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REMARKS ON THE BORDISM INTERSECTION MAP*

By

Carlos Biasi and Alice K. M. Libardi

Abstract. In this paper we give a characterization of the kernel of

the bordism intersection map and we present some related results as

the following. The set of bordism classes of Cy maps f : M ! N

such that rank df ðxÞa p for all x is contained in Jp;m�pðNÞ, where M

is a smooth closed manifold of dimension m, N is a smooth closed

manifold, df is the di¤erential of f , Jp;m�pðNÞ is the image of the

homomorphism l� : NmðNðpÞÞ ! NmðNÞ induced by the inclusion,

0a pam, and NðpÞ is the p-skeleton of N.

1. Introduction

Let f : M ! N and g : K ! N be di¤erentiable maps, where M and K are

smooth closed manifolds of dimensions m and k, respectively, and N is an n-

dimensional smooth closed manifold. Let us consider a Cy map j : M � K !
N �N homotopic to f � g and transversal to the diagonal 4HN �N and the

ðmþ k � nÞ-dimensional manifold V HM � K obtained by V ¼ j�1ð4Þ. We call

V the intersection manifold, and we define the intersection map h : V ! N by the

composite h ¼ p1 � j � i, where i is the inclusion map from V into M � K and p1

is the projection of N �N onto the first factor.

Then we define the bordism intersection product Im;k : NmðNÞ �NkðNÞ !
Nmþk�nðNÞ by Im;kð½M; f �; ½K ; g�Þ ¼ ½V ; h�, where NiðNÞ denotes the i-dimensional

unoriented bordism group of N([5]). It is known that this is well-defined.

The map Im;k induces on N�ðNÞ a product which, with the disjoint union,

makes N�ðNÞ a commutative ring. This product corresponds to a product in the

cobordism ring N�ðNÞ, up to duality, and was studied by Quillen ([5]).

In this paper we consider g : K ! N fixed and then we give a characterization
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of the kernel of the map Ig : NmðNÞ ! Nmþk�nðNÞ obtained from Im;k. We also

pay attention to the image of Ig.

For any map f : M ! N we denote by Uf the Poincaré dual (P.D.) of

f�ðmMÞ, where mM is the fundamental class of M. In what follows we

shall consider the map �ug : HiðN;Z2Þ ! Hiþk�nðN;Z2Þ defined by a � ug ¼
P:D:ðb ^ UgÞ, where b is the dual class of a, and wi shall denote the i-th Stiefel-

Whitney class. We also denote by pM ¼ p1 � i and pK ¼ p2 � i, where p1 and p2

are the projection maps from M � K onto M and K respectively.

Let Jp;m�pðX Þ be the image of the map l� : NmðX ðpÞÞ ! NmðX Þ, 0a

pam, induced by the inclusion in X of the p-skeleton X ðpÞ of a finite CW -

complex X . Since NðqÞ ¼ 0, let us agree that Jp;m�pðXÞ ¼ 0 for p < 0. It is

known that Jp;m�pðX Þ does not depend on a particular cell decomposition of X

([3]).

Theorem 1.1. The kernel of Ig coincides with Jn�k�1;mþk�nþ1ðNÞ if one of the

following conditions holds.

a1) g�ðwiðNÞÞ ¼ wiðKÞ in the range 0a iamþ k � n and ^Ug : H
iðN;Z2Þ

! Hiþn�kðN;Z2Þ is onto in the same range.

a2) �ug : HiðN;Z2Þ ! Hk�nþiðN;Z2Þ is a monomorphism for n� k � 1 < iam.

As an immediate consequence we observe that if K and N are manifolds

of the same dimension n, and if g : K ! N satisfies g�ðmKÞ ¼ mN , then Ig is a

monomorphism.

The following gives examples in which the conditions in Theorem 1.1

are satisfied. Let us consider K ¼ Pn�4, N ¼ Pn and the inclusion map

g : Pn�4 ! Pn, where Pm denotes the m-dimensional real projective space.

Then g�ðmPn�4Þ A Hn�4ðPn;Z2Þ is such that Ug ¼ P:D:�1ðg�ðmPn�4ÞÞ generates

H 4ðPn;Z2Þ and g�ðwiðPnÞÞ ¼ wiðPn�4Þ for 0a ia 2. If the dimension of the

manifold M is equal to 6 and nb 5, then we have that ^Ug : H
iðPn;Z2Þ !

Hiþ4ðPn;Z2Þ is an epimorphism for i ¼ 1; 2. Thus, condition a1) is satisfied in

this case. By considering K ¼ Pn�2 and N ¼ Pn, the above reasoning shows that

condition a2) is satisfied, whenever the dimension of the manifold M is equal to 3

and nb 3.

The following example shows that the conditions in Theorem 1.1 are

only su‰cient ones. Consider the embedding g : S1 ! T 2 ¼ S1 � S1 defined by

gðxÞ ¼ ðx; eÞ. In this case, ^Ug : H
0ðT 2;Z2Þ ! H 1ðT 2;Z2Þ is not surjective,

but for Ig : N2ðT 2Þ ! N1ðT 2Þ we have ker Ig ¼ J0;2ðT 2Þ. We observe that

�ug : H1ðT 2;Z2Þ ! H0ðT 2;Z2Þ is not injective.
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Theorem 1.2. If �ug : HiðN;Z2Þ ! Hk�nþiðN;Z2Þ is an epimorphism for

n� k � 1 < iam, then Ig is an epimorphism.

The following gives an example in which the condition in Theorem 1.2

is satisfied. Let us consider K ¼ Pn�4, N ¼ Pn and the inclusion map

g : Pn�4 ! Pn. If the dimension of the manifold M is m and ma n, then we have

that �ug : HiðN;Z2Þ ! Hi�4ðN;Z2Þ is an epimorphism for 3 < iam.

Let us consider now the following problem. Let V and K be submanifolds

of M and N respectively, of the same codimension. Let nK and nV denote

the normal bundles to K and V in M and N respectively. Given a Cy map

fV : V ! K with f �V nK ¼ nV , under what conditions does there exist an extension

f : M ! N of fV such that f is transversal to K and f �1ðKÞ ¼ V ?

There are particular cases where it is possible to obtain such an extension

using obstruction theory. We shall deal with this problem in a forthcoming paper.

Let forg : Nmþk�nðNÞ ! Nmþk�n be the forgetful map and let us take

I 0g : NmðNÞ ! Nmþk�n as the composite I 0g ¼ forg � Ig.

Remarks. 1) If g : K ! N is the inclusion map and if I 0g is onto, then given

an ðmþ k � nÞ-manifold V , there exists an ðM 0; f 0Þ A NmðNÞ such that f 0 is

transversal to K and f 0�1ðKÞ is cobordant to V .

2) Let V and K be submanifolds of M and N respectively, of the same

codimension. Given a Cy map fV : V ! K with f �V nK ¼ nV , if ½V � does not

belong to the image of I 0g, where g : K ! N is the inclusion map, then there does

not exist an extension f : M ! N of fV such that f is transversal to K and

f �1ðKÞ ¼ V .

As forg restricted to J0;mþk�nðNÞ is surjective, we can say that I 0g is surjective,

if J0;mþk�nðNÞ is contained in the image of Ig.

Theorem 1.3. J0;mþk�nðNÞ is contained in the image of Ig if the map

^Ug : H
kðN;Z2Þ ! HnðN;Z2Þ is an epimorphism.

We give now an example where ^Ug : H
kðN;Z2Þ ! HnðN;Z2Þ is an epi-

morphism. Let N be a smooth connected n-dimensional manifold, which is the

total space of a fiber bundle over a smooth closed connected k-dimensional

manifold K and with fiber a smooth closed connected ðn� kÞ-dimensional

manifold F . Suppose that there exists a section g : K ! N. Since the class
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in Hn�kðN;Z2Þ given by the inclusion F ,! N intersects the section g,

^Ug : H
kðN;Z2Þ ! HnðN;Z2Þ is an epimorphism.

2. Whitney Numbers of Intersection Maps

Given smooth maps f : M ! N and g : K ! N, where M and K are smooth

closed manifolds of dimensions m and k, respectively, and N is an n-dimensional

smooth closed manifold, we consider the intersection manifold V and the inter-

section map h : V ! N. We observe that h is homotopic to both f � pM and

g � pK , where pM ¼ p1 � i, pK ¼ p2 � i, and p1 and p2 are the projection maps

from M � K onto M and K respectively. We remark that whenever f is trans-

versal to g we can take j ¼ f � g. In this case h coincides with f � pM and with

g � pK .

The following lemma is proved in [1].

Lemma 2.1. Let ðV ; hÞ be obtained by the intersection of the maps f : M ! N

and g : K ! N. Then f �ðUgÞ ¼ UpM and g�ðUf Þ ¼ UpK .

Remark. If a A Hmþk�nðN;Z2Þ is any class, then ha; h�ðmV Þi ¼
ha; ð f � pMÞ�mVi ¼ h f �ðaÞ; pM�mVi¼ h f �ðaÞ; f �ðUgÞ_ mMi ¼ ha ^ Ug; f�ðmMÞi
¼ ha; ðUf ^ UgÞ_ mNi.

Since the intersection of the homology classes f�ðmMÞ and g�ðmKÞ, denoted

by f�ðmMÞ � g�ðmKÞ, is given by P:D:ðUf ^ UgÞ, we conclude that h�ðmV Þ ¼
f�ðmMÞ � g�ðmKÞ.

Let f : M ! N be a map between closed manifolds and let a A HiðN;Z2Þ
be any cohomology class. For every partition fi1 a i2 a � � �a irg of m� i, the

number hwi1ðMÞ � � �wirðMÞ � f �ðaÞ; mMi A Z2 is defined and is called the Whitney

number of f associated to a, where wiðMÞ is the i-th Stiefel-Whitney class of

M.

Let us consider the tangent vector bundles TN, TM and TK as well as

the respective vector bundles induced by h, pM and pK . We observe that

TV l h�ðTNÞ and p�MðTMÞl p�KðTKÞ are equivalent vector bundles over V .

Therefore wðVÞh�ðwðNÞÞ ¼ p�MðwðMÞÞp�KðwðKÞÞ, where w denotes the total Stiefel-

Whitney class.

Theorem 2.2. Let a A HiðN;Z2Þ be any cohomology class and fi1 a � � �a isg
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be a partition of mþ k � n� i. If g�ðwiðNÞÞ ¼ wiðKÞ, 0a iamþ k � n, then

hwi1ðVÞ � � �wisðVÞ � h�ðaÞ; mVi ¼ hwi1ðMÞ � � �wisðMÞ � f �ða ^ UgÞ; mMi.

Proof. We recall that h is homotopic to g � pK . Then using the hypothesis

and the remark above, we conclude that wiðVÞ ¼ p�MðwiðMÞÞ for 0a ia

mþ k � n.

Consequently,

hwi1ðVÞ � � �wisðVÞ � h�ðaÞ; mVi ¼ hp�Mðwi1ðMÞ � � �wisðMÞÞ � p�M f �ðaÞ; mVi

¼ hwi1ðMÞ � � �wisðMÞ � f �ðaÞ;UpM _ mMi

¼ hwi1ðMÞ � � �wisðMÞ � f �ða ^ UgÞ; mMi: r

Remark. If g�ðwiðNÞÞ ¼ wiðKÞ and f �ðwiðNÞÞ ¼ wiðMÞ, 0a iamþ k � n,

then using Theorem 2.2 we have that: hwi1ðVÞ � � �wisðVÞ � h�ðaÞ; mVi ¼
hwi1ðNÞ � � �wisðNÞ � a �Uf �Ug; mNi.

Let X be a finite CW -complex and let us consider l� : NmðX ðpÞÞ ! NmðXÞ
induced by the inclusion of the p-skeleton X ðpÞ of X in X .

If Jp;m�pðX Þ is the image of l�, 0a pam, then we have the filtration

NmðXÞ ¼ Jm;0ðXÞI Jm�1;1ðX ÞI � � �I J0;mðXÞI 0.

The unoriented bordism spectral sequence associated to this filtration is

such that E2
p;m�p ¼ HpðX ;Z2ÞnNm�p and this sequence is trivial. So we have

Jp;m�pðX Þ=Jp�1;m�pþ1ðXÞ ¼ HpðX ;Z2ÞnNm�p ([3]).

Let fcm; ig be an additive homogeneous basis for HmðX ;Z2Þ. Since the

homomorphism m : NmðXÞ ! HmðX ;Z2Þ defined by mð½M; f �Þ ¼ f�ðmMÞ is an

epimorphism, for each cm; i we can select a singular manifold ðMm
i ; fm; iÞ such that

fm; i� ðmMm
i
Þ ¼ cm; i. The set f½Mm

i ; fm; i�g is a homogeneous N-module basis for

N�ðX Þ. Let us consider the N-module isomorphism c : H�ðX ;Z2ÞnN! N�ðXÞ
defined by cðcm; i n 1Þ ¼ ½Mm

i ; fm; i�.
We can see Jp;m�pðXÞ as the image of

Pp
j¼0 HjðX ;Z2ÞnNm�j by the m-th

component of c. Then a general element of Jp;m�pðX Þ can be expressed asPp
j¼0

Pkj
i¼1½M

j
i �Q

m�j
i ; fj; i�, where fj; i is defined by the composite fj; i ¼ fj; i � p1,

with p1 : M j
i �Q

m�j
i !M

j
i the projection to the first factor, fj; i a map from Mi

j

into X chosen above, and Q
m�j
i a closed manifold of dimension m� j, given by

N-module structure of N�ðX Þ.
It follows from the proof of (17.1) Theorem in [3] that:
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Theorem 2.3. Jp;m�pðX Þ is the set made up of classes ½M; f � in NmðXÞ such
that for all a A H jðX ;Z2Þ and partition fi1 a � � �a isg of m� j with j > p, the

corresponding Whitney number of f , hwi1ðMÞ � � �wisðMÞ � f �ðaÞ; mMi, associated to

a is zero.

3. Proof of the Theorems

The map Ig : NmðNÞ ! Nmþk�nðNÞ is obtained from Im;k by considering

g : K ! N fixed.

The kernel of Ig contains Jn�k�1;mþk�nþ1ðNÞ, because for pþ q < n, Im;k

restricted to Jp;m�pðNÞ � Jq;k�qðNÞ is a trivial map.

It is not always true that kernel of Ig coincides with Jn�k�1;mþk�nþ1ðNÞ, as the

following example shows.

Example. Consider the embedding g ¼ i � Id : Sp � S1 ! Spþ1 � S1, pb 2,

where i : Sp ! Spþ1 is the inclusion map. Then we see that Ig : Npþ1ðSpþ1 � S1Þ
! NpðSpþ1 � S1Þ vanishes and satisfies Igð½Spþ1; f �Þ ¼ ½Sp; f � i�Þ ¼ 0, where

f : Spþ1 � fpointg ! Spþ1 � S1 is the inclusion, while ½Spþ1; f � does not belong

to J0;pþ1ðSpþ1 � S1Þ.

Let I pg : Jp;m�pðNÞ ! Jpþk�n;m�pðNÞ be the map Ig restricted to Jp;m�pðNÞ.
Then we have that

I pg

Xp
j¼0

Xkj
i¼1

½M j
i �Q

m�j
i ; fj; i�

 !
¼
Xp
j¼0

Xkj
i¼1

½V k�nþj
i �Q

m�j
i ; hk�nþj; i�;

where ½V k�nþj
i ; hk�nþj; i� ¼ Igð½M j

i ; fj; i�Þ:
We observe that I mg ¼ Ig, since Jm;0ðNÞ ¼ NmðNÞ and Jmþk�n;0ðNÞ ¼

Nmþk�nðNÞ.
Let us now consider the natural projection p i : Ji;m�iðNÞ ! Ji;m�iðNÞ=

Ji�1;m�iþ1ðNÞ ¼ E2
i;m�i ¼ HiðN;Z2ÞnNm�i and the map �ug : HiðN;Z2Þ !

Hiþk�nðN;Z2Þ defined by a � ug ¼ P:D:ðb ^ UgÞ, where ug ¼ g�ðmKÞ and b ¼
P:D:�1ðaÞ. We can see �ug as g�g!, where g! : HiðN;Z2Þ ! Hiþk�nðK ;Z2Þ is the

homology transfer homomorphism. In the same way the map ^Ug : H
n�iðN;Z2Þ

! H 2n�k�iðN;Z2Þ is equal to g!g�, where g! is the cohomology transfer homo-

morphism.

With these notations we have the following commutative diagrams for

0a iam.
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Hn�iðK ;Z2Þ ��������������!g!
H 2n�k�iðN;Z2Þ

P:D:

 
���

���
���

���
��

 
���

���
���

���
��

P:D:

Hk�nþiðK ;Z2Þ ��������������!
g�

Hk�nþiðN;Z2Þ

ð3:1Þ

��������! ��������!g � ^Ug

H n�iðN;Z2Þ???yP:D:

HiðN;Z2Þ

 ������
��

 ������
��

g! �ug

Ji;m�iðNÞ ���!I i
g

Jk�nþi;m�iðNÞ???yp i

???ypk�nþi

HiðN;Z2ÞnNm�i ���!�ugnId
Hk�nþiðN;Z2ÞnNm�i

ð3:2Þ

Proof of Theorem 1.1. Let us suppose that for 0a iamþ k � n,

g�ðwiðNÞÞ ¼ wiðKÞ and that ^Ug : H
iðN;Z2Þ ! Hiþn�kðN;Z2Þ is onto. Let

g A H jðN;Z2Þ, mb j > n� k � 1, be any class and let a A H j�nþkðN;Z2Þ be such

that a ^ Ug ¼ g.

Let us consider a partition fi1 a � � �a isg of m� j and let ½M; f � be a

class in the kernel of Ig. Then we have hwi1ðMÞ � � �wisðMÞ � f �ðgÞ; mMi ¼
hwi1ðMÞ � � �wisðMÞ � f �ða ^ UgÞ; mMi, which by Theorem 2.2 is equal to

hwi1ðVÞ � � �wisðVÞ � h�ðaÞ; mVi. Since ½V ; h� ¼ Igð½M; f �Þ ¼ 0, we get hwi1ðMÞ � � �
wisðMÞ � f �ðgÞ; mMi ¼ 0.

It follows from Theorem 2.3 that ½M; f � A Jn�k�1;mþk�nþ1ðNÞ and we con-

clude that ker Ig ¼ Jn�k�1;mþk�nþ1ðNÞ as stated.

We suppose next that �ug : HiðN;Z2Þ ! Hk�nþiðN;Z2Þ is a monomorphism

for n� k � 1 < iam. Let us show that ker I ig ¼ Jn�k�1;mþk�nþ1ðNÞ for n� k � 1

a iam by induction on i.

As the first step we observe that J�1;mþk�nþ1ðNÞ ¼ 0 and hence that

ker I n�k�1
g ¼ Jn�k�1;mþk�nþ1ðNÞ holds.

Then suppose that ker I ig ¼ Jn�k�1;mþk�nþ1ðNÞ for n� k � 1a i < m. By

recalling that a general element b of Jiþ1;m�i�1ðNÞ can be expressed as b ¼P iþ1
j¼0

Pkj
l¼1½M

j
l �Q

m�j
l ; fj; l �, we see that if such an element belongs to ker I iþ1

g ,

then it follows from diagram (3.2) that ð�ug n IdÞðp iþ1ðbÞÞ ¼ pk�nþiþ1ðI iþ1
g ðbÞÞ

¼ 0, or equivalently, ð�ug n IdÞðp iþ1ð
P i

j¼0

Pkj
l¼1½M

j
l �Q

m�j
l ; fj; l � þ

Pkiþ1

l¼1 ½Miþ1
l �

Qm�i�1
l ; fiþ1; l �ÞÞ ¼ ð�ug n IdÞð

Pkiþ1

l¼1 ½Miþ1
l �Qm�i�1

l ; fiþ1; l �Þ ¼ 0. Since �ug n Id is

a monomorphism, we have
Pkiþ1

l¼1 ½Miþ1
l �Qm�i�1

l ; fiþ1; l � ¼ 0.

177Remarks on the bordism intersection map



Since I ig is the restriction of I iþ1
g to Ji;m�iðNÞ, we have 0 ¼ I iþ1

g ðbÞ ¼
I iþ1
g ð

P i
j¼0

Pkj
l¼1½M

j
l �Q

m�j
l ; fj; l �Þ ¼ I igð

P i
j¼0

Pkj
l¼1½M

j
l �Q

m�j
l ; fj; l �Þ and by the

induction hypothesis we see that b is in Jn�k�1;mþk�nþ1ðNÞ. r

Proof of Theorem 1.2. Let us suppose that �ug : HiðN;Z2Þ ! Hk�nþiðN;Z2Þ
is an epimorphism for n� k � 1 < iam. To show that Ig is an epimorphism let

us show that I ig : Ji;m�iðNÞ ! Jiþk�n;m�iðNÞ is an epimorphism for n� k � 1

a iam by induction on i.

Let us observe that J�1;mþk�nþ1ðNÞ ¼ 0 and hence that I n�k�1
g is an epi-

morphism. Let us suppose that I i�1
g , n� k � 1 < iam, is an epimorphism. If y

is in Jiþk�n;m�iðNÞ then p iþk�nðyÞ ¼ yþ Jiþk�n�1;m�iþ1ðNÞ in Jiþk�n;m�iðNÞ=
Jiþk�n�1;m�iþ1ðNÞ ¼ Hiþk�nðN;Z2ÞnNm�i. Since �ug n Id : HiðN;Z2ÞnNm�i
! Hk�nþiðN;Z2ÞnNm�i is an epimorphism for n� k � 1 < iam, there

exists an l A Ji;m�iðNÞ such that ð�ug n IdÞðp iðlÞÞ ¼ yþ Jiþk�n�1;m�iþ1ðNÞ ¼
yþ I i�1

g ðJi�1;m�iþ1ðNÞÞ, the last equality following from the induction hy-

pothesis. We have p iþk�nðI igðlÞÞ ¼ ð�ug n IdÞðp iðlÞÞ, due to diagram (3.2). On the

other hand, we have p iþk�nðI igðlÞÞ ¼ I igðlÞ þ I i�1
g ðJi�1;m�iþ1ðNÞÞ. Then I igðlÞ � y A

I i�1
g ðJi�1;m�iþ1ðNÞÞ and I igðlÞ � y ¼ I i�1

g ðxÞ for some x A Ji�1;m�iþ1ðNÞ. Since I i�1
g

is the restriction of I ig to Ji�1;m�iþ1ðNÞ, we have that y ¼ I igðl � xÞ. Therefore, I ig
is an epimorphism. r

Proof of Theorem 1.3. If ^Ug is an epimorphism, then so is �ug n Id :

Hn�kðN;Z2ÞnNmþk�n ! H0ðN;Z2ÞnNmþk�n.

Considering diagram (3.2) for i ¼ n� k, we see that J0;mþk�nðNÞ is contained

in the image of Ig. r

4. Related Results

We present now some related results.

Theorem 4.1. The set of bordism classes of Cy maps f : M ! N such that

rank df ðxÞa p for all x is contained in Jp;m�pðNÞ, where M and N are smooth

closed manifolds of dimension m and n, respectively.

Proof. For every class a A Hn�jðN;Z2Þ there exists a singular manifold

ðK ; g 0Þ such that g 0�ðmKÞ ¼ a. By using l vector fields X1;X2; . . . ;Xl in N which

generate TyðNÞ for each y A N, we can construct a submersion, that is, a Cy-

map G : V � K ! N such that Gð0; xÞ ¼ g 0ðxÞ for all x A K and the di¤erential

dG is surjective at every point, where V is a su‰ciently small neighborhood of
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0 A R l . Then G � f : V � K �M ! N �N is transversal to the diagonal 4N of

N �N. Applying [4, Chap. 3, Theorem 2.7], we obtain a Cy map g : K ! N

homotopic to g 0 and transversal to f . Then for every pair ðx; yÞ with f ðxÞ ¼ gðyÞ
we have TgðyÞN ¼ df ðxÞTxM þ dgðyÞTyK .

Since rank df ðxÞa p for all x, we see that n ¼ dimðdf ðxÞTxM þ dgðyÞTyKÞ
a pþ n� j, which is an absurd if j > p.

We conclude that gðKÞHN � f ðMÞ if j > p, and so the map

Hn�jðN � f ðMÞ;Z2Þ ! Hn�jðN;Z2Þ induced by the inclusion of N � f ðMÞ in N

is onto.

Let us consider the following commutative diagram:

�HH jðN; f ðMÞ;Z2Þ ��! �HH jðN;Z2Þ ��!k � �HH jð f ðMÞ;Z2Þ ��!d �HH jþ1ðN; f ðMÞ;Z2Þ???y
???y

???y
???y

Hn� jðN � f ðMÞ;Z2Þ ��! Hn� jðN;Z2Þ ��! Hn� jðN;N � f ðMÞ;Z2Þ ��! Hn� j�1ðN � f ðMÞ;Z2Þ;

where the top horizontal line is the exact Cĕch cohomology sequence of the pair

ðN; f ðMÞÞ, the bottom horizontal line is the exact homology sequence of the pair

ðN;N � f ðMÞÞ, and the vertical arrows are either Poincaré duality or Alexander

duality and are isomorphisms.

It follows that k � ¼ 0 for j > p. Recalling that for manifolds the Cĕch

cohomology agrees with the usual cohomology, we have that f � : H jðN;Z2Þ !
H jðM;Z2Þ is a trivial map for j > p.

The result follows from Theorem 2.3. r

In fact, by using a result of [2], we can prove the following.

Theorem 4.2. The set of bordism classes of C r maps f : M ! N with

rbmaxf1; ðm� pÞ=ðsþ 1Þg, s and p being nonnegative integers such that

rank df ðxÞa p for all x is contained in Jpþs;m�p�sðNÞ, where M and N are smooth

closed manifolds of dimensions m and n, respectively.

Proof. Under the hypothesis we have from [2] that dim f ðMÞa pþ s.

Therefore, f � : H jðN;Z2Þ ! H jðM;Z2Þ is a trivial map for j > pþ s. Con-

sequently, the set of such bordism classes is contained in Jpþs;m�p�sðNÞ: r

As a last remark, we observe that: Given a codimension one submanifold K of

an n-dimensional manifold N with inclusion map g : K ! N, if g�ðmKÞ ¼ 0, then

Ig : NmðNÞ ! Nm�1ðNÞ is the trivial map.
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