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REMARKS ON THE BORDISM INTERSECTION MAP*

By
Carlos Biast and Alice K. M. LIBARDI

Abstract. In this paper we give a characterization of the kernel of
the bordism intersection map and we present some related results as
the following. The set of bordism classes of C* maps f: M — N
such that rank df (x) < p for all x is contained in J, ,,—,(N), where M
is a smooth closed manifold of dimension m, N is a smooth closed
manifold, df is the differential of f, J, ,,—,(N) is the image of the
homomorphism 7, : N,,(N?)) — 9N,,(N) induced by the inclusion,
0<p<m, and N?) is the p-skeleton of N.

1. Introduction

Let f: M — N and g: K — N be differentiable maps, where M and K are
smooth closed manifolds of dimensions m and k, respectively, and N is an n-
dimensional smooth closed manifold. Let us consider a C* map ¢: M x K —
N x N homotopic to f x g and transversal to the diagonal A = N x N and the
(m + k — n)-dimensional manifold ¥ = M x K obtained by V = ¢~'(A). We call
V the intersection manifold, and we define the intersection map % : V' — N by the
composite 1 = 7 o p o i, where i is the inclusion map from V' into M x K and 7,
is the projection of N x N onto the first factor.

Then we define the bordism intersection product I i : 9u(N) x R (N) —
Nosk—n(N) by L, x([M, f1,[K, g]) = [V, h], where N;(N) denotes the i-dimensional
unoriented bordism group of N([5]). It is known that this is well-defined.

The map 1, induces on 9t.(N) a product which, with the disjoint union,
makes 9, (N) a commutative ring. This product corresponds to a product in the
cobordism ring N*(N), up to duality, and was studied by Quillen ([5]).

In this paper we consider g : K — N fixed and then we give a characterization
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of the kernel of the map I, : M,,(N) — It,4k—n(N) obtained from I, .. We also
pay attention to the image of I,.

For any map f: M — N we denote by U, the Poincaré dual (P.D.) of
fi(uyy), where u,, is the fundamental class of M. In what follows we
shall consider the map -u,:H;(N,Z;) — Hiix—n(N,Z;) defined by «-u, =
P.D.(f— U,), where f is the dual class of o, and w; shall denote the i-th Stiefel-
Whitney class. We also denote by 7y, = 7y oi and ng = 7y o i, where 7y and 7,
are the projection maps from M x K onto M and K respectively.

Let J, . p(X) be the image of the map 4 : 9, (X)) — N, (X), 0<
p < m, induced by the inclusion in X of the p-skeleton X(?) of a finite CW-
complex X. Since 9i(J) =0, let us agree that J,,_,(X) =0 for p <O0. It is
known that J, ,,_,(X) does not depend on a particular cell decomposition of X

(3D)-

THEOREM 1.1.  The kernel of 1, coincides with Jy_j—_1 mik—nt1(N) if one of the
following conditions holds.

al) g*(wi(N)) = wi(K) in the range 0 <i <m+k —n and —U, : H(N,Z,)
— H™K(N,Z,) is onto in the same range.
a2) -uy : Hi(N,Z>) — Hy_y+i(N,Z5) is a monomorphism forn —k — 1 < i < m.

As an immediate consequence we observe that if K and N are manifolds
of the same dimension n, and if g: K — N satisfies g.(pg) = py, then I, is a
monomorphism.

The following gives examples in which the conditions in Theorem 1.1
are satisfied. Let us consider K= P"* N =P" and the inclusion map
g:P"* - P" where P” denotes the m-dimensional real projective space.
Then g.(upns) € Hya(P",Z>) is such that U, = P.D."'(g.(upns)) generates
H*(P",Z,) and g*(w;(P")) = w;(P"™*) for 0 <i<?2. If the dimension of the
manifold M is equal to 6 and n > 5, then we have that — U, : H'(P",Z,) —
H™4(P"Z,) is an epimorphism for i = 1,2. Thus, condition al) is satisfied in
this case. By considering K = P"~2 and N = P”, the above reasoning shows that
condition a2) is satisfied, whenever the dimension of the manifold M is equal to 3
and n > 3.

The following example shows that the conditions in Theorem 1.1 are
only sufficient ones. Consider the embedding ¢g: S' — T2 = S! x S! defined by
g(x) = (x,e). In this case, —U,: H*(T? Z,) — H'(T* Z) is not surjective,
but for I,:9(T?) — 94 (T?) we have ker I, = Jy»(T?). We observe that
g« Hi(T?,Z,y) — Hy(T? Z) is not injective.
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THEOREM 1.2. If uy: Hi(N,Z) — Hy_n1i(N,Zy) is an epimorphism for
n—k—1<i<m, then 1, is an epimorphism.

The following gives an example in which the condition in Theorem 1.2
is satisfied. Let us consider K= P"* N =P" and the inclusion map
g : P"* — P".If the dimension of the manifold M is m and m < n, then we have
that -u, : Hi(N,Z>) — H;_4(N,Z5) is an epimorphism for 3 <i < m.

Let us consider now the following problem. Let J and K be submanifolds
of M and N respectively, of the same codimension. Let vg and vy denote
the normal bundles to K and V in M and N respectively. Given a C* map
Sy V — K with fjvg = vy, under what conditions does there exist an extension
f:M — N of fy such that f is transversal to K and f~'(K)=V?

There are particular cases where it is possible to obtain such an extension
using obstruction theory. We shall deal with this problem in a forthcoming paper.

Let forg: Npik—n(N) — Npik—n be the forgetful map and let us take
Ig’ N (N) — Nyyg—n as the composite I{; = forgol,.

REMARKS. 1) If g : K — N is the inclusion map and if Ig’ is onto, then given
an (m+ k — n)-manifold V, there exists an (M', f’) € N, (N) such that [’ is
transversal to K and f'~'(K) is cobordant to V.

2) Let ¥V and K be submanifolds of M and N respectively, of the same
codimension. Given a C* map fy:V — K with fjvgk =vy, if [V] does not
belong to the image of /), where g : K — N is the inclusion map, then there does
not exist an extension f: M — N of fi such that f is transversal to K and
UK =V.

As forg restricted to Jo u4x—n(N) is surjective, we can say that I‘; is surjective,
if Jo mik—n(N) is contained in the image of I,.

THEOREM 1.3. Jo ik—n(N) is contained in the image of I, if the map
— U, : H*(N,Z,) — H"(N,Z,) is an epimorphism.

We give now an example where — U, : HX(N,Z,) — H"(N,Z,) is an epi-
morphism. Let N be a smooth connected n-dimensional manifold, which is the
total space of a fiber bundle over a smooth closed connected k-dimensional
manifold K and with fiber a smooth closed connected (n — k)-dimensional
manifold F. Suppose that there exists a section g: K — N. Since the class



174 Carlos Biast and Alice Kimie Miwa LIBARDI

in H, ;(N,Z,) given by the inclusion F < N intersects the section g,
— Uy, : H*(N,Z,) — H"(N,Z,) is an epimorphism.

2. Whitney Numbers of Intersection Maps

Given smooth maps f: M — N and g : K — N, where M and K are smooth
closed manifolds of dimensions m and k, respectively, and N is an n-dimensional
smooth closed manifold, we consider the intersection manifold ¥ and the inter-
section map /: V — N. We observe that /& is homotopic to both f oz, and
gomg, where my; =moi, ig =mp 01, and n; and m, are the projection maps
from M x K onto M and K respectively. We remark that whenever f is trans-
versal to g we can take ¢ = f x g. In this case / coincides with f o7y, and with
go k.

The following lemma is proved in [1].

Lemma 2.1.  Let (V,h) be obtained by the intersection of the maps f : M — N
and g: K — N. Then f*(Uy) = Uy, and g*(Uy) = Upy,.

ReMARK. If oe H" "(N,Z;) is any class, then <o h.(uy,)d =
o (f o mur) gty ) = S (@), marapty ) = (@), /5 (Uy) —~ ppg> = o= Uy, filpiar)?
= <O(a (Uf ~ Ug) - luN>

Since the intersection of the homology classes fi(uy,) and g.(ug), denoted
by fi(t) - 9+(pg), is given by P.D.(Uy — U,), we conclude that h.(uy,) =
Seltar) - 9+ (k) '

Let f: M — N be a map between closed manifolds and let « € H'(N,Z,)
be any cohomology class. For every partition {ij <i, <--- <i} of m—1i, the
number {w;, (M) -w; (M) - f*(a), iy > € Z3 is defined and is called the Whitney
number of f associated to «, where w;(M) is the i-th Stiefel-Whitney class of
M.

Let us consider the tangent vector bundles TN, TM and TK as well as
the respective vector bundles induced by /h, my and ng. We observe that
TV ® h*(IN) and =n},(TM) @ nj(TK) are equivalent vector bundles over V.
Therefore w(V)h*(w(N)) = nj;(w(M))nf(w(K)), where w denotes the total Stiefel-
Whitney class.

THEOREM 2.2. Let o€ H'(N,Z3) be any cohomology class and {i; < --- < i;}
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be a partition of m+k—n—i If g*(wi(N))=wi(K), 0<i<m+k—n, then
wiy (V) ---wif (V) - B (), sty > = Swig (M) === wi, (M) - f " (00— Uy), paag)-

Proor. We recall that / is homotopic to g o mg. Then using the hypothesis
and the remark above, we conclude that w;(V)=mn},(w;(M)) for 0<i<
m+k —n.

Consequently,

Swiy (V)= owi (V) - B (o), sy > = Sy (wiy (M) - wi (M) - 7 7 (a0), py
= <Wi1(M) e Wi.,\(M) 'f*(a)v UnM — :uM>

= i (M) ---wi (M) - [* (o0 = Uy)y iy O

REMARK. If g*(w;(N)) = wi(K) and f*(w;(N)) =w;(M), 0 <i<m+k—n,
then using Theorem 2.2 we have that: {wi(V)---wi (V) -h*(a),up) =
Wiy (N) - wi (N) o0 Up - Ug, iy -

Let X be a finite CW-complex and let us consider Lo Mn(XP)) = N, (X)
induced by the inclusion of the p-skeleton X») of X in X.

If J,;—p(X) is the image of /., 0 < p <m, then we have the filtration
Nu(X) =T o(X) 2 Jpo11(X) 2 -+ 2 Jom(X) 20.

The unoriented bordism spectral sequence associated to this filtration is
such that E; m—p = Hp(X,Z2) ® Ny, and this sequence is trivial. So we have
Tpm—p(X) [ Tp—t,m—p1(X) = Hp(X, Z2) @ Ry ([3]).

Let {c¢,;} be an additive homogeneous basis for H,(X,Z). Since the
homomorphism g : N,,(X) — H,(X,Z,) defined by u([M, f]) = fi(uy) is an
epimorphism, for each ¢, ; we can select a singular manifold (M, f,, ;) such that
fm_,,»*(yM‘_m) = Cm,;. The set {[M]", f,.i]} is a homogeneous 9-module basis for
9t.(X). Let us consider the 9t-module isomorphism V : H.(X,Z;) ® 9t — . (X)
defined by Y(cn; ® 1) = [M]", fin,il-

We can see J, ,—,(X) as the image of E” Hi(X,Z>) ® N,,—; by the m-th
component of . Then a general element of Jp,,, —p(X) can be expressed as

OZ, M < o, fi), where f;; is defined by the composite f;; = f; ;o m,
w1th s M} x Q"7 — M] the projection to the first factor, f;; a map from M/
into X chosen above, and Q" E
N-module structure of I, (X).

It follows from the proof of (17.1) Theorem in [3] that:

a closed manifold of dimension m — j, given by
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THEOREM 2.3.  J,, (X)) is the set made up of classes [M, f] in N, (X) such
that for all « e H/(X,Z,) and partition {iy < --- < i} of m— j with j> p, the
corresponding Whitney number of f, {wiy (M) ---wi, (M) - f*(a), par>, associated to

o IS zero.

3. Proof of the Theorems

The map I, : M,,(N) — Rypi—n(N) is obtained from I, , by considering
g: K — N fixed.

The kernel of I, contains Jy,_ix_i mek—n+1(N), because for p+gq <n, Lyx
restricted to Jp ,u—p(N) X Jy k—q(N) is a trivial map.

It is not always true that kernel of I, coincides with J,_x_1 mik—n+1(N), as the
following example shows.

ExaMpLE. Consider the embedding g =i x Id : S? x S' — SP*! x S p > 2,
where i : S” — SP*! is the inclusion map. Then we see that I, : 9,1 (SP™ x S1)
— N,(SPH! x S1) vanishes and satisfies I,([SP*!, f]) = [S?, foi]) =0, where
f: SP*x {point} — SPT! x S is the inclusion, while [SP*!) f] does not belong
to J01p+1(Sp+1 X Sl).

Let I/ 1 Jpm—p(N) = Jpik—nm—p(N) be the map I, restricted to Jp np(N).
Then we have that

ki

Iy”( (M x Q,‘"%J_",»,i]) =S D X 08 i,
=0 i=1

j=0 i=1

where [V ] = LMY, £;.1])-

We observe that 1" =1, since  Jy o(N) = N(N) and  Jyikno(N) =
Noik—n(N).

Let us now consider the natural projection 7' :J;i(N)— Jim—i(N)/
Jitm-inn(N) =E}, ;= Hi(N,Zy) ®WN,,; and the map -u,:H;(N,Zy)—
Hix_y(N,Z;) defined by o-u,=P.D.(f— U,), where u; =g.(ug) and f=
P.D.7'(x). We can see -u; as g.g1, where g : Hi(N,Zy) — H;yyn(K,Z5) is the
homology transfer homomorphism. In the same way the map — U, : H" (N, Z,)
— H**I(N,Z,) is equal to g'g*, where ¢' is the cohomology transfer homo-
morphism.

With these notations we have the following commutative diagrams for
0<i<m.
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g!

ani(K’ZZ) HZ"*"*i(N,Zz)
g* i ~ Uy
anl(N’ Z2)
P.D. lP.D- P.D. (3.1)
Hi(N7 ZZ)
/ \
Hy yii(K, Zs) Hy_i(N,Zy)

9+

I
Ji7111—i(N) —/> Jk—n-H,m—i(N)

l l, (3.2)

uy®1Id
Hi(N7 ZZ) ® gtmfi — Hk—n+i(N7 ZZ) ® 9,tmfi

ProoF OF THEOREM 1.1. Let us suppose that for 0 <i<m+k—n,
g*(wi(N)) =wi(K) and that —U,: H'(N,Zy) — H*"K(N,Z,) is onto. Let
y€ H/(N,Zy), m>j>n—k—1, be any class and let « € H/~"**(N, Z,) be such
that o — U, = 7.

Let us consider a partition {ij <---<i} of m—j and let [M,f] be a
class in the kernel of ;. Then we have {w;,(M)---wi(M)-f*(),uy> =
wiy (M) ---wi (M) - f*(o— Uy), >, which by Theorem 2.2 is equal to
(V)i (V) - (3), iy . Since [V, ] = (M, f]) =0, we get Cwy (M) -
wi, (M) - f*(7), sa> = 0.

It follows from Theorem 2.3 that [M, f] € Jy—k—1 mik-n+1(N) and we con-
clude that ker I, = Jy—i—1, mik—n+1(N) as stated.

We suppose next that -u, : Hi(N,Z>) — Hi_,4i(N,Z) is a monomorphism
for n —k — 1 <i<m. Let us show that ker Igi = Jnk—t.mik-ns1(N) forn—k — 1
< i< m by induction on i.

As the first step we observe that J_j ,ix—nt1(V) =0 and hence that
ker ]gn_k_l = Jn—k—l,m+k—n+1(N) holds.

Then suppose that ker Igi = Ju—k—t.mik-nt1(N) for n—k—1<i<m. By
recalling that a general element f of Jiij ,—i—1(N) can be expressed as ff =
Z/’ié oM o f.1], we see that if such an element belongs to ker [/*!,
then it follows from diagram (3.2) that (-u, ® Id)(z"*'(p)) = 21T (B))
=0, or equivalently, (u, ® Id)(w™*' (X S0 [M] x Q7 71+ S0 [Mj*!
01, Fror ) =ty ® I)(SFA M QP11 1,y 1) = 0. Since -y ® Id s
a monomorphism, we have > [M/*! x @y~ £ 1 =0.
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Since I/ is the restriction of I/*' to J;,(N), we have 0=I"'(f)=
_ ) . ; S 9 s A C e
IglJrl(Zj:oZ[:l[M/j x Q)" ’,J‘},/])ZIJ(Z,:()Z;:JM/ x Q) j,ﬁ,l]) and by the
induction hypothesis we see that f is in Jy_—1, mtk—nt+1(NV). O

ProoF OF THEOREM 1.2.  Let us suppose that -u, : H;(N,Z>) — Hy_p4i(N,Z>)
is an epimorphism for n —k — 1 < i < m. To show that [, is an epimorphism let
us show that I/ :J; i(N) = Jiyknmi(N) is an epimorphism for n—k —1
< i < m by induction on i.

Let us observe that J_ i s ni1(N) =0 and hence that Ig”"“l is an epi-
morphism. Let us suppose that Igi‘l, n—k—1<i<m, is an epimorphism. If y
is in Jikonmoi(N) then n™*"(p) = y+ Tyt mirt(N) in Jipgopmei(N)/
Ji+k7n71,mfi+1 (N) = HH/C,,,(N, Zz) &® iﬁm,i. Since Uy ® Id : H,'(N, Zz) X ‘Jlm,,»
— Hipii(N,Zy) ® N,,—; is an epimorphism for n—k—1<i<m, there
exists an /€J;,,—;(N) such that (u, ®Id)(z'(])) =y + Jiskn-t,m-i1(N) =
y+ I;’l(J,‘_lﬁm_iH(N )), the last equality following from the induction hy-
pothesis. We have n"™*(I/(l)) = (-uy ® Id)(n'(l)), due to diagram (3.2). On the
other hand, we have 7"™*"(1i(1)) = IJ(I) + I/"" (Ji-1.m—i11(N)). Then Ii(l) — y €
IJ‘I(JI-,L,,,,,-H(N)) and I)(l) — y = Iéj“(x) for some x € J;_1 _i+1(N). Since Ig"‘1
is the restriction of Ig" to Ji-1.m-i+1(N), we have that y = I;(Z — x). Therefore, I;
is an epimorphism. O

Proor oF THEOREM 1.3. If — U, is an epimorphism, then so is -u, ® Id :
H, «(N,Z3) @ Wpsk—n — Ho(N,Z2) @ Nopik—n-

Considering diagram (3.2) for i = n — k, we see that Jy ,1x—,(N) is contained
in the image of I,. O

4. Related Results

We present now some related results.

THEOREM 4.1. The set of bordism classes of C* maps f: M — N such that
rank df (x) < p for all x is contained in Jy, ,,—,(N), where M and N are smooth
closed manifolds of dimension m and n, respectively.

Proor. For every class o€ H, j(N,Z,) there exists a singular manifold
(K,g') such that g/(ux) = o. By using / vector fields Xi, X3,...,X; in N which
generate 7,(N) for each y € N, we can construct a submersion, that is, a C*-
map G: ¥V x K — N such that G(0,x) = ¢g’(x) for all xe K and the differential
dG is surjective at every point, where V' is a sufficiently small neighborhood of
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0eR’'.Then Gx f:V xKx M — N x N is transversal to the diagonal Ay of
N x N. Applying [4, Chap. 3, Theorem 2.7], we obtain a C* map g: K — N
homotopic to ¢’ and transversal to f. Then for every pair (x, y) with f(x) = g(»)
we have Ty\N = df (x)T M +dg(y)T,K.

Since rank df (x) < p for all x, we see that n = dim(df (x)T M +dg(y)T,K)
< p+n—j, which is an absurd if j> p.

We conclude that ¢g(K)=N-—f(M) if j>p, and so the map
H, (N — f(M),Z,) — H,_;j(N,Z>) induced by the inclusion of N — f(M) in N
is onto.

Let us consider the following commutative diagram:

HI(N,f(M),Z,) — H/(N,Zy) 2~ HI(f(M),Z)) - H(N,f(M),Z,)

J J J |

Hn—j(N_f(M)=Z2) — Hn—j(N7Z2) — Hn—j(NvN_f(M)7Z2) — Hl1—j—l(N_f(M)7Z2)7

where the top horizontal line is the exact Céch cohomology sequence of the pair
(N, f(M)), the bottom horizontal line is the exact homology sequence of the pair
(N,N — f(M)), and the vertical arrows are either Poincaré duality or Alexander
duality and are isomorphisms.

It follows that k* =0 for j > p. Recalling that for manifolds the Céch
cohomology agrees with the usual cohomology, we have that f*: H/(N,Z;) —
H/(M,Z,) is a trivial map for j > p.

The result follows from Theorem 2.3. O

In fact, by using a result of [2], we can prove the following.

THEOREM 4.2. The set of bordism classes of C" maps f: M — N with
r>max{l,(m—p)/(s+ 1)}, s and p being nonnegative integers such that
rank df (x) < p for all x is contained in Jy s m—p—s(N), where M and N are smooth
closed manifolds of dimensions m and n, respectively.

ProoF. Under the hypothesis we have from [2] that dim f(M) < p + .
Therefore, f*: H/(N,Z;) — H/(M,Z;) is a trivial map for j > p+s. Con-
sequently, the set of such bordism classes is contained in J, s mu—p—s(N). O

As a last remark, we observe that: Given a codimension one submanifold K of
an n-dimensional manifold N with inclusion map g: K — N, if g.(ux) =0, then
I : 9, (N) — N1 (N) is the trivial map.
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