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Abstract. The maximal ideal cycles and the fundamental cycles are defined on the
exceptional sets of resolution spaces of normal complex surface singularities. The former
(resp. later) is determined by the analytic (resp. topological) structure of the singularities. We
study such cycles for normal surface singularities with C∗-action. Assuming the existence of a
reduced homogeneous function of the minimal degree, we prove that these two cycles coincide
if the coefficients on the central curve of the exceptional set of the minimal good resolution
coincide.

1. Introduction. Let (X, o) be a normal complex surface singularity and π : (X̃, E)
→ (X, o) a good resolution, where E = ⋃r

i=1 Ei is the irreducible decomposition of the ex-
ceptional set E. Then

∑r
i=1 Ei is a simple normal crossing divisor. A divisor on X̃ supported

in E is called a cycle. Let us consider a cycleME := min {(f ◦ π)E | f ∈ m, f �= 0} on E is
called the maximal ideal cycle on E ([24, p.279]), where m is the maximal ideal of OX,o and
(f ◦π)E = ∑r

i=1 vEi (f ◦π)Ei (vEi (f ◦π) is the vanishing order of f ◦π onEi). In [23, The-
orem 2.7], Ph. Wagreich showed that if mOX̃ is locally principal, then mOX̃ = OX̃(−ME)

and the multiplicity of (X, o) is equal to −M2
E . The fundamental cycle ZE is defined in [1]

by ZE = min{D = ∑r
i=1 aiEi | ai > 0 andDEi � 0 for any i}. From the definition, we can

easily see thatME ·Ei � 0 for any irreducible componentEi of E and the relationME � ZE

follows from the minimality of ZE .
The equality ME = ZE are playing the important roles in various stages of normal

surface singularity theory. For example, when M. Artin [1] proved that the multiplicity of any
Kleinean singularity is equal to two, the key point of the proof is the fact of ME = ZE . Also,
ME = ZE is a necessary condition for normal surface singularity to be a Kodaira singularity
([6]). For rational singularities, these two cycles coincide for any resolution ([1]). However,
for non-rational singularities, it is a natural and delicate problem to ask whether ME = ZE .
In [9, p.322], H. Laufer remarked that ME > ZE on the minimal resolution of a hypersurface
singularity defined by z2 = y(x4 + y6).

For minimally elliptic singularities, ME and ZE coincide for the minimal good resolu-
tion ([8]). This result was generalized to maximally elliptic singularities by the first named
author ([15]). However, for those singularities, it is not always true that ME and ZE coincide
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for any resolution. We explain it through an example. Let (X, o) be a quasi-homogeneous hy-
persurface singularity defined by z2 = x3 +y7. It is a minimally elliptic singularity which has
a natural C∗-action. Let π : (X̃, E) → (X, o) be the minimal good resolution. The weighted
dual graph of E is given by [1; 0, (2, 1), (3, 1), (7, 1)] (see (2.2)). Let E0, E1, E2 and E3 be
irreducible components of E with E2

0 = −1, E2
1 = −2, E2

2 = −3 and E2
3 = −7. Let L be

the strict transform of the divisor defined by y = 0 inX. Then the divisor (y ◦π)X̃ is equal to
(y ◦π)E +L. We can easily check thatME = (y ◦π)E = 6E0 + 3E1 + 2E2 +E3 = ZE and
EL = E3L = 1. Let σ : (X′, E′) → (X̃, E) be the blowing-up at a point P := L∩E3. Since
CoeffE3(z◦π)E = 3 and CoeffE3(x ◦π)E = 2,ME′ is given by 6E′

0+3E′
1+2E′

2 +E′
3+2E′

4,
where E′

i is the strict transform of Ei for i = 0, 1, 2, 3 and E′
4 := σ−1(P ). Then ME′ =

ZE′ + E′
4 on E′.

Any double point (X, o) (i.e., a normal surface singularity of multiplicity two) is a hy-
persurface singularity defined by z2 = f (x, y). In [3], D. J. Dixon proved that if the order of
f is even, thenME = ZE for any resolution (X̃, E) of (X, o). In [6], using pencils of curves,
U. Karras introduced the notion of Kodaira singularities. If (X, o) is a Kodaira singularity,
then ME = ZE for the minimal resolution. Let (X, o) be a normal hypersurface singularity
defined by zn = f (x, y). In [19], the second named author gave two sufficient conditions for
(X, o) to be a Kodaira singularity. This result was generalized to the case of cyclic coverings
of normal surface singularity ([21, Theorem 4.14]).

In general, it is not so easy to identify the maximal ideal cycle for a given normal surface
singularity. Because it depends on the analytic structure of the singularity. When we compute
the maximal ideal cycle, we need to know the detail of resolution process of the singularity. In
[7], for Brieskorn hypersurface singularities, K. Konno and D. Nagashima gave the necessary
and sufficient numerical condition that ME and ZE coincide on the minimal good resolution
space. Further, F. N. Meng-T. Okuma [11] generalized Konno and Nagashima’s result to
Brieskorn complete intersection surface singularities (Theorem 3.1 of this paper).

Brieskorn complete intersection surface singularities form a special subclass of normal
surface singularities with C∗-action. The weighted dual graph of exceptional set of the min-
imal C∗-good resolution (see § 2 for the definition) of a normal surface singularity with C∗-
action is star-shaped (the exceptional set has the one central curve of genus g and several
P1-chains intersecting the central curve). In this paper, we consider the problem above for
the minimal C∗-good resolutions of normal surface singularities with C∗-action. In Section 2,
we shall prepare some facts on normal surface singularities with C∗-action. In Section 3, as-
suming the existence of a reduced function of the minimal degree, we prove that ME = ZE

if and only if CoeffE0 ME = CoeffE0 ZE for the central curve E0 for the minimal C∗-good
resolution space (X̃, E) of (X, o) (Theorem 3.5 (iii)). From Theorems 2.3 and 3.5 (iii), it is
natural to ask whether ME coincides to ZE if the central curve of E is P1. However, it is not
always true. We give a counterexample for it (Example 3.8). In Section 4, we consider the
maximal ideal cycles of Kummer coverings over normal surface singularities with C∗-action.
We generalize some results of Meng-Okuma [11] (Theorems 4.1 and 4.2). Using our results,
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for Brieskorn complete intersection surface singularities, we reprove the main results due to
Konno-Nagashima and Meng-Okuma (Corollary 4.4).

The authors heartily thank Professor Tomohiro Okuma for useful suggestions. They also
thank all members of the Singularity Seminar at Nihon University for warm encouragements
and discussions.

2. Preliminaries. Let us explain cyclic quotient singularities. For two integers n, q
with 0 < q < n and gcd(n, q) = 1, a cyclic quotient singularityCn,q is defined as the quotient

space C2/〈g〉 by the natural action of g =
(
en 0
0 e

q
n

)
onto C2, where en :=exp(2π

√−1/n).

Here, if n = 1 and q = 0, thenC1,0 means a non-singular point. In this paper, we consider that
a non-singular point is a sort of cyclic quotient singularities. Let (X, o) be a cyclic quotient
singularity Cn,q (q � 0). Then there exists a resolution π : (X̃, E) → (X, o) such that the
weighted dual graph of E is given as follows:

−b1 −b2 −br· · ·
,

where bi � 1 for any i and

n

q
= [[b1, . . . , br ]] := b1 − 1

. . .
− 1

br

.

If bi � 2 for any i, then the resolution coincides with the minimal resolution of Cn,q (n � 2).
Now we prepare some facts on normal singularities C∗-action ([12]). Assume that there

is an embedding (X, o) ⊂ (CN+1, o) such that the C∗-action on (X, o) is induced from a
diagonal action t · (z0, . . . , zN ) = (tq0z0, . . . , t

qN zN) on CN+1, where qi is a positive inte-
ger for any i. If gcd(q0, . . . , qN) = 1, then the action is called a good C∗-action. In this
paper, we abbreviate “good C∗-action ” to “C∗-action ”. Then the affine ring RX of X is a
graded ring C[z0, . . . , zN ]/IX, where IX is the defining ideal which is generated by quasi-
homogeneous polynomials of type (q0, . . . , qN). In the following, we always assume that
(X, o) is 2-dimensional. Let π : (X̃, E) → (X, o) be the minimal good resolution of a nor-
mal surface singularity with C∗-action. Then the weighted dual graph of E is star-shaped
which is given as follows:

(2.1)

−b1,1 −b1,�1
· · ·

−b

−bs,1 −bs,�s· · ·

· · ·
· · · · · ·

· · ·
· · ·

E0

E1,1 E1,�1

Es,1 Es,�s· · ·
.

· · ·
[g]
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If we put αi
βi

= [[bi,1, . . . , bi,�i ]] for positive integers αi, βi with gcd(αi , βi) = 1, then the

intersection matrix of E is negative definite if and only if b − ∑s
i=1

βi
αi
> 0. The component

E0 is a compact smooth algebraic curve of genus g and E2
0 = −b. It is called the central

curve. Each P1-chain
⋃�i
j=1 Ei,j is contracted to a cyclic quotient singularity Cαi,βi .

If the minimal good resolution of a normal surface singularity has the exceptional set
whose weighted dual graph is given by (2.1), then the singularity is called a star-shaped
surface singularity. Therefore, any normal surface singularity with C∗-action is a star-shaped
surface singularity. However, the converse is not always true. Please refer [16] for star-shaped
surface singularities. In this paper, the weighted dual graph (2.1) associated with a star-shaped
surface singularity (X, o) is indicated by the following:

(2.2) [b; g; (α1, β1), . . . , (αs, βs)] .
DEFINITION 2.1. Under the situation above, we define a positive integer as follows:

α0(X, o) :=
{

lcm(α1, . . . , αs) if s > 0

1 if s = 0 .

THEOREM 2.2 ([12], [13] and [20]). There exists a C∗-equivariant resolution
π : (X̃, E) → (X, o) uniquely which satisfies the following:

(i) The weighted dual graph of E is a star-shaped graph of (2.1).
(ii) The C∗-action on X̃ acts trivially on the central curve E0; each irreducible compo-

nent of E except for E0 contains a one-dimensional C∗-orbit.
(iii) Each P1-chain

⋃�i
j=1 Ei,j does not contain a (−1)-curve.

In this paper, a resolution satisfying the three conditions above is called the minimal C∗-
good resolution. It depends on the C∗-action of (X, o). For cases aside from cyclic quotient
singularities, the minimal C∗-good resolution is the minimal good resolution. However, for
cyclic quotient singularities, this is not always true.

Here, as a preparation of Sections 3 and 4, we explain the minimalC∗-good resolution for
cyclic quotient singularities according to [20]. Though the argument in [20] was done under
the condition of n > 1, it is applicable to the case of (n, q) = (1, 0) (i.e., non-singular point
(C2, o)). Let (X, o) be a cyclic quotient singularity Cn,q for integers n, q with 0 � q < n and
gcd(n, q) = 1. Let consider the C∗-action on C2 defined by t · (x, y) = (tr x, tsy) for any
t ∈ C∗, where gcd(r, s) = 1. It induces on (X, o) a natural C∗-action. Such (X, o) is called
a cyclic quotient singularity Cn,q with C∗-action of type (r, s). We give the minimal C∗-
good resolution of (X, o) with respect to the C∗-action. For q > 0 (resp. q = 0), let q ′ be the
integer defined by qq ′ ≡ 1 (mod n) and 0 < q ′ < n (resp. q ′ = 0). Letμ and λ be the integers
defined by μ = gcd(n, qr − s) and λ = n

μ
; and also α1, α2 integers defined by the following:

α1

(qr − s

μ

)
≡ 1 (mod λr) and 0 < α1 < λr ,

α2

(q ′s − r

μ

)
≡ 1 (mod λs) and 0 < α2 < λs .
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Then b := μ
λrs

+ α1
λr

+ α2
λs

is an integer. From Theorem 2.3 in [20], the weighted dual graph
associated to the minimal C∗-good resolution is given by [b; 0; (λr, α1), (λs, α2)]. For ex-
ample, if (X, o) is C3,2 (resp. C1,0) with C∗-action of type (5, 2), then the weighted dual
graph associated with the minimal C∗-good resolution is given [1; 0; (15, 2), (6, 5)] (resp.
[1; 0; (5, 2), (2, 1)]).

Let π : (X̃, E) → (X, o) be the minimal C∗-good resolution of a normal C∗-surface
singularity such that the weighted dual graph of E is given by (2.1). The analytic structure of
(X, o) is determined by the analytic structures of the central curve E0 and the normal bundle
of E0 in the minimal C∗-good resolution and intersection points of E0 and P1-chains ([4] and
[13]). Let H be a divisor on E0 satisfying [H ] ∼ N∗

E0/X̃
(linearly equivalent to the conormal

bundle N∗
E0/X̃

) and Pi := E0 ∩ Ei,1 for any i. For affine graded ring RX of (X, o), Pinkham

[13] (see [20] for cyclic quotient singularities) proved the following isomorphism of graded
rings

(2.3) RX ∼=
∞⊕
k=0

H 0(E0,OE0(D
(k)))tk ,

whereD(k) = kH − ∑s
j=1

⌈
βj k

αj

⌉
Pj and �a� is the round up of a ∈ R. This representation is

called the Pinkham−Demazure construction ofRX. For h ∈ RX , h is a homogeneous element
of degree k if and only if h ∈ H 0(E0,OE0(D

(k)))tk . Also, for a homogeneous element h, we
have

(2.4) deg(h) = CoeffE0(h ◦ π)E .
We prepare the following result which was proven by the first named author.

THEOREM 2.3 ([18, p.282]). If (X, o) is a normal surface singularity which has a
star-shaped weighted dual graph of (2.1), then CoeffE0 ZE = min{k ∈ N | deg(D(k)) � 0}.
Further, if (X, o) has a good C∗-action and E0 = P1, then CoeffE0 ME = CoeffE0 ZE .

If (X̃, E) is the minimal C∗-good resolution of a normal surface singularity with C∗-
action, then we can easily see that CoeffE0 ME = min{k ∈ N | H 0(E0,OE0(D

(k))) �= 0}.
3. The maximal ideal cycles over normal surface singularities withC∗-action. Let

(X̃, E) → (X, o) be the minimal good resolution of a normal surface singularity with C∗-
action. In the following, let min.deg (RX) be the minimal degree of nonzero homogeneous
elements of (RX)+, where (RX)+ := ⊕

k�1(RX)k (i.e., the homogeneous maximal ideal of
RX). Obviously, we have

(3.1) min.deg (RX) = CoeffE0 ME .

Now we describe the result of Konno-Nagashima and Meng-Okuma.

THEOREM 3.1 ([11, Theorem 6.1], [7, Theorem 3.2]). Let (X, o) be a Brieskorn com-
plete intersection singularity defined by za3

3 = p3z
a1
1 + q3z

a2
2 , . . . , z

am
m = pmz

a1
1 + qmz

a2
2 in

(Cm, o), where pi, qj ∈ C∗ with piqj �= pjqi for i �= j . Assume that a1 � a2 � · · · � am.
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Let π : (X̃, E) → (X, o) be the minimal good resolution. Then ME = (zm ◦ π)E , and also
ME = ZE if and only if min.deg (RX) � α0(X, o).

In Proposition 3.2, we prove that the “only if”part of Theorem 3.1 is always true for
any normal surface singularity with C∗-action. It is obtained as a corollary of Theorem 2.3.
In fact, we have min.deg (RX) = CoeffE0 ME = CoeffE0 ZE � α0(X, o), since D(α0(X,o))

is an integral divisor with deg(D(α0(X,o))) > 0. However, we can prove it directly from the
definition of ZE as follows.

PROPOSITION 3.2. Let (X̃, E) → (X, o) be the minimal good resolution of a nor-
mal surface singularity with C∗-action. If CoeffE0 ME = CoeffE0 ZE , then min.deg (RX) =
CoeffE0 ME � α0(X, o).

PROOF. Assume that the weighted dual graph ofE is given by (2.1). Put α0 :=α0(X, o).
Let us consider a P1-chain

⋃�i
j=1 Ei,j (1 � i � s), where it is contracted to Cαi,βi . Let βi,0 :=

α0 and βi,1 := βiα0
αi

. Let βi,k be integers defined inductively by βi,k+1 := bi,kβi,k − βi,k−1

for k = 1, . . . , �i − 1. Let D := α0E0 + ∑s
i=1

∑�i
k=1 βi,kEi,k . Then we can easily see that

DEi,k = 0 for any i and k = 1, . . . , �i and also DE0 = −α0(b − ∑s
i=1

βi
αi
) < 0. Hence

ZE � D; thus min.deg (RX) = CoeffE0 ME = CoeffE0 ZE � CoeffE0 D = α0. �

Let us consider the following three conditions:

(i) ME = ZE , (ii) CoeffE0 ME = CoeffE0 ZE , (iii) min.deg (RX) � α0(X, o).

Then, obviously we have (i) ⇒ (ii); also we have (ii) ⇒ (iii) from Proposition 3.2. How-
ever, the converse implications (ii) ⇒ (i) and (iii) ⇒ (ii) are not always true. Example 3.8
gives a counterexample of the former implication. For the later implication, let (X, o) be a
quasi-homogeneous hypersurface singularity defined by z2 = y(x4 + y6) (see [9]). Then
deg(x) = 3, deg(y) = 2 and deg(z) = 7. The weighted dual graph of the minimal good
resolution (X̃, E) is given by [1; 1; (3, 2)]. Then, since CoeffE0 ZE = 1 < min.deg (RX) =
CoeffE0 ME = 2 < α0(X, o) = 3, (X, o) is a counterexample of the later implication. Theo-
rem 3.1 asserts that three conditions above are equivalent for Brieskorn complete intersection
singularities.

From now on we prepare two lemmas to prove Theorems 3.5 and 4.1. Let (X̃, E) be the
minimal resolution of a cyclic quotient singularity Cn,q . Let n/q = [[b1, . . . , br ]] (bi � 2)
and consider the following configuration:

(3.2)

E1 E2 Er

· · ·∗
E0 Er+1

−b1 −b2 −br ∗.
· · ·

where E0 (resp. Er+1) is a smooth complex curve which intersects with E = ⋃r
i=1Ei at only

one point in E1 (resp. Er ) transversally.
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LEMMA 3.3. Under the condition above, consider two effective divisors
D1 = ∑r+1

i=0 aiEi andD2 = ∑r+1
i=0 ciEi such thatDkEi = 0 for i = 1, 2, . . . , r and k = 1, 2.

If we assume a0 � c0, then we have the following.
(i) If ar+1 � cr+1, thenD1 � D2.
(ii) If ar+1 = 0 and cr+1 = 1, then D1|⋃r

i=0 Ei
� D2|⋃r

i=0 Ei
, where Dk|⋃r

i=0 Ei
means

the restriction of Dk onto
⋃r
i=0 Ei (k = 1, 2).

PROOF. Let us put δ−1 := 0, δ0 := 1 and δi := biδi−1 − δi−2 for i = 1, . . . , r . Then
we can easily check that δ1 = b1 < δ2 = b1b2 − 1 < · · · < δr = n. We have the following
relations: ai − ai+1bi+1 + ai+2 = 0 and ci − bi+1ci+1 + ci+2 = 0 for i = 0, 1, . . . , r − 1.
Then, we have a0 = a1δ1 − a2δ0 = · · · = aiδi − ai+1δi−1 = · · · = arδr − ar+1δr−1. For
c0, . . . , cr+1, we have similar equations by the same way. Therefore,

(3.3) a0 = aiδi − ai+1δi−1 and c0 = ciδi − ci+1δi−1 for i = 1, . . . , r .

(i) Since arδr − ar+1δr−1 = a0 � c0 = crδr − cr+1δr−1, we have (ar − cr )δr �
(ar+1 − cr+1)δr−1. Hence, ar � cr from ar+1 � cr+1. By the induction on i, we obtain
ai � ci for any i; consequentlyD1 � D2.

(ii) From (3.3), we have arδr = arδr − ar+1δr−1 = a0 � c0 = crδr − cr+1δr−1 =
crδr − δr−1. Hence, ar � cr − δr−1

δr
and so ar � cr from 0 < δr−1

δr
< 1. Moreover, a0 =

aiδi−ai+1δi−1 � c0 = ciδi−ci+1δi−1; hence δi(ai−ci) � δi−1(ai+1−ci+1) for i = 1, . . . , r.
Since δr−1(ar−1 − cr−1) � δr(ar − cr ) � 0, we have ar−1 � cr−1. By the induction on i, we
have ai � ci for i = 1, . . . , r. �

For the figure (3.2) and a positive integer λ0, let us consider the following set and the
divisor.

D(λ0) :=
{
D := λ0E0 +

r∑
i=1

miEi

∣∣∣∣ mi ∈ N and DEi � 0 for i = 1, . . . , r

}
,

D(λ0) := min{D ∈ D(λ0)} .
LEMMA 3.4 (Lemma 2.2 in [10]). IfD ∈ D(λ0) satisfiesDEi = 0 for i = 1, . . . , r−

1 andDEr � −1, thenD = D(λ0).

Let (X̃, E) → (X, o) be the minimal C∗-good resolution of a normal surface singularity
with C∗-action; and h a homogeneous element of RX. From (2.4), the degree of h is equal to
CoeffE0(h◦π)E for the central curveE0. In the following, (h◦π)X̃ means the divisor defined
by h ◦ π on X̃. Then (h ◦ π)E is the restriction of (h ◦ π)X̃ (i.e., supp((h ◦ π)E) = E).

THEOREM 3.5. (i) Let h1, h2 be homogeneous elements satisfying deg(h1) � deg(h2).
If h2 is reduced, then (h1 ◦ π)E � (h2 ◦ π)E .

(ii) If h1, h2 are reduced homogeneous elements of the same degree, then (h1 ◦ π)E =
(h2 ◦ π)E .

(iii) Suppose that there exists a reduced homogeneous element f satisfying (f ◦ π)E =
ME . Then,ME = ZE if and only if CoeffE0 ME = CoeffE0 ZE for the central curve E0 of E.
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PROOF. (i) Assume that the weighted dual graph of E is given by (2.1). Let Ei,�i+1

be the non-exceptional curve such that Ei,�i ∩ Ei,�i+1 �= ∅ and it contains a 1-dimensional

C∗-orbit. For a P1-chain
⋃�i
j=1 Ei,j , let us put

a0 := CoeffE0(h1 ◦ π)E, c0 := CoeffE0(h2 ◦ π)E ,
aj := CoeffEi,j (h1 ◦ π)E and cj := CoeffEi,j (h2 ◦ π)E for j = 1, . . . , �i + 1 .

Since h2 is reduced, (a�i+1, c�i+1) = (0, 1) or a�i+1 � c�i+1. If (a�i+1, c�i+1) = (0, 1),
we have (h1 ◦ π)X̃|⋃�i

j=1 Ei,j
� (h2 ◦ π)X̃|⋃�i

j=1 Ei,j
from Lemma 3.4. If a�i+1 � c�i+1, we

have (h1 ◦ π)X̃|⋃�i
j=1 Ei,j

� (h2 ◦ π)X̃|⋃�i
j=1 Ei,j

from Lemma 3.3 (i). Consequently, we have

(h1 ◦ π)E � (h2 ◦ π)E .
(ii) Since CoeffE0(h ◦ π)E = deg(h) by (2.4), (ii) is obvious from (i).
(iii) We need to prove “if part”. If E = E0 (i.e., there are no P1-chain), then it is

obvious. Thus, suppose that there is at least one P1-chain in E. Let
⋃�i
j=1 Ei,j be any P1-

chain of E. Since f is homogeneous, the cycle (f ◦ π)E satisfies that (f ◦ π)EEi,j = 0 for
i = 1, . . . , s and j = 1, . . . , �i − 1. If we put Di := (f ◦ π)X̃|⋃�i

j=0 Ei,j
, thenDiEi,j = 0 for

j = 1, . . . , �i−1. Since f is reduced, we have 0 � vEi,�i+1(f ◦π) � 1. From (f ◦π)
X̃
Ei,�i =

0, we have DiEi,�i � −1 for any P1-chain. Let θ := CoeffE0 ME = CoeffE0 ZE . From
Lemma 3.4, we haveME |⋃�i

j=0 Ei,j
= Di = D(θ) = ZE|⋃�i

j=0 Ei,j
. Therefore,ME = ZE . �

COROLLARY 3.6. Let π : (X̃, E) → (X, o) be the minimal C∗-good resolution. As-
sume that the central curve E0 is P1. If ME > ZE and CoeffE0(h0 ◦ π)E = CoeffE0 ME for
a homogeneous element h0 ∈ RX, then h0 is non-reduced.

PROOF. Assume that h0 is reduced. From Theorem 3.5 (i), we have (h◦π)E � (h0◦π)E
for any homogeneous element h. Then we have (f ◦π)E � (h0◦π)E for any non-zero element
f ∈ m ⊂ OX,o. Hence ME = (h0 ◦ π)E and CoeffE0 ME = CoeffE0 ZE from E0 = P1.
Consequently,ME = ZE from Theorem 3.5 (iii). This is a contradiction. �

Here we prepare the following lemma for the computations in Example 3.8 and the proof
of Theorem 4.1.

LEMMA 3.7 ([19, Lemma 3.1]). Let S be a complex normal surface. Let f, h be non-
constant holomorphic functions on S. Let S1 := {(p, z) ∈ S × C | zn = h(p)} and p1 the
projection map; also consider a resolution map η : S̄1 −→ S1. Let σ : S′

1 . . . → S̄1 be a
birational map from a complex normal surface S′

1. Then we have the following diagram:

S1

S

S̄1S′
1

η

p1

σ

φ

,



MAXIMAL IDEAL CYCLES OVER NORMAL SURFACE SINGULARITIES 423

where φ is a generically finite map. Let C (⊂ S) and C1 (⊂ S′
1) be irreducible complex curves

satisfying φ∗(C1) = C and h(C) = 0. Then we have

(i) vC1(z ◦ η ◦ σ) = vC(h)

gcd(n, vC(h))
, (ii) vC1(f ◦ φ) = n · vC(f )

gcd(n, vC(h))
.

PROOF. Let P be a general point of C such that (C, P ) and (S, P ) are non-singular.
It is sufficient to discuss our argument locally near P . Let {U, (u, v)} be a local coordinate
open neighborhood of P in S such that h and f are written as h|U = vd (i.e., C = {v = 0})
and f |U = vmf1, where m = vC(f ). Put � := gcd(n, d). Then p−1

1 (U) = ⋃�
j=1 Vj , where

Vj = {(u, v, z) ∈ �3 | zn/� = ωjvd/�} for a small open polydisc �3 (:= �×�×�) ⊂ C3

around the origin and ω := exp(2π
√−1/�). Then, η : V ′

j = � × � → Vj (η(u, t) :=
(u, tn/�, td/�) = (u, v, z)) is the normalization map of Vj ; also it is a resolution of Vj . Since
v = tn/� and z = td/�, we have vC1(z ◦ η ◦ σ) = d

�
and vC1(f ◦ φ) = nm

�
. �

For any resolution of every rational singularity, the maximal ideal cycle coincides the
fundamental cycle. Also, if (X̃, E) → (X, o) is the minimal C∗-good resolution of a nor-
mal surface singularity with C∗-action whose central curve E0 is P1, we can easily see that
CoeffE0 ME = CoeffE0 ZE from Theorem 2.3. However, for such singularities, we can not
expect to hold that ME = ZE in general. We show it by the following.

EXAMPLE 3.8. Let (X, o) be a cyclic quotient singularity C10,3 with C∗-action of
type (1, 1) (see § 2). Let πX : (X̃, E) → (X, o) be the minimal C∗-good resolution. Then the
weighted dual graph of E is given as follows:

−3 −5−1

E0 E1E2E3

,
where := −2

.

If Pi := E0 ∩ Ei (i = 1, 2) and OX̃(−E0)|E0 = OE0(R) for R ∈ E0, then RX ∼=⊕∞
k=0H

0(E0,OE0(D
(k)))tk , where D(k) = kR − ⌈

k
5

⌉
P1 −

⌈
2k
5

⌉
P2. We can easily see

that there is a homogeneous element h ∈ RX whose divisor is given by 40E0 +8E1 +16E2 +
8E3 + ∑16

i=1 Ci for the following figure:

−3 −5−1

∗ ∗C1 C16

,

· · ·

where each Ci is a non-exceptional curve which contains a 1-dimensionalC∗-orbit. Let (Y, o)
be the cyclic cover of (X, o) defined by z3 = h and πY : (Ỹ , F ) → (Y, o) the minimal C∗-
good resolution; also let p : (Y, o) → (X, o) be the natural covering map. Through some
computations (see [22, Theorem 3.4]), we can easily see that the weighted dual graph of F is
given as follows:
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−12 −3

F0 F1 F2

· · ·
16

.

Hence, πY coincides with the minimal resolution of (Y, o) and the central curve is P1. Hence
we have the following commutative diagram:

X̃

Ỹ
p̃

Y

X

πY

πX

p

,

where p̃ is a generically finite rational map. From the construction of (Ỹ , F ), we can see that
F2 ⊂ Ỹ is the proper transform of E1 by p̃. Let f be any non-zero element of m ⊂ OX,o.
From Lemma 3.7, we have vF2(f ◦ p ◦ πY ) = 3vE1(f ◦ πX) � 3; also vF2(z ◦ πY ) = 8 from
vE1(h ◦ πX) = 8 and gcd(8, 3) = 1. Thus we have CoeffF2 MF = 3. On the other hand,
ZF |F0∪F1∪F2 = 6F0 + 3F1 + 2F2. Since CoeffF2 MF > CoeffF2 ZF , we have MF > ZF on
the minimal resolution of (Y, o).

4. The maximal ideal cycles of Kummer coverings over normal surface singular-
ities with C∗-action. Let πX : (X̃, E) → (X, o) be the minimal C∗-good resolution
of a normal surface singularity with C∗-action. Assume that the weighted dual graph of E
is given by (2.1). Let h1, . . . , hm be reduced homogeneous elements of the affine graded
ring RX of (X, o). Let di be the degree of hi (i = 1, . . . ,m); hence di = vE0(hi ◦ πX) =
CoeffE0(hi ◦ πX)E for the central curve E0. For each i, let Ci be the non-exceptional part
of the divisor defined by hi ◦ πX = 0 in X̃. Assume that Ci ∩ Cj = ∅ if i �= j . Let IX
be the defining homogeneous ideal of (X, o). Let (Y, o) be a singularity defined by the ideal
generated by za1

1 − h1, . . . , z
am
m − hm and IX in RX[z1, . . . , zm]. From [17, Theorem 3.2 (i)],

(Y, o) is a normal surface singularity. It has a natural C∗-action induced from C∗-action on
(X, o). In this paper we call it the Kummer covering defined by za1

1 = h1, . . . , z
am
m = hm over

(X, o).
From now on, as the preparation of the proof of Theorem 4.1, let us construct the min-

imal C∗-good resolution of (Y, o). We can obtain it by taking successive cyclic coverings
of minimal C∗-good resolutions (see [22, Lemma 4.4] and [11, p.126]). Put X0 := X and
hj,0 := hj for j = 1, . . . ,m. Also, put X1 := {(p, z1) ∈ X0 × C | za1

1 = h1,0(p)}. Let
φ1 : (X1, o) → (X0, o) be the covering map induced from the projection X0 × C → X0 and
hj,1 := hj ◦ φ1 for j = 1, . . . ,m. Continuing this process successively for k = 1, . . . ,m,
we obtain Xk := {(p, zk) ∈ Xk−1 × C | zakk = hk,k−1(p)}, φk : (Xk, o) → (Xk−1, o) and
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hj,k := hj,k−1 ◦ φk for any j . By the same way as above, we can see that (Xk, o) is a normal
surface singularity with C∗-action. Then we have a sequence of covering maps of normal
surface singularities with C∗-action as follows:

(Y, o) = (Xm, o) · · · (X1, o) (X0, o) = (X, o).

φ1φ2φm

Put (X̃0, Ẽ0) := (X̃, E). Let η0 : (X̃0, Ẽ0) → (X̄0, Ē0) be the morphism which contracts
the divisor Ẽ0 − E0,0 (⊂ X̃0), where E0,0 is the central curve of Ẽ0. Since any connected
component of Ẽ0 −E0,0 is a P1-chain, every singularity of X̄0 is a cyclic quotient singularity.
Let π̄0 : (X̄0, Ē0) → (X0, o) be the contraction map of Ē0; also let h̄j,0 := hj ◦ π̄0 for
j = 1, . . . ,m. Suppose that X̄k and h̄j,k are obtained for 0 � k < m and j = 1, . . . ,m.
Let X̄k+1 be the normalization of a surface {(p, zk+1) ∈ X̄k × C | zak+1

k+1 = h̄k+1,k(p)}. Let
φ̄k+1 : X̄k+1 → X̄k be the natural morphism and h̄j,k+1 := h̄j,k ◦ φ̄k+1 for any j . Let
π̄k : (X̄k, Ēk) → (Xk, o) be the contraction map of Ēk. All singularities of X̄k are cyclic
quotient singularities contained in Ēk . Let ηm : (X̃m, Ẽm) → (X̄m, Ēm) be the minimal
resolution of all cyclic quotient singularities on X̄m. Then, πY := π̄m ◦ ηm : (Ỹ , F ) → (Y, o)

gives the minimal C∗-good resolution. We have the following commutative diagram:

(4.1)
(X̄m, Ēm) · · · (X̄1, Ē1) (X̄0, Ē0)

φ̄1φ̄2φ̄m

(Y, o) = (Xm, o) · · · (X1, o) (X0, o) = (X, o).

φ1φ2φm

π̄m π̄1 π̄0
πY πX

(X̃o, Ẽ0)(X̃m, Ẽm)

η0ηm

= (Ỹ , F ) = (X̃, E)

Since φ̄k is a cyclic covering, the C∗-action on X̄k can be lifted onto X̄k+1 from [22, Lemma
4.4], and (4.1) is a C∗-equivariant diagram.

THEOREM 4.1. Under the situation above, assume that d1
a1

� · · · � dm
am

.
(i) (z1 ◦ πY )F � · · · � (zm ◦ πY )F .

(ii) (zi ◦ πY )F = (zj ◦ πY )F if and only if di
ai

= dj
aj

.

PROOF. (i) Let φ := φ1 ◦ · · · ◦φm and φ̄ := φ̄1 ◦ · · · ◦ φ̄m for (4.1). Let e1, e2, . . . , em

be positive integers defined inductively as follows:

e1 := d1, e2 := a1d2

gcd(a1, e1)
, e3 := a1a2d3

gcd(a1, e1) · gcd(a2, e2)
, . . . , em := a1a2 · · · am−1dm∏m−1

i=1 gcd(ai, ei)
.

For a fixed j with 1 � j � m, apply Lemma 3.7 (ii) to φ̄k for k = 1, . . . , j − 1. Then we
have

vĒk (h̄j,k) = vĒk (h̄j ◦ φ̄1 ◦ · · · ◦ φ̄k) = dj

k∏
�=1

a�

gcd(a�, e�)
for 1 � k � j − 1 .
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Thus, vĒj−1
(h̄j,j−1) = ej . Therefore, from Lemma 3.7 (i), we have

vĒj (zj ◦ π̄j ) = dj

gcd(aj , ej )

j−1∏
k=1

ak

gcd(ak, ek)
.

If we put ψj := φ̄j+1 ◦ · · · ◦ φ̄m and apply Lemma 3.7 (ii) to φ̄k for k = j + 1, . . . ,m, then

vĒm(zj ◦ π̄j ◦ψj ) = dj

gcd(aj , ej )

j−1∏
k=1

ak

gcd(ak, ek)
· aj+1

gcd(aj+1, ej+1)
· · · am

gcd(am, em)

= dj

aj

m∏
k=1

ak

gcd(ak, ek)
for j = 1, . . . ,m .

Hence, if we put L := ∏m
k=1

ak
gcd(ak,ek)

, then

(4.2) deg(zj ) = CoeffF0(zj ◦ πY )F = vĒm(zj ◦ π̄j ◦ ψj) = dj

aj
L .

Therefore, CoeffF0(z1 ◦ πY )F � · · · � CoeffF0(zm ◦ πY )F from the assumption d1
a1

� · · · �
dm
am

. Each hj is a reduced element; hence zj is a reduced element in RY from Lemma 3.7 (i);
also the degree of zj in RY is equal to CoeffF0(zj ◦πY )F . Hence (i) is proved by Theorem 3.5
(i). (ii) is obvious from (i). �

For Brieskorn complete intersection singularities, Theorem 4.1 (i) was already proved by
Meng-Okuma ([11, Theorem 6.1]).

THEOREM 4.2. Under the situation of Theorem 4.1, assume that am CoeffE0 ME �
dm and F0 is the central curve of F . Then we have the following.

(i) MF = (zm ◦ πY )F .
(ii) MF = ZF if and only if CoeffF0 MF = CoeffF0 ZF .
(iii) If F0 = P1, then MF = ZF .

PROOF. (i) Let f be an element of OX,o with (f ◦ πX)E = ME . Let f = ∑
j fj be

the decomposition to the sum of homogeneous elements of deg(fj ) = θj and θ1 < θ2 < · · · .
Then θ1 = CoeffE0 ME . By the same way as above, we can easily see that CoeffF0(fj ◦ φ ◦
πY )F = Lθj . From the assumption and (4.2), we have

min
{
CoeffF0(fj ◦ φ ◦ πY )F ,CoeffF0(zm ◦ πY )F

} = min

{
Lθj ,

Ldm

am

}
= Ldm

am

for any j . Hence, CoeffF0 MF = Ldm
am

= CoeffF0(zm◦πY )F . Therefore, it suffices to compare

the coefficients of MF and (zm ◦ πY )F on irreducible components of P1-chains of F . Let∑�+1
i=0 Fi be a divisor on F whose weighted dual graph is given as follows:

−b1 −br· · · ,* *

F0 F1 F� F�+1· · ·
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where F�+1 is a curve which contains a 1-dimensional C∗-orbit. Put aj,i := vFi (fj ◦ φ ◦πY ),
ci := vFi (zm ◦ πY ) for i = 0, 1, . . . , � + 1. Then, aj,0 = Lθj � Lθ1 � Ldm

am
= c0.

Since zm is reduced, (aj,�+1, c�+1) = (0, 1) or aj,�+1 � c�+1. If (aj,�+1, c�+1) = (0, 1)
(resp. aj,�+1 � c�+1), then aj,i � ci for i = 1, . . . , � from Lemma 3.3 (ii) (resp. (i)). Thus
MF |⋃�

i=1 Fi
= (zm ◦ πY )|⋃�

i=1 Fi
; consequentlyMF = (zm ◦ πY )F .

(ii) Assume that CoeffF0 MF = CoeffF0 ZF . Since MF = (zm ◦ πY )F for a reduced
homogeneous element zm, we haveMF = ZF from Theorem 3.5 (iii).

(iii) From E0 = P1 and Theorem 2.3, CoeffF0 MF = CoeffF0 ZF . Then ME = ZE by
(ii). �

In the following, let (Y, o) be a Brieskorn complete intersection singularity defined by
z
a3
3 = h3, . . . , z

am
m = hm in (Cm, o), where a1 � · · · � am and hj = pjz

a1
1 + qjz

a2
2

(j = 3, . . . ,m) for pi, qj ∈ C∗ satisfying piqj �= pjqi for i �= j . Let (Cj , o) be a plane
curve singularity defined by pjz

a1
1 + qj z

a2
2 = 0 for any j . If i �= j , then Ci ∩ Cj = ∅

from piqj �= pjqi . Put r := a2
gcd(a1,a2)

and s := a1
gcd(a1,a2)

. Then, (C2, o) can be considered
as a cyclic quotient singularity with C∗-action of type (r, s). Let us represent it as (X, o).
Then (Y, o) is a Kummer covering defined by za3

3 = h3, . . . , z
am
m = hm over (X, o). Let πX :

(X̃, E) → (X, o) = (C2, o) be the minimalC∗-good resolution of (X, o). Then, πX coincides
with the minimal good embedded resolution of (C, o) := ⋃m

j=1(Cj , o) (see [20], [7] or [11]).
We can easily see that d1 = · · · = dm = lcm(a1, a2) and CoeffE0 ME = mult(Cj , o) = a1

from M. Noether’s Theorem ([2], p. 518) and am � a2. Hence,

(4.3) am CoeffE0 ME � dm .

Therefore, from Theorem 4.2 (iii) and (4.3), we have the following.

COROLLARY 4.3. Let (Y, o) be a Brieskorn complete intersection singularity as above
and π : (Ỹ , F ) → (Y, o) the minimal C∗-good resolution. If the central curve F0 is P1, then
MF = ZF .

From now on, we prove Theorem 3.1 according to our argument (by Theorem 4.2). Let
(Ỹ , F ) → (Y, o) be the minimal C∗-good resolution. The weighted dual graph of F was
given by M. Jankins and W. Neumann [5] (please refer [11] as a good reference). To review
it, let us define some integers as follows:

d0 := lcm(a1, . . . , am), ei := d0

ai
, Ai := lcm(a1, . . . , âi , . . . , am) ,

ĝ = a1 · · · am
d0

, ĝi := a1 · · · âi · · · am
Ai

and αi := ai

gcd(ai, Ai)
for i = 1, . . . ,m .

(The symbolˆin the definition of Ai and ĝi indicates an omitted term.) Then ei is equal to the
degree of zi in RY ; hence em is equal to min.deg (RY ). Also, let βi be an integer defined by
eiβi+1 ≡ 0 (mod αi ) and 0 � βi < αi for each i, where βi = 0 if and only if αi = 1. Let g be

a non-negative integer defined by 2g − 2 = (m− 2)ĝ − ∑m
i=1 ĝi ; and c0 := ∑m

i=1
βi ĝi
αi

+ ĝ
d0

.



428 M. TOMARI AND T. TOMARU

Then, the type of the weighted dual graph associated to the minimal C∗-good resolution is
given as follows ([5]):

[c0; g; (α1, β1), . . . , (α1, β1), . . . , (αm, βm), . . . , (αm, βm)].

ĝ1 ĝm

For D(k) of the Pinkham-Demazure construction, we have

deg(D(k)) = ĝk

d0
−

m∑
i=1

a1 · · · am
aiAi

(⌈
βik

αi

⌉
−βik
αi

)
= ĝ

d0

{
k−

m∑
i=1

d0

gcd(ai, Ai)

(⌈
βik

αi

⌉
−βik
αi

)}

from d0 = lcm(ai, Ai). Since gcd(ai, Ai) = ai
αi

and d0 = eiai for any i,

(4.4) deg(D(k)) = ĝ

d0

{
k −

m∑
i=1

αiei

(⌈
βik

αi

⌉
− βik

αi

)}
.

If we put A := lcm(a1, . . . , âi , . . . , âj , . . . , am) for i �= j , then αi = ai
gcd(ai ,lcm(aj ,A))

and so
gcd(αi , αj ) = 1 for any i �= j . Hence α0(Y, o) = α1 · · ·αm.

Next we repeat Theorem 3.1 in a slightly different style and prove it according to our
argument.

COROLLARY 4.4 ([11, Theorem 6.1], [7, Theorem 3.2]). Let (Y, o) be a Brieskorn
complete intersection singularity defined by za3

3 = p3z
a1
1 + q3z

a2
2 , . . . , z

am
m = pmz

a1
1 + qmz

a2
2

in (Cm, o), where pi, qj ∈ C∗ with piqj �= pjqi for i �= j . Assume that a1 � a2 � · · · � am.
Let π : (Ỹ , F ) → (Y, o) be the minimal good resolution. Then, MF = (zm ◦ π)F . Also, the
following three conditions are equivalent.

(i) MF = ZF , (ii) CoeffF0 MF = CoeffF0 ZF , (iii) min.deg (RY ) � α0(Y, o).

PROOF. Put α := α0(Y, o) and θ := CoeffF0 ZF . From the assumption a1 � a2 �
· · · � am, we have em = min.deg (RY ). If we prove the following:

(4.5) θ = min{α, em} ,
then (ii)⇔ (iii) from it and (i) ⇔ (ii) from Theorem 4.2 (ii). Therefore, (4.5) completes the
proof.

Though (4.5) is already proven in [11, Theorem 5.1], we reprove it by using (4.4) and
Theorem 2.3 (i.e., θ = min{k ∈ N | deg(D(k)) � 0}). From (4.4), we have

(4.6)
d0

ĝ
deg(D(k)) = k −

m∑
i=1

αiei

(⌈
βik

αi

⌉
− βik

αi

)
.

Then deg(D(α)) = ĝα
d0
> 0 from (4.4), since αi | α for any i. Assume α � em. Let k be

any integer with 0 < k < α. Since
⌈
βi0k

αi0

⌉
− βi0k

αi0
� 1

αi0
for an i0 and α � em � ei for any i,

we have d0
ĝ deg(D(k)) � k − ei0 � k − α < 0 from (4.6). Hence θ = α if α � em. We have

deg(D(em)) � 0 because of H 0(F0,OF0(D
(em))) �= 0. Assume α � em. Let k be any integer
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with 0 < k < em. If αj | k for any j , then α | k and α < em; this is a contradiction. Hence

there exists j0 with αj0 � k. Since
⌈
βj0 k

αj0

⌉
− βj0k

αj0
� 1

αj0
, d0
ĝ deg(D(k)) � k−ej0 � k−em < 0.

Hence θ = em and so we get (4.5) and completes the proof. �

REFERENCES

[ 1 ] M. ARTIN, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136.
[ 2 ] E. BRIESKORN AND H. KNÖRRER, Plane algebraic curves, Birkhäuser-Verlag, Basel, Boston, Stuttgart,

1986.
[ 3 ] D. J. DIXON, The fundamental divisor of normal double points of surfaces, Pacific J. Math. 80 (1979), no.1,

105–115.
[ 4 ] A. FUJIKI, On isolated singularities with C∗-action, (in Japanese), Master thesis, Kyoto University, 1972.
[ 5 ] M. JANKINS AND W. D. NEUMANN, Lectures on Seifert manifolds, Brandeis Lecture Notes, 2, Brandeis

University, Waltham, MA, 1983.
[ 6 ] U. KARRAS, On pencils of curves and deformations of minimally elliptic singularities, Math. Ann. 247

(1980), no. 1, 43–65.
[ 7 ] K. KONNO AND D. NAGASHIMA, Maximal ideal cycles over normal surface singularities of Brieskorn type,

Osaka J. Math. 49 (2012), no. 1, 225–245.
[ 8 ] H. LAUFER, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295.
[ 9 ] H. LAUFER, On normal two-dimensional double point singularities, Israel J. Math. 31 (1978), no. 3-4, 315–

334.
[10] H. LAUFER, Tangent cones for deformations of two-dimensional quasi-homogeneous singularities, Singulari-

ties, (Iowa City, IA, 1986), 183–197, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.
[11] F. N. MENG AND T. OKUMA, The maximal ideal cycles over Complete intersection surface singularities of

Brieskorn type, Kyushu J. Math. 68 (2014), no.1, 121–137.
[12] P. ORLIK AND PH. WAGREICH, Isolated singularities of algebraic surfaces with C∗-action, Ann. of Math. 93

(1971), no. 2, 205–228.
[13] H. PINKHAM, Normal surface singularities with C∗-action, Math. Ann. 227 (1977), no. 2, 183–193.
[14] O. RIEMENSCHNEIDER,Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann.

209 (1974), 211–248.
[15] M. TOMARI, A pg -formula and elliptic singularities, Publ. Res. Inst. Math. Sci. 21 (1985), no. 2, 297–354.
[16] M. TOMARI AND K.-I. WATANABE, Filtered rings, filtered blowing-ups and normal two-dimensional singu-

larities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989), no. 5, 681–740.
[17] M. TOMARI AND K.-I. WATANABE, Cyclic covers of normal graded rings, Kōdai Math. J. 24 (2001), 436–
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