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ON THE GAUSS MAP OF $B$-SCROLLS

By

Luis J. AL\’IAS, Angel FERR\’ANDEZ, Pascual LUCAS
and Miguel A. MERO\~NO

Absffact. B-scrolls over null curves in the 3-dimensional Lorentz-
Minkowski space $L^{3}$ are characterized as the only ruled surfaces with
null rulings whose Gauss map satisfies the condition $\Delta G=\Lambda G,$ $\Lambda$

being an endomorphism of $L^{3}$ . This note completes the classification
of such surfaces given by S. M. Choi in Tsukuba J. Math. 19 (1995),

285-304.

1. Introduction

Let $M$ be a connected surface in Euclidean 3-space $R^{3}$ and let $ G:M\rightarrow$

$S^{2}\subset R^{3}$ be its Gauss map. It is well known (see [9]) that $M$ has constant mean
curvature if and only if $\Delta G=\Vert dG\Vert^{2}G,$ $\Delta$ being the Laplace operator on $M$

corresponding to the induced metric on $M$ from $R^{3}$ . As a special case one can
consider Euclidean surfaces whose Gauss map is an eigenfunction of the Lap-
lacian, i.e., $\Delta G=\lambda G,$ $\lambda\in R$ . In [3], C. Baikoussis and D. E. Blair asked for ruled
surfaces in $R^{3}$ whose Gauss map satisfies $\Delta G=\Lambda G$, where $\Lambda$ stands for an
endomorphism of $R^{3}$ . They showed that the only ones are planes and circular
cylinders. Recently, S. M. Choi in [5], investigates the Lorentz version of the
above result and she essentially obtains the same result. Namely, the only mled
surfaces in $L^{3}$ whose Gauss map satisfies $\Delta G=\Lambda G$ are the planes $R^{2}$ and $L^{2}$ , as
well as the cylinders $S_{1}^{1}\times R^{1},$ $R_{1}^{1}\times S^{1}$ and $H^{1}\times R^{1}$ .

It should be pointed out that all surfaces obtained above have diagonalizable
shape operator. However, it is well known that a self-adjoint linear operator on a
2-dimensional Lorentz vector space has a matrix of exactly three types, two of
them being non-diagonalizable. This makes a chief difference with regard to the
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Riemannian submanifolds that has been greatly exploited (see, for example, [1],
[2] and [7]). To illustrate the current situation, we bring here the famous example
of L. K. Graves (see [8]), the so called B-scroll. This is a surface which can be
parametrized as a “ruled surface” in $L^{3}$ with null directrix curve and null mlings,
i.e., $X(s, t)=x(s)+tB(s),$ $x(s)$ being a null curve and $B(s)$ a null vector field
along $x(s)$ satisfying $\langle x^{\prime}, B\rangle=-1$ .

The main purpose of this short note is to complete Choi’s classification of
mled surfaces in $L^{3}$ whose Gauss map satisfies the condition $\Delta G=\Lambda G$ . Actually,
we will show that B-scrolls over null curves are the only mled surfaces in $L^{3}$ with
null mlings satisfying the above condition.

We would like to thank to the referee for bringing to our attention the
preprint [6], where some related topics are considered.

2. Setup

Let $x:I\subset R\rightarrow L^{3}$ be a regular curve in $L^{3}$ and $B:I\subset R\rightarrow L^{3}$ a vector
field along $x$ . Consider the mled surface parametrized by $X(s, t)=x(s)+tB(s)$ .
Let us write down, as usually, $X_{s}:=\partial X/\partial s=x^{\prime}+tB^{\prime}$ and $X_{l}:=\partial X/\partial t=B$ .
Observe that, at $t=0,$ $X_{s}(s, 0)=x^{\prime}(s)$ and $X_{t}(s, 0)=B(s)$ . Then $X(s, t)$ is a
regular surface in $L^{3}$ provided that the plane $\Pi=span\{x^{\prime},B\}$ is non degenerate
in $L^{3}$ . In fact, the matrix of the metric of $X(s, t)$ is given by

$g(s, t)=(^{\langle x^{\prime},x^{\prime}\rangle+,2t\langle x^{\prime},B^{\prime}\rangle+t}\langle x, B\rangle+t\langle B, B^{2}\rangle^{\langle B^{\prime},B^{\prime}\rangle}$ $\langle x^{\prime}, B_{\langle B,B\rangle}\rangle+t\langle B^{\prime}, B\rangle$ ,

so that when the plane $\Pi$ is spacelike (respectively, timelike) $X(s, t)$ parametrizes
a spacelike surface (respectively, timelike surface) on the domain

{ $(s,$ $t)\in I\times R:\det g(s,$ $t)>0$ (respectively, $\det g(s,$ $t)<0)$ }.

According to the causal character of $x$
‘ and $B$, there are four possibilities:

(1) $x^{\prime}$ and $B$ are non-null and linearly independent.
(2) $x^{\prime}$ is null and $B$ is non-null with $\langle x^{\prime}, B\rangle\neq 0$ .
(3) $x^{\prime}$ is non-null and $B$ is null with $\langle x^{\prime},B\rangle\neq 0$ .
(4) $x^{\prime}$ and $B$ are null with $\langle x^{\prime}, B\rangle\neq 0$ .
Let us first see that, with an appropiate change of the curve $x$, cases (2) and

(3) can be locally reduced to (1) and (4), respectively. Let $X(s, t)$ be in case (2).
Reparametrizing the null curve $x$ and normalizing the mlings $B$ if necessary, we
may assume that

$\langle B, B\rangle=\epsilon=\pm 1$ , and $\langle x^{\prime}, B\rangle=-1$ ,
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so that

(2.1) $g(s, t)=\det g(s, t)=\epsilon(2t\langle x^{\prime}, B^{\prime}\rangle+t^{2}\langle B^{\prime}, B^{\prime}\rangle)-1<0$ .

We are looking for a curve $\gamma(s)=x(s)+t(s)B(s)$ in the surface with $\langle\gamma^{\prime}, \gamma^{\prime}\rangle=\epsilon$

and such that $\gamma^{\prime}$ and $B$ are linearly independent. Writing $\gamma^{\prime}=x^{\prime}+t^{\prime}B+tB^{\prime}$ , the
condition $\langle\gamma^{\prime}, \gamma^{\prime}\rangle=\epsilon$ is equivalent to the following differential equation for
$t=t(s)$

(2.2) $(t^{\prime})^{2}-2\epsilon t^{\prime}+g(s, t)=0$ .

From (2.1) the discriminant of (2.2) is positive and we can locally integrate (2.2)

to obtain $t$ . Besides, $\gamma^{\prime}$ and $B$ are linearly independent because $\langle\gamma^{\prime}, \gamma^{\prime}\rangle=\langle B,B\rangle=$

$\epsilon$ and $\langle\gamma^{\prime}, B\rangle=-1+t^{\prime}\epsilon\neq\pm\epsilon$ due to (2.2). This shows that $X(s, t)$ can be
reparametrized as in case (1) taking $\gamma$ as the directrix curve. On the other hand, if
$X(s, t)$ is in case (3), reparametrizing the null curve $x$ and normalizing the mlings
$B$ if necessary, we may assume that

$\langle x^{\prime},x^{\prime}\rangle=\epsilon=\pm 1$ , and $\langle x^{\prime}, B\rangle=-1$ .

We are now looking for a curve $\gamma(s)=x(s)+t(s)B(s)$ in the surface with
$\langle\gamma^{\prime}, \gamma^{\prime}\rangle=0$ and $\langle\gamma^{\prime}, B\rangle\neq 0$ . Writing $\gamma^{\prime}=x^{\prime}+t^{\prime}B+tB^{\prime}$ , the condition $\langle\gamma^{\prime}, \gamma^{\prime}\rangle=0$

now becomes

(2.3) $ 2t^{\prime}=\epsilon+2t\langle x^{\prime}, B^{\prime}\rangle+t^{2}\langle B^{\prime}, B^{\prime}\rangle$ .

Equation (2.3) can be locally integrated to obtain $t$ . Moreover, $\langle\gamma^{\prime}, B\rangle=$

$\langle x^{\prime}, B\rangle\neq 0$ . Thus, using the curve $\gamma$ as the directrix, $X(s, t)$ can be reparametrized
as in case (4).

Since case (1) has been discussed in [5], we will pay attention to the latter
one which we aim to characterize in terms of the Laplacian of its Gauss map.
Therefore, let $M$ be a mled surface in $L^{3}$ parametrized by $X(s, t)=x(s)+tB(s)$ ,
where the directrix $x(s)$ , as well as the mlings $B(s)$ , are null. Furthermore, and
without loss of generality, we may assume $\langle x^{\prime}, B\rangle=-1$ . First of all, we will do a
detailed study of this kind of surfaces.

The matrix of the metric on $M$ writes, with respect to coordinates $(s, t)$ , as
follows

$\left(\begin{array}{l}2t\langle x^{/},B^{/}\rangle+t^{2}\langle B^{/},B^{/}\rangle -1\\0-1\end{array}\right)$ .
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In terms of local coordinates $(y1, \ldots,y_{n})$ , the Laplacian $\Delta$ of a manifold is
defined by (see [4, p. 100])

$\Delta=-\frac{1}{\sqrt{|g|}}\sum_{i,j}\frac{\partial}{\partial y_{i}}(gg^{ij}\frac{\partial}{\partial y_{j}})$ ,

where $g=det(g_{ij})$ and $(g_{ij})$ denotes the components of the metric with respect to
$(y_{1}, \ldots,y_{n})$ . Then the Laplacian on the surface $M$ is nothing but

$\Delta=-2\frac{\partial^{2}}{\partial s\partial t}-2\{\langle x^{\prime}, B^{\prime}\rangle+t\langle B^{\prime}, B^{\prime}\rangle\}\frac{\partial}{\partial t}-\{2t\langle x^{\prime}, B^{\prime}\rangle+t^{2}\langle B^{\prime}, B^{\prime}\rangle\}\frac{\partial^{2}}{\partial t^{2}}$ .

Now we will recall the notion of cross product in $L^{3}$ . There is a natural
orientation in $L^{3}$ defined as follows: an ordered basis {X, $Y,$ $Z$} in $L^{3}$ is positively
oriented if $\det[XYZ]>0$ , where [XYZ] is the matrix with $X,$ $Y,$ $Z$ as row vectors.
Now let $\omega$ be the volume element on $L^{3}$ defined by $\omega(X, Y, Z)=\det[XYZ]$ . Then
given $X,$ $Y\in L^{3}$ , the cross product $X\times Y$ is the umique vector in $L^{3}$ such that
$\langle X\times Y, Z\rangle=\omega(X, Y, Z)$ , for any $Z\in L^{3}$ .

Then the Gauss map can be directly obtained from $X_{s}\times X_{t}$ getting

$G(s, t)=x^{\prime}(s)\times B(s)+tB^{\prime}(s)\times B(s)$ .

By putting $C=x^{\prime}\times B$, then $\{x^{\prime}, B, C\}$ is a frame field along $x$ of $L^{3}$ . In this
frame, we easily see that $B^{\prime}\times B=-JB,$ $f$ being the function defined by
$ f=\langle x^{\prime}, B^{\prime}\times B\rangle$ . Thus

(2.4) $G(s, t)=-tf(s)B(s)+C(s)$ .

Also, and for later use, we find out that

(2.5) $B^{\prime}=-\langle x^{\prime}, B^{\prime}\rangle B-fC$

and

(2.6) $C’=-fx^{\prime}-\langle x^{\prime},x^{\prime\prime}\times B\rangle B$ .

As for the shape operator $S$ we have that

(2.7) $G_{t}$ $:=\frac{\partial G}{\partial t}=B^{\prime}\times B=-jB=-JX_{t}$

and

(2.8) $G_{s}$ $:=\frac{\partial G}{\partial s}=-(\langle x^{\prime},x^{\prime\prime}\times B\rangle+\iota f^{\prime})X_{t}-fX_{s}$ .
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So $S$ writes down as

$\left(\begin{array}{lll} & f & 0\\tf^{\prime} & +\langle x,x^{//}\times B\rangle & f\end{array}\right)$ .

A straightforward computation yields

(2.9) $\Delta G=2\{f^{\prime}+tf\langle B^{\prime}, B^{\prime}\rangle\}B-2f^{2}C$ .

We now present a very typical example.

EXAMPLE. Let $x(s)$ be a null curve in $L^{3}$ with Cartan frame $\{A, B, C\}$ , i.e.,
$A,$ $B,$ $C$ are vector fields along $x$ in $L^{3}$ satisfying the following conditions:

$\langle A,A\rangle=\langle B, B\rangle=0$ , $\langle A, B\rangle=-1$ ,

$\langle A, C\rangle=\langle B, C\rangle=0$ , $\langle C, C\rangle=1$ ,

and

$x^{\prime}=A$ ,

$C^{\prime}=-aA-\kappa(s)B$ ,

$a$ being a constant and $\kappa(s)$ a function vanishing nowhere. Then the map

$X$ : $L^{2}\rightarrow L^{3}$

$(s, t)\rightarrow x(s)+tB(s)$

defines a Lorentz surface $M$ in $L^{3}$ that L. K. Graves [8] called a B-scroll. lt is not
difficult to see that a unit normal vector field is given by

$G(s, t)=-atB(s)+C(s)$ ,

and the shape operator writes down, relative to the usual frame $\{\partial X/\partial s, \partial X/\partial t\}$ ,

as

$S=\left(\begin{array}{ll}a & 0\\k(s) & a\end{array}\right)$ .

Thus the B-scroll has non-diagonalizable shape operator with minimal polynomial
$P_{S}(u)=(u-a)^{2}$ . It has constant mean curvature $\alpha=a$ and constant Gaussian
curvature $K=a^{2}$ and satisfies $\Delta G=\lambda G$, where $\lambda=2a^{2}$ .
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3. Main results

It seems natural to state the following problem: is a B-scroll the only ruled
surface in $L^{3}$ with null rulings satisfying the equation $\Delta G=\Lambda G$ ?

Then our major result states as follows.

THEOREM 1. B-scrolls over null curves are the only ruled surfaces in $L^{3}$ with
null rulings satisfying the equation $\Delta G=\Lambda G$ .

From here and Choi’s result we have got the complete classification of mled
surfaces in the 3-dimensional Lorentz-Minkowski space whose Gauss map sat-
isfies $\Delta G=\Lambda G$ .

COROLLARY 2. A ruled surface $M$ in $L^{3}$ satisfies the equation $\Delta G=\Lambda G$ if
and only $\iota fM$ is one of the following surfaces:

(1) $R^{2},$ $L^{2}$ and the cylinders $S_{1}^{1}\times R^{1},$ $R_{1}^{1}\times S^{1}$ and $H^{1}\times R^{1}$ ;
(2) a B-scroll over a null curve.

PROOF OF THE THEOREM. Suppose that the Gauss map of $M$ satisfies the
equation $\Delta G=\Lambda G$ . From Choi’s result we may suppose that $M$ has null mlings,
so we only have to study the case (4). We are going to show that the func-
tion $ f=\langle x^{\prime}, B^{\prime}\times B\rangle$ is constant or, equivalently, that the open set $\mathscr{U}=$

$\{s\in I:f(s)f^{\prime}(s)\neq 0\}$ is empty. 0therwise, for $s\in \mathscr{U}$ , differentiating with respect
to $t$ in $\Delta G=\Lambda G$ , we have

(3.10) $2f\langle B^{\prime}, B^{\prime}\rangle B=-f\Lambda B$ ,

where we have used equations (2.4), (2.7) and (2.9). By (2.5) we obtain
$\langle B^{\prime}, B^{\prime}\rangle=f^{2}$ , so that from (3.10) we see that $-2f^{2}$ is an eigenvalue of $\Lambda$, unless
$f=0$ . Then $f$ is a constant function, which is a contradiction that finishes the
proof.
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