem 2.2, for every λ ∈ In−1
there is a constant Mn−1(λ) such that for any solution, (λ, u), of (1.4) having

j ≥ n− 1 zeroes in (0, L),

(3.4) ‖u‖C[0,L] < Mn−1(λ).

Moreover, the map λ 7→Mn−1(λ) can be chosen to be continuous for λ ∈ In−1.

Proof. Since n ≥ 2, j ≥ n − 1 ≥ 1. Let (λ, u) be a solution of (1.4)

having j nodes in (0, L) and λ ∈ In−1. If j = n − 1, then u ∈ {u+λ,n, u
−
λ,n},

where the functions u±λ,n are the unique solutions with n− 1 nodes constructed

in Theorem 2.2 and the n− 1 nodes lie in [α, β]. Thus for this case the estimate

follows from the continuity of the curves λ 7→ u±λ,n, given by Theorem 2.2. Hence

for what follows, it can be assumed that j > n− 1 ≥ 1, so j ≥ 2.

Next observe that since λ ∈ In−1, u possesses at least one node z in [α, β].

Otherwise u 6= 0 in [α, β] so there are constants A,B such that 0 ≤ A < α <

β < B ≤ L and the problem

(3.5)

−w′′ = λw − a(x)f(w)w for x ∈ (A,B),

w(A) = w(B) = 0,

admits a solution without nodes in (A,B). Then, by Theorem 2.1 in [7], λ <

(π/(β − α))2. But if λ ∈ In−1, then

λ ≥
[

(n− 1)π

β − α

]2
≥
(

π

β − α

)2

,

a contradiction. Consequently, u(z) = 0 for some z ∈ [α, β].

By Theorem 2.2, the n − 1 nodes z±k , 1 ≤ k ≤ n − 1, of u±λ,n lie in (α, β).

Order them so that α < z±1 < . . . < z±n−1 < β. Note that, in general, z+k 6= z−k .

Since u+λ,n is the unique positive solution of−w′′ = λw − a(x)f(w)w for x ∈ (0, z+1 ),

w(0) = w(z+1 ) = 0,

u+λ,n(x) > 0 for all x ∈ (0, z+1 ) and (u+λ,n)′(0) > 0, (u+λ,n)′(z+1 ) < 0. Similarly,

u−λ,n(x) < 0 for all x ∈ (0, z−1 ) and (u−λ,n)′(0) < 0, (u−λ,n)′(z−1 ) > 0.

Let z ∈ [α, β] denote the smallest node, of u in [α, β]. It being a simple node

u′(z) 6= 0. To continue, a case analysis depending on the sign of u′(z) and the

relative position of z in [α, β] with respect to z±1 is needed.
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Case 1. Suppose that

(3.6) u′(z) < 0 and z ≤ z+1 .

On any subinterval (r, s) of (0, z+1 ), where u > 0 and u(r) = u(s) = 0, the

restriction u+λ,n|(r,s) is a positive supersolution for the problem

(3.7)

−w′′ = λw − a(x)f(w)w for x ∈ (r, s),

w(r) = w(s) = 0.

Since for sufficiently small ε > 0,

u(x) = ε sin

[
π(x− r)
s− r

]
, x ∈ [r, s],

is a positive subsolution of (3.7) such that u < u+λ,n, we deduce that

0 < u < u+λ,n in (r, s).

Because of (3.6), there exists r ∈ [0, α] such that u(x) > 0 for all x ∈ (r, z) and

u(r) = u(z) = 0. Thus it follows that

0 < u < u+λ,n in (r, z).

By similar reasoning, on each subinterval (r̃, s̃) of (0, r), where u(x) < 0 for all

x ∈ (r̃, s̃) and u(r̃) = u(s̃) = 0, the restriction u−λ,n|(r̃,s̃) is a negative subsolu-

tion of −w′′ = λw − a(x)f(w)w for x ∈ (r̃, s̃),

w(r̃) = w(s̃) = 0,

so u−λ,n < u < 0 in (r̃, s̃). Therefore,

(3.8) u−λ,n ≤ u ≤ u
+
λ,n in (0, z).

Let x0 be the closest point in (0, z) to z at which u′(x0) = 0. Then

(3.9) u′(z) =

∫ z

x0

u′′(x) dx =

∫ z

x0

[a(x)f(u(x))− λ]u(x) dx,

so by (3.8) and (3.9), there exists a constant C = C(λ) > 0 independent of u

such that |u′(z)| ≤ C. Since −u′′ = λu in (α, β), it follows that

|u′(x)|2 + λu2(x) = |u′(z)|2 ≤ C for all x ∈ [α, β].

Therefore, there exists a constant C1(λ) > 0, independent of u, such that

(3.10) ‖u‖C[0,β] + ‖u′‖C[0,β] < C1(λ).

Moreover, by Theorem 2.2, C1(λ) can be chosen to be continuous in λ ∈ In−1.

Next using (3.9), uniform a priori bounds will be obtained for ‖u‖C[β,L]. As

in (2.16), an application of the basic existence-uniqueness theorem for the initial

value problem for ordinary differential equations shows there are constants δ,

C2(λ) > 0, such that ‖u‖C1[0,β+δ] < C2(λ) and C2(λ) can be chosen to be
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continuous in λ. Now, again as in the proof of Theorem 2.2, suppose u has

a positive maximum at a point x0 ∈ (β+ δ, L). Then u′(x0) = 0 and u′′(x0) ≤ 0.

Thus, it follows from (1.4) that(
min

[β+δ,L]
a
)
f(u(x0)) ≤ a(x0)f(u(x0)) ≤ λ

and hence,

u(x0) ≤ f−1
(
λ
/

min
[β+δ,L]

a
)
.

Combining this estimate with a similar one at a negative minimum of u yields

‖u‖C[0,L] ≤ max
{
C2(λ), f−1

(
λ
/

min
[β+δ,L]

a
)}
.

Using this bound with (1.4) yields the desired C1[0, L] bound for u and concludes

the proof of the theorem under (3.6).

Case 2. Suppose that

(3.11) u′(z) < 0 and z+1 < z.

Then, since u and u+λ,n satisfy −w′′ = λw in (α, β), there are constants, C and D,

such that

u(x) = C sin
[√
λ(x−z)

]
and u+λ,n(x) = D sin

[√
λ(x−z+1 )

]
for all x ∈ [α, β],

and all zeroes of these functions in [α, β] are simple. Note that the distance

between two consecutive zeroes of u or of u+λ,n in [α, β] is π/
√
λ. Thus there is

a zero of u between each pair of zeroes of u+λ,n in [α, β] and by Theorem 2.2, u+λ,n
has exactly n− 1 zeroes in [α, β]. We claim that u must also have exactly n− 1

zeroes in [α, β], with the largest, ζ, satisfying

(3.12) z+n−1 < ζ ≤ β.

If (3.12) is false, u has n− 2 zeroes in [z, z+n−1) and ζ < z+n−1. Since λ ∈ In−1,

(3.13) (n− 1)
π√
λ
≤ β − α < n

π√
λ
.

Writing

β − α = z − α+ (n− 3)
π√
λ

+ β − ζ,

inequality (3.13) implies

2
π√
λ
≤ z − α+ β − ζ < 3

π√
λ
.

Since z is the first zero of u in [α, β] and α < z, it follows that z − α < π/
√
λ.

Hence β − ζ ≥ π/
√
λ so u has an additional zero in (ζ, β], contrary to the

definition of ζ. Consequently z+n−1 < ζ ≤ β and u possesses at least n− 1 zeros

in (α, β]. But z+1 < z, so u+λ,n would have n zeroes in this interval if u had n

zeroes. Thus, u has exactly n− 1 (simple) zeros in (α, β].
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Next observe that u′(z)(u+λ,n)′(z+1 ) > 0. Therefore u′(ζ)(u+λ,n)′(z+n−1) > 0.

Hence, the argument given in Case 1 can be adapted to complete Theorem 3.3

under condition (3.11). Indeed, suppose n− 1 is odd. Then, (u+λ,n)′(z+n−1) < 0,

u′(ζ) < 0, and u+λ,n(x) < 0 for all x ∈ (z+n−1, L). Moreover, there exists s ∈ (β, L]

such that u(x) < 0 for all x ∈ (ζ, s), u(s) = 0 and u′(s) > 0. Since u+λ,n|[ζ,s] is

a subsolution of −w′′ = λw − a(x)f(w)w for x ∈ (ζ, s),

w(ζ) = w(s) = 0,

as earlier, u+λ,n < u < 0 in (ζ, s). In addition, 0 < u < u−λ,n in any subinterval

(s̃, t̃) of (s, L) where u(s̃) = u(t̃) = 0 and u(x) > 0 for all x ∈ (s̃, t̃), while

u+λ,n < u < 0 in any subinterval (ŝ, t̂) of (s, L), where u(ŝ) = u(t̂) = 0 and

u(x) < 0 for all x ∈ (ŝ, t̂). Therefore,

(3.14) u+λ,n ≤ u ≤ u
−
λ,n in (ζ, L).

Similarly, when n is even, (u+λ,n)′(zn−1) > 0, u′(ζ) > 0 and

(3.15) u−λ,n ≤ u ≤ u
+
λ,n in (ζ, L).

As for Case 1, since (1.4) is linear in [α, β], (3.14), or (3.15), provide uniform

a priori bounds for u and u′ in [α,L], and then as earlier, we obtain the a priori

bounds in the entire interval [0, L]. This completes the proof of the theorem

when u′(z) < 0.

Two cases remain: If u′(z) > 0 and z ≤ z−1 , then, arguing as in Case 1, it is

easily seen that u−λ,n ≤ u ≤ u+λ,n in (0, z) and the proof of the theorem follows

the general pattern of Case 1, while if u′(z) > 0 and z−1 < z, the argument of

Case 2 can be adapted easily to complete the proof for this case. �

Remark 3.4. For the function, Mn−1(λ), we have

lim sup
λ↑(nπ/(β−α))2

Mn−1(λ) =∞.

Otherwise there exists a constant C > 0 such that Mn−1(λ) ≤ C for all λ ∈ In−1.

Then, ‖u+λ,n‖C[0,L] ≤ C for all λ ∈ In−1 and straightforward arguments show

there exists u ∈ T+
n such that u+λ,n → u in C2[0, L] as λ ↑ (nπ/(β − α))2. But

then ((nπ/(β − α))2, u) is a solution of (1.4) having n−1 zeroes in (0, L), which

is impossible.

Remark 3.5. Suppose ψ ∈ C([0, 1], C[0, L]) with

ψ(0) = a, ψ(s) ≥ 0, ψ(s)−1(0) = [αs, βs],

and 0 < αs < βs < L, for s ∈ [0, 1]. Set as = ψ(s) for s ∈ [0, 1]. Then the proof

of Theorem 3.3 holds equally well with Mn−1 = Mn−1(λ, s) also continuous
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in s ∈ [0, 1] provided that

λ ∈ In−1(s) ≡
[[

(n− 1)π

βs − αs

]2
,

(
nπ

βs − αs

)2)
.

The final result of this section is a technical assertion that will be required

in the next section.

Proposition 3.6. Suppose a and f satisfy (1.2)–(1.3) and n ≥ 1. Then there

exists a function, r(λ) > 0, continuous on Λn with r(λ) → 0 as λ → (nπ/L)2

and such that if (λ, u) ∈ T±n , then λ ∈ Λn and ‖u‖C1[0,L] > r(λ).

Proof. That (λ, u) ∈ T±n , implies λ ∈ Λn was proved in [7]. The second

statement follows since ((nπ/L)2, 0) is the unique bifurcation point for solutions

of (1.4) in T±n . Therefore for each λ ∈ Λn, there is ρ(λ) > 0 such that if (λ, u) ∈
T±n , then ‖u‖C1[0,L] > ρ(λ). That ρ(λ) can be modified to get a continuous r(λ)

with r(λ)→ 0 as λ→ (nπ/L)2 is a straightforward exercise. �

Remark 3.7. For any small η > 0, r(λ) can be chosen to be constant in

[(nπ/L)2 + η, (nπ/(β − α))2).

4. The main existence result

In this section, our main result,

Theorem 4.1. P(T±n ) = Λn for all n ≥ 1.

will be proved. This result goes back to [2] in case n = 1, to [7] in case n = 2,

and it is a direct consequence of Theorem 2.3 under condition (2.20). The proof

of Theorem 4.1 also provides more information about the structure of T±n , but

such a discussion will be postponed to Section 5. The proof will be carried out

for T+
n ; the proof for T−n is the same.

Note that there is a unique j ∈ {1, . . . , n} depending on β − α and L such

that

(4.1)

[
(j − 1)π

β − α

]2
≤
(
nπ

L

)2

<

(
jπ

β − α

)2

or equivalently

(4.2)
(j − 1)L

n
≤ h ≡ β − α < jL

n
.

If j = n, then (4.2) becomes (2.20) and Theorem 4.1 is a consequence of Theo-

rem 2.3. Consequently, it suffices to prove Theorem 4.1 when j ≤ n − 1 which

will be assumed for what follows. Set

(4.3) I0 :=

((
nπ

L

)2

,

(
jπ

h

)2)
.
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Observe that Theorem 2.1 gives the existence of an unbounded continuum, C+
n ,

of solutions of (1.4) in T+
n . By (4.1) and Theorem 3.3 (with n replaced by j),

if (λ, u) ∈ C+
n , then ‖u‖L∞[0,L] ≤ Mj−1(λ). Therefore I0 ⊂ P(C+

n ). In addition,

Theorem 2.2 also shows there is an unbounded continuum D+
n of solutions of (1.4)

in T+
n which for λ ∈ In−1 is a curve parameterized by λ. Thus In−1 ⊂ P(D+

n ).

If

(4.4) P(C+
n ∪D+

n ) = Λn,

there is nothing more to prove. However (4.4) will not hold in general and to

handle the remaining cases, Leray–Schauder degree theory will be employed. As

was shown earlier, (1.4) is equivalent to the integral equation (2.4). Define

Φ(λ, u) := u− T (λ, u), (λ, u) ∈ R× E.

Since T : R×E → E is a compact mapping, the Leray–Schauder degree of Φ(λ, · )
with respect to a bounded open set O and a point b ∈ E, denoted by

deg (Φ(λ, · ),O, b),

is well defined whenever Φ(λ, u) 6= b for all u ∈ ∂O.

To choose a suitable set, O, let λ ∈ Ip for p ∈ {0, j, . . . , n − 1}. By The-

orem 3.3, there is a function Mp(λ) > 1, continuous for λ ∈ Ip and such that

whenever (λ, u) ∈ Ip × S+
n and is a solution of (1.4), ‖u‖ ≡ ‖u‖E < Mp(λ). By

Remark 3.4, the function Mp(λ) → ∞ as λ ↑ (pπ/h)2, the right endpoint of Ip.

Let Br(w) denote an open ball of radius r in E about w. Proposition 3.6 gives

a function, r(λ) > 0, continuous on Ip with r(λ) → 0 as λ ↓ (nπ/L)2 such that

whenever (λ, u) ∈ Ip × Br(λ)(0), then u 6∈ S+
n . Note further that S+

n is an open

set in E. These observations show that

deg(Φ(λ, · ), (BMp(λ)(0) \Br(λ)(0)) ∩ S+
n , 0)

is defined for λ ∈ Ip and, by the homotopy invariance property of the degree,

(4.5) deg(Φ(λ, · ), (BMp(λ)(0) \Br(λ)(0)) ∩ S+
n , 0) ≡ constant = cp

for all λ ∈ Ip. The next result calculates cp.

Proposition 4.2. cp = (−1)n−1 for every p ∈ {0, j, . . . , n− 1} and λ ∈ Ip.

Proof. The case of p = 0 corresponds to the interval in question being the

one where bifurcation from the n-th eigenvalue of the associated linear problem

occurs. Here, (1.3) implies bifurcation is in the direction of increasing λ. Hence

a standard degree theoretic computation as in [12] shows that c0 = (−1)n−1.

Thus suppose that p 6= 0. This case will be reduced to that of p = 0 by a homo-

topy argument. Let

h(s) = (1− s)h+ s
pL

n
, s ∈ [0, 1],
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so h(0) = h and h(1) = pL/n. Let ψ ∈ C([0, 1], C[0, L]) be such that

ψ(0) = a(x), ψ(s) ≥ 0, ψ(s)−1(0) = [αs, βs],

with 0 < αs < βs < L and βs − αs = h(s). It is straightforward to construct

such a function ψ. Set

Ip(s) :=

[[
pπ

h(s)

]2
,

[
(p+ 1)π

h(s)

]2)
and define, for every (s, λ, u) ∈ [0, 1]× Ip(s)× E,

Ψ(s, λ, u) := u−
∫ L

0

G( · , y)[λ− ψ(s)(y)f(u(y))]u(y) dy.

Then, as for Φ, by Remark 3.5, there exist functions Mp(λ, s), r(λ, s) > 0 that

are defined and continuous for (s, λ) ∈ [0, 1] × Ip(s), except for s = 1 and

λ = [pπ/h(1)]2 = (nπ/L)2 where r = 0. Let µ(s) be the midpoint of Ip(s):

µ(s) =
1

2

[
π

h(s)

]2
[p2 + (p+ 1)2], s ∈ [0, 1].

Then, for s ∈ [0, 1] and λ ∈ Ip(s),

deg(Ψ(s, λ, · ), (BMp(s,λ)(0) \Br(s,λ)(0)) ∩ S+
n , 0)

is defined and, by the homotopy invariance property of degree again, for every

s ∈ [0, 1],

cp = deg(Φ(λ, · ), (BMp(λ)(0) \Br(λ)(0)) ∩ S+
n , 0)

= deg(Φ(µ(0), · ), (BMp(µ(0))(0) \Br(µ(0))(0)) ∩ S+
n , 0)

= deg(Ψ(s, µ(s), · ), (BMp(s,µ(s))(0) \Br(s,µ(s))(0)) ∩ S+
n , 0)

= deg(Ψ(1, µ(1), · ), (BMp(1,µ(1))(0) \Br(1,µ(1))(0)) ∩ S+
n , 0).

Since

Ip(1) =

[(
nπ

L

)2

,

[
(p+ 1)π

h(1)

]2)
,

and µ(1) ∈ Ip(1), we are back in the setting for c0 with Ψ(1, µ(1), · ) replacing

Φ(λ, · ). Therefore cp = (−1)n−1 and the proposition is proved. �

Since cp 6= 0 for λ ∈ Ip, as a standard consequence of Proposition 4.2, by the

Leray–Schauder continuation theorem [3], we have

Corollary 4.3. For each p ∈ {0, j, . . . , n − 1}, T+
n contains a component

of solutions, C+
n,p, such that P (C+

n,p) ⊃ Ip.

Since we can take C+
n,0 = C+

n and C+
n,n−1 = Dn, Theorem 4.1 is an immediate

consequence of Corollary 4.3.
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Remark 4.4. (a) C+
n,p may be unbounded as λ approaches the right endpoint

of Ip.

(b) T+
n may consist of a single component, e.g. when C+

n = D+
n . By Theo-

rem 2.3, this occurs in particular when (2.20) is satisfied, i.e. h ≥ (n− 1)L/n.

5. More on T+
n , n ≥ 2

In this section, as a further consequence of the above ideas, a closer study of

T+
n will be made when C+

n ∩D+
n = ∅.

Theorem 5.1. Suppose that C+
n ∩ D+

n = ∅ and j is as in (4.2). Then, for

some p ∈ {j, . . . , n − 1}, D+
n is unbounded at (pπ/h)2, i.e. as λ → (pπ/h)2 for

λ < (pπ/h)2 and (λ, u) ∈ D+
n , ‖u‖ → ∞. Moreover D+

n has at least two solutions

for each λ less than and near (pπ/h)2.

Proof. For λ ∈ In−1, D+
n is a curve: A+

n ≡ {(λ, u+λ ) : λ ∈ In−1}. Due

to Theorem 2.2, the only solution of (1.1) in T+
n for λ = [(n− 1)π/h]2 is

([(n− 1)π/h]2, v) where v = u+[(n−1)π/h]2 . This implies there are constants σ, %>

0 such that there are no members (λ, u) ∈ T+
n with |λ− [(n− 1)π/h]2| ≤ σ and

‖u−v‖ = %. Hence, deg(Φ(λ, · ), B%(v)∩S+
n , 0) is defined for |λ− [(n− 1)π/h]2|

≤ σ and due to Proposition 4.2,

(5.1) deg(Φ(λ, · ), B%(v) ∩ S+
n , 0) = (−1)n−1 if

∣∣∣∣λ− [ (n− 1)π

h

]2∣∣∣∣ ≤ σ.
As in the proof of the global bifurcation theorem, [12, Theorem 1.3], there exists

an open neighbourhood, O, of D+
n having the property that ∂O∩T+

n = ∅. Since

C+
n ∩D+

n = ∅, the open set O can be constructed with the additional property

that O ∩ C+
n = ∅. Set Oλ = {u ∈ E : (λ, u) ∈ O}. Suppose that

(5.2) deg(Φ(λ, · ),Oλ ∩ S+
n , 0) = 0 for λ =

[
(n− 2)π

h

]2
.

This will be the case, for example, if Oλ = ∅ for λ = [(n− 2)π/h]2 and, in

particular, if h ≥ (n− 2)L/n since then [(n− 2)π/h]2 ≤ (nπ/L)2. By (5.2) and

the homotopy invariance of degree,

(5.3) deg(Φ(λ, · ),Oλ ∩ S+
n , 0) = 0 for all ∈ In−2.

Combining (5.3) with (5.1) we get, for every λ∈ [[(n− 1)π/h]2−σ, [(n− 1)π/h]2),

that there is a second solution of (1.1) in D+
n . Moreover the subcontinuum

D+
n \A+

n of D+
n must be unbounded as λ ↑ [((n− 1)π/h]2, for otherwise D+

n \A+
n

remains bounded as λ ↑ [((n− 1)π/h]2 and hence, D+
n \A+

n must contain a point,

([(n− 1)π/h]2, w), with w 6= v, contrary to the uniqueness of ([(n− 1)π/h]2, v)

as a solution of (1.1) in T+
n when λ = [(n− 1)π/h]2.
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Next suppose that

(5.4) deg(Φ(λ, · ),Oλ ∩ S+
n , 0) 6= 0 for λ =

[
(n− 2)π

h

]2
.

Then D+
n continues into the region where λ ∈ In−3. If

deg(Φ(λ, · ),Oλ ∩ S+
n , 0) = 0 for λ =

[
(n− 3)π

h

]2
,

the argument above shows that D+
n has at least two solutions for each λ in

a left neighbourhood of λ= [(n− 2)π/h]2 and D+
n becomes unbounded at λ=

[(n− 2)π/h]2. If, on the contrary,

deg(Φ(λ, · ),Oλ ∩ S+
n , 0) 6= 0 for λ =

[
(n− 3)π

h

]2
,

the continuation process goes on for another step. Thus after a finite number of

steps, the conclusion of the theorem follows. �

Remark 5.2. Suppose that P(C+
n ∪D+

n ) 6= Λn and j is as in (4.2). Then for

any p ∈ {0, 1, . . . , n− 1} such that P(C+
n ∪D+

n ) 6⊃ Ip, by Corollary 4.3, there is

a component, C+
n,p ⊂ T+

n such that P(C+
n,p) ⊃ Ip. Thus, C+

n,p ∩ (C+
n ∪D+

n ) = ∅.
As in the proof of Theorem 5.1, there is an open neighbourhood O of C+

n,p such

that ∂O ∩ T+
n = ∅ and O ∩ (C+

n ∪D+
n ) = ∅. It can be further assumed that

dp ≡ deg(Φ(λ, · ),Oλ ∩ S+
n , 0) 6= 0 for λ ∈ Ip,

for otherwise

deg(Φ(λ, · ), (BMp(λ)(0) \Br(λ)(0)) ∩ S+
n , 0) = 0,

contrary to Proposition 4.2. Since dp 6= 0, the argument of Theorem 5.1 shows

there is q ≤ p− 1 such that C+
n,p is unbounded in Iq × S+

n and (1.4) has at least

two solutions in C+
n,p for each λ < (qπ/h)2 and near (qπ/h)2. Likewise C+

n,p must

be unbounded as λ ↑ (tπ/h)2 for some t ∈ {p, . . . , n−1} since if it were bounded,

it could be continued up to λ = [(n− 1)π/h]2. But for λ ∈ In−1, all solutions

lie in D+
n .

Remark 5.3. An interesting open question is to determine the dependence

of the structure of the components of T+
n on the oscillation properties of a.

According to [2] or [7], T+
1 is a C1 curve, like T+

n if β − α ≥ (n − 1)L/n via

Theorem 2.3. But when, e.g. n = 2 and β − α < L/2, numerical studies show

that T+
2 may consist of at least two components C+

2 6= D+
2 , plus, possibly, some

additional component under appropriate assumptions on a, as was discussed

in [9]. In the case when n = 3, computations by M. Molina-Meyer [10] show

that there are examples with at least three (different) components, C+
3 , C+

3,1 and

D+
3 , while in other situations two of these components, and even the three, may

coincide.
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