A GAMMA RING WITH MINIMUM CONDITIONS

By

Shoji Kyuno

Abstract. The aim of this note is to study the structure of a Γ -ring (not in the sense of Nobusawa) with minimum conditions. By ring theoretical techniques, we obtain various properties on the semi-prime Γ -ring and generalize Nobusawa's result which corresponds to the Wedderburn-Artin Theorem in ring theory. Using these results, we have that a Γ -ring with minimum right and left conditions is homomorphic onto the Γ_0 -ring $\sum_{i=1}^q D_{n(i), m(i)}^{(i)}$, where $D_{n(i), m(i)}^{(i)}$ is the additive abelian group of the all rectangular matrices of type $n(i) \times m(i)$ over some division ring $D^{(i)}$, and Γ_0 is a subdirect sum of the Γ_i , $1 \le i \le q$, which is a non-zero subgroup of $D_{m(i), n(i)}^{(i)}$ of type $m(i) \times n(i)$ over $D^{(i)}$.

1. Introduction.

Nobusawa [8] introduced the notion of a Γ -ring M as follows: Let M and Γ be additive abelian groups. If for all $a, b, c \in M$ and $\alpha, \beta, \gamma \in \Gamma$, the conditions

- N₁. $a\alpha b \in M$, $\alpha a\beta \in \Gamma$
- N₂. $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha+\beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$
- N₃. $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$
- N₄. $x\gamma y=0$ for all x, $y \in M$ implies $\gamma=0$,

are satisfied, then M is called a Γ -ring.

Barnes [1] weakened slightly defining conditions and gave the definition as follows:

If these conditions are weakened to

B₁. $a\alpha b \in M$ B₂. same as N₂

B₃. $(a\alpha b)\beta c = a\alpha (b\beta c)$,

then M is called a Γ -ring.

AMS (MOS) subject classifications (1970). Primary 16A78, 16A48, 16A46 and 16A12. Received July 30, 1980.

In this paper, the former is called a Γ -ring in the sense of Nobusawa and the latter merely a Γ -ring.

Nobusawa [8] determined the structures of simple and semi-simple Γ -rings in the sense of Nobusawa with minimum right and left conditions as follows:

Using the notation introduced in [5], when M is simple, as a ring,

$$\begin{pmatrix} R & \Gamma \\ M & L \end{pmatrix} \cong \begin{pmatrix} D_m & D_{m,n} \\ D_{n,m} & D_n \end{pmatrix}$$

where D is a division ring ([8] Theorem 2); when M is semi-simple, as a ring,

$$\begin{pmatrix} R & \Gamma \\ M & L \end{pmatrix} \cong \sum_{i=1}^{q} \begin{pmatrix} D_{m(i)}^{(i)} & D_{m(i), n(i)}^{(i)} \\ D_{n(i), m(i)}^{(i)} & D_{n(i)}^{(i)} \end{pmatrix}$$

where $D^{(i)}$, $1 \leq i \leq q$, are division rings ([8] Theorem 3).

Nobusawa's definitions are in the following: M is simple if $a\Gamma b=0$ implies a=0 or b=0; M is semi-simple if $a\Gamma a=0$ implies a=0.

In [2], we defined that a Γ -ring M is prime if for any ideal A and B of M, $A\Gamma B=0$ implies A=0 or B=0; a Γ -ring M is semi-prime if for any ideal A of M, $A\Gamma A=0$ implies A=0.

When M is a Γ -ring in the sense of Nobusawa, one can easily verify that M is prime if and only if $a\Gamma b=0$ implies a=0 or b=0; M is semi-prime if and only if $a\Gamma a=0$ implies a=0 ([1] Theorem 5). Thus, when M is a Γ -ring in the sense of Nobusawa, Nobusawa's terms 'simple' or 'semi-simple' are equivalent to our 'prime' or 'semi-prime' respectively.

However, when M is a Γ -ring (not in the sense of Nobusawa), they are quite different notations. Following Luh [7] we call a Γ -ring M is completely prime if $a\Gamma b=0$ implies a=0 or b=0; M is completely semi-prime if $a\Gamma a=0$ implies a=0. Then, the primeness cannot imply the completely primeness, even for a finite Γ -ring ([7] Example 3.1). The semi-prime Γ -ring is one without non-zero strongly-nilpotent ideal (Theorem 2.10 below), while the completely semi-prime Γ -ring is one without non-zero strongly-nilpotent element (Definition 2.2). The gap between the primeness and completely primeness are caused by lack of a multiplication: $\Gamma \times M \times \Gamma \rightarrow \Gamma$. In the following we do not treat completely prime Γ -rings nor completely semi-prime ones, but prime and semi-prime Γ -rings.

Also, it should be noticed that a semi-prime Γ -ring with minimum right condition cannot always have the minimum left condition, nor dim $(_LM)$ can be equal to dim (M_R) even if it has both minimum right and left conditions, while a semi-prime ring R (an ordinary ring) with minimum right condition has the minimum left condition, and $\dim(_{\mathbb{R}}\mathbb{R}) = \dim(\mathbb{R}_{\mathbb{R}})$ (The comments followed Theorem 3.23).

The main aims of this paper are to study the structure of the semi-prime Γ -ring with minimum right condition and to generalize Nobusawa's results to the prime and semi-prime Γ -rings with minimum conditions and to determine the structure of the Γ -ring with minimum conditions.

Using ring theoretical techniques, we obtain various fundamental results on Γ -rings with minimum right condition. Then, using these results, we have the analogues of the Wedderburn-Artin Theorem for simple (Definition 3.9 and Theorem 3.15 below) and semi-prime Γ -rings with minimum right and left conditions. Also, these converses are considered. Nobusawa's results are obtained as corollaries of our theorems. Consequently, the structure of a Γ -ring with minimum right and left conditions is determined.

For the following notions we refer to [2]: the right operator ring R, the left operator ring L, a right (left, two-sided) ideal of M, a principal ideal $\langle a \rangle$, $[N, \Phi]$, where $N \subseteq M$ and $\Phi \subseteq \Gamma$, but for the prime radical $\mathcal{P}(M)$, a residue class Γ -ring, and the natural homomorphism to [3].

2. Strongly-nilpotent ideals.

DEFINITION 2.1. Let M be a Γ -ring and L be the left operator ring. Let S be a non-empty subset of M and denote $S_l = \{a \in L \mid aS = 0\}$. Then S_l is a left ideal of L, called an *annihilator left ideal*. Let T be a non-empty subset of L and denote $T_r = \{x \in M \mid Tx = 0\}$. Then T_r is a right ideal of M, called an *annihilator right ideal*. For singleton subsets we abbreviate this notation, for example, $\{a\}_r = a_r$, where a is an element of L.

DEFINITION 2.2. An element x of a Γ -ring M is nilpotent if for any $\gamma \in \Gamma$ there exists a positive integer $n=n(\gamma)$ such that $(x\gamma)^n x=(x\gamma)(x\gamma)\cdots(x\gamma)x=0$. A subset S of M is nil if each element of S is nilpotent. An element x of a Γ -ring M is strongly-nilpotent if there exists a positive integer n such that $(x\Gamma)^n x=(x\Gamma x\Gamma \cdots x\Gamma)x=0$. A subset of M is strongly-nil if each its element is stronglynilpotent. S is strongly-nilpotent if there exists a positive integer n such that $(S\Gamma)^n S=(S\Gamma S\Gamma \cdots S\Gamma)S=0$.

By definitions for a subset S of M we have the following diagram of implication:

S is strongly-nilpotent. \Rightarrow S is strongly-nil. \Rightarrow S is nil.

Shoji Kyuno

LEMMA 2.3. The sum of a finite number of strongly-nilpotent right (left) ideals of a Γ -ring M is a strongly-nilpotent right (left) ideal.

PROOF. The proof needs only be given for two strongly-nilpotent right ideals A, B. Suppose $(A\Gamma)^m A = (B\Gamma)^n B = 0$. Now we have $((A+B)\Gamma)^{m+n+1}(A+B) = (A+B)\Gamma(A+B)\Gamma\cdots\Gamma(A+B)$, with m+n+2 brackets, so that $((A+B)\Gamma)^{m+n+1}(A+B)$ is a sum of terms, each consisting of m+n+2 factors which are either A or B. Such a term T contains either m+1 factors A or n+1 factors B. In the former case, $T \subseteq (A\Gamma)^m A$ or $T \subseteq M\Gamma(A\Gamma)^m A$, because A is a right ideal; in the latter case, $T \subseteq M\Gamma(B\Gamma)^n B$ or $T \subseteq (B\Gamma)^n B$. Thus, $((A+B)\Gamma)^{m+n+1}(A+B)=0$ and A+B is strongly-nilpotent.

COROLLARY 2.4. The sum of any set of strongly-nilpotent right (left) ideals of a Γ -ring M is a strongly-nil right (left) ideal.

PROOF. Each element x of the sum is in a finite sum of strongly-nilpotent right ideals of M, which by Lemma 2.3 is strongly-nilpotent. Therefore x is strongly-nilpotent, and the sum is strongly-nil.

LEMMA 2.5. The sum S(M)' of all strongly-nilpotent right ideals of a Γ -ring M coincides with the sum 'S(M) of all strongly-nilpotent left ideals and with the sum S(M) of all strongly-nilpotent ideals.

PROOF. Let I be a strongly-nilpotent right ideal. The ideal $I+M\Gamma I$ is strongly-nilpotent, because $((I+M\Gamma I)\Gamma)^n(I+M\Gamma I) \subseteq (I\Gamma)^nI + M\Gamma (I\Gamma)^nI$ for n =1, 2, It follows $I \subseteq \mathcal{S}(M)$ and hence that $\mathcal{S}(M)' \subseteq \mathcal{S}(M)$. But $\mathcal{S}(M) \subseteq \mathcal{S}(M)'$ trivially, and hence $\mathcal{S}(M) = \mathcal{S}(M)'$. Similarly, $\mathcal{S}(M) = '\mathcal{S}(M)$.

When a Γ -ring M has the descending (or ascending) chain condition for right ideals, it is abbreviated to M has min-r condition (or max-r condition). The terms min-l condition or max-l condition on a Γ -ring M are likewise defined.

It is natural to ask whether S(M) is strongly-nilpotent. This is so when M has either the min-r or max-r conditions (min-l or max-l also serve). The case of max-r is trivial, because S(M) is a finite sum of strongly-nilpotent right ideals. When M has min-r condition, a strongly-nil right ideal is always strongly-nilpotent, which will be shown in the following theorem. We note that a non-strongly-nilpotent right ideal means the right ideal which is not strongly-nilpotent.

THEOREM 2.6. Any non-strongly-nilpotent right ideal of a Γ -ring M with min-r condition contains an idempotent element.

PROOF. Let I be a non-strongly-nilpotent right ideal of M and I_1 be minimal in the set of non-strongly-nilpotent right ideals which are contained in I. Then, $I_1 = I_1 \Gamma I_1$, since $I_1 \Gamma I_1$ is not strongly-nilpotent. Let S be the set of right ideals S with properties (1) $S \Gamma I_1 \neq 0$ and (2) $S \subseteq I_1$.

The set S is not empty $(I_1 \in S)$ and we suppose that S_1 is a minimal member of S. Let $s \in S_1$, $\delta \in \Gamma$ with $s\delta I_1 \neq 0$. Then, $s\delta I_1 = S_1$, because $s\delta I_1 \in S$. It follows that $a \in I_1$ exists with $s\delta a = s$. Then a is not nilpotent, because if a is nilpotent, $s = s\delta a = s\delta a \delta a = \cdots = (s\delta)(a\delta) \cdots (a\delta)a = 0$, a contradiction. Hence, I cannot be a nil right ideal. This proves that if I is a strongly-nil right ideal then I is stronglynilpotent, since if I is strongly-nil then I is nil.

Now $a\Gamma M \subseteq I_1$ and $a\Gamma M$ is not strongly-nilpotent, for a is not nilpotent. Hence $a\Gamma M=I_1$, because of the minimal property of I_1 . Likewise, $a\Gamma a\Gamma M=I_1$ and hence $a \in a\Gamma a\Gamma M$, so that $a=a\omega a_1$, where $a_1 \in a\Gamma M$. Note that $a\omega(a_1-a_1\omega a_1)=0$ and hence $a_1-a_1\omega a_1 \in [a, \omega]_r \cap a\Gamma M$. Set $a_2=a+a_1-a_1\omega a$. Then, $a\omega a_2=a\omega a+a\omega a_1$ $-(a\omega a_1)\omega a=a\omega a+a-a\omega a=a$. Also, $a_2\omega(a_1-a_1\omega a_1)=(a+a_1-a_1\omega a)\omega(a_1-a_1\omega a_1)=$ $a_1\omega a_1-a_1\omega a_1\omega a_1$. Moreover, a_2 is not nilpotent, because $a\omega a_2=a$ and a is not zero. It follows that $a\Gamma M=a_2\Gamma M$, and that $[a_2, \omega]_r \cap a\Gamma M \subseteq [a, \omega]_r \cap a\Gamma M$. However, either $a_1\omega a_1=a_1\omega a_1\omega a_1$, in which case I contains the idempotent $a_1\omega a_1$, or else $a_1\omega a_1\neq a_1\omega a_1\omega a_1$, in which case $a_1-a_1\omega a_1\in [a, \omega]_r$ and $a_1-a_1\omega a_1\notin [a_2, \omega]_r$. In the latter case, $[a_2, \omega]_r \cap a\Gamma M \cong [a, \omega]_r \cap a\Gamma M$. This process is repeated, if necessary, beginning with a_2 instead of a, and obtaining a_4 ; etc. The process ceases because of the minimum condition and this proves that I has an idempotent element.

COROLLARY 2.7. The sum S(M) of all strongly-nilpotent ideals of the Γ -ring M with min-r or max-r conditions, is a strongly nilpotent ideal.

DEFINITION 2.8. When the sum $\mathcal{S}(M)$ of all strongly-nilpotent ideals of M is strongly-nilpotent, $\mathcal{S}(M)$ is called the *Wedderburn radical* of M (or the *strongly-nilpotent radical*) and denoted by W.

DEFINITION 2.9. A Γ -ring M is semi-prime if, for any ideal U of M, $U\Gamma U=0$ implies U=0.

For a semi-prime Γ -ring we have the following theorem.

THEOREM 2.10. ([3] Theorem 1, 2 and 3). If M is a Γ -ring, the following conditions are equivalent:

- (1) M is semi-prime,
- (2) If $a \in M$ and $a\Gamma M \Gamma a = 0$, then a = 0,

Shoji Kyuno

- (3) If $\langle a \rangle$ is a principal ideal of M such that $\langle a \rangle \Gamma \langle a \rangle = 0$, then a = 0,
- (4) If U is a right ideal of M such that $U\Gamma U=0$, then U=0,
- (5) If V is a left ideal of M such that $V\Gamma V=0$, then V=0,
- (6) The prime radical of M, $\mathcal{P}(M)$, is zero,
- (7) M contains no non-zero strongly-nilpotent ideals (right ideals, left ideals),
- (8) The sum S(M) of all strongly-nilpotent ideals of M is zero.

THEOREM 2.11. Let M be a Γ -ring which has a Wedderburn radical W. Then the residue class Γ -ring M/W is semi-prime.

PROOF. Set $\overline{M}=M/W$ and suppose \overline{N} is a strongly-nilpotent ideal of \overline{M} , and suppose that $(\overline{N}\Gamma)^m \overline{N} = \overline{O}$. Let N be the inverse image of \overline{N} under the natural homomorphism $M \to \overline{M}$. Thus, $N = \{x \in M \mid x + W \in \overline{N}\}$. Clearly, $(N\Gamma)^m N \subseteq W$ and hence $(N\Gamma)^{mn+m+n}N=0$, where $(W\Gamma)^n W=0$. Thus, $N \subseteq W$ and $\overline{N}=\overline{O}$. Hence, \overline{M} is semi-prime.

If M has min-r condition, then M/W has min-r condition ([3] Lemma 1), Corollary 2.7 and Theorem 2.11 yield the following theorem.

THEOREM 2.12. Let M be a Γ -ring with min-r condition. Then the residue class Γ -ring M/S(M) is a semi-prime Γ -ring with min-r condition, where S(M) is the sum of all strongly-nilpotent ideals of M.

3. Semi-prime Γ -rings with min-r condition.

For a right ideal I of a Γ -ring M, if there exists an idempotent element l of the left operator ring L such that I=lM, we say that I has the *idempotent* generator l. The idempotent generator plays an important role in the following.

THEOREM 3.1. Any non-zero right ideal in a semi-prime Γ -ring M with min-r condition has an idempotent generator.

PROOF. The result is first proved when the ideal is a minimal right ideal A. Since M is semi-prime, $A\Gamma A \neq 0$. Then, there exist $\delta \in \Gamma$, $a \in A$ such that $a\delta A = A$. Thus, there exists $e \in A$ such that $a=a\delta e$. Then, $e=e\delta e$, since from $a=a\delta e=(a\delta e)\delta e$ we have $a\delta(e-e\delta e)=0$ which means $e-e\delta e=0$, for the set $B=\{c\in A \mid a\delta c=0\}$ is a right ideal contained properly in the minimal right ideal A and is (0). Since $e \in A$, $0 \neq e\delta M \subseteq A$ and hence $e\delta M = A$, where $[e, \delta]$ is an idempotent of L.

Let I be any non-zero right ideal of M. Since I contains one or more minimal right ideals, idempotent generators of the minimal right ideal(s) exist in $[I, \Gamma]$. Choose an idempotent $l \in [I, \Gamma]$ such that $l_r \cap I$ is as small as possible.

If $l_r \cap I \neq 0$, then $l_r \cap I \supseteq l'M$, where l' is an idempotent of L. Then, $l' \in l'L = l'[M, \Gamma] \subseteq [I, \Gamma]$ and ll'=0, for since $l'M \subseteq l_r$, ll'M=0. Set m=l+l'-l'l and then $m \in [I, \Gamma]$, for $[I, \Gamma]$ is an right ideal of L. Clearly, $m^2=m$, because ll'=0. Moreover, $m_r \cap I \subseteq l_r \cap I$, since we have lm=l which implies $m_r \subseteq l_r$, and ll'=0 but $ml'=l'\neq 0$ which implies $l'M \subseteq l_r$ but $l'M \nsubseteq m_r$. This contradicts the minimality of $l_r \cap I$ and the contradiction arises from taking $l_r \cap I \neq 0$. Hence one has $l_r \cap I=0$. Now let $x \in I$, then l(x-lx)=0, where $x-lx \in I$, for $lx \in I \cap I \subseteq I$. It follows that I=lM, for since $l \in [I, \Gamma]$, $lM \subseteq I \cap M \subseteq I$.

COROLLARY 3.2. A semi-prime Γ -ring M with min-r condition has max-r condition.

PROOF. The proof is analogous to that in ring theory but to tackle the situation that the generator does not exist in M but in $L=[M, \Gamma]$. For the sake of completeness, we write out it.

Suppose that the non-empty set S of some right ideals in M has no maximal elements. Take an element J_1 of S, then by the assumption there exists $J_2 \in S$ such that $J_1 \cong J_2$. Repeating this process, we have an infinite sequence of right ideals:

$$J_1 \cong J_2 \cong \cdots \cong J_n \cong \cdots$$

Set $N = \bigcup_i J_i$. Then, by Theorem 3.1 N = lM, where l is an idempotent of L. Thus, $l = l^2 \in lL = l[M, \Gamma] = [N, \Gamma] = [\bigcup_i J_i, \Gamma]$ and hence there exists an integer m such that $l \in [J_m, \Gamma]$. Then, $N = lM \subseteq J_m \Gamma M \subseteq J_m$, so that $J_m = N = J_{m+1}$, a contradiction. Hence, every non-empty set of right ideals of M has a maximal element. Evidently, the max-r condition holds in M.

LEMMA 3.3. If a Γ -ring M is semi-prime, then the right operator R and the left operator L are semi-prime.

PROOF. Suppose rRr=0. Then $Mr\Gamma Mr=0$. Theorem 2.10 (5) implies Mr=0 and then r=0. Thus, R is semi-prime. Similarly, it may be verified that L is semi-prime.

THEOREM 3.4. Let T be any non-zero ideal of semi-prime Γ -ring M with min-r condition. Then T has a unique idempotent generator.

PROOF. Let T=sM, where $s=\sum_i [e_i, \delta_i]$ is an idempotent, be the given ideal. Then $s_i=T_i$ is a left ideal of the left operator ring L and $T_i \cap [T, \Gamma]=0$, because $(T_i \cap [T, \Gamma])^2 \subseteq T_i [T, \Gamma]=0$ and L is semi-prime (Lemma 3.3). Hence $s_i \cap [T, \Gamma] = 0$. But for any $\sum_i [x_i, \gamma_i] \in [T, \Gamma] (\sum_i [x_i, \gamma_i] - \sum_i [x_i, \gamma_i]s) = 0$ and hence $\sum_i [x_i, \gamma_i] - \sum_i [x_i, \gamma_i]s \in s_i \cap [T, \Gamma]$, which means that $\sum_i [x_i, \gamma_i] = \sum_i [x_i, \gamma_i]s$. It follows that $[T, \Gamma] = [T, \Gamma]s = sM\Gamma s$ and s is a two-sided identity for the ring $[T, \Gamma]$. The latter fact shows that s is unique.

DEFINITION 3.5. Let M be a Γ -ring and L be the left operator ring. If there exists an element $\sum_i [e_i, \delta_i] \in L$ such that $\sum_i e_i \delta_i x = x$ for every element xof M, then it is called that M has the left unity $\sum_i [e_i, \delta_i]$.

It can be verified easily that $\sum_{i} [e_i, \delta_i]$ is the unity of L. Similarly we can define the *right unity* which is the unity of the right operator ring R.

COROLLARY 3.6. A semi-prime Γ -ring M with min-r condition has a left unity.

PROOF. In Theorem 3.4 set T=M. Then, $L=[M, \Gamma]=sM\Gamma s$. Thus, s is the unity of L. Then for any x of $M[sx-x, \Gamma]=0$ and so $(sx-x)\Gamma M\Gamma(sx-x) = 0$. Since M is semi-prime sx-x=0 or sx=x.

By symmetry we have

COROLLARY 3.7. A semi-prime Γ -ring M with min-l condition has a right unity.

COROLLARY 3.8. Let T be any non-zero ideal of a semi-prime Γ -ring M with min-r condition. Then, the generating idempotent of T is the idempotent which lies in the center of L.

PROOF. Let $T = (\sum_i [e_i, \delta_i])M$ and suppose the $l \in L$. Since $(\sum_i [e_i, \delta_i])l \in [T, \Gamma]$, we have $(\sum_i [e_i, \delta_i])l = ((\sum_i [e_i, \delta_i]l)\sum_i [e_i, \delta_i] = \sum_i [e_i, \delta_i](l\sum_i [e_i, \delta_i]) = l\sum_i [e_i, \delta_i]$, for $l\sum_i [e_i, \delta_i] \in L[T, \Gamma] = [M\Gamma T, \Gamma] \subseteq [T, \Gamma]$. Thus, $\sum_i [e_i, \delta_i]$ is central in L.

DEFINITION 3.9. A Γ -ring M is said to be simple if $M\Gamma M \neq 0$ and M has no ideals other than 0 and M.

COROLLARY 3.10. (1) Any non-zero ideal T of a semi-prime Γ -ring M with min-r condition is a semi-prime Γ -ring with min-r condition. (2) Any minimal ideals S of a semi-prime Γ -ring M with min-r condition is a simple Γ -ring.

PROOF of (1). Let J be a right ideal of T (considered as a Γ -ring) $(J\Gamma T \subseteq J)$. Let T = sM, where $s = \sum_i [e_i, \delta_i]$ is an idempotent. Since $[J, \Gamma] \subseteq [T, \Gamma]$ Theorem 3.4 implies $[J, \Gamma]s = [J, \Gamma]$. Thus, $J\Gamma M = ([J, \Gamma]s)M = J\Gamma(sM) = J\Gamma T \subseteq J$ and hence J is a right ideal of M. It is immediate that the Γ -ring T has no strongly-nilpotent right ideals and satisfies the min-r condition.

PROOF of (2). Let T be any non-zero ideal of M. Then, as shown in the proof of (1), a right ideal of T is a right ideal of M. Now, we show that a left ideal Q of T is a left ideal of M. Suppose that T=sM, where s is an idempotent. Then, $M\Gamma Q=[M, \Gamma]Q=[M, \Gamma](sQ)=([M, \Gamma]s)Q=(s[M, \Gamma])Q=[T, \Gamma]Q$ $\subseteq Q$. So Q is a left ideal of M. Therefore, an ideal of T is an ideal of M. Since S is a minimal ideal of M, we deduce that S is a simple Γ -ring.

THEOREM 3.11. If T is an ideal in a semi-prime Γ -ring M with min-r condition, then $M=T\oplus[T,\Gamma]_r$. If $M=T\oplus K$, where K is an ideal of M, then $K=[T,\Gamma]_r$.

PROOF. Suppose that T=sM, where $s=\sum_i [e_i, \delta_i]$ is an idempotent, then $M=sM\oplus(1_L-s)M$, where 1_L denotes the left unity of M. $[T, \Gamma](1_L-s)M=[T, \Gamma]s(1_L-s)M=[T, \Gamma](s-s)M=0$. Hence, $(1_L-s)M\subseteq[T, \Gamma]_r$. Conversely, suppose that $[T, \Gamma]x=0$ and x=x'+x'', where $x'\in T$, $x''\in(1_L-s)M$. Then, sx=sx'+sx''=sx' and $0=[T, \Gamma]x=([T, \Gamma]s)x=[T, \Gamma]sx'=[T, \Gamma]x'$. Since $T\Gamma M\subseteq T$, $T\Gamma M\Gamma x'=0$ and hence $x'\Gamma M\Gamma x'=0$, which implies x'=0. Thus, $x=x''\in(1_L-s)M$ and then $[T, \Gamma]_r\subseteq(1_L-s)M$. Hence $[T, \Gamma]_r=(1_L-s)M$ and $M=T\oplus[T, \Gamma]_r$.

In the case when $M=T\oplus K$, it follows that $T\Gamma K=0$ (since $T\Gamma K\subseteq T \cap K$) and hence $K\subseteq [T, \Gamma]_r$. However $T\oplus K=T\oplus [T, \Gamma]_r$ and hence $K=[T, \Gamma]_r$.

We now prove the fundamental theorem on semi-prime Γ -rings with min-r condition.

THEOREM 3.12. A semi-prime Γ -ring M with min-r condition has only a finite number of minimal ideals and is their direct sum.

PROOF. Form $M_1 \oplus M_2 \oplus \cdots \oplus M_t$ of minimal ideals M_i of M. Because M has the max-r condition (Corollary 3.2), there is a sum S having maximal length q. Suppose that $[S, \Gamma]_r \neq 0$. Then $[S, \Gamma]_r$ contains a minimal ideal, which can be added directly to S, because $S \cap [S, \Gamma]_r = 0$. This contradicts our supposition that S has maximal length of minimal ideals. Hence $[S, \Gamma]_r = 0$ and M = $S \oplus [S, \Gamma]_r = S$, which proves that M is a direct sum of minimal ideals, M = $M_1 \oplus M_2 \oplus \cdots \oplus M_q$, say. By Corollary 3.10 and Theorem 3.12 we have

THEOREM 3.13. A semi-prime Γ -ring with min-r condition is a direct sum of a finite number of simple Γ -rings with min-r condition.

DEFINITION 3.14. A Γ -ring M is prime if for all pairs of ideals S and T of M, $S\Gamma T=0$ implies S=0 or T=0. A Γ -ring M is left (right) primitive if (i) the left (right) operator ring of M is a left (right) primitive ring, and (ii) $x\Gamma M=0$ ($M\Gamma x=0$) implies x=0. M is a two-sided primitive Γ -ring (or simply a primitive Γ -ring) if both left and right primitive.

Luh proved the following theorem.

THEOREM 3.15 ([7] Theorem 3.6). For a Γ -ring M with min-l condition, the three conditions

- (1) M is prime,
- (2) M is primitive,
- (3) M is simple

are equivalent.

Of course, Theorem 3.15 also holds when M has min-r condition instead of min-l condition. Thus, we can replace the term 'simple' in Theorem 3.13 by 'prime' or 'primitive'.

We will prove further results on the one sided ideal structure of a semiprime Γ -ring with min-r condition.

LEMMA 3.16. Let I be a right ideal in a semi-prime Γ -ring M with min-r condition and J_1 be a right ideal contained in I. Then there exists a right ideal J_2 in I such that $I=J_1\oplus J_2$.

PROOF. Taking $I \neq 0$, $J_1 \neq 0$ and I = lM and $J_1 = sM$, where $l = \sum_i [e_i, \delta_i]$, $s = \sum_j [f_j, \varepsilon_j]$ are idempotents. Write $x \in I$ as x = sx + (l-s)x. The set $J_2 = \{x - sx \mid x \in I\}$ is a right ideal and $J_2 \subseteq I$. Clearly, $I = J_1 \oplus J_2$.

DEFINITION 3.17. Idempotents $l_1, \dots, l_k \in L$ are mutually orthogonal if $l_i l_j = 0$ for $i \neq j$.

The notation $l=l_1\oplus\cdots\oplus l_k$ indicates that $l=l_1+\cdots+l_k$, where l_1,\cdots,l_k are mutually orthogonal idempotents.

In Lemma 3.16 we can choose generating idempotents s_1 of J_1 , s_2 of J_2 , so

56

that $l=s_1 \oplus s_2$. The proof is given in the following.

Take I = lM and $J_1 = sM$ as before, and set $s_1 = sl$ and $s_2 = l - sl$. Then ls = ssince $s \in l[M, \Gamma]$, and $s = s^2 = s(ls) = (sl)s = s_1s$ so that $J_1 = sM = s_1(sM) \subseteq s_1M = s(lM)$ $\subseteq sM = J_1$. Thus, $J_1 = s_1M$. However, $J_2 = \{x - sx \mid x \in I\} = \{la - sla \mid a \in M\} = \{(l - sl)a \mid a \in M\} = s_2M$. We can easily verify that s_1 , s_2 are idempotents and that $l = s_1 \oplus s_2$. Q. E. D.

DEFINITION 3.18. An idempotent of the left operator ring L is *primitive* if it cannot be written as a sum of two orthogonal idempotents.

Lemma 3.16 and subsequent comments imply that in a semi-prime Γ -ring with min-r condition an idempotent of L is primitive if and only if it generates a minimal right ideal.

LEMMA 3.19. Let M be a semi-prime Γ -ring with min-r condition. Then any idempotent element l of the left operator ring L is a sum of mutually orthogonal primitive idempotents.

PROOF. Let I=lM and M_1 be a minimal right ideal in I. There exists a right ideal $M'_1 \subseteq I$ such that $I=M_1 \oplus M'_1$ (by Lemma 3.16). Then, either $M'_1=0$, in which case l is primitive (l generates the minimal right ideal), or we choose generating idempotents s_1 of M_1 ; s'_1 of M'_1 such that $l=s_1 \oplus s'_1$ (by the above comment). Observe that s_1 is a primitive idempotent. If s'_1 is not primitive, this process may be applied to $M'_1=s'_1M$, giving $s'_1=s_2 \oplus s'_2$, where s_2 is primitive. Evidently, $l=s_1 \oplus s_2 \oplus s'_2$, and $s'_1M \supseteq s'_2M$. This process is continued and the sequence $s'_1M \supseteq s'_2M \supseteq s'_3M \supseteq \cdots$ being strictly decreasing, must be stop after a finite number of terms. Then, $l=s_1 \oplus \cdots \oplus s_k$, say, which each s_i is a primitive idempotent.

COROLLARY 3.20. Any non-zero right ideal in a semi-prime Γ -ring M with min-r condition is a direct sum of minimal right ideals.

PROOF. Lemma 3.19 implies that $I = lM = s_1M \oplus \cdots \oplus s_kM$.

By symmetry, we have

COROLLARY 3.21. Any non-zero left ideal in a semi-prime I-ring with min-l condition is a direct sum of minimal left ideals.

Luh proved the following theorem.

THEOREM 3.22 ([6] Theorem 3.6). Let M be a semi-prime Γ -ring and L and R be respectively the left and right operator rings of M. If $e\delta e = e$, where $e \in M$, $\delta \in \Gamma$, then the following statements are equivalent:

- (1) $M\delta e$ is a minimal left ideal of M,
- (2) $e\delta M$ is a minimal right ideal of M,
- (3) $[M, \Gamma][e, \delta]$ is a minimal left ideal of L,
- (4) $[\delta, e][\Gamma, M]$ is a minimal right ideal of R,
- (5) $[e, \delta][M, \Gamma]$ is a minimal right ideal of L,
- (6) $[\Gamma, M][\delta, e]$ is a minimal left ideal of R,
- (7) $[e, \delta][M, \Gamma][e, \delta]$ is a division ring,
- (8) $[\delta, e][\Gamma, M][\delta, e]$ is a division ring.

Moreover, the division rings $[e, \delta][M, \Gamma][e, \delta]$ and $[\delta, e][\Gamma, M][\delta, e]$ are isomorphic if any of the above statements occurs.

Corollary 3.20 showed that every non-zero right ideal of a semi-prime Γ -ring M is a direct sum of minimal right ideals. This decomposition applies to M itself and gives a right dimension number for M, considered as an R-module.

THEOREM 3.23. Let M be a semi-prime Γ -ring with min-r condition and let $M = I_1 \oplus \cdots \oplus I_m = J_1 \oplus \cdots \oplus J_n$, where I_t, J_s are minimal right ideals. Then, m = n.

The proof is established by the quite similar fashion to that for an ordinary ring and so we omit it.

The integer m=n in Theorem 3.23 is called the *right demension* of the semiprime Γ -ring with min-*r* condition and denoted by dim (M_R) . One can define the *left dimension* of a Γ -ring in a similar manner. But it should be noticed that a semi-prime Γ -ring with min-*r* condition cannot always have the min-*l* condition. For example, let *D* be a division ring and *M* be the discrete direct sum of the division rings $D_i=D$, $i\in N$ (the set of all natural numbers), and Γ be the set of all transposed elements of *M*. Then, the Γ -ring *M* is semi-prime and dim $(_LM)$ $=\infty$, while dim $(M_R)=1$. Even for a semi-prime Γ -ring with both min-*r* and min-*l* conditions, generally the right dimension cannot be equal to the left one. When $M=D_{2,1}$, the set of all matrices of type 2×1 over a division ring *D*, and $\Gamma=D_{1,2}$, dim $(M_R)=2$ and dim $(_LM)=1$.

When M is a semi-prime Γ -ring with min-r condition, we consider the left operator ring L. Corollary 3.6 shows M has the left unity. Thus, by Lemma

3.19, $1_L = [e_1, \delta_1] + \dots + [e_k, \delta_k]$, where $[e_1, \delta_1], \dots, [e_k, \delta_k]$ are mutually orthogonal primitive idempotents. This implies that $L = [e_1, \delta_1] L \oplus \dots \oplus [e_k, \delta_k] L$, where $[e_1, \delta_1] L, \dots, [e_k, \delta_k] L$ are minimal right ideals. Also, we have $L = L[e_1, \delta_1] \oplus \dots \oplus L[e_k, \delta_k]$, where $L[e_1, \delta_1], \dots, L[e_k, \delta_k]$ are minimal left ideals (Theorem 3.22). Thus, we have $\dim(L_L) = \dim(_L L)$. By symmetry, when M is a semi-prime Γ -ring with min-l condition, for the right operator ring R we have $\dim(_R R) = \dim(R_R)$.

4. Simple Γ -rings with min-r and min-l conditions.

We note that if a Γ -ring M is simple, then the right operator ring R and the left operator ring L are simple.

Let I be an ideal of R such that $0 \cong I \cong R$. Then MI is an ideal of M. Since M is simple, MI must be 0 or M. If MI=M, then $R=[\Gamma, MI]=[\Gamma, M]I=RI\subseteq I$, a contradiction. If MI=0, then I=0, also a contradiction. Thus, R has only ideals 0 and R, and $R^2 \neq 0$, for $MR^2=M[\Gamma, M\Gamma M]=M[\Gamma, M]=M\Gamma M=M\neq 0$. This proves R is simple. Similarly, it may be shown that L is simple.

If M is simple, then M is semi-prime. Indeed, for any ideal U of M we assume $U\Gamma U=0$. Since only ideals of M are 0 and M, U=0 or U=M. If U=M, then $M\Gamma M=M\neq 0$, a contradiction. Thus, U=0 and M is semi-prime.

DEFINITION 4.1. If M_i is a Γ_i -ring for i=1, 2, then an ordered pair (θ, ϕ) of mappings is called a *homomorphism of* M_1 onto M_2 if it satisfies the following properties:

(1) θ is a group homomorphism from M_1 onto M_2 ,

(2) ϕ is a group homomorphism from Γ_1 onto Γ_2 ,

(3) For every x, $y \in M_1$, $\gamma \in \Gamma_1$, $(x\gamma y)\theta = (x\theta)(\gamma\phi)(y\theta)$.

Furthermore, if both θ and ϕ are injections, then (θ, ϕ) is called an *isomorphism* from the Γ_1 -ring M_1 onto the Γ_2 -ring M_2 .

THEOREM 4.2. Let M be a simple Γ -ring with min-r and min-l conditions and $\Gamma_0 = \Gamma/\kappa$, where $\kappa = \{\gamma \in \Gamma \mid M\gamma M = 0\}$. Then, the Γ_0 -ring M is isomorphic onto the Γ' -ring $D_{n,m}$, where $D_{n,m}$ is the additive abelian group of all rectangular matrices of type $n \times m$ over a division ring D, and Γ' is a non-zero subgroup of the additive abelian group $D_{m,n}$ of all rectangular matrices of type $m \times n$, and $m = \dim(_L M)$ and $n = \dim(M_R)$.

PROOF. Let $e\delta M$, where $e\delta e = e$, be a minimal right ideal of M (Theorem 3.1) and let $D = [e\delta M\Gamma e, \delta]$; certainly D is a division ring (Theorem 3.22). Also,

 $[e\delta M, \Gamma] = e\delta L$ is a minimal right ideal of L (Theorem 3.22). Since $(e\delta M\Gamma e\delta)e\delta L$ = $e\delta L$ (for $0 \neq (e\delta M\Gamma e\delta)e\delta L$) we see that $e\delta L$ is a vector space over D (a left D-space).

First we prove:

 $l_1, \dots, l_n \in e\delta L$ are linearly independent over D if and only if

 $Ll_1 \oplus \cdots \oplus Ll_n$, where $L = [M, \Gamma]$(A)

Suppose $Ll_1 + \cdots + Ll_n$ is not direct sum. Then, there exist $a_1, \cdots, a_n \in L$, not all $a_i l_i$ zero, such that $a_1 l_1 + \cdots + a_n l_n = 0$. Set $L_i = \{a \in L[e, \delta] | al_i \in Ll_1 + \cdots + Ll_{i-1} + Ll_{i+1} + \cdots + Ll_n\}$, where we suppose that $a_i l_i \neq 0$. Then, $0 \neq a_i [e, \delta] \in L_i$ and $L_i = L[e, \delta]$, because $L[e, \delta]$ is a minimal left ideal (Theorem 3.22). Hence, $[e, \delta] \in L[e, \delta] = L_i$ and then $l_i = e\delta l_i = y_1 l_1 + \cdots + y_{i-1} l_{i-1} + y_{i+1} l_{i+1} + \cdots + y_n l_n$, where $y_j \in L$. Then, $l_i = (e\delta y_1 e\delta) l_1 + \cdots + (e\delta y_{i-1} e\delta) l_{i-1} + (e\delta y_{i+1} e\delta) l_{i+1} + \cdots + (e\delta y_n e\delta) l_n$, which means that l_1, \cdots, l_n are linearly dependent over D.

Conversely, if $Ll_1 + \cdots + Ll_n$ is a direct sum, then $(e\delta Le\delta)l_1 + \cdots + (e\delta Le\delta)l_n$ is a direct sum, which means l_1, \cdots, l_n are linearly independent over D. Q.E.D.

Next, we prove:

 $a_1\delta_1L\oplus\cdots\oplus a_k\delta_kL$ if and only if $a_1\delta_1M\oplus\cdots\oplus a_k\delta_kM$(B)

Suppose $a_1\delta_1M + \cdots + a_k\delta_kM$ is a direct sum. If $\sum_{i=1}^k l_i = 0$ with $l_i \in a_i\delta_iL$, then $\sum_{i=1}^k l_ix=0$ for all $x \in M$, where $l_ix \in l_iM \subseteq [a_i\delta_iM, \Gamma]M \subseteq a_i\delta_iM$. Thus, $l_ix=0$ for all $x \in M$ and for all i. Hence, $l_i=0$ for every i.

Conversely, assume that $a_1\delta_1L + \cdots + a_k\delta_kL$ is a direct sum. If $\sum_{i=1}^k x_i = 0$, with $x_i \in a_i\delta_iM$, then $\sum_{i=1}^k [x_i, \gamma] = 0$ for all $\gamma \in \Gamma$, where $[x_i, \gamma] \in [x_i, \Gamma] \subseteq [a_i\delta_iM, \Gamma] = a_i\delta_iL$. It follows that $[x_i, \gamma] = 0$ for every $\gamma \in \Gamma$ and every *i*, and $x_i\Gamma M\Gamma x_i = 0$ for every *i*. Since *M* is semi-prime, $x_i = 0$ for every *i*. Thus, $a_1\delta_1M + \cdots + a_k\delta_kM$ is a direct sum. Q. E. D.

Thus, by (A), the comment (followed Theorem 3.23) on the dimensions of L, (B) and Theorem 3.22, we have $\dim_{D}[e\delta M, \Gamma] = \dim_{L}L = \dim(L_{L}) = \dim(M_{R})$. Similarly, we can prove $\dim_{D}[e\delta M] = \dim_{L}M = \dim_{R}R = \dim(R_{R})$.

For $a \in M$ define a mapping ρ_a of $[e\delta M, \Gamma]$ to $e\delta M$ by $[x, \gamma]\rho_a = x\gamma a$, where $[x, \gamma] \in [e\delta M, \Gamma]$. Set $N = \{\rho_a | a \in M\}$.

For $\gamma \in \Gamma$ define a mapping ψ_{γ} of $e\delta M$ to $[e\delta M, \Gamma]$ by $x\psi_{\gamma} = [x, \gamma]$, where $x \in e\delta M$. Set $\Lambda = \{\psi_{\gamma} | \gamma \in \Gamma\}$.

Then one can easily verify that for all $a, b \in M$ and $\gamma, \delta \in \Gamma$

$$\rho_a + \rho_b = \rho_{a+b}, \quad \psi_{\gamma} + \psi_{\delta} = \psi_{\gamma+\delta}, \quad \text{and} \quad \rho_a \psi_{\gamma} \rho_b = \rho_{a\gamma b},$$

60

thus N becomes a Γ_1 -ring, where $\Gamma_1 = \Lambda$.

Set $\kappa = \{\gamma \in \Gamma | M\gamma M = 0\}$, then κ is a subgroup of Γ . For any element $\overline{\gamma} \in \Gamma/\kappa$ we define $a\overline{\gamma}b = a\gamma b$ (well defined), where $\overline{\gamma} = \gamma + \kappa$. Then we get a Γ_0 -ring M, where $\Gamma_0 = \Gamma/\kappa$.

Let ρ be a mapping of M to N by $\rho(a) = \rho_a$, $a \in M$, and let ψ be a mapping from Γ_0 to Λ by $\psi(\bar{r}) = \psi_r$ (well defined), where $\gamma + \kappa = \bar{r} \in \Gamma_0$. Then $\rho(a) = 0 \Rightarrow \rho_a$ $= 0 \Rightarrow e\delta M\Gamma a = 0 \Rightarrow M\delta e\delta M\Gamma a = 0 \Rightarrow M\Gamma a = 0 \Rightarrow a\Gamma M\Gamma a = 0 \Rightarrow a = 0$, since $M\delta e\delta M = M$, due to M being simple, and M is semi-prime. Also, $\psi(\bar{r}) = 0 \Rightarrow \psi_r = 0 \Rightarrow [e\delta M, \gamma] = 0 \Rightarrow$ $[M\delta e\delta M, \gamma] = 0 \Rightarrow [M, \gamma] = 0 \Rightarrow M\gamma M = 0 \Rightarrow \bar{r} = 0$, since M is simple. Next, $\rho(a\bar{r}b) =$ $\rho(a\gamma b) = \rho_{a\gamma b} = \rho_a \psi_r \rho_b = \rho(a) \psi(\bar{r}) \rho(b)$. Both, ρ and ψ are clearly surjections. Hence, the mapping (ρ, ψ) is a isomorphism from the Γ_0 -ring M onto the Γ_1 -ring N, where $\Gamma_1 = \Lambda$.

Let $\dim_{L}M)=m$ and $\dim(M_{R})=n$, and let $D_{n,m}$ and $D_{m,n}$ denote respectively the set of all matrices of type $n \times m$ over D and that of all matrices of type $m \times n$ over D. Similarly, D_{n} and D_{m} are respectively the total matrix ring of type $n \times n$ over D and that of type $m \times m$ over D.

Choose a basis l_1, \dots, l_n of the vector space $[e\delta M, \Gamma]$ and a basis u_1, \dots, u_m of the vector space $e\delta M$.

For $a \in M$ we have

$$l_i a = l_i \rho_a = \alpha_{i1} u_1 + \dots + \alpha_{im} u_m; i = 1, 2, \dots, n.$$

Now the correspondence

$$\rho_a \mapsto (\alpha_{ij}); 1 \leq i \leq n, 1 \leq j \leq m$$

is a group isomorphism from the additive abelian group N into the additive abelian group $D_{n,m}$. Thus, $\theta: a \mapsto (\alpha_{ij})$ is a group isomorphism of M into $D_{n,m}$. We show that this is an isomorphism onto $D_{n,m}$:

Along the similar fashion described in the above, ring theory shows that elements of the left operator L are linear transformations of the vector space $[e\delta M, \Gamma]$ and as a ring L is isomorphic onto D_n , and elements of the right operator ring R are linear transformations of the vector space $e\delta M$ and Risomorphic onto D_m . Since M is a left L-right R-bimodule, for any $l \in L$, $x \in M$, $r \in R$, $lxr \in M$. Let $l \mapsto (\sigma_{ij}) \in D_n$, $x \mapsto (\alpha_{ij}) \in D_{n,m}$, $r \mapsto (\tau_{ij}) \in D_m$. Then for any $a \in [e\delta M, \Gamma]$,

$$a(lxr) = ((al)x)r = ((a(\sigma_{ij}))(\alpha_{ij}))(\tau_{ij}) = a(\sigma_{ij})(\alpha_{ij})(\tau_{ij}),$$

and hence, $(lxr)\theta = (\sigma_{ij})(x)\theta(\tau_{ij})$. Thus, $LMR \subseteq M$ implies $(LMR)\theta \subseteq (M)\theta$, and so $D_n(M)\theta D_m \subseteq (M)\theta$. It follows $D_{n,m} \subseteq (M)\theta$, for $(M)\theta \subseteq D_{n,m}$. Hence, $(M)\theta = D_{n,m}$. Q. E. D. By the similar argument, we obtain that the additive abelian group Γ_0 is isomorphic onto a subgroup of $D_{m,n}$, and we denote the isomorphism by ϕ .

We now prove $(a\overline{\gamma}b)\theta = a\theta\overline{\gamma}\phi b\theta$:

Let $a\theta = (\alpha_{ij}), b\theta = (\beta_{ij}), \bar{\gamma}\phi = (\omega_{uv})$. Then, for any $l \in [e\delta M, \Gamma]$ we have

$$l(a\bar{\gamma}b) = ((la)\bar{\gamma})b = ((l(\alpha_{ij}))(\omega_{uv}))(\beta_{ij}) = l(\alpha_{ij})(\omega_{uv})(\beta_{ij}),$$

thus, $(a\bar{\gamma}b)\theta = (\alpha_{ij})(\omega_{uv})(\beta_{ij}) = a\theta\bar{\gamma}\phi b\theta$.

Clearly, $D_{n,m}$ is a Γ' -ring, where Γ' is $(\Gamma_0)\phi$, which is a non-zero subgroup of $D_{m,n}$.

Therefore, the Γ_0 -ring M is isomorphic onto the Γ' -ring $D_{n,m}$ and the proof is completed.

When M is a Γ -ring in the sense of Nobusawa, $\kappa = 0$ and then $\Gamma_0 = \Gamma$, and furthermore since Γ is a right L- left R-bimodule $D_m(\Gamma)\phi D_n \subseteq (\Gamma)\phi$. On the other hand, $(\Gamma)\phi \subseteq D_{m,n}$, and so $(\Gamma)\phi = D_{m,n}$, thus we have

COROLLARY 4.3 ([8] Theorem 2). A simple Γ -ring M in the sense of Nobusawa with min-r and min-l conditions is isomorphic onto the Γ' -ring $D_{n,m}$, where $\Gamma'=D_{m,n}$.

We note that the term 'simple' in this corollary is the one given in Definition 3.9. However, as shown already, since M has minimum condition, M becomes prime (Theorem 3.15). Then, since M is the prime Γ -ring in the sense of Nobusawa, M is completely prime ([1] Theorem 5), which coincides with 'M is simple' in Theorem 2 in Nobusawa [8].

5. Γ -rings with minimum right and left conditions.

First we consider the semi-prime Γ -ring with min-r and min-l conditions. Let $\Gamma_0 = \Gamma/\kappa$, where $\kappa = \{\gamma \in \Gamma | M\gamma M = 0\}$, and $M = M_1 \oplus \cdots \oplus M_q$, where M_1, \cdots, M_q are simple Γ -rings with min-r and min-l conditions (Theorem 3.13). Let $\kappa_i =$ $\{\gamma \in \Gamma | M_i \gamma M_i = 0\}$, $1 \le i \le q$, then $\kappa = \kappa_1 \cap \cdots \cap \kappa_q$. Thus, $\Gamma_0 = \Gamma/\kappa$ is isomorphic to a subgroup of $\Gamma/\kappa_1 \oplus \cdots \oplus \Gamma/\kappa_q$. Set $\Gamma/\kappa_i = \Gamma_i$. This means that Γ_0 is isomorphic to a subdirect sum of the Γ_i , $1 \le i \le q$. Theorem 4.2 implies that M_i is isomorphic onto $D_n^{(i)}$, m(i) over a division ring $D^{(i)}$ and Γ_i is isomorphic to a non-zero subgroup of $D_m^{(i)}$, n(i) over $D^{(i)}$. Thus, we have

$$M = \sum_{i=1}^{q} D_{n(i), m(i)}^{(i)}$$
 (direct sum) and

 $\Gamma_0 = \Gamma/\kappa$ is a subdirect sum of the Γ_i , where $\Gamma_i \subseteq D_{m(i), n(i)}^{(i)}$, $1 \leq i \leq q$, where the product of elements of $D_{m(i), n(i)}^{(i)}$ and of $D_{n(j), m(j)}^{(j)}$ is performed as usual if i=j

and is 0 if $i \neq j$.

Thus we have

THEOREM 5.1. Let M be a semi-prime Γ -ring with min-r and min-l conditions. Then, the Γ -ring M is homomorphic onto the Γ_0 -ring $\sum_{i=1}^q D_n^{(i)}_{(i), m(i)}$ where Γ_0 is a subdirect sum of the Γ_i , $1 \leq i \leq q$, which is a non-zero subgroup of $D_m^{(i)}_{(n(i), n(i))}$.

Theorem 2.12 and Theorem 5.1 yield the following corollary.

COROLLARY 5.2. Let M be a Γ -ring with min-r and min-l conditions. Then, the Γ -ring M is homomorphic onto the Γ_0 -ring $\sum_{i=1}^q D_n^{(i)}(i), m(i)$ where Γ_0 is a subdirect sum of the Γ_i , $1 \leq i \leq q$, which is a non-zero subgroup of $D_m^{(i)}(i), n(i)$.

We consider the converse of the preceding comment to Theorem 5.1. First we prove the converse of Theorem 4.2.

THEOREM 5.3. $D_{n,m}$, D is a division ring, is a simple Γ -ring with min-r and min-l conditions, where Γ is a non-zero subgroup of $D_{m,n}$ and $[\Gamma, D_{n,m}]=D_m$ and $[D_{n,m}, \Gamma]=D_n$.

PROOF. Denote the elementary matrices by $E_{ij} \in D_{n,m}$, $1 \le i \le n$, $1 \le j \le m$; $G_{st} \in D_m$, $1 \le s$, $t \le m$; $H_{pq} \in D_n$, $1 \le p$, $q \le n$. Let $A = (\alpha_{ij})$ belong to $D_{n,m}$, then $A = \sum_{i,j} \alpha_{ij} E_{ij}$.

The ideal generated by A contains $H_{pq}AG_{st} = \alpha_{qs}E_{pt}$. If $A \neq 0$, then $\alpha_{qs} \neq 0$ for some (q, s) and the E_{pt} is in the ideal generated by A. This is true for all $p=1, \dots, n$; $t=1, \dots, m$, and hence the ideal is equal to $D_{n,m}$, so that $D_{n,m}$ is simple. To verify the min-r condition, observe that $D_{n,m}$ is a right vector space of dimension nm over D. Every right ideal J of $D_{n,m}$ is a subspace, since $A \in J$ $\Rightarrow Ad = A(dE_m) \in J$, where E_m the identity matrix and $d \in D$. The min-r condition holds. Similarly, the min-l condition holds.

THEOREM 5.4. If $M=M_1\oplus\cdots\oplus M_q$, where M_1, \cdots, M_q are simple Γ_i -rings with min-r and min-l conditions, then M is a semi-prime Γ -ring with min-r and min-l conditions, where Γ is a subdirect sum of the Γ_i 's, $M_i\Gamma M_j=0$ $(i \neq j)$ and $M_i\Gamma_j M_i=0$ $(i \neq j)$.

PROOF. Let S be a strongly-nilpotent ideal of M and let S_1, \dots, S_q be its component ideals in M_1, \dots, M_q , respectively. If $(S\Gamma)^n S = 0$ then $(S_i\Gamma_i)^n S_i = 0$ for each *i*. Since M_i is simple $S_i = M_i$ or $S_i = 0$. If $S_i = M_i$, then $(S_i\Gamma_i)^n S_i = M_i = 0$, a contradiction. Thus, $S_i = 0$ and hence $S = S_1 \oplus \dots \oplus S_q = 0$ and M is semi-prime.

Shoji Kyuno

To verify the min-r condition, suppose $J^{(1)} \supseteq J^{(2)} \supseteq \cdots$ is a descending sequence of right ideals of M. The components $J_i^{(n)}$ in the Γ_i -ring M_i are a descending sequence in $M_i (J_i^{(1)} \supseteq J_i^{(2)} \supseteq \cdots \supseteq J_i^{(n)} \supseteq \cdots)$ and hence $J_i^{(n)}$ is fixed for $n \ge n(i)$, say. It followed that $J^{(n)}$ is fixed for $n \ge \max[n(1), \cdots, n(q)]$, and hence the min-r condition holds in M. Similarly, the min-l condition can be verified.

We consider the Γ -rings in the sense of Nobusawa.

Let M be a Γ -ring in the sense of Nobusawa and M be semi-prime with min-r and min-l conditions. Let $M = M_1 \oplus \cdots \oplus M_q$, where M_1, \cdots, M_q are simple Γ -rings with min-r and min-l conditions (Theorem 3.13). Let $\Gamma_i = \Gamma/\kappa_i$, where $\kappa_i = \{\gamma \in \Gamma | M_i \gamma M_i = 0\}$. We show that each Γ -ring M_i is the Γ_i -ring in the sense of Nobusawa. Since $\Gamma M_i \Gamma \subseteq \Gamma$, κ_i is an ideal of Γ . Indeed, $M_i (\Gamma M_i \kappa_i) M_i = (M_i \Gamma M_i) \kappa_i M_i = M_i \kappa_i M_i = 0$ and then $\Gamma M_i \kappa_i \subseteq \kappa_i$. Similarly, $\kappa_i M_i \Gamma \subseteq \kappa_i$. Hence, we can define a multiplication : $\Gamma_i \times M_i \times \Gamma_i \to \Gamma_i$ as follows:

For any $\bar{\gamma}$, $\bar{\delta} \in \Gamma_i$, $a \in M_i$, where $\bar{r} = \gamma + \kappa_i$, $\bar{\delta} = \delta + \kappa_i$,

 $\bar{\gamma}a\bar{\delta} = \overline{\gamma a\delta}$ (well defined).

Q. E. D.

Clearly, $M_i \bar{\gamma} M_i = 0$ implies $\bar{\gamma} = 0$.

Therefore, by Corollary 4.3, we have $\Gamma_i = D_{m(i), n(i)}^{(i)}$. Since $\kappa = 0$ and so $\Gamma_0 = \Gamma$, Γ is isomorphic to the subgroup of $\sum_{i=1}^{q} D_{m(i), n(i)}^{(i)}$. Let this isomorphism be ϕ , then

$$\gamma \phi = \gamma_1 + \dots + \gamma_q$$
, where $\gamma_i = \gamma + \kappa_i$, $1 \leq i \leq q$.

We show that the subgroup coincides with the group $\sum_{i=1}^{q} D_{m(i),n(i)}^{(i)}$. Fix an element *i* of the index set $\{1, 2, \dots, q\}$. For any $\sigma_i \in \Gamma_i = D_{m(i),n(i)}^{(i)}$, choose an element $\sigma \in \Gamma$ such that $\sigma_i = \sigma + \kappa_i$. Let $\sigma \phi = \sigma_1 + \dots + \sigma_i + \dots + \sigma_q$, where $\sigma_k = \sigma + \kappa_k$, $1 \leq k \leq q$, and E_{ii} be the unit matrix of $D_{m(i)}^{(i)}$, and F_{ii} be the unit matrix of $D_{n(i)}^{(i)}$. Then, since Γ is the right *L*- left *R*-bimodule and $D_{n(i)}^{(i)} = [M_i, \Gamma_i] \subseteq L$ and $D_{m(i)}^{(i)} = [\Gamma_i, M_i] \subseteq R$, $\sigma_i = E_{ii}(\sigma \phi) F_{ii} \in (\Gamma) \phi$, $1 \leq i \leq q$. Now let *i* be free. Then, $\sum_{i=1}^{q} \sigma_i \in (\Gamma) \phi$, where each σ_i is an arbitrary element of Γ_i . This means $\sum_{i=1}^{q} D_{m(i),n(i)}^{(i)} \subseteq (\Gamma) \phi$, and $(\Gamma) \phi = \sum_{i=1}^{q} D_{m(i),n(i)}^{(i)}$.

Thus, we have

$$M = \sum_{i=1}^{q} D_{n(i), m(i)}^{(i)}$$
 and $\Gamma = \sum_{i=1}^{q} D_{m(i), n(i)}^{(i)}$,

which is Theorem 3 of Nobusawa [8].

ACKNOWLEDGEMENT. I would like to thank the refree for several valuable and helpful remarks.

A gamma ring with minimum conditions

References

- [1] Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
- [2] Kyuno, S., On the radicals of Γ -rings, Osaka J. Math., 12 (1975), 639-645.
- [3] Kyuno, S., On prime gamma rings, Pacific J. Math., 75 (1978), 185-190.
- [4] Kyuno, S., A gamma ring with right and left unities, Math. Japonica, 24 (1979), 191-193.
- [5] Kyuno, S., Nobusawa's gamma rings with right and left unities, Math. Japonica, 25 (1980), 179-190.
- [6] Luh, J., On primitive Γ-rings with minimal one-sided ideals, Osaka J. Math., 5 (1968), 165-173.
- [7] Luh, J., On the theory of simple Γ -rings, Michigan Math. J., 16 (1969), 65-75.
- [8] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.

Department of Technology Tohoku Gakuin University Tagajo, Miyagi, 985 Japan