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Abstract. Along cuspidal edge singularities on a given surface in Euclidean 3-space
R3, which can be parametrized by a regular space curve γ̂ (t), a unit normal vector field ν is
well-defined as a smooth vector field of the surface. A cuspidal edge singular point is called
generic if the osculating plane of γ̂ (t) is not orthogonal to ν. This genericity is equivalent
to the condition that its limiting normal curvature κν takes a non-zero value. In this paper,
we show that a given generic (real analytic) cuspidal edge f can be isometrically deformed
preserving κν into a cuspidal edge whose singular set lies in a plane. Such a limiting cuspidal
edge is uniquely determined from the initial germ of the cuspidal edge.

Introduction. Let Σ2 be a 2-manifold. A singular point p ∈ Σ2 of a C∞-map germ
f : (Σ2, p) → R3 is a cuspidal edge if f is right-left equivalent to (u, v) �→ (u, v2, v3) at
the origin. Recently, the differential geometry of co-rank one singularities (including cuspidal
edges) on surfaces was discussed by several geometers ([1, 3, 4, 5, 9, 13, 15, 16]). In particular,
in [5], isometric deformations of a special class of cross caps were discussed. Relating to
this, Martins-Saji [10] defined several differential geometric invariants on cuspidal edges, and
gave geometric meanings for them. Moreover, it was shown in [11] that the limiting normal
curvature κν defined in [15] (cf. (1.1)) is closely related to the behavior of Gauss maps around
cuspidal edges.

On the other hand, the proof of the classical Janet-Cartan theorem on the local existence
of isometric embeddings of real analytic Riemannian n-manifolds into the Euclidean space
Rn(n+1)/2 yields that any generic regular surface in R3 has a non-trivial family of isometric
deformations. So it is natural to expect the existence of such non-trivial isometric deforma-
tions for surfaces with singularities. As shown in [5] and [11], certain classes of ruled cross
caps and cuspidal edges admit non-trivial isometric deformations, respectively. However, gen-
eral cases have not been discussed yet.

Along cuspidal edge singularities of a given C∞-map germ1f : (Σ2, p) → R3, the unit
normal vector field ν is well-defined as a smooth vector field of the surface. Let γ (t) be a
regular curve inΣ2 satisfying γ (0) = p as a parametrization of cuspidal edge singularities of
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FIGURE 1. Cuspidal edges with κν = 0 (left) and κν �= 0 (right).

the map f . We call γ (t) the singular curve of f . We set

γ̂ (t) := f ◦ γ (t) ,
which is a regular space curve. Let κs(t) be the singular curvature function along the curve
γ (t) (cf. [15, (1.7)]), and κν(t) the limiting normal curvature along γ (t) (cf. [15, (3.11)] and
(1.1)). Then the curvature function of γ̂ (t) as a space curve is given by (cf. [11])

(0.1) κ(t) =
√
κs(t)2 + κν(t)2 .

In [15], [10] and [11], the singular curvature function κs(t) and the limiting normal curvature
function κν(t) are considered as geometric invariants along cuspidal edge singularities, as
well as the curvature function κ(t) and the torsion function τ (t) of γ̂ (t). The relationships
amongst κs , κν and τ are given in [10].

An invariant I of map germs at p ∈ Σ2 is called intrinsic if it is determined only by the
first fundamental form (cf. [6]). The singular curvature κs is a typical intrinsic invariant of a
cuspidal edge singularity (cf. [15, 6]). In [11], the cuspidal curvature κc at a given cuspidal
edge singular pointp is defined. LetΠ be the plane in R3 passing through f (p) perpendicular
to the vector dγ̂ (0)/dt . Then the intersection of the image of the singular set of f byΠ gives
a 3/2-cusp in the plane Π . The value κc(p) coincides with the cuspidal curvature of this
3/2-cusp (cf. [11]). The following assertion holds:

FACT 1 ([11]). The value |κcκν | is an intrinsic invariant.

To prove our main result (cf. Theorem A), this fact plays a crucial role. A cuspidal edge
singular point p is called generic if the osculating plane of γ̂ is not orthogonal to ν at p, that
is, the limiting tangent plane does not coincide with the osculating plane of γ̂ .

The Gaussian curvature at a generic cuspidal edge is unbounded (cf. [11]). Moreover, as
shown in [11, Theorem A], the following four conditions are equivalent:

(a) A cuspidal edge singular point is generic (cf. Figure 1).
(b) The limiting normal curvature κν does not vanish at the singular point.
(c) The inequality κ > |κs | holds (cf. (0.1)).
(d) Let K be the Gaussian curvature and dÂ = det(fu, fv, ν) du ∧ dv the signed area

element of f , where (U ; u, v) is a local coordinate system near the singular point p.
Then K dÂ is well-defined on U and does not vanish at p.
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We denote by C the set of real analytic map germs of cuspidal edges

f : (R2, 0) → (R3, 0)

which is defined on a neighborhood of the origin in R2. Moreover, let C∗(⊂ C) be the set of
map germs of generic cuspidal edges. In this paper, we show the following:

THEOREM A. Let κs(t) be the singular curvature function along the singular curve
γ (t) of f ∈ C∗ such that γ (0) = 0. Let σ(t) be a real analytic regular space curve whose
curvature function κ̃(t) satisfies

(0.2) κ̃(t) > |κs(t)|
for all sufficiently small t . Then there exist at most two map germs g ∈ C∗ such that

(1) the first fundamental form of g coincides with that of f , in particular, the singular
curve γ (t) in the domain of f is the same as that of g ,

(2) g(γ (t)) = σ(t) holds for each t .

It is classically known that for a given planar curve γ (t) having curvature function κ(t),
there are at most two developable surfaces having “origami-singularities” corresponding to
γ as a space curve whose curvature function κ̃(t) satisfies κ̃(t) > κ(t) (see [2]). The above
theorem can be considered as an analogue of this classical phenomenon.

Kossowski [7] is the first geometer who considered the realizing problem of given first
fundamental forms as generic wave fronts. However, in [7], the isometric deformations of
singularities were not discussed, and the above theorem can be considered as a refinement of
[7, Theorem 1] in the case of cuspidal edge singularities. Since the intrinsic formulation of
wave fronts are rather technical, the statement of Theorem A as a refinement of Kossowski’s
realization theorem will be given and proved in the final section (Section 3). Since Kossowski
applied the Cauchy-Kowalevski theorem to construct suitable second fundamental forms, our
approach is completely different from his, and can be beneficial for the applications to isomet-
ric deformations. However, it should be also remarked that Kossowski’s appoach will work
for not only cuspidal edges but also other wave front singularities, (for example, swallowtail
singular points).

We get the following consequences of Theorem A:

COROLLARY B. Each map germ f ∈ C∗ admits an isometric deformation (in C∗)
which moves the limiting normal curvature κν . In particular, κν and κc are not intrinsic
invariants2.

A given map germ f ∈ C is said to be planar (resp. non-planar) if the image γ̂ of the
singular curve of f is contained in a plane (resp. the torsion of γ̂ does not equal to zero). We
show the following normalization theorem of generic cuspidal edges:

2In [11], it has been shown that κc is an extrinsic invariant, by construction the isometric deformation of ruled
cuspidal edges satisfying κν = 0.
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COROLLARY C. For each f ∈ C∗, there exists a unique map germ g ∈ C∗ of planar
cuspidal edge singularities up to congruence such that

• f and g induce the same first fundamental form, and
• the curvature function of γ̂ (t) := f ◦ γ (t) coincides with that of g ◦ γ (t), where γ (t)

is the singular curve of f .

Moreover, there exists a real analytic isometric deformation of f into g , preserving the cur-
vature function along the image of the cuspidal edge singularities.

In the statement of Corollary C, the condition f ∈ C∗ cannot be weakened to f ∈ C (cf.
Remark 8 and Proposition 9). As a consequence, we also cannot weaken the condition (0.2)
to κ̃(t) ≥ |κs(t)| in the statement of Theorem A.

Two map germs f, g ∈ C are said to be congruent if there exist an (orientation preserving
or reversing) local isometry T : (R3, 0) → (R3, 0) and a local analytic diffeomorphism
ϕ : (R2, 0) → (R2, 0) such that T ◦ f ◦ ϕ = g . On the other hand, two map germs f, g ∈ C
are said to be strongly isometric if there exist an isometry T : (R3, 0) → (R3, 0) and a local
analytic diffeomorphism ϕ : (R2, 0) → (R2, 0) satisfying the following properties:

• f ◦ ϕ and g induce the same first fundamental form, and
• the restriction of T ◦ f ◦ ϕ to the singular curve of f coincides with that of g .

A regular space curve σ passing through a point x0 ∈ R3 is called symmetric if there
exists an isometry T of R3 which is not the identity map such that T (x0) = x0 and the image
of σ is invariant under the action of T . For example, the image of the singular curve of a
generic planar cuspidal edge is symmetric. We get the following duality theorem for generic
cuspidal edges:

COROLLARY D. There exists an involution C∗ � f �→ f̌ ∈ C∗ such that

(1) f̌ is strongly isometric to f ,
(2) if g ∈ C∗ is strongly isometric to f , then g is congruent to f or f̌ .

Moreover, f is not congruent to f̌ if the image of the singular set of f is non-symmetric and
non-planar.

We call f̌ the isomer of f . For non-generic cuspidal edges, the existence of isomers can-
not be expected in general (see Proposition 10). The proofs of these results are accomplished
by an appropriate modification of the proof of the 2-dimensional case of the Janet-Cartan the-
orem. In [5], we defined ‘normal cross caps’, expecting a similar normalization theorem as
in Corollary C. However, it seems difficult to apply the same technique, because cross cap
singularities are isolated.

1. Preliminaries. The fundamental tool to prove our results is the following fact (cf.
[14, pages 37–38]):

FACT 2 (Cauchy-Kowalevski theorem). Let

xiv(u, v) = Φi(u, v, x1, . . . , xk, x1
u, . . . , x

k
u) (i = 1, . . . , k)
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be a partial differential equation having xi := xi(u, v) (i = 1, 2, . . . , k) as unknown func-
tions, where Φ := (Φ1, . . . , Φk) is a real analytic map and

xiu := ∂xi

∂u
, xiv := ∂xi

∂v
(i = 1, . . . , k) .

This equation has a unique real analytic solution x = (x1, . . . , xk) with an initial condition

xi(u, 0) = wi(u) (i = 1, . . . , k) ,

where wi (i = 1, . . . , k) are given real analytic functions.

The classical Janet-Cartan theorem for the existence of local isometric embeddings of
real analytic Riemannian 2-manifolds can be proved as an application of this fact (cf. Chapter
11 of [14]). Our main results are also proved by applying Fact 2 using the following special
coordinate system along cuspidal edges:

DEFINITION 3. Let f : Σ2 → R3 be a real analytic map and p ∈ Σ2 be a cuspidal
edge singular point of f . (We can take a real analytic unit normal vector field ν defined on a
neighborhood of p.) A real analytic local coordinate system (u, v) at p is called adapted if it
satisfies the following properties along the u-axis:

(1) |fu| = 1,
(2) fv = 0, in particular, the singular set is contained in the u-axis,
(3) {fu, fvv, ν} is an orthonormal basis which is compatible with respect to the orienta-

tion of R3.

The existence of an adapted coordinate system was shown in [15, Lemma 3.2]. Through-
out this paper, we fix a real analytic map

f : (U ; u, v) −→ R3

defined on a domainU ⊂ R2 of the uv-plane which has a generic cuspidal edge singular point
at the origin (0, 0), and assume that (u, v) is an adapted coordinate system. Since (u, v) is an
adapted coordinate system, the limiting normal curvature κν of f is given by (cf. Equation
(3.11) in [15])

(1.1) κν(u) := fuu(u, 0) · ν(u, 0) = det(fuu(u, 0), fu(u, 0), fvv(u, 0)) ,

where the dot ‘·’ is the inner product in R3. Since fv = 0 along the u-axis, there exists a real
analytic map germ ϕ such that

(1.2) fv(u, v) = vϕ(u, v) , fvv(u, 0) = ϕ(u, 0)

hold on a neighborhood of the u-axis.
On the other hand, let g : (U ; u, v) → R3 be another real analytic map which has

a generic cuspidal edge singular point at (0, 0), and (u, v) an adapted coordinate system.
Similarly, there exists a real analytic map germ ψ such that

(1.3) gv(u, v) = vψ(u, v) , gvv(u, 0) = ψ(u, 0)

hold on a neighborhood of the u-axis.
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PROPOSITION 4. Let f and g be as above, and ϕ andψ as in (1.2) and (1.3). Suppose
that the first fundamental form of g coincides with that of f , then there exists a real analytic
map F : U × R3 × GL3(R) → M3(R) such that

(gv, rv, ψv) = F(u, v; ψu, (ψ, gu, ru)) ,
where r(u, v) := gu(u, v) and M3(R) (resp. GL3(R)) is the set of 3 × 3-matrices (resp. the
set of regular 3 × 3-matrices).

PROOF. Since f and g have the same first fundamental form on the same local coordi-
nate system, we have

(1.4) fu · fu = gu · gu , fu · fv = gu · gv , fv · fv = gv · gv ,
that reduce to

(1.5) fu · fu = gu · gu , fu · ϕ = gu · ψ , ϕ · ϕ = ψ · ψ .
We define F := (F1,F2,F3) by

(1.6)

F1(u, v; x, (y1, y2, y3)) := vy1 ,

F2(u, v; x, (y1, y2, y3)) := vx ,

F3(u, v; x, (y1, y2, y3))

:= ((y1, y2, y3)
T )−1

⎛
⎜⎜⎝

ϕv · ϕ
ϕv · fu

(ϕ · fuu)v − v

2
(ϕ · ϕ)uu + v(x · x)

⎞
⎟⎟⎠ ,

where x ∈ R3, (y1, y2, y3) ∈ GL3(R) and (y1, y2, y3)
T is the transpose of the regular matrix

(y1, y2, y3). Since
gv = vψ , rv = guv = (vψ)u = vψu ,

it holds that

F1(u, v; ψu, (ψ, gu, ru)) = vψ = gv , F2(u, v; ψu, (ψ, gu, ru)) = vψu = rv .

The relation (cf. (1.2) and (1.3))

v(gu · ψ) = gu · gv = fu · fv = v(fu · ϕ)
reduces to

(1.7) gu · ψ = fu · ϕ.
Since (cf. (1.2) and (1.5))

v(ψ · guu) = (gv · guu) = (gv · gu)u − guv · gu
= (gv · gu)u − 1

2
(gu · gu)v = (fv · fu)u − 1

2
(fu · fu)v = v(ϕ · fuu) ,

it holds that

(1.8) guu · ψ = fuu · ϕ.
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On the other hand, by (1.7) and (1.5), we have that

ψv · gu = (ψ · gu)v − (ψ · guv) = (ϕ · fu)v − 1

v
gv · guv(1.9)

= (ϕ · fu)v − 1

2v
(gv · gv)u = (ϕ · fu)v − 1

2v
(fv · fv)u

= (ϕ · fu)v − 1

v
fv · fuv = ϕv · fu .

Since

v(ψ · guuv) = gv · guuv = (gv · guv)u − guv · guv = (gv · gv)uu
2

− guv · guv

= (fv · fv)uu
2

− guv · guv = v2 (ϕ · ϕ)uu
2

− v2ψu · ψu ,
we have

(1.10) ψ · guuv = 1

2
v(ϕ · ϕ)uu − v(ψu · ψu) .

Here, (1.8) yields

(1.11) ψ · guuv = (ψ · guu)v − ψv · guu = (ψ · fuu)v − ψv · ru .
By (1.10) and (1.11), we have

(1.12) ψv · ru = (ϕ · fuu)v − v

2
(ϕ · ϕ)uu + v(ψu · ψu) .

The space curve σ(u) := g(u, 0) parametrizes the image of the singular set of g . Since the
cuspidal edge singularities of g are generic, the osculating plane Π of the space curve σ(u)
is independent of the tangential direction ψ(u, 0) = gvv(u, 0) of g (cf. (1.3), Definition 3).
Since Π is spanned by {gu(u, 0), guu(u, 0)}, the matrix

(ψ(u, 0), gu(u, 0), ru(u, 0)) = (gvv(u, 0), gu(u, 0), guu(u, 0))

is regular. Hence the fact ψv · ψ = ϕv · ϕ, (1.9) and (1.12) yield that

F3(u, v; ψu, (ψ, gu, ru)) = ψv ,

in particular, F = (F1,F2,F3) attains the desired real analytic map. �

2. Proof of the main results. Let f : (U ; u, v) → R3 be as in the previous section.
Then the space curve defined by

γ̂ (t) := f (t, 0)

gives a parametrization of the image of the singular curve γ (t) = (t, 0) of f . To prove
Theorem A in the introduction, we prepare the following assertion:

PROPOSITION 5. Let σ(t) be a regular space curve satisfying (0.2) such that t is the
arclength parameter. Then there exists a unique R3-valued vector field X+

σ (t) (resp. X−
σ (t))

along σ satisfying the following properties:

(1) |X+
σ (t)| = 1 (resp. |X−

σ (t)| = 1),
(2) X+

σ (t) · σ̇ (t) = 0 (resp. X−
σ (t) · σ̇ (t) = 0),
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(3) X+
σ (t) · σ̈ (t) = ϕ(t, 0) · γ̈ (t) (resp. X−

σ (t) · σ̈ (t) = ϕ(t, 0) · γ̈ (t)), where ϕ is given
in (1.2),

(4) det(σ̇ (t),X+
σ (t), σ̈ (t)) > 0 (resp. det(σ̇ (t),X−

σ (t), σ̈ (t)) < 0).

PROOF. Since f has non-zero limiting normal curvature, the curvature function κ(t) of
the space curve γ̂ (t) = f (t, 0) is positive (cf. (0.1)). Since ϕ(t, 0) = fvv(t, 0) is a unit vector
field (cf. Definition 3) orthogonal to ν(t, 0) and ˙̂γ (t), we have that∣∣ϕ(t, 0) · ¨̂γ (t)∣∣ = |κs(t)| .
Let κ̃(t) be the curvature function of σ(t). If we set

(2.1) c(t) := ϕ(t, 0) ·
¨̂γ (t)
κ̃(t)

,

the inequality (0.2) yields

|c(t)| = |κs(t)|
κ̃(t)

< 1 .

On the other hand, since t is the arclength parameter of σ ,

n(t) := σ̈ (t)

|σ̈ (t)| = σ̈ (t)

κ̃(t)

gives the principal unit normal vector field of the space curve σ(t). Then applying the lemma
in the appendix for a = n(t), b = σ̇ (t) and μ = c(t) as in (2.1), we can verify that X+

σ (t) :=
w (resp. X−

σ (t) := w) satisfies (1)–(4). The uniqueness of X+
σ (t) and X−

σ (t) also follows
from the lemma in the appendix. �

PROOF OF THEOREM A. We consider the partial differential equation (cf. Proposition
4)

(2.2) (gv, rv, ψv) = F(u, v; ψu, (ψ, gu, ru))
for F as in (1.6) with the following initial conditions:

(2.3)
g(u, 0) = σ(u) , r(u, 0) = σ̇ (u) ,

ψ(u, 0) = X+
σ (t) (resp. ψ(u, 0) = X−

σ (t)) .

By Fact 2, there exists a real analytic map

g+ : U → R3 (resp. g− : U → R3)

on a sufficiently small neighborhood U of the origin satisfying (2.2) and (2.3). Since (2.2) is
equivalent to the conditions

g+
v = vψ , (resp. g−

v = vψ) ,(2.4)

rv = vψu ,(2.5)

ψv · ψ = ϕv · ϕ ,(2.6)

ψv · g+
u = ϕv · fu (resp. ψv · g−

u = ϕv · fu) ,(2.7)

ψv · ru = (ϕ · fuu)v − v

2
(ϕ · ϕ)uu + v(ψu · ψu) ,(2.8)
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one can deduce the relation (1.5) (and also (1.4) as a consequence) directly from the relations
(2.3) and (2.4)–(2.8). Consequently, the map g+ (resp. g−) has the same first fundamental
form as f and satisfies the properties (2) and (3) of Theorem A. The ambiguity of the con-
struction of g as in the statement of Theorem A depends on the choice of the vector field
X := ψ(u, 0) along σ satisfying (1), (2) and (3) in Proposition 5. By the lemma in the ap-
pendix, X coincides with either X+

σ or X−
σ , which yields at most two possibilities for g . The

proof of Theorem A is now reduced to the following Proposition 6. �

PROPOSITION 6. The real analytic map (g :=)g± has generic cuspidal edge singu-
larities along the u-axis.

PROOF. Since (u, v) is an adapted coordinate system of g , the vector field ψ in (1.3) is
perpendicular to gu on the singular set. Moreover, by the definition (1.3) of ψ ,

ν̃(u, v) := gu(u, v)× ψ(u, v)

|gu(u, v)× ψ(u, v)|
is a unit normal vector field to g which is well-defined on the singular set, where × denotes
the vector product in R3. Moreover, the function

λ := det(gu, gv, ν̃) = v det(gu, ψ, ν̃)

satisfies λv �= 0 on the u-axis, because (u, v) is an adapted coordinate system. Hence the
singular points are non-degenerate (cf. [8, Proposition 2.3] or [15, Definition 1.1]). Moreover,
since gv = vψ = 0 on the u-axis, the null direction at a point on the u-axis (cf. [8, Page 306]
or [15, Page 495]) is ∂/∂v, which is linearly independent to the singular direction ∂/∂u.
Thus, to show that g is a cuspidal edge, it is sufficient to show that g is a front (cf. [8] or
[15]), which is equivalent to ν̃v �= 0 on the u-axis: Let κc and κν be the cuspidal curvature (cf.
[11, (2.4)]) and the limiting normal curvature of f along γ , respectively. Since the singularity
of f consists of cuspidal edges, κc �= 0 holds (cf. [11, Lemma 2.8]), and since f is generic
(i.e. the singularities of f cossists only of generic cuspidal edges), κν �= 0. By Fact 1, |κcκν |
depends only on the first fundamental from. Thus, we have

(2.9) κ̃c(t)κ̃ν(t) = κc(t)κν(t) �= 0 ,

where κ̃c and κ̃ν are the cuspidal curvature and the limiting normal curvature of g , respectively.
Then by [11, (2.4)],

(2.10) κ̃c(t) = det(gu, gvv, gvvv)|(u,v)=(t,0) = 2 det(gu(t, 0), ψ(t, 0), ψv(t, 0)) �= 0.

So it holds on the u-axis that

ν̃v · ψ =
(

gu × ψ

|gu × ψ|
)
v

· ψ

=
(
guv × ψ + gu × ψv

|gu × ψ|
)

· ψ + (
(gu × ψ) · ψ) (

1

|gu × ψ|
)
v

= −det(gu, ψ,ψv)

|gu × ψ| �= 0 .
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Hence the singular points of g consist of cuspidal edge singularities. Moreover, by (2.10), the
limiting normal curvature κ̃ν does not vanish, which implies that g is generic. �

PROOF OF COROLLARY B. Since f has non-zero limiting normal curvature, the curva-
ture function κ(t) of the space curve γ̂ (t) = f (t, 0) is greater than the absolute value |κs(t)|
of the singular curvature (cf. (0.1)). Let τ (t) be the torsion function of γ̂ (t). For sufficiently
small ε > 0, there exists a regular space curve σ s(t) (|s| < ε) satisfying the following prop-
erties by the fundamental theorem of space curves

• σ s(0) = 0 ,
• σ 0(t) = γ̂ (t) ,
• the curvature function of σ s(t) is equal to κ(t)+ s ,
• the torsion function of σ s(t) is equal to τ (t) .

Since ε is sufficiently small, we may assume that κ(t) + s > |κs(t)|. By Theorem A, there
exists gs ∈ C∗ (|s| < ε) such that

(1) the vector field ψs(u, v) satisfying gsv = vψs is equal to X+
σ s (u) along v = 0, where

X+
σ s is a vector field along σ s defined in Proposition 5,

(2) the first fundamental form of gs is equal to that of f ,
(3) the singular curve γ (t) of f is the same as that of gs , and
(4) gs (γ (t)) = σ s(t) holds for each t .

Since the geodesic curvature κs is intrinsic, (0.1) yields that
√
(κ(t)+ s)2 − κs(t)2 is equal to

the absolute value of the limiting normal curvature of gs , which proves Corollary B. �

PROOF OF COROLLARY C. Let κ(t) and τ (t) be the curvature function and the torsion
function of the space curve γ̂ (t), respectively. For each s ∈ [0, 1], there exists a regular space
curve σ s(t) satisfying the following properties by the fundamental theorem of space curves

• σ s(0) = 0 ,
• σ 0(t) = γ̂ (t) ,
• the curvature function of σ s(t) is equal to κ(t) ,
• the torsion function of σ s(t) is equal to (1 − s)τ (t) .

Since f is generic, κ(t) > |κs(t)| holds. Then by Theorem A, there exists gs,+ ∈ C∗ (resp.
gs,− ∈ C∗) for s ∈ [0, 1] such that

(1) the vector field ψs,+(u, v) (resp. ψs,−(u, v)) satisfying gs,+v = vψs,+ (resp. gs,−v =
vψs,−) is equal to X+

σ s (u) (resp. X−
σ s (u)) along v = 0, where X±

σ s are as in Proposi-
tion 5,

(2) the first fundamental form of gs,+ (resp. gs,−) is equal to that of f ,
(3) the singular curve γ (t) of f is the same as that of gs,+ (resp. gs,−), and
(4) gs,+(γ (t)) = σ s(t) (resp. gs,−(γ (t)) = σ s(t)) holds for each t .

By this construction, the torsion function of the curve σ 1 vanishes identically. So we can
conclude that g1,+ (resp. g1,−) is a germ of a planar cuspidal edge. In particular, σ 1 lies in a
plane Π , and the curve is invariant under the reflection with respect to the planeΠ . Let T be
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the reflection with respect to the planeΠ . Then we have

T ◦ σ 1 = σ 1 , dT (σ̇ 1) = σ̇ 1 , dT (σ̈ 1) = σ̈ 1 , dT (X+
σ 1) = X−

σ 1 .

In fact, the lemma in the appendix implies the fourth equality. Thus, by the uniqueness of
Fact 2, we have g1,− = T ◦ g1,+. This implies the uniqueness of g as in Corollary C. �

PROOF OF COROLLARY D. By replacing ν with −ν, we may assume that the limiting
normal curvature κν of f takes positive values without loss of generality. By Theorem A,
there exists g+ ∈ C∗ (resp. g− ∈ C∗) for s ∈ [0, 1] such that

(1) the vector field ψ+(u, v) (resp. ψ−(u, v)) satisfying g+
v = vψ+ (resp. g−

v = vψ−)
is equal to X+

γ̂
(u) (resp. X−

γ̂
(u)) along v = 0, where X±

γ̂
are as in Proposition 5,

(2) the first fundamental form of g+ (resp. g−) is equal to that of f ,
(3) the singular curve γ (t) of f is the same as that of g+ (resp. g−), and
(4) g+(γ (t)) = γ̂ (t) (resp. g−(γ (t)) = γ̂ (t)) holds for each t .

Since (u, v) is an adapted coordinate system of f , it holds that

(2.11) |ϕ(t, 0)| = |fvv(t, 0)| = 1 , ϕ(t, 0) · ˙̂γ (t) = fvv(t, 0) · fu(t, 0) = 0 .

Since ¨̂γ · ν = κν > 0 and ν(t, 0) = fu(t, 0)× fvv(t, 0), we have

(2.12) det( ˙̂γ (t), ϕ(t, 0), ¨̂γ (t)) > 0 .

So the uniqueness of X+
γ̂

implies that X+
γ̂
(t) = ϕ(t, 0) holds. Thus we have that

g+(u, v) = f (u, v) .

We now define an involution

C∗ � f �−→ f̌ := g− ∈ C∗ .

It can be easily checked that f̌ (u, v) := g−(u, v) is strongly isometric to f (u, v)(=g+(u, v)).
From now on, we suppose that the image of the singular curve of f is non-symmetric and non-
planar. To prove Corollary D, it is sufficient to show that f̌ is not congruent to f . Suppose
that there exists an isometry T in R3 such that

(2.13) f (u, v) = T ◦ f̌ (ξ(u, v), η(u, v)) ,
where (u, v) �→ (ξ(u, v), η(u, v)) is a local analytic diffeomorphism such that(

ξ(0, 0), η(0, 0)
) = (0, 0) .

LEMMA 7. Under the situation above, we have

ξ(u, 0) = εu , ξv(u, 0) = 0 , η(u, 0) = 0 ,

where ε = ±1.

PROOF. Since T is an isometry and (u, v) (resp. (ξ, η)) is an adapted coordinate system
for f (resp. f̌ ), the singular set {v = 0} of f coincides with the singular set {η = 0} of f̌ .
Hence we have

η(u, 0) = 0 .
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Let f̃ (u, v) = f̌
(
ξ(u, v), η(u, v)

)
. Since f = T ◦ f̃ ,

1 = fu(u, 0) · fu(u, 0) = f̃u(u, 0) · f̃u(u, 0)

= ∣∣ξu(u, 0)f̌ξ
(
ξ(u, 0), η(u, 0)

) + ηu(u, 0)f̌η
(
ξ(u, 0), η(u, 0)

)∣∣2

= |ξu(u, 0)|2 .
Here, we used the fact that (ξ, η) is an adapted coordinate system for f̌ . Hence we have
ξu(u, 0) = ε (ε = ±1). Since ξ(0, 0) = 0, we have the first conclusion.

On the other hand, ∂/∂v (resp. ∂/∂η) is the null direction of f (resp. f̌ ) along the singular
curve, so it holds that

0 = fv(u, 0) = f̃v(u, 0)

= ξv(u, 0)fξ
(
ξ(u, 0), η(u, 0)

) + ηv(u, 0)fη
(
ξ(u, 0), η(u, 0)

)
= ξv(u, 0)fξ

(
ξ(u, 0), 0

)
.

Since |fξ | = 1 on the singular set, we have ξv(u, 0) = 0. �

Since γ̂ (t) is non-planar, its torsion function does not vanish. Recall that the torsion
function of a regular space curve does not depend on the choice of orientation of the curve,
but changes sign by orientation reversing isometries of R3. Hence the isometry T as in (2.13)
must be orientation preserving. Since

f̃uu = ξuuf̌ξ + ηuuf̌η + (ξu)
2f̌ξξ + 2ξuηuf̌ξη + (ηu)

2f̌ηη ,

where f̃ (u, v) = f̌ (ξ(u, v), η(u, v)), Lemma 7 implies that f̃uu(u, 0) = f̌ξξ (ξ(u, 0), 0).
Since f = T ◦ f̃ and ξu(u, 0)2 = 1, it holds that,

0 < κν(u) = det(fu(u, 0), fvv(u, 0), fuu(u, 0))

= det(T ◦ f̃u(u, 0), T ◦ f̃vv(u, 0), T ◦ f̃uu(u, 0))

= det(f̃u(u, 0), f̃vv(u, 0), f̃uu(u, 0))

= ξu(u, 0) det(f̌ξ (ξ(u, 0), 0), f̌ηη(ξ(u, 0), 0), f̌ξξ (ξ(u, 0), 0)) .

By definition of f̌ (= g−), it holds that

det(f̌ξ (0, 0), f̌ηη(0, 0), f̌ξξ (0, 0)) = det( ˙̂γ (0),X−
γ̂
(0), ¨̂γ (0)) < 0 .

So we can conclude that ξu(u, 0) = −1, and by Lemma 7, it holds that

(2.14) ξ(u, 0) = −u .
Then t is a common arclength parameter of γ̂ (t) and γ̌ (t) := f̌ (ξ(t, 0), 0). Hence we have

γ̌ (−u) = γ̌ (ξ(u, 0)) = T ◦ f̌ (ξ(u, 0), η(u, 0)) = f (u, 0) = γ̂ (u) ,

that is, the curve γ̂ is symmetric at the origin (= γ̂ (0)), which contradicts our assumption.
Hence f̌ cannot be congruent to f . By the definition of strongly isometric equivalence, it is
obvious that f̌ is strongly isometric to f , and (2) of Corollary D holds. �
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REMARK 8. For a real analytic map germ f of a non-generic cuspidal edge singular-
ity, the partial differential equation (2.2) cannot be solved, since fu, fuu, ϕ are not linearly
independent. Cuspidal edges on surfaces of constant Gaussian curvature are all non-generic
(cf. [11]). Moreover, as shown in Proposition 9 below, Theorem A does not hold when f is
not generic. Although our method is not effective for such surfaces, examples of isometric
deformations of flat cuspidal edges with vanishing κν are given in [5] and [11].

PROPOSITION 9. Let γ (t) be the singular curve of the cuspidal edge singularities of
a C∞-map f having vanishing Gaussian curvature on its regular set. Suppose that γ̂ (t) :=
f ◦ γ (t) lies in a plane in R3. Then the image of the curve γ̂ lies in a straight line3.

PROOF. The map f is a flat front in the sense of [12]4. By [12, Proposition 1.10], the
singular points of f are not umbilical points. Then by [12, Proposition 2.2], f is developable.
Since κν vanishes along the singular curve γ , the asymptotic direction at γ̂ (t) is ˙̂γ (t). In
particular, f is a tangential developable surface, that is, we may set f (u, v) = γ̂ (u)+ v ˙̂γ (u).
Then the unit normal vector field ν of f is equal to the binormal vector of γ̂ (u). Suppose that
γ̂ (t) is a regular curve with non-zero curvature function which lies in a plane. Since f is a
front, the fact νv = 0 implies that νu does not vanish, that is, the torsion function of γ̂ does
not vanish, which contradicts the fact that γ̂ (t) is a planar. Thus, the curvature function of
γ̂ (t) vanishes identically, namely, its image lies in a straight line. �

In Corollary D, we have shown the existence of isomers of given cuspidal edges. How-
ever, for the case of developable surfaces (they are non-generic), there are no such isomers:

PROPOSITION 10. Let σ(t) be a regular space curve whose curvature function κ(t)
and torsion function τ (t) have no zeros. Then there exists a unique flat front germ which has
cuspidal edge singularities along σ .

PROOF. Let f be a flat front which has cuspidal edge singularities along σ . By [12,
Proposition 1.10], the singular set of f cannot be umbilical points. So [12, Proposition 2.2]
implies that f is a developable surface. In paticular, f must be a tangential developable of σ ,
which proves the assertion. �

Finally, we shall give a concrete example: We set

f (u, v) :=
(
u, −v

2

2
+ u3

6
,
u2

2
+ u3

6
+ v3

6

)
,

whose singular set consists of generic cuspidal edges, and is parametrized by

γ̂ (t) := f (t, 0) =
(
t,
t3

6
,
t2

2
+ t3

6

)
.

3Let C be a 3/2-cusp on xy-plane in R3. By considering a cylinder or a cone over C, one can actually get a flat
cuspidal edge whose image of singular set is contained in a line.

4A front whose Gaussan caurvature vanishes is called a flat front. The precise definition is given in [12].
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FIGURE 2. The images of f (u, v) (bottom-left) and g(u, v) (top-right) respectively, which have the common
image of the singular set (the range of the map is |u| < 1/8 and |v| < 1/4).

We remark that the curvature function κ and torsion function τ of γ̂ is given by

κ(t) =
√

2δ

(2 + 2t2 + 2t3 + t4)3
, τ (t) = −4

δ
(δ := 4 + 8t2 + 8t3 + t4) .

In particular, γ̂ is non-symmetric and non-planar as the singular curve of f . We set g :=
(g1, g2, g3), where

g1(u, v) :=u+ u2v2

2
− u3v2

2
− uv4

2
+ v5

30
+ u3v3

6
+ 9u2v4

4
+ v6

6
,

g2(u, v) :=v
2

2
+ u3

6
− u2v2 + uv3

3
+ 2u3v2 − u2v3

3
+ uv4 − v5

5
− 9u4v2

4
− 6u2v4

+ 13uv5

15
− 11v6

36
,

g3(u, v) :=u
2

2
+ u3

6
− uv2 + v3

6
+ u2v2 + v4

2
− u2v3

3
− 5uv4

2
− v5

15
− 2u4v2

+ 2u3v3

3
+ 6u2v4 + 2uv5

5
+ 25v6

18
.

The singular set of g consists of generic cuspidal edges, and coincides with that of f , namely
g(t, 0) = γ̂ (t) holds. This g gives an approximation of f̌ . In fact, one can easily check that
the coefficients of the first fundamental form of g coincide with those of f up to the fifth-order
terms of u, v near the origin (see Figure 2).

3. Realization of generic intrinsic cuspidal edges into R3. Let dσ 2 be a positive
semi-definite real analytic metric defined on a neighborhood of the origin in the uv-plane U .
Then dσ 2 can be written in the following form:

dσ 2 = E du2 + 2F du dv +Gdv2 .
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The metric is called a (germ of) Kossowski metric (cf. [6]) if it satisfies the following condi-
tions:

(1) the u-axis consists of a singular set of dσ 2,
(2) Ev = Gv = 0 along the u-axis,
(3) there exists a real analytic function λ on U such that EG− F 2 = λ2, and
(4) the gradient vector field ∇λ = (λu, λv) does not vanish along the u-axis.

Further systematic treatments of Kossowski metrics are given in [6]. Let K be the Gaussian
curvature of dσ 2 on U \ {v = 0}. Kossowski showed in [7] that

K dÂ (dÂ := λ du ∧ dv)
can be smoothly extended on U (cf. the condition (d) in the introduction), and proved the
following assertion.

FACT 11 (Kossowski). Suppose that K dÂ does not have zeros on the u-axis. Then
there exist a neighborhood V (⊂ U) and a real analytic wave front f : V → R3 such that the
pull-back metric of the canonical metric of R3 by f coincides with dσ 2.

See [7] and [6] for detailed discussions. If the null-direction of the metric dσ 2 is transver-
sal to the u-axis, the singular points of dσ 2 are called of A2-singularities or intrinsic cuspidal
edges. The induced metrics of wave fronts in R3 are all considered as Kossowski metrics and
cuspidal edge singular points correspond to A2-singularities (cf. [6]). Moreover, in [6], the
following expression of the singular curvature is given;

κs := −FvEu + 2EFuv − EEvv

2E3/2λv

under the assumption that λv > 0. Since this expression of κs does not depend on a choice
of such a local coordinate (u, v), it can be considered as an invariant of the metric dσ 2 at
A2-singularities. We can prove the following assertion as an modification of the proof of
Theorem A:

THEOREM 12. Let dσ 2 be a real analytic Kossowski metric given as above and κs(t)
the singular curvature function along the u-axis. Let σ(t) be a real analytic regular space
curve whose curvature function κ̃(t) satisfies

(3.1) κ̃(t) > |κs(t)|
for all sufficiently small t . Suppose that K dÂ does not have zeros on the u-axis. Then there
exist a neighborhood V (⊂ U) and a real analytic cuspidal edge f : V → R3 such that

(1) the first fundamental form of f coincides with dσ 2,
(2) f (t, 0) = σ(t) holds for each t .

In [7], the isometric deformations of singularities are not discussed, and Theorem 12 can
be considered as a refinement of [7, Theorem 1] in the case of cuspidal edge singularities.
As pointed out in the introduction, the following proof is different from Kossowski’s original
approach.
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PROOF. Let dσ 2 = E du2 + 2F du dv +Gdv2 be a Kossowski’s metric such that the
singular set {v = 0} consists of A2-singularities. Then, without loss of generality, we may
assume that dσ 2 satisfies the following expressions (cf. [6]);

(3.2) E = 1 + v2E0 , F = 0 , G = v2G0 ,

whereE0 = E0(u, v) andG0 = G0(u, v) are certain real analytic functions. We now suppose
that there exists a real analytic wave front f : U → R3 so that the first fundamental form of
f is equal to dσ 2. We can define a real analytic map ϕ = ϕ(u, v) so that fv = vϕ. Then, it
holds that G0 = ϕ · ϕ. Keeping (2.6) in mind, we have that

(3.3) ϕv · ϕ = (ϕ · ϕ)v
2

= 1

2
(G0)v .

On the other hand, since

vfu · ϕ = fu · fv = F = 0

we have fu · ϕ = 0. In particular, we get (cf. (2.7))

(3.4) ϕv · fu = (ϕ · fu)v − ϕ · fuv = −ϕ · fuv = −ϕ · (fv)u = −v(G0)u

2
.

Next (2.8) in mind, we have that

(3.5) ϕ · fuu = (fv · fu)u − (fuv · fu)
v

= − (fuv · fu)
v

= −Ev
2v

= −2E0 + v(E0)v

2
.

By (3.3), (3.4) and (3.5), f must satisfy the equation

(3.6) (fv, rv, ϕv) = F̃(u, v; ϕu, (ϕ, fu, ru)) ,
where r := fu, and F̃ := (F̃1, F̃2, F̃3) is given by

F̃1(u, v; x, (y1, y2, y3)) := vy1 ,

F̃2(u, v; x, (y1, y2, y3)) := vx ,

F̃3(u, v; x, (y1, y2, y3))

:= 1

2

(
(y1, y2, y3)

T
)−1

⎛
⎝ (G0)v

−v(G0)u

−3(E0)v − v(E0)vv − v(G0)uu + 2v(x · x)

⎞
⎠ .

Applying the Cauchy-Kowalevski theorem, we can get a real analytic solution of the equation
(3.6) under the same initial conditions as in the proof of Theorem A. Since the product cur-
vature κΠ can be reformulated as an invariant of the A2-singular point of a given Kossowski
metric as shown in [6], and the conditionK dÂ �= 0 implies the condition κΠ �= 0. Thus we
can prove that f has cuspidal edge singularity along the u-axis, and we get the assertion. �
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Appendix. The following assertion is applied to prove Proposition 5:

LEMMA. Let S2 be the unit sphere in R3 centered at the origin. Let a, b ∈ S2 be two
mutually orthogonal unit vectors, and μ a real number with |μ| < 1. Then there exists a unit
vector w ∈ S2 satisfying

w · a = 0 , w · b = μ .

Moreover, such a vector w is uniquely determined under the assumption that the determinant
det(a, b,w) is positive (resp. negative).

PROOF. LetM := (a, b, a× b) ∈ SO(3), where “×” is the vector product of R3. Then
the vector

w := M

⎛
⎜⎝

0
μ

±√
1 − μ2

⎞
⎟⎠

has the desired property. The uniqueness can be shown immediately. �
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