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Abstract. The maximal ideal cycles and the fundamental cycles are defined on the
exceptional sets of resolution spaces of normal complex surface singularities. The former
(resp. later) is determined by the analytic (resp. topological) structure of the singularities. We
study such cycles for normal surface singularities with C*-action. Assuming the existence of a
reduced homogeneous function of the minimal degree, we prove that these two cycles coincide
if the coefficients on the central curve of the exceptional set of the minimal good resolution
coincide.

1. Introduction. Let (X, 0) be a normal complex surface singularity and 7 : (f( ,E)
— (X, 0) a good resolution, where £ = Ule E; is the irreducible decomposition of the ex-
ceptional set E. Then ) ;_, E; is a simple normal crossing divisor. A divisor on X supported
in E is called a cycle. Let us consider acycle Mg :=min{(f om)g | f e m, f #0}on E is
called the maximal ideal cycle on E ([24, p.279]), where m is the maximal ideal of Oy , and
(fom)g =Y i_, vg;,(fom)E; (vg, (f o) is the vanishing order of fom on E;). In [23, The-
orem 2.7], Ph. Wagreich showed that if mOy is locally principal, then mO3 = O3 (—MEg)
and the multiplicity of (X, o) is equal to —MIZ,:. The fundamental cycle Zg is defined in [1]
by Zg =min{D = ) ;_,a;E; |a; > 0 and DE; < 0 for any i}. From the definition, we can
easily see that Mg - E; < 0 for any irreducible component E; of E and the relation Mg = Zg
follows from the minimality of Zg.

The equality Mg = Zg are playing the important roles in various stages of normal
surface singularity theory. For example, when M. Artin [1] proved that the multiplicity of any
Kleinean singularity is equal to two, the key point of the proof is the fact of Mg = ZEg. Also,
Mg = Zg is a necessary condition for normal surface singularity to be a Kodaira singularity
([6]). For rational singularities, these two cycles coincide for any resolution ([1]). However,
for non-rational singularities, it is a natural and delicate problem to ask whether Mg = Zf.
In [9, p.322], H. Laufer remarked that Mg > Zg on the minimal resolution of a hypersurface
singularity defined by z2 = y(x* + y%).

For minimally elliptic singularities, Mg and Zg coincide for the minimal good resolu-
tion ([8]). This result was generalized to maximally elliptic singularities by the first named
author ([15]). However, for those singularities, it is not always true that Mg and Zg coincide
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for any resolution. We explain it through an example. Let (X, o) be a quasi-homogeneous hy-
persurface singularity defined by z> = x3+y. It is a minimally elliptic singularity which has
a natural C*-action. Let 7 : (X, E) — (X, 0) be the minimal good resolution. The weighted
dual graph of E is given by [1; 0, (2, 1), (3, 1), (7, 1)] (see (2.2)). Let Ey, E1, E> and E3 be
irreducible components of E with E2 = —1, E% = -2, E% = —3 and E% = —7. Let L be
the strict transform of the divisor defined by y = 0 in X. Then the divisor (y o 1) 3 is equal to
(yom)g + L. We can easily check that Mg = (yom)g = 6E¢g+3E1+2E>,+ E3 = Zg and
EL=E3L =1.Leto: (X', E') - (f(, E) be the blowing-up at a point P := LN E3. Since
Coeffg, (zom)g = 3 and Coeffp, (xom) g = 2, M is givenby 6 E(+3E| +2E, + E}+2E},
where E is the strict transform of E; fori = 0,1,2,3 and E} := o~ 1(P). Then Mg =
Zg +EjonE.

Any double point (X, o) (i.e., a normal surface singularity of multiplicity two) is a hy-
persurface singularity defined by z> = f(x, y). In [3], D. J. Dixon proved that if the order of
f iseven, then Mg = ZF for any resolution (5(, E) of (X, 0). In [6], using pencils of curves,
U. Karras introduced the notion of Kodaira singularities. If (X, o) is a Kodaira singularity,
then Mg = Zg for the minimal resolution. Let (X, o) be a normal hypersurface singularity
defined by 7" = f(x, y). In [19], the second named author gave two sufficient conditions for
(X, o) to be a Kodaira singularity. This result was generalized to the case of cyclic coverings
of normal surface singularity ([21, Theorem 4.14]).

In general, it is not so easy to identify the maximal ideal cycle for a given normal surface
singularity. Because it depends on the analytic structure of the singularity. When we compute
the maximal ideal cycle, we need to know the detail of resolution process of the singularity. In
[7], for Brieskorn hypersurface singularities, K. Konno and D. Nagashima gave the necessary
and sufficient numerical condition that Mg and Zg coincide on the minimal good resolution
space. Further, F. N. Meng-T. Okuma [11] generalized Konno and Nagashima’s result to
Brieskorn complete intersection surface singularities (Theorem 3.1 of this paper).

Brieskorn complete intersection surface singularities form a special subclass of normal
surface singularities with C*-action. The weighted dual graph of exceptional set of the min-
imal C*-good resolution (see § 2 for the definition) of a normal surface singularity with C*-
action is star-shaped (the exceptional set has the one central curve of genus g and several
PP!-chains intersecting the central curve). In this paper, we consider the problem above for
the minimal C*-good resolutions of normal surface singularities with C*-action. In Section 2,
we shall prepare some facts on normal surface singularities with C*-action. In Section 3, as-
suming the existence of a reduced function of the minimal degree, we prove that Mg = Zg
if and only if Coeffg, Mg = Coeffg, Zg for the central curve E¢ for the minimal C*-good
resolution space (f( , E) of (X, 0) (Theorem 3.5 (iii)). From Theorems 2.3 and 3.5 (iii), it is
natural to ask whether My coincides to Z if the central curve of E is P!. However, it is not
always true. We give a counterexample for it (Example 3.8). In Section 4, we consider the
maximal ideal cycles of Kummer coverings over normal surface singularities with C*-action.
We generalize some results of Meng-Okuma [11] (Theorems 4.1 and 4.2). Using our results,



MAXIMAL IDEAL CYCLES OVER NORMAL SURFACE SINGULARITIES 417

for Brieskorn complete intersection surface singularities, we reprove the main results due to
Konno-Nagashima and Meng-Okuma (Corollary 4.4).

The authors heartily thank Professor Tomohiro Okuma for useful suggestions. They also
thank all members of the Singularity Seminar at Nihon University for warm encouragements
and discussions.

2. Preliminaries. Let us explain cyclic quotient singularities. For two integers n, g
with0 < g < nand ged(n, g) = 1, acyclic quotient singularity C, 4 is defined as the quotient

0
Here, if n = 1 and ¢ = 0, then C ¢ means a non-singular point. In this paper, we consider that
a non-singular point is a sort of cyclic quotient singularities. Let (X, 0) be a cyclic quotient
singularity Cy 4 (¢ = 0). Then there exists a resolution 7 : (f( , E) — (X, o) such that the
weighted dual graph of E is given as follows:

space C2/(g) by the natural action of g = (e" e%) onto C2, where e, :=exp(2m+/—1/n).
n

where b; = 1 for any i and

n
—=[[b1,.... b/ ]l :==b1 —
q
1
_br

If b; = 2 for any i, then the resolution coincides with the minimal resolution of Cpg (n = 2).

Now we prepare some facts on normal singularities C*-action ([12]). Assume that there
is an embedding (X, 0) C (CN*!,0) such that the C*-action on (X, 0) is induced from a
diagonal action 7 - (20, ..., zy) = (t%z, ..., 19 zy) on CN*!, where ¢; is a positive inte-
ger for any i. If ged(qo, ..., qgn) = 1, then the action is called a good C*-action. In this
paper, we abbreviate “good C*-action ” to “C*-action ”. Then the affine ring Ry of X is a
graded ring Clzo, ..., zn]/Ix, where Ix is the defining ideal which is generated by quasi-
homogeneous polynomials of type (qo, ..., gn). In the following, we always assume that
(X, 0) is 2-dimensional. Let 7 : (f( , E) — (X, o) be the minimal good resolution of a nor-
mal surface singularity with C*-action. Then the weighted dual graph of E is star-shaped

which is given as follows:
Ey

ES,Z.?

.1 Eo
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If we put % = [[bi,1, ..., big ]l for positive integers «;, B; with ged(e;, B;) = 1, then the

intersection matrix of E is negative definite if and only if b — > 7_, % > 0. The component

Ey is a compact smooth algebraic curve of genus g and Eé = —b. It is called the central
curve. Each P!-chain Uf‘: | Ei,;j is contracted to a cyclic quotient singularity Cy, g, .

If the minimal good resolution of a normal surface singularity has the exceptional set
whose weighted dual graph is given by (2.1), then the singularity is called a star-shaped
surface singularity. Therefore, any normal surface singularity with C*-action is a star-shaped
surface singularity. However, the converse is not always true. Please refer [16] for star-shaped
surface singularities. In this paper, the weighted dual graph (2.1) associated with a star-shaped
surface singularity (X, o) is indicated by the following:

2.2 [D: g5 (a1, B1), .., (as, Bs)].

DEFINITION 2.1. Under the situation above, we define a positive integer as follows:

Iem(aq,...,05) ifs >0

a0(X. 0):= ifs =0

THEOREM 2.2 ([12], [13] and [20]). There exists a C*-equivariant resolution
7 : (X, E) — (X, o) uniquely which satisfies the following:

(i) The weighted dual graph of E is a star-shaped graph of (2.1).

(ii) The C*-action on X acts trivially on the central curve Eo; each irreducible compo-
nent of E except for Eq contains a one-dimensional C*-orbit.

(iii) Each P'-chain Uff:l E; j does not contain a (—1)-curve.

In this paper, a resolution satisfying the three conditions above is called the minimal C*-
good resolution. Tt depends on the C*-action of (X, 0). For cases aside from cyclic quotient
singularities, the minimal C*-good resolution is the minimal good resolution. However, for
cyclic quotient singularities, this is not always true.

Here, as a preparation of Sections 3 and 4, we explain the minimal C*-good resolution for
cyclic quotient singularities according to [20]. Though the argument in [20] was done under
the condition of n > 1, it is applicable to the case of (n, g) = (1, 0) (i.e., non-singular point
(C?,0)). Let (X, 0) be a cyclic quotient singularity C,, 4 for integers n, ¢ with 0 < g < n and
ged(n, g) = 1. Let consider the C*-action on C? defined by 7 - (x, y) = (t"x,t°y) for any
t € C*, where ged(r, s) = 1. It induces on (X, 0) a natural C*-action. Such (X, o) is called
a cyclic quotient singularity C,, 4 with C*-action of type (r,s). We give the minimal C*-
good resolution of (X, 0) with respect to the C*-action. For g > 0 (resp. ¢ = 0), let ¢’ be the
integer defined by g¢’ = 1 (modn) and 0 < ¢’ < n (resp. ¢’ = 0). Let i and A be the integers
defined by 1 = ged(n, gr — s) and A = %; and also a1, oy integers defined by the following:

qr —s
061( )El(modkr) and 0 <oy < Ar,
I

q's—r
ag( )El(modks) and O<ap <As.
7
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Then b := ﬁ + ‘;‘—; + % is an integer. From Theorem 2.3 in [20], the weighted dual graph
associated to the minimal C*-good resolution is given by [b; 0; (Ar, «1), (As, a2)]. For ex-
ample, if (X, 0) is C32 (resp. Cy,0) with C*-action of type (5, 2), then the weighted dual
graph associated with the minimal C*-good resolution is given [1; 0; (15, 2), (6, 5)] (resp.
[1:0: (5.2). 2. DD.

Let 7w : (X, E) — (X, 0) be the minimal C*-good resolution of a normal C*-surface
singularity such that the weighted dual graph of E is given by (2.1). The analytic structure of
(X, o) is determined by the analytic structures of the central curve Eq and the normal bundle
of Ey in the minimal C*-good resolution and intersection points of Ey and P!-chains ([4] and

[13]). Let H be a divisor on E satisfying [H] ~ Nz_ /% (linearly equivalent to the conormal
0
bundle NZ /5() and P; := Eog N E;; for any i. For affine graded ring Rx of (X, o), Pinkham
0
[13] (see [20] for cyclic quotient singularities) proved the following isomorphism of graded
rings

(2.3) Rx = P HO(Ey, O, (D®))ik,

P

~
Il

0

where D®) = kH — Z‘;:l {%] Pj and [a] is the round up of a € R. This representation is
J

called the Pinkham—Demazure construction of Rx. For h € Ry, h is ahomogeneous element

of degree k if and only if h € HY(Eo, Ok, (D®)Y)ek . Also, for a homogeneous element /2, we

have

2.4) deg(h) = Coeffg,(hom)E .
We prepare the following result which was proven by the first named author.

THEOREM 2.3 ([18, p.282]). If (X, 0) is a normal surface singularity which has a
star-shaped weighted dual graph of (2.1), then Coeffg, Zr = min{k € N | deg(D(k)) > 0}.
Further, if (X, 0) has a good C*-action and Eo = P!, then Coeffg, Mg = Coeffg, ZE.

If (X, E) is the minimal C*-good resolution of a normal surface singularity with C*-
action, then we can easily see that Coeffg, Mg = min{k € N | HO(Ey, Ok, (DY) # 0}.

3. The maximal ideal cycles over normal surface singularities with C*-action. Let
(f( , E) — (X, 0) be the minimal good resolution of a normal surface singularity with C*-
action. In the following, let min.deg (Rx) be the minimal degree of nonzero homogeneous
elements of (Rx), where (Rx)+ := @;>;(Rx)k (i.e., the homogeneous maximal ideal of
Rx). Obviously, we have -

3.1 min.deg (Ry) = Coeffg, Mg .
Now we describe the result of Konno-Nagashima and Meng-Okuma.

THEOREM 3.1 ([11, Theorem 6.1], [7, Theorem 3.2]). Let (X, 0) be a Brieskorn com-
plete intersection singularity defined by z3° = p3z{' + @325, ..., Zn" = pm2|" + qmz5’ in
(C™, 0), where p;,q; € C* with piq; # pjqi fori # j. Assume thata; < ay < -+ = ap,.
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Let v : (X, E) — (X, 0) be the minimal good resolution. Then Mg = (z,, o w)E, and also
Mg = Zg if and only if min.deg (Rx) < ao(X, 0).

In Proposition 3.2, we prove that the “only if”’part of Theorem 3.1 is always true for
any normal surface singularity with C*-action. It is obtained as a corollary of Theorem 2.3.
In fact, we have min.deg (Rx) = Coeffg, Mg = Coeffg, Zr < ao(X, 0), since D(@0(X.0))
is an integral divisor with deg(D@(X:9)) > 0. However, we can prove it directly from the
definition of Zg as follows.

PROPOSITION 3.2. Let (5(, E) — (X, 0) be the minimal good resolution of a nor-
mal surface singularity with C*-action. If Coeftg, Mg = Coeftg, Zg, then min.deg (Rx) =
Coeffg, Mg S ap(X,0).

PROOF. Assume that the weighted dual graph of E is given by (2.1). Put og := o (X, 0).
Let us consider a P!-chain Uf'zl E;j(1 =i <), whereitis contracted to Cq, ;. Let Bi o :=

i
ap and B;1 = _ﬁ(lx,-o

fork=1,...,¢ — 1. Let D := apEo + > ;_, Zi’:l Bi kEi k. Then we can easily see that
DE;y =0foranyiandk = 1,...,¢; and also DEy = —ap(b — Zf:l "%) < 0. Hence

Zg £ D; thus min.deg (Rx) = Coeffg, Mg = Coeffg, Zr < Coeffg, D = ay. O

. Let B; x be integers defined inductively by B; k+1 := bixBik — Bik—1

Let us consider the following three conditions:
(1) Mg = Zg, (ii) Coeffg, Mg = Coeffg, Zg, (iii) min.deg (Rx) < ao(X, 0).

Then, obviously we have (i) = (ii); also we have (ii) = (iii) from Proposition 3.2. How-
ever, the converse implications (ii) = (i) and (iii) = (ii) are not always true. Example 3.8
gives a counterexample of the former implication. For the later implication, let (X, o) be a
quasi-homogeneous hypersurface singularity defined by z> = y(x* + y®) (see [9]). Then
deg(x) = 3, deg(y) = 2 and deg(z) = 7. The weighted dual graph of the minimal good
resolution (f(, E) is given by [1; 1; (3, 2)]. Then, since Coeffg, Zg = 1 < min.deg(Rx) =
Coeffgy Mg =2 < ap(X, 0) = 3, (X, 0) is a counterexample of the later implication. Theo-
rem 3.1 asserts that three conditions above are equivalent for Brieskorn complete intersection
singularities.

From now on we prepare two lemmas to prove Theorems 3.5 and 4.1. Let (X, E) be the
minimal resolution of a cyclic quotient singularity Cy, 4. Let n/q = [[b1, ..., by1] (b; > 2)
and consider the following configuration:

Eo Ey Ey e E, E 11

where E (resp. E,41) is a smooth complex curve which intersects with E = | Ji_, E; at only
one pointin Eq (resp. E,) transversally.
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LEMMA 3.3. Under the condition above, consider two effective divisors
Dy = er:é a;E; and Dy = er:é ¢;Ej suchthat DiE; = Ofori =1,2,...,randk =1, 2.
If we assume ag 2 co, then we have the following.

() Ifary1 2 cry1, then Dy 2 Da.

(i) Ifar41 = 0and cr41 = 1, then D |U§=o Ei > D2|Uir=0 Ep where DklULo g, means
the restriction of Dy onto | J;_y Ei (k =1, 2).

PROOF. Letusputé_j :=0,68p := 1and§; := b;§;—1 —8;j—p fori = 1,...,r. Then
we can easily check that §; = b1 < 6, = b1bp — 1 < --- < §, = n. We have the following

relations: a; — aj41bi+1 + aiy2 = 0and ¢; — bit1¢i+1 +ciyp =0fori =0,1,...,r — 1.
Then, we have ag = a181 — a2dp = --- = a;6; — aj+16i—1 = -+ = a6y — ar4+16,—1. For
o, - - -, Cr+1, we have similar equations by the same way. Therefore,

(3.3) ao = a;6; — aj+16i—1 and co = ¢;j6; — cj+186;—1 fori =1,...,r.

(1) Since a,8, — a,4+16,—1 = ao 2 co = ¢rér — ¢r416,—1, we have (a, — ¢;)d; 2
(ar+1 — ¢r+1)8-—1. Hence, a, 2 ¢, from a,4+1 = c¢,+1. By the induction on i, we obtain
a; 2 c; for any i; consequently Dy = D».

(i1) From (3.3), we have a,8, = a;8, — a,+18,—1 = ap = ¢ = ¢r8; — Cr18,_1 =
¢-8, — 8,_1. Hence, a, = ¢, — 53" and so a, = ¢, from 0 < 3*5—" < 1. Moreover, ay =

a;8i—aj118i—1 2 co = ¢;8;—ciy18;—1;hence §; (a;—c;) = 8i—1(aiy1—cip1) fori =1,...,r.
Since 8, —1(ar—1 — ¢r—1) 2 8:(ar — ¢;) = 0, we have a,—1 = ¢,—1. By the induction on i, we
havea; = c; fori =1,...,r. O

For the figure (3.2) and a positive integer Ag, let us consider the following set and the
divisor.

-
D(ho) 1= {D = roEo+ Y _ miE;
i=1
D) := min{D € D(Ao)} .
LEMMA 3.4 (Lemma2.2in [10]). IfD € ®(\o) satisfies DE; =0fori =1,...,r—
1 and DE, 2 —1, then D = D(Ao).

mieNandDEi<Of0ri=1,...,r},

Let (f( , E) = (X, 0) be the minimal C*-good resolution of a normal surface singularity
with C*-action; and & a homogeneous element of Ry. From (2.4), the degree of & is equal to
Coeffg,(hom)g for the central curve Ey. In the following, (h o) ; means the divisor defined
by h o on X. Then (h o 7) is the restriction of (/ o ) (i.e., supp((h o w)g) = E).

THEOREM 3.5. (i) Let hy, hy be homogeneous elements satisfying deg(hy) = deg(hy).
If hy is reduced, then (hy o m)g 2 (hp o ) E.

(i1) If hy, ho are reduced homogeneous elements of the same degree, then (h1 o m)g =
(h2 o 7'[)E.

(iii) Suppose that there exists a reduced homogeneous element f satisfying (f om)g =
MEg. Then, Mg = Zg if and only if Coeffgy Mg = Coeffg, Zg for the central curve Eg of E.
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PROOF. (i) Assume that the weighted dual graph of E is given by (2.1). Let E; ¢, 41
be the non-exceptional curve such that E; ¢, N E; ¢, 11 7 ¥ and it contains a 1-dimensional
C*-orbit. For a P'-chain Uf‘zl E; j, let us put

ag = Coeffg,(h1 om) g, co := Coeffg,(hy o),

aj = CoeffEi.j(hl om)gandc; := CoeffEi,j (hpom)gforj=1,...,¢ +1.

Since h; is reduced, (ag41,cg41) = (0,1) or agy1 2 cep1- If (agi1, co41) = (0, 1),

S| > S 11 = ¢y
we have (k] o H)X|Uﬁ-’=1 £, = (hy o H)X|Uﬁ-’= ; from Lemma 3.4. If a¢,+1 2 c¢,41, wWe

have (i o n)gluf_izl Ei 2 (hyo n);}|Uf_,-:1 E:
(hyom)g 2 (ha om)E.

(i1) Since Coeffg,(h o m) g = deg(h) by (2.4), (ii) is obvious from (i).

(iii) We need to prove “if part”. If E = Ej (i.e., there are no P!-chain), then it is
obvious. Thus, suppose that there is at least one P'-chain in E. Let Uf’z | Ei,j be any Pl
chain of E. Since f is homogeneous, the cycle (f o ) satisfies that (f o 7)g E; j = 0 for
i=1,...,sand j=1,...,¢ — 1. If we put D; := (forr)Xlugi_OEi’j,thenD,’E,’,]‘ = 0 for
j=1,...,£—1.Since f is reduced, we have 0 < VE; ¢ 1 (fon)l§ L. From (form)zEie =
0, we have D;E; s, = —1 for any P!-chain. Let 6 := Coeffgy Mg = Coeffg, Zg. From

Lemma 3.4, we have MElue,. £ = D; =D(@) = ZEIUz,- £ Therefore, Mg = Zg. O

j=o Eij j=0 Fhj

1 Ei,
~from Lemma 3.3 (i). Consequently, we have
J

COROLLARY 3.6. Letm : (f(, E) — (X, 0) be the minimal C*-good resolution. As-
sume that the central curve Eg is PL. If Mg > Zg and Coeffg, (hg o ) g = Coeffg, Mg for
a homogeneous element hy € Ry, then hg is non-reduced.

PROOF. Assume that & is reduced. From Theorem 3.5 (i), we have (hom)g = (hoom)E
for any homogeneous element /2. Then we have (fom)g = (hgon) g for any non-zero element
f em C Ox,. Hence Mg = (ho o m)g and Coeffg, Mg = Coeffg, Zg from Eo = Pl
Consequently, Mg = Zg from Theorem 3.5 (iii). This is a contradiction. O

Here we prepare the following lemma for the computations in Example 3.8 and the proof
of Theorem 4.1.

LEMMA 3.7 ([19,Lemma 3.1]). Let S be a complex normal surface. Let f, h be non-
constant holomorphic functions on S. Let S1 := {(p,z) € S x C | Z" = h(p)} and p; the
projection map; also consider a resolution map n : S| —> S). Let o : Si...—> S| be a
birational map from a complex normal surface S|. Then we have the following diagram:

o B n
Si~ .......... > 5] —> 5
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where ¢ is a generically finite map. Let C (C S) and Cy (C S}) be irreducible complex curves
satisfying ¢«(C1) = C and h(C) = 0. Then we have

W i) wey(fog) = )
ged(n, ve (h)) ged(n, ve (h))

PROOF. Let P be a general point of C such that (C, P) and (S, P) are non-singular.
It is sufficient to discuss our argument locally near P. Let {U, (u, v)} be a local coordinate
open neighborhood of P in S such that s and f are written as h|y = v? (e, C = {v =0}
and f|y = v" f1, where m = vc (f). Put £ := ged(n, d). Then pl_l(U) = U§'=1 V;, where
Vi=1{u,v,2) € A3 | 2t = w/v?/t) for a small open polydisc A3 (= A x A x A) c C3
around the origin and @ := exp(2w+/—1/¢). Then, 7, : Vi=AxA = Vi =
(u, 1", 197y = (u, v, 7)) is the normalization map of V;; also it is a resolution of V;. Since
v=1"tand z =t"/l,wehavevcl(zonoa) = % and ve, (f o @) = 7. O

() ve,(zonoo) =

For any resolution of every rational singularity, the maximal ideal cycle coincides the
fundamental cycle. Also, if (f( , E) — (X, 0) is the minimal C*-good resolution of a nor-
mal surface singularity with C*-action whose central curve Ey is P!, we can easily see that
Coeffgy Mg = Coeffg, Zg from Theorem 2.3. However, for such singularities, we can not
expect to hold that Mg = Zg in general. We show it by the following.

EXAMPLE 3.8. Let (X, 0) be a cyclic quotient singularity Cio 3 with C*-action of

type (1, 1) (see § 2). Let y : (X, E) — (X, 0) be the minimal C*-good resolution. Then the
weighted dual graph of E is given as follows:

O e O=
E> Eo E

Ej

If i ;= EoNE; (i = 1,2)and O3(—Eo)|g, = OFy(R) for R € Eo, then Rx =
D2, HY(Eo, O, (D®))tk, where D® = kR — (§-| P — {%—‘ P;. We can easily see
that there is a homogeneous element 7 € Rx whose divisor is given by 40E¢+ 8E1 + 16 E> +
8E3 + Y1, C; for the following figure:

Cl x o e " C16
/\w
006
where each C; is a non-exceptional curve which contains a 1-dimensional C*-orbit. Let (Y, 0)
be the cyclic cover of (X, o) defined by 22 =hand 7y : (Y, F) — (Y, 0) the minimal C*-
good resolution; also let p : (¥Y,0) — (X, 0) be the natural covering map. Through some

computations (see [22, Theorem 3.4]), we can easily see that the weighted dual graph of F' is
given as follows:
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16

O-0-0-O——3)-O.
Fy Fr B

Hence, 7y coincides with the minimal resolution of (Y, 0) and the central curve is P!. Hence
we have the following commutative diagram:

~ 7TY
Y—>
p P

X
_—

o~

b P

bl

where p is a generically finite rational map. From the construction of (Y, F), we can see that
F» C Y is the proper transform of Ej by p. Let f be any non-zero element of m C Oy.,.
From Lemma 3.7, we have vr, (f o p omy) = 3vg, (f omx) 2 3; also vp,(z o my) = 8 from
vg,(h ox) = 8 and gcd(8,3) = 1. Thus we have Coeffr, M = 3. On the other hand,
ZF|RyurUF, = 6Fy + 3F1 + 2F,. Since Coeffp, Mg > Coefff, Zr, we have Mg > Zf on
the minimal resolution of (Y, o).

4. The maximal ideal cycles of Kummer coverings over normal surface singular-

ities with C*-action. Let nx: (X, E) — (X, 0) be the minimal C*-good resolution
of a normal surface singularity with C*-action. Assume that the weighted dual graph of E
is given by (2.1). Let hq, ..., h, be reduced homogeneous elements of the affine graded

ring Ry of (X, 0). Let d; be the degree of h; (i = 1,...,m); hence d; = vg,(hj ox) =
Coeffg,(h; o mx)Eg for the central curve Ey. For each i, let C; be the non-exceptional part
of the divisor defined by h; o mx = 0 in X. Assume that CinC; =0ifi # j. Let Iy
be the defining homogeneous ideal of (X, 0). Let (Y, 0) be a singularity defined by the ideal
generated by Z?] —hy,..., 20" —h,, and I'x in Rx[z1, ..., Zm]. From [17, Theorem 3.2 (i)],
(Y, 0) is a normal surface singularity. It has a natural C*-action induced from C*-action on
(X, 0). In this paper we call it the Kummer covering defined by z{' = hy, ..., zy" = hy over
(X, 0).

From now on, as the preparation of the proof of Theorem 4.1, let us construct the min-
imal C*-good resolution of (Y, 0). We can obtain it by taking successive cyclic coverings
of minimal C*-good resolutions (see [22, Lemma 4.4] and [11, p.126]). Put Xy := X and
hjo = hjfor j = 1,...,m. Also, put X1 := {(p,z1) € Xo x C | z{' = h1,0(p)}. Let
¢1 : (X1,0) = (Xo, 0) be the covering map induced from the projection Xg x C — X and
hj1:=hjo¢ for j = 1,...,m. Continuing this process successively for k = 1,...,m,
we obtain X; := {(p, zx) € Xx—1 x C | sz = hik—1(p)}), ¢r * (Xk,0) = (Xk—1,0) and



MAXIMAL IDEAL CYCLES OVER NORMAL SURFACE SINGULARITIES 425

hjk:=hjji_1 0@ forany j. By the same way as above, we can see that (Xx, 0) is a normal
surface singularity with C*-action. Then we have a sequence of covering maps of normal
surface singularities with C*-action as follows:

dm (25 ?1
(Y,O):(Xm,o) —— I (Xl,O) - (XO,O)Z(X,O).

Put ()?0, EO) = (f( E). Let no : (f(o, EO) — (Xo, Ep) be the morphism which contracts
the divisor Eo — Epo (C Xo) where Ey o is the central curve of Eo Since any connected
component of Eq — Eo.o is a P'-chain, every singularity of X is a cyclic quotient singularity.
Let 7o : (X0, Eg) — (X0, 0) be the contraction map of Eg; also let hj,o := hj o mo for

j =1,...,m. Suppose that X; and i_zjk are obtained for0 £ k < mand j = 1,...,m.
Let Xk+1 be the normalization of a surface {(p, zx4+1) € X x C | zZ’jjll_ = hiy1x(p)}. Let
¢k+1 Xk+1 — Xk be the natural morphism and hJ k+1 = hj,k o ¢i+1 for any j. Let

: (Xk, Ek) — (X%, o) be the contraction map of Ey. All singularities of Xy are cyclic
quotient singularities contained in Ek. Let n;, : (f(m, Em) — ()_(m, Em) be the minimal
resolution of all cyclic quotient singularities on X Then, y = Ty 0 Ny (Y, F) — (Y,0)
gives the minimal C*-good resolution. We have the following commutative diagram:

X, En) = (¥, F) (Xo.E0) = (X, E)
Mm B B 10
_ _ qgm ¢2 B B ¢l B /
(4'1) (Xm7Em) I (XlsEl) - (X07 EO)
S
¢m ¢2 d)l
Y, 0) =(Xp,0) ——> o —— (X1,00 —>  (Xp,0) = (X, 0).

Since ¢y is a cyclic covering, the C*-action on Xj can be lifted onto X4 from [22, Lemma
4.4], and (4.1) is a C*-equivariant diagram.

THEOREM 4.1. Under the situation above, assume that Z—: > .2 Z—:

(i) @iomy)F 22 @momy)r.

.. . od dj

(i) (zi omy)Fr = (zj o wy)F if and only lf% = ﬁ

PROOF. (i) Let¢p :=¢jo0---0¢y andc/_> = c/_>1 o- -'oq’;m for (4.1). Leteq,en, ..., en
be positive integers defined inductively as follows:

adp ajaxds ayay - - am—1dm

el :=dy,ep = ——,e3 := e, = ————————
ged(ar, er) ged(ar, er) - ged(az, e2) " ecd(ai, e)

For a fixed j with 1 < j < m, apply Lemma 3.7 (ii) to ¢ fork = 1,..., j — 1. Then we
have

ka(ﬁj,k) = ng(flj opro--odr) =d, l_[ ng(ae,eg) for1<k<j—1.
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Thus, Vi, (hj j—1) = e;. Therefore, from Lemma 3.7 (i), we have

j—1
dj ! Aak

gcd(aj, ej) Pl ged(ax, ex) ’

v, (zjom)) =

If we put ¥/j := ;41 0 -+ o ¢y, and apply Lemma 3.7 (ii) to ¢ fork = j + 1,...,m, then

-1
d; ! (7774 aj+1 am
Vi (zjoRjoy)) = / : /
Ep \*J J J gcd(aj,ej) il ged(ak, ex) gcd(aj+1,ej+1) gcd(am, em)
d‘ m
:—/l_[aik forj=1,...,m.

aj ged(ag, ex)

Hence, if we put L := [}, m, then

} d;
4.2) deg(z;) = Coeffr,(zj o my)F = v (zj 0 Tj oY) = a—{L.
J

Therefore, Coeffr,(z1 o wy)r = -+ 2 Coefff, (zm o wy)F from the assumption Z—: > 2

Z—Z. Each £ is a reduced element; hence z; is a reduced element in Ry from Lemma 3.7 (i);
also the degree of z; in Ry is equal to Coeffr,(zj omy) r. Hence (i) is proved by Theorem 3.5
(i). (ii) is obvious from (i). O

For Brieskorn complete intersection singularities, Theorem 4.1 (i) was already proved by
Meng-Okuma ([11, Theorem 6.1]).

THEOREM 4.2. Under the situation of Theorem 4.1, assume that a,, Coeffg, Mg 2
dm and Fy is the central curve of F. Then we have the following.

(1) Mr=(@momy)F.

(i) Mp = ZF if and only if Coeffpy Mp = Coeffr, ZF.

(iii) If Fo = P, then Mp = Zp.

PROOF. (i) Let f be an element of Ox , with (f owrx)g = MEg. Let f = Zj fj be
the decomposition to the sum of homogeneous elements of deg(f;) =0 and 01 < 6 < ---.

Then 0; = Coeffg, Mg. By the same way as above, we can easily see that Coeff g, (fj o ¢ o
my)r = L6;. From the assumption and (4.2), we have

Ld, Ld,
min {Coeffg, (fj o ¢ o wy) F, Coeffr, (zm o Ty)F} = min{LQj, —m} ="
am am
for any j. Hence, Coeffry Mr = % = Coeffr, (zm omy) r. Therefore, it suffices to compare

the coefficients of My and (z,, o wy)F on irreducible components of P!-chains of F. Let
Zf:& F; be a divisor on F whose weighted dual graph is given as follows:

O —(—

Fo F ... F, Feq1
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where Fyy is a curve which contains a 1-dimensional C*-orbit. Put a;; := vg, (fj o omy),
ci = v (zmomy) fori = 0,1,....¢ + 1. Then, ajo = LO; = Loy = Lo = ¢
Since zy, is reduced, (a; ¢+1,ce+1) = (0,1) or aje41 2 coqp. If (@je+1,ce+1) = (0, 1)
(resp. aje+1 2 co41), thenaj; = ¢; fori = 1,..., ¢ from Lemma 3.3 (ii) (resp. (i)). Thus
MFl g g = Gm oyl s consequently My = (2 o 7y

(i1) Assume that Coeffry Mp = Coeffr, Zp. Since Mg = (2, o my)F for a reduced
homogeneous element z,,, we have M = Zr from Theorem 3.5 (iii).

(iii) From Eg = P! and Theorem 2.3, Coeffpy Mp = Coeffr, Zr. Then Mg = Zg by
(i1). O

In the following, let (Y, o) be a Brieskorn complete intersection singularity defined by
3 = h3,....2n" = hp in (C",0), where ay < -+ < ay and hj = pjz{" + q;25°
(j =3,...,m)for p;,q; € C* satisfying p;q; # pjqi fori # j. Let (Cj, o) be a plane
curve singularity defined by pjz{' + gjz5*> = O forany j. If i # j, then ;N C; = @
from pig; # pjqi. Putr := m and s := m. Then, (CZ, 0) can be considered
as a cyclic quotient singularity with C*-action of type (r, s). Let us represent it as (X, o).
Then (Y, 0) is a Kummer covering defined by z§3 =h3,...,zom = h,, over (X, 0). Let wy :
(X, E) = (X, 0) = (C%, 0) be the minimal C*-good resolution of (X, 0). Then, 7x coincides
with the minimal good embedded resolution of (C, 0) := U;’Ll (Cj, 0) (see [20], [7] or [11]).
We can easily see that d; = --- = d;, = lcm(ay, az) and Coeffgy Mg = mult(Cj, 0) = a1
from M. Noether’s Theorem ([2], p. 518) and a,,, = a». Hence,

(4.3) am Coeffg, Mg = dy, .

Therefore, from Theorem 4.2 (iii) and (4.3), we have the following.

COROLLARY 4.3. Let (Y, 0) be a Brieskorn complete intersection singularity as above
andm : (Y, F) — (Y, 0) the minimal C*-good resolution. If the central curve Fy is P!, then
Mp =Zp.

From now on, we prove Theorem 3.1 according to our argument (by Theorem 4.2). Let
(Y, F) — (Y, 0) be the minimal C*-good resolution. The weighted dual graph of F was
given by M. Jankins and W. Neumann [5] (please refer [11] as a good reference). To review
it, let us define some integers as follows:

0 A
do :=lem(ay, ...,an), i := —, A; :=lem(ay, ..., di, ..., an),
ai
LA Am . A1 cdiccap ai ,
g= , Gi = ando; ;= —fori=1,...,m.
do A; ged(ai, Ap)

(The symbol “in the definition of A; and g; indicates an omitted term.) Then ¢; is equal to the
degree of z; in Ry; hence ¢, is equal to min.deg (Ry). Also, let B; be an integer defined by
eiBi+1=0(moda;)and0 < B; < «; foreach i, where ; = Oifand onlyifo; = 1. Let g be
a non-negative integer defined by 29 —2 = (m —2)§ — > i~ gi;and co := > - Bigi 4 d%.

i=1 o
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Then, the type of the weighted dual graph associated to the minimal C*-good resolution is
given as follows ([5]):
f]l _@m
~ ~
[CO; gs (alv ,31)1 sy (alv ,31)1 sy (Olms ﬁm)v cees (O‘mv ,Bm)]

For D® of the Pinkham-Demazure construction, we have
A m A m
deg(D®) = %‘qu@}%%i{k—z do q@}@)}
dO i=1 aiAi o o dO im ng(ai . Al) [0 7] o
from dy = lem(a;, A;). Since ged(a;, A;) = Z—’l and dy = e;a; forany i,

(4.4) deg(D®) = d%{k - Zaeqi—q - ’Z—k)} .

i=1 !

If we put A :=lem(ay, ..., di,...,4j,...,ay) fori # j, then o and so

aj
= ged(a; lem(a, A))
ged(aj, o) = 1forany i # j. Hence ag(Y,0) = aq - - - oty
Next we repeat Theorem 3.1 in a slightly different style and prove it according to our

argument.

COROLLARY 4.4 ([11, Theorem 6.1], [7, Theorem 3.2]). Let (Y, 0) be a Brieskorn
complete intersection singularity defined by 233 = 1732?1 + q3zg2, e T = pmz‘l“ + qngz
in (C™, 0), where p;, q; € C* with piq; # pjqi fori # j. Assumethatay < ay < --- < ay,.
Let - (17, F) — (Y, 0) be the minimal good resolution. Then, M = (z,;, o w) . Also, the
following three conditions are equivalent.

(1) Mr = Zp, (ii) Coeffr, Mr = Coeffr, Zr, (iii) min.deg (Ry) < ao(¥, 0).

PROOF. Put o := ag(Y,0) and 6 := Coeffr, Zr. From the assumption a; < ap <
-+ < ap, we have e, = min.deg (Ry). If we prove the following:

4.5) 0 = min{ca, e},
then (ii)< (iii) from it and (i) < (ii) from Theorem 4.2 (ii). Therefore, (4.5) completes the
proof.

Though (4.5) is already proven in [11, Theorem 5.1], we reprove it by using (4.4) and
Theorem 2.3 (i.e., # = min{k € N | deg(D®) > 0}). From (4.4), we have

d = ik ik
(4.6) Fdeg(D®) =k — > aie; qﬂ—w - ﬂ—)
g i1 o o
Then deg(D@) = %—‘;‘ > 0 from (4.4), since o; | « for any i. Assume @ < e,,. Let k be
any integer with 0 < k < «. Since {y—l — y > O% foranipand a < e, < ¢; forany i,
o 0 0

we have % deg(DW®) < k — iy, £ k —a < 0 from (4.6). Hence 0 = o if @ < e;,. We have
deg(D“n)) = 0 because of H(Fy, OF, (D)) # 0. Assume o = e,,. Let k be any integer
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with0 < k < ey. If aj | k forany j, then o | k and @ < ey,; this is a contradiction. Hence
L . ik k
there exists jo with o, { k. Since {i’TO—I - ijTO = ﬁ, %‘) deg(D®) < k—ejy<k—en<0.
0 0 0
Hence 6 = ¢, and so we get (4.5) and completes the proof. O
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