Edge-Magic Labelings of Wheel Graphs

Yasuhiro FUKUCHI

Science University of Tokyo

(Communicated by Y. Maeda)

Abstract. A graph G is called edge-magic if there exists a bijection f from $V(G) \cup E(G)$ to $\{1, 2, \dots, |V(G)| + |E(G)|\}$ such that f(x) + f(y) + f(xy) = C is a constant for any $xy \in E(G)$. In this paper, we show that a wheel graph W_n is edge-magic if $n \not\equiv 0 \pmod{4}$.

1. Statement of the main result.

Let G be a simple undirected graph, and let V(G) and E(G) denote the vertex set and the edge set of G, respectively. A bijection f from $V(G) \cup E(G)$ to $\{1, 2 \cdots, |V(G)| + |E(G)|\}$ is called an *edge-magic* labeling of G if there exists a constant C (called the *magic number* of f) such that f(x) + f(y) + f(xy) = C for any edge $xy \in E(G)$. An edge-magic labeling f of G is called a *super edge-magic* labeling if $f(V(G)) = \{1, 2, \cdots, |V(G)|\}$ and $f(E(G)) = \{|V(G)| + 1, |V(G)| + 2, \cdots, |V(G)| + |E(G)|\}$. A graph G is called edge-magic (resp. super edge-magic) if there exists an edge-magic (resp. super edge-magic) labeling of G.

For $n \ge 4$, the wheel graph W_n of order n is defined as the join $C_{n-1} + K_1$ of the cycle C_{n-1} of order n-1 and the complete graph K_1 of order 1. In this paper, we prove the following theorem:

THEOREM. Let n be an integer with $n \geq 5$ and $n \not\equiv 0 \pmod{4}$. Then W_n is edge-magic.

This theorem was conjectured by Enomoto, Llado, Nakamigawa and Ringel [1, Conjecture 3.3]. They verified that the theorem is true when $n \leq 30$. They also gave an important result about edge-magic labeling of W_n , which we state as a remark:

REMARK 1.1 ([1, Theorem 2.4]). Let $n \ge 4$ be an integer. Then W_n is not super edge-magic. Moreover, W_n is not edge-magic if $n \equiv 0 \pmod{4}$.

Our proof of the Theorem is constructive. However, the edge-magic labeling given in this paper is rather complicated. Thus for completeness' sake, we include in Section 2 a proof of the fact that W_n does not have certain simpler forms of edge-magic labelings.

2. Nonexistence and characterization of certain types of edge-magic labelings.

In this section, we determine certain types of edge-magic labelings of W_n . Write $V(W_n) = \{v_0, v_1, \dots, v_{n-1}\}$ so that $E(W_n) = \{v_i v_{i+1} | 1 \le i \le n-2\} \cup \{v_{n-1} v_1\} \cup \{v_0 v_i | 1 \le i \le n-1\}$. For subsets $X, Y \subset \{1, 2, \dots, |V(W_n)| + |E(W_n)|\}$, we write X < Y to mean max $X < \min Y$.

REMARK 2.1. If n = 2k + 1, then W_n has no edge-magic labeling f of the form

$$f(v_{2m-1}) = a + m \quad (1 \le m \le k), \quad f(v_{2m}) = b + m \quad (1 \le m \le k).$$

PROOF. Suppose that such a labeling f exists. Then $f(v_1) + f(v_{2k}) = (a+1) + (b+k) = a+b+k+1$. If $k \equiv 0 \pmod{2}$, $f(v_k) + f(v_{k+1}) = (b+k/2) + (a+k/2+1) = a+b+k+1$; if $k \equiv 1 \pmod{2}$, $f(v_k) + f(v_{k+1}) = (a+(k+1)/2) + (b+(k+1)/2) = a+b+k+1$. Thus in both cases, letting C be the magic number of f, we have $f(v_1v_{2k}) = C - (f(v_1) + f(v_{2k})) = C - (f(v_k) + f(v_{k+1})) = f(v_kv_{k+1})$, which is a contradiction. \Box

REMARK 2.2. If n = 2k + 2, then W_n has no edge-magic labeling f of the form

$$f(v_{2m-1}) = a + m \quad (1 \le m \le k+1), \quad f(v_{2m}) = b + m \quad (1 \le m \le k).$$

PROOF. By Remark 1.1, we may assume $k \ge 2$ and $k \equiv 0 \pmod{2}$. Suppose that such a labeling f exists. Then $\bar{f}(x) = |V(G)| + |E(G)| + 1 - f(x)$ ($x \in V(G) \cup E(G)$) is also the same type of labeling. Thus we may assume that a + k + 1 < b + 1, and hence $f(v_0v_2) = C - (b + 1 + f(v_0)) < C - (a + k + 1 + f(v_0)) = f(v_0v_{2k+1})$, where C is the magic number of f. Write $A = \{a + 1, \dots, a + k + 1\}$, $\bar{A} = \{C - (a + k + 1 + f(v_0)), \dots, C - (a + 1 + f(v_0))\}$, $B = \{b + 1, \dots, b + k\}$, $\bar{B} = \{C - (b + k + f(v_0)), \dots, C - (b + 1 + f(v_0))\}$, $U = \{C - (a + b + 2k + 1), \dots, C - (a + b + 2)\}$. Thus $|A| = |\bar{A}| = k + 1$, $|B| = |\bar{B}| = k$, |U| = 2k and

$$A \cup \bar{A} \cup B \cup \bar{B} \cup U \cup \{f(v_0), f(v_1 v_{2k+1})\} = \{1, \dots, 6k+4\}.$$
 (1)

Set $d_1 = b - a - k - 1$, $d_2 = C - (a + b + 2k + 2 + f(v_0))$ and $d_3 = a + b + 1 + f(v_0) - C$. Thus $d_1 = \min B - \max A - 1 = \min \bar{A} - \max \bar{B} - 1 = f(v_1 v_{2k+1}) - \max U - 1$, $d_2 = \min \bar{B} - \max A - 1 = \min \bar{A} - \max B - 1$ and $d_3 = \min A - \max \bar{B} - 1 = \min B - \max \bar{A} - 1$. Having in mind the equality

$$\min A + \max \bar{A} = \min B + \max \bar{B}, \qquad (2)$$

we divide our proof into four cases:

Case 1
$$A < B < \bar{B} < \bar{A}$$

Since $d_1 = \min B - \max A - 1 = \min \bar{A} - \max \bar{B} - 1$, it follows from (1) that $d_1 = 0$ or 1. Suppose $d_1 = 0$. Then since $d_1 = f(v_1v_{2k+1}) - \max U - 1$, $f(v_1v_{2k+1}) = \max U + 1$. First assume that $U < A < B < \bar{B} < \bar{A}$. Then $f(v_1v_{2k+1}) \le |U| + 2 = 2k + 2$. On the other hand, $\min \bar{A} - \min A \ge |A| + |B| + |\bar{B}| = 3k + 1$ and, since f is edge-magic, we also have $f(v_1v_{2k+1}) + \min A = f(v_1v_{2k+1}) + f(v_1) = f(v_0v_{2k+1}) + f(v_0) = \min \bar{A} + f(v_0)$. Consequently $f(v_1v_{2k+1}) = \min \bar{A} - \min A + f(v_0) > 3k + 1$, which is a contradiction. Next assume that $A < B < U < \bar{B} < \bar{A}$. Then $f(v_1v_{2k+1}) \le 4k + 3$. On the other hand,

 $\min \bar{A} - \min A \ge 5k + 2$, and hence $f(v_1v_{2k+1}) = \min \bar{A} - \min A + f(v_0) > 5k + 2$, which is a contradiction. Finally assume that $A < B < \bar{B} < \bar{A} < U$. Then $f(v_1v_{2k+1}) = 6k + 3$ or 6k + 4, and $f(v_0) = 1$, 2k + 2, 4k + 3 or 6k + 4. On the other hand, $\min \bar{A} - \min A = 3k + 1$ or 3k + 2, and hence $f(v_0) = f(v_1v_{2k+1}) - (\min \bar{A} - \min A) = 3k + 1$, 3k + 2 or 3k + 3, which is a contradiction.

Suppose now that $d_1 = 1$. Then since $\max A + 1 = \min B - 1$ and since each of \bar{A} , \bar{B} and U has cardinality at least 2, $\max A + 1 \notin A \cup \bar{A} \cup B \cup \bar{B} \cup U$. Similarly $\max \bar{B} + 1$, $\max U + 1 \notin A \cup \bar{A} \cup B \cup \bar{B} \cup U$. Since $\max A + 1$, $\max \bar{B} + 1$, $\max U + 1$ are distinct and belong to $\{1, 2, \dots, 6k + 4\}$, this contradicts (1).

Case 2
$$A < \bar{B} < B < \bar{A}$$

By (1) and (2), $d_2=0$ or 1, and we also have $d_1=\min B-\max A-1\geq |\bar{B}|=k$. Suppose $d_2=0$. Then since $f(v_1v_{2k+1})-\max U-1=d_1\geq k\geq 2$, at least one of $A\cup \bar{B}$ and $B\cup \bar{A}$ is between U and $f(v_1v_{2k+1})$, and hence $d_1\geq |A|+|\bar{B}|=2k+1\geq k+3$. Since $d_1=\min B-\max A-1$, this implies U is between \bar{B} and B. Consequently $d_1=\min B-\max A-1\geq |\bar{B}|+|U|\geq 3k$, and $d_1=f(v_1v_{2k+1})-\max U-1\leq |B\cup \bar{A}|+1\leq 2k+2$. This forces k=2 and $A<\bar{B}< U< B<\bar{A}<\{f(v_0)\}<\{f(v_1v_{2k+1})\}$. In particular, $\max B<\min \bar{A}$ and $\min U< f(v_0)$. Therefore $\max B+\min U<\min \bar{A}+f(v_0)$, which contradicts the fact that $\max B+\min U=f(v_{2k})+f(v_{2k}v_{2k+1})=f(v_0v_{2k+1})+f(v_0)=\min \bar{A}+f(v_0)$.

Suppose now that $d_2 = 1$. Since $|U| \ge 4$, this implies $\max A + 1$, $\max B + 1 \notin A \cup \bar{A} \cup B \cup \bar{B} \cup U$, and hence by (1), $\{\max A + 1, \max B + 1\} = \{f(v_0), f(v_1v_{2k+1})\}$. Since $\max A + 1 < \max B + 1$, this implies that $\min A < f(v_0)$ and $f(v_1v_{2k+1}) < \max B + 2 = \min \bar{A}$. Consequently $\min A + f(v_1v_{2k+1}) < f(v_0) + \min \bar{A}$, which contradicts the fact that $\min A + f(v_1v_{2k+1}) = f(v_0) + \min \bar{A}$.

Case 3
$$\bar{B} < A < \bar{A} < B$$

By (1) and (2), $d_3=0$ or 1, and we also have $d_1\geq k+1$. Suppose $d_3=0$. Then at least one of $\bar{B}\cup A$ and $\bar{A}\cup B$ is between U and $f(v_1v_{2k+1})$. On the other hand, since $d_1\leq |\bar{A}|+|U|+2\leq 3k+3$, it is not possible that both $\bar{B}\cup A$ and $\bar{A}\cup B$ are between U and $f(v_1v_{2k+1})$. Therefore $2k+1=|\bar{B}\cup A|\leq d_1\leq |\bar{B}\cup A|+1\leq 2k+2$, which implies that U cannot be between A and \bar{A} , and hence $d_1\leq |\bar{A}|+2\leq k+3$. Consequently k=2 and $U<\bar{B}< A<\{f(v_1v_{2k+1})\}<\{f(v_0)\}<\bar{A}< B$. This implies that $f(v_1v_{2k+1})<\min \bar{A}$ and $\min A< f(v_0)$, which contradicts the fact that $\min A+f(v_1v_{2k+1})=\min \bar{A}+f(v_0)$.

Suppose now that $d_3 = 1$. Since $|U| \ge 4$, this implies $\min A - 1$, $\min B - 1 \notin A \cup \bar{A} \cup B \cup \bar{B} \cup U$, and hence by (1), $\{\min A - 1, \min B - 1\} = \{f(v_0), f(v_1v_{2k+1})\}$. Since $\min A < \min \bar{A} < \max \bar{A} = \min B - 2$, this implies that $f(v_0) < \min A < \min \bar{A} < f(v_1v_{2k+1})$ or $f(v_1v_{2k+1}) < \min A < \min \bar{A} < f(v_0)$, which contradicts the fact that $\min A + f(v_1v_{2k+1}) = \min \bar{A} + f(v_0)$.

Case 4
$$\bar{B} < \bar{A} < A < B$$

By (1) and (2), $d_1 = 0$ or 1. Suppose $d_1 = 0$. Then $f(v_1v_{2k+1}) = \max U + 1$, If $U < \bar{B} < \bar{A} < A < B$, then $f(v_1v_{2k+1}) = 2k + 1$ or 2k + 2, and $\min A - \min \bar{A} = k + 1$ or

k + 2; if $\bar{B} < \bar{A} < U < A < B$, then $f(v_1v_{2k+1}) = 4k + 2$ or 4k + 3, and $\min A - \min \bar{A} = 3k + 2$ or 3k + 3; if $\bar{B} < \bar{A} < A < B < U$, then $f(v_1v_{2k+1}) = 6k + 3$ or 6k + 4, and $\min A - \min \bar{A} = k + 1$ or k + 2. In all cases, $f(v_0) = 1, 2k + 2, 4k + 3$ or 6k + 4. From these observations, we see that $\min A - \min \bar{A} \neq f(v_0) - f(v_1v_{2k+1})$, which contradicts the fact that $\min A + f(v_1v_{2k+1}) = f(v_0) + \min \bar{A}$.

Suppose now that $d_1 = 1$. Then as in Case 1, $\max A + 1$, $\max \bar{B} + 1$, $\max U + 1$ are distinct and $\max A + 1$, $\max \bar{B} + 1$, $\max U + 1 \notin A \cup \bar{A} \cup B \cup \bar{B} \cup U$, which contradicts (1). \square

REMARK 2.3. Let n = 2k + 1 with $k \ge 3$, and suppose that W_n has an edge-magic labeling f of the form

$$f(v_{2m-1}) = \begin{cases} a+m & (1 \le m \le l) \\ a'+m & (l+1 \le m \le k) \end{cases}$$
$$f(v_{2m}) = b+m & (1 \le m \le k).$$

Then $k \equiv 0 \pmod{2}$ (i.e., $n \equiv 1 \pmod{4}$), l = k/2, and one of the following holds:

- (i) a = 7l + 1, a' = 3l + 1 and b = 9l + 1;
- (ii) a = 11l + 1, a' = 7l + 1 and b = 5l + 1;
- (iii) a = 3l, a' = -l and b = 5l;
- (iv) a = 7l, a' = 3l and b = l;
- (v) a = 11l + 1, a' = 71 + 1 and b = l; or
- (vi) a = 3l, a' = -l and b = 9l + 1.

PROOF. If $1 \le k \le 2l-1$, then as in Remark 2.1, we have $f(v_1) + f(v_{2k}) = a + b + k + 1 = f(v_k) + f(v_{k+1})$. Thus $k \ge 2l$. Set $A = \{a+1, \cdots, a+l\}$, $\bar{A} = \{C-(a+l+f(v_0)), \cdots, C-(a+1+f(v_0))\}$, $A' = \{a'+l+1, \cdots, a'+k\}$, $\bar{A}' = \{C-(a'+k+f(v_0)), \cdots, C-(a'+l+1+f(v_0))\}$, $B = \{b+1, \cdots, b+k\}$, $\bar{B} = \{C-(b+k+f(v_0)), \cdots, C-(b+1+f(v_0))\}$, $U = \{C-(a+b+2l), \cdots, C-(a+b+2l)\}$, $U' = \{C-(a'+b+2k), \cdots, C-(a'+b+2l+1)\}$, where C is the magic number of f. Thus $|A| = |\bar{A}| = l$, $|A'| = |\bar{A}'| = k-l$, $|B| = |\bar{B}| = k$, |U| = 2l-1, |U'| = 2k-2l and

$$A \cup \bar{A} \cup A' \cup \bar{A}' \cup B \cup \bar{B} \cup U \cup U' \cup \{f(v_0), f(v_1v_{2k})\} = \{1, \dots, 6k+1\}.$$
 (3)

Note that

$$\min A + \max \bar{A} = \min A' + \max \bar{A}' = \min B + \max \bar{B}, \tag{4}$$

and that if $k \ge 2l + 1$, then

$$|U| < |U'| - 2. \tag{5}$$

We prove four claims.

CLAIM 1. Suppose that $k \ge 2l + 1$ and $\{f(v_1v_{2k})\} < A < U < B < \bar{A}$, and that \bar{B} is outside A and U, i.e., either $\bar{B} < A$ or $U < \bar{B}$. Then l = 1, and either $\{f(v_1v_{2k})\} < A < U < \bar{B} < B < \{f(v_0)\} < \bar{A}$ or $\{f(v_1v_{2k})\} < A < U < B < \bar{B} < \{f(v_0)\} < \bar{A}$.

PROOF. By (4) and the assumption that $A < B < \bar{A}$, we have $A < \bar{B} < \bar{A}$, and hence $U < \bar{B} < \bar{A}$ by the assumption that \bar{B} is outside A and U. Assume first that $\bar{B} < B$. By (4),

either both A' and \bar{A}' are between B and \bar{B} or both A' and \bar{A}' are outside B and \bar{B} , and either both A' and \bar{A}' are between A and \bar{A} or both A' and \bar{A}' are outside A and \bar{A} . Consequently, if $B < U' < \bar{A}$, then $(\max \bar{A} - \min B) - (\max \bar{B} - \min A) = |U'| - (|U| + 1)$ or |U'| - |U| according as $f(v_0)$ is between A and \bar{B} or not, and hence $\max \bar{A} - \min B > \max \bar{B} - \min A$ by (5), which contradicts (4). Thus U' is outside B and \bar{A} , and hence $(\max \bar{B} - \min A) - (\max \bar{A} - \min B) \ge |U| - 1$. Since $\max \bar{B} - \min A = \max \bar{A} - \min B$ by (4), this implies that l = 1 and $f(v_0)$ is between B and \bar{A} (and U' is outside A and \bar{B}), as desired. If $B < \bar{B}$, we similarly obtain l = 1 and $\bar{B} < \{f(v_0)\} < \bar{A}$. \square

CLAIM 2. Suppose that $k \ge 2l+1$, $\{f(v_1v_{2k})\} < A < U < \bar{A}$, B is outside $f(v_1v_{2k})$ and \bar{A} , and \bar{B} is outside $f(v_1v_{2k})$ and A. Then either $\bar{B} < \{f(v_1v_{2k})\} < A < U < \bar{A} < \{f(v_0)\} < \bar{B}$ or $B < \{f(v_1v_{2k})\} < A < U < \bar{A} < \{f(v_0)\} < \bar{B}$, and \bar{B} is either between \bar{A} and \bar{A} or outside \bar{B} and \bar{B} .

PROOF. Assume first that $\bar{A} < B$. Then by (4) and by assumption, $\bar{B} < \{f(v_1v_{2k})\}$. If $\bar{A} < U' < B$, then arguing as in Claim 1, we obtain $(\min B - \max \bar{A}) - (\min A - \max \bar{B}) = |U'| - 2$ or |U'| - 1 according as $f(v_0)$ is between \bar{B} and A or not, and hence $\min B - \max \bar{A} > \min A - \max \bar{B}$ by (5), which contradicts (4). Thus U' is outside \bar{A} and B. Similarly U' is outside \bar{B} and A. Consequently U' is either between A and \bar{A} or outside B and B. Since $\min A - \max \bar{B} = \min B - \max \bar{A}$, this implies $\bar{A} < \{f(v_0)\} < B$, as desired. If $B < \{f(v_1v_{2k})\}$, we similarly obtain $\bar{A} < \{f(v_0)\} < \bar{B}$. \square

CLAIM 3. Suppose that $k \geq 2l + 1$, $\bar{A} < B < \{f(v_1v_{2k})\} < A < U$, and \bar{B} is outside $f(v_1v_{2k})$ and A. Then $\bar{A} < \{f(v_0)\} < \bar{B} < B < \{f(v_1v_{2k})\} < A < U$ or $\bar{A} < \{f(v_0)\} < \bar{B} < \bar{B} < \{f(v_1v_{2k})\} < A < U$.

PROOF. By (4) and by assumption, $\bar{A} < \bar{B} < \{f(v_1v_{2k})\}$. Assume first that $\bar{B} < B$. If $\bar{A} < U' < \bar{B}$, then $(\max \bar{B} - \max \bar{A}) - (\min A - \min B) = |U'| - 2$ or |U'| - 1, and hence $\max \bar{B} - \max \bar{A} > \min A - \min B$, which contradicts (4). Thus U' is outside \bar{A} and \bar{B} . Since $\min A - \min B = \max \bar{B} - \max \bar{A}$ by (4), this implies that $f(v_0)$ is between \bar{A} and \bar{B} (and \bar{U}' is outside \bar{B} and \bar{A}), as desired. If $\bar{B} < \bar{B}$, we similarly obtain $\bar{A} < \{f(v_0)\} < \bar{B}$. \Box

- CLAIM 4. Suppose that $k \ge 2l+1$, $\bar{A} < A < U$, B is outside \bar{A} and U, and \bar{B} is outside A and U. Then l=1, U' is either between \bar{A} and A or outside \bar{B} and B, and one of the following holds:
- (i) $\bar{B} < \bar{A} < A < U < B$, one of $f(v_1v_{2k})$ and $f(v_0)$ is between \bar{B} and \bar{A} , and the other one is either between \bar{A} and A or outside \bar{B} and B; or
- (ii) $B < \bar{A} < A < U < \bar{B}$, one of $f(v_1v_{2k})$ and $f(v_0)$ is between B and \bar{A} , and the other one is either between \bar{A} and A or outside B and \bar{B} .

PROOF. Assume first that U < B. Then by (4), $\bar{B} < \bar{A}$. If $\bar{B} < U' < \bar{A}$, then $(\max \bar{A} - \max \bar{B}) - (\min B - \min A) \ge |U'| - (|U| + 2)$, and hence $\max \bar{A} - \max \bar{B} > \min B - \min A$ by (5), which contradicts (4). Thus U' is outside \bar{B} and \bar{A} . Similarly, if A < U' < B, then $(\min B - \min A) - (\max \bar{A} - \max \bar{B}) \ge (|U| + |U'|) - 2 > 0$, which contradicts (4). Thus U'

is outside A and B. Consequently, U' is either between \bar{A} and A or outside \bar{B} and B. Now if $l \geq 2$, then $|U| = 2l - 1 \geq 3$, and hence $(\min B - \min A) - (\max \bar{A} - \max \bar{B}) \geq |U| - 2 > 0$, which contradicts (4). Thus l = 1, and hence |U| = 1. Since $\min B - \min A = \max \bar{A} - \max \bar{B}$ by (4), this implies that one of $f(v_1v_{2k})$ and $f(v_0)$ is between \bar{B} and \bar{A} , and the other one is neither between \bar{B} and \bar{A} nor between A and B. Consequently (i) holds. If $B < \bar{A}$, we similarly see that (ii) holds. \Box

Now set $T = \{C - (a + b + k), \dots, C - (a + b + 2l + 1)\}$. If $T \neq \emptyset$, then

$$\min T - 1 = C - (a+1) - (b+k) = f(v_1 v_{2k}) \tag{6}$$

and

$$\max T + 1 = C - (a + b + 2l) = \min U. \tag{7}$$

From (3), (6) and (7), it follows that T is the union of some of A, \bar{A} , A', \bar{A}' , B, \bar{B} , U' and $\{f(v_0)\}$. Since |T|=k-2l is less than each of |A'|, $|\bar{A}'|$, |B|, $|\bar{B}|$ and |U'|, this means that T is the union of some of A, \bar{A} and $\{f(v_0)\}$. Note that if $T \neq \emptyset$, then $k \geq 2l + 1$. We now divide our proof into seven cases:

Case 1
$$T = \{f(v_0)\}\$$

In this case, $\max U - f(v_0) = |U| = 2l - 1$. We also have $\max \bar{A} - \min B \ge |\bar{A}| + |B| - 1 = k + l - 1$ or $\max \bar{A} - \min B < 0$, according as $B < \bar{A}$ or $\bar{A} < B$. Consequently $(\max U + \min B) - (\max \bar{A} + f(v_0)) = (\max U - f(v_0)) - (\max \bar{A} - \min B) \ne 0$. On the other hand, since f is edge-magic, we have $\max U + \min B = f(v_1v_2) + f(v_2) = f(v_0v_1) + f(v_0) = \max \bar{A} + f(v_0)$, which is a contradiction.

Case 2
$$T = A$$

Since k-2l=l, k=3l. Suppose $A<\bar{A}$. We first show that B is outside A and \bar{A} . Suppose that $A<\bar{B}<\bar{A}$. Then since $\max A+1=\max T+1=\min U$ by the assumption of Case 2 and (7), $A<\bar{U}<\bar{B}<\bar{A}$ and \bar{B} cannot be between A and U. We also have $\{f(v_1v_{2k})\}< T=A$ by (6). Hence by Claim 1, $f(v_0)>\max B$. On the other hand, since $A<\bar{A}$, $\max \bar{A}>\min A=\min T>f(v_1v_{2k})$ by (6). Consequently $f(v_0)+\max \bar{A}>\max B+f(v_1v_{2k})$, which contradicts the fact that $f(v_0)+\max \bar{A}=f(v_0)+f(v_0v_1)=f(v_{2k})+f(v_1v_{2k})=\max B+f(v_1v_{2k})$. Thus B is outside A and A. Hence in view of (6) and (7), we can apply Claim 2 to see that

$$\bar{B} < \{f(v_1 v_{2k})\} < A < U < \bar{A} < \{f(v_0)\} < B$$
or
$$B < \{f(v_1 v_{2k})\} < A < U < \bar{A} < \{f(v_0)\} < \bar{B}$$
(8)

and

$$U'$$
 is between A and \bar{A} or outside B and \bar{B} . (9)

Now if A' is between A and \bar{A} , then arguing as in Claim 1 with B replaced by A', we obtain $\{f(v_0)\} < \bar{A}$, which contradicts (8). Thus A' is outside A and \bar{A} . Hence arguing as in Claim

2, we get

$$\bar{A}' < \{f(v_1 v_{2k})\} < A < U < \bar{A} < \{f(v_0)\} < A'$$
or $A' < \{f(v_1 v_{2k})\} < A < U < \bar{A} < \{f(v_0)\} < \bar{A}'$. (10)

By (3), (8), (9) and (10), $f(v_0) = \max \bar{A} + 1$, $\min B - f(v_0)$ is either equal to 1 or |A'| + 1 = k - l + 1 or less than 0, and $\max \bar{A} - \max U$ is equal to $|\bar{A}| = l$ or $|\bar{A}| + |U'| = 2k - l$. On the other hand, since $\min B + \max U = f(v_2) + f(v_1v_2) = f(v_0v_1) + f(v_0) = \max \bar{A} + f(v_0)$, $\min B - f(v_0) = \max \bar{A} - \max U$. Since k = 3l, these imply that l = 1, and $U' = \{1, 2, 3, 4\}$ or $\{16, 17, 18, 19\}$. Consequently $f(v_0) - \min U' = -6$ or 13, and $\max A' - \min \bar{B} = 6$, and hence $f(v_0) - \min U' \neq \max A' - \min \bar{B}$, which contradicts the fact that $\max A' + \min U' = f(v_0) + \min \bar{B}$.

Suppose now that $\bar{A} < A$. If $\bar{A} < B < A$, then by Claim 3, $\max \bar{B} < \max U$ and $f(v_0) < \min A$, and hence $\max \bar{B} + f(v_0) < \max U + \min A$, which contradicts the fact that $\max U + \min A = \max \bar{B} + f(v_0)$. Thus B is outside \bar{A} and A, and hence it follows from Claim 4 that l = 1. Since $\bar{A} < \{f(v_1v_{2k})\} < A$ by (6), it also follows from Claim 4 that $B < \{f(v_0)\} < \bar{A} < \{f(v_1v_{2k})\} < A < U < \bar{B}$ or $\bar{B} < \{f(v_0)\} < \bar{A} < \{f(v_1v_{2k})\} < A < U < \bar{B}$ or $\bar{A} < \{f(v_1v_2)\} < A < U < \bar{B}$. Hence arguing as in the preceding paragraph, we see that A' is also outside \bar{A} and A, $f(v_0) = \min \bar{A} - 1$, $\min A - f(v_0)$ is equal to $|\bar{A} \cup \{f(v_1v_{2k})\}| + 1 = 3$ or $|\bar{A} \cup \{f(v_1v_{2k})\}| + |U'| + 1 = 7$, and $\max \bar{B} - \max U$ is either equal to $|\bar{B}| = 3$ or $|\bar{B}| + |A'| = 5$ or less than 0. On the other hand, since $\min A + \max U = \max \bar{B} + f(v_0)$, $\min A - f(v_0) = \max \bar{B} - \max U$. Consequently $\min A - f(v_0) = \max \bar{B} - \max U = 3$, and $U' = \{1, 2, 3, 4\}$ or $\{16, 17, 18, 19\}$. This implies that $\min U' - \min A = 7$ or -12, and $f(v_1v_{2k}) - \max A' = 6$ or -7, and hence $\min U' - \min A \neq f(v_1v_{2k}) - \max A'$, which contradicts the fact that $f(v_1v_{2k}) + \min A = \min U' + \max A'$.

Case 3 $T = \bar{A}$

Since k-2l=l, k=3l. Suppose $A<\bar{A}$. If $A<\bar{B}<\bar{A}$, then arguing as in the second paragraph of Case 2, we obtain $f(v_0)<\min B$ and $\max \bar{A}<\max U$, which contradicts the fact that $f(v_0)+\max \bar{A}=\min B+\max U$. Thus B is outside A and \bar{A} . Hence arguing again as in the second paragraph of Case 2, we see that l=1, $\min A-f(v_0)=1$, and $\max \bar{B}-\max U$ is either equal to 3 or 5 or less than or equal to -5. Consequently $\min A-f(v_0)\neq\max \bar{B}-\max U$, which contradicts the fact that $\min A+\max U=f(v_0)+\max \bar{B}$.

Suppose now that $\bar{A} < A$. If $\bar{A} < B < A$, then arguing as in the first paragraph of Case 2, we obtain $f(v_0) > \max B$ and $\max \bar{A} > f(v_1v_{2k})$, which contradicts the fact that $f(v_0) + \max \bar{A} = \max B + f(v_1v_{2k})$. Thus B is outside \bar{A} and A. Hence arguing as in the first paragraph of Case 2, we see that $f(v_0) = \max A + 1$, $f(v_0) - \min A = l$, and $\max U - \max \bar{B} \ge 3l$ or < 0. Consequently $f(v_0) - \min A \ne \max U - \max \bar{B}$, which contradicts the fact that $f(v_0) + \max \bar{B} = \min A + \max U$.

Case 4
$$T = A \cup \{f(v_0)\}\ \text{or}\ T = \bar{A} \cup \{f(v_0)\}\$$

Suppose first that $T = A \cup \{f(v_0)\}$. Then by (6) and (7), the assumption of one of Claims 1 through 4 is satisfied. On the other hand, it follows from (6) that $A \cup \{f(v_0), f(v_1v_{2k})\}$

consists of consecutive integers, and hence the conclusion of none of Claims 1 through 4 can hold, which is a contradiction. If $T = \bar{A} \cup \{f(v_0)\}$, then arguing as in Claims 1 through 4 with the roles of A and \bar{A} replaced by each other, we can similarly get a contradiction.

Case 5
$$T = A \cup \bar{A}$$

In this case, B is outside A and \bar{A} . Suppose $\bar{A} < A$. Then it follows from Claim 4 that l=1, and $f(v_0)$ is outside B and \bar{B} . In view of (6), it also follows from Claim 4 that $\bar{B} < \{f(v_1v_{2k})\} < \bar{A} < A < U < B < \{f(v_0)\}$ or $B < \{f(v_1v_{2k})\} < \bar{A} < A < U < \bar{B} < \{f(v_0)\}$. Consequently, arguing as in Case 2, we see that $\max \bar{A} - f(v_1v_{2k}) = 1$, and $\max B - f(v_0) \le 0$, which contradicts the fact that $\max \bar{A} + f(v_0) = f(v_1v_{2k}) + \max B$. If $A < \bar{A}$, then similarly $\max \bar{A} - f(v_1v_{2k}) = 2$ and $\max B - f(v_0) \le 0$, which again contradicts the fact that $\max \bar{A} + f(v_0) = f(v_1v_{2k}) + \max B$.

Case 6
$$T = A \cup \bar{A} \cup \{f(v_0)\}\$$

In this case, B is outside A and \bar{A} . Suppose $\bar{A} < A$. Then it follows from Claim 4 that l=1. In view of (6), it also follows from Claim 4 that $\bar{B} < \{f(v_1v_{2k})\} < \bar{A} < \{f(v_0)\} < A < U < \bar{B}$ or $B < \{f(v_1v_{2k})\} < \bar{A} < \{f(v_0)\} < A < U < \bar{B}$. Consequently, arguing as in Case 2, we see that $\max \bar{A} - f(v_1v_{2k}) = 1$, and $\max B - f(v_0) \ge 5$ or < 0, which contradicts the fact that $\max \bar{A} + f(v_0) = f(v_1v_{2k}) + \max B$. If $A < \bar{A}$, then similarly, $\max \bar{A} - f(v_1v_{2k}) = 3$, and $\max B - f(v_0) \ge 5$ or < 0, which again contradicts the fact that $\max \bar{A} + f(v_0) = f(v_1v_{2k}) + \max B$.

Case 7
$$T = \emptyset$$

In this case, since |T|=k-2l=0, we have k=2l, and hence $|A'|=|\bar{A}'|=l$ and $|B'|=|\bar{B}'|=|U'|=2l$. We also have $\min U-1=f(v_1v_{2k})$ and $|\{f(v_1v_{2k})\}\cup U|=2l$. Hence by (4), either

$$f(v_0)$$
 is between A and \bar{A} , between A' and \bar{A}' , and between B and \bar{B} , (11)

or

$$f(v_0)$$
 is outside A and \bar{A} , outside A' and \bar{A}' , and outside B and \bar{B} . (12)

It is easy to verify the assertion of the remark for k = 4. Thus we henceforth assume $k \ge 6$ (so $l \ge 3$).

First we consider the case where (12) holds. If $f(v_0)$ is outside A and U', and outside A' and U, then min $U - \min A' \equiv 1 \pmod{l}$ and $\max U' - \max A \equiv 0 \pmod{l}$, which contradicts the face that

$$\min U - \min A' = \max U' - \max A. \tag{13}$$

Thus $f(v_0)$ is between A and U', or between A' and U. Assume first that $f(v_0)$ is between A' and U. Suppose $A' < \{f(v_0)\} < U$. Then $\min U - \min A' \equiv 2 \pmod{l}$. On the other hand, A < U' by (13), and hence $\max U' - \max A \equiv 0$ or $1 \pmod{l}$ according as $f(v_0)$ is outside A and U' or between A and U'. Since $l \geq 3$, this contradicts (13). Thus $U < \{f(v_0)\} < A'$. This implies $\min A' - \min U \equiv 0 \pmod{l}$. Also by (13), U' < A. If $U' < \{f(v_0)\} < A$, then $\max A - \max U' \equiv 1 \pmod{l}$, which contradicts (13). Thus $f(v_0)$ is outside U' and A, and

hence $U < \{f(v_0)\} < A' < U' < A \text{ or } U < \{f(v_0)\} < U' < A' < A \text{ by (12) and (13)}.$ Suppose $U < \{f(v_0)\} < A' < U' < A$. Then by (12), $f(v_0) - \max U = 1$. Since

$$f(v_0) - \max U = \min A - \max \bar{B}, \qquad (14)$$

this implies $\min A - \max \bar{B} = 1$. In particular, $U' < \bar{B} < A$, and hence $\max A - \max U' \ge 3l$. In view of (13), this implies \bar{A}' or $\bar{A} \cup B$ is between U and A', i.e., $U < \{f(v_0)\} < \bar{A}' < A'$ or $U < \{f(v_0)\} < \bar{A} < B < A'$. But if $\bar{A}' < A'$, then by (4), $\bar{A} < B < \bar{A}' < A'$, and hence $U < \{f(v_0)\} < \bar{A} < B < A'$. Thus $U < \{f(v_0)\} < \bar{A} < B < A'$. Consequently we obtain $\min A' - \min U \ge 5l$ and $\max A - \max U' \le |\bar{A}' \cup \bar{B} \cup A| = 4l$, which contradicts (13). Thus $U < \{f(v_0)\} < \bar{U}' < A' < A$. Again by (12), $f(v_0) - \max U = 1$, and hence $\min A - \max \bar{B} = 1$ by (14). If \bar{A}' or $\bar{A} \cup B$ is between $f(v_0)$ and U', then arguing as above, we obtain $\min A' - \min U \ge 7l$ and $\max A - \max U' \le 5l$, a contradiction. Thus $\min U' - f(v_0) = 1$. Since

$$\min U' - f(v_0) = \min \bar{B} - \max A', \tag{15}$$

this implies $\min \bar{B} - \max A' = 1$. Consequently $\{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < A' < \bar{B} < A < \bar{A} < B < \bar{A}' \text{ or } \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < \bar{A} < B < \bar{A}' < A' < \bar{B} < A$ by (4) and (12), and hence (i) or (ii) holds.

Assume now that $f(v_0)$ is outside A' and U, and between A and U'. If $U' < \{f(v_0)\} < A$, then U < A' by (13), and hence $\max A - \max U' \equiv 1 \pmod{l}$ and $\min A' - \min U \equiv -1 \pmod{l}$, which contradicts (13). Thus $A < \{f(v_0)\} < U'$. By (13), this implies A' < U, and hence $A' < \{f(v_1v_{2k})\} \cup U < A < \{f(v_0)\} < U'$ or $A' < A < \{f(v_1v_{2k})\} \cup U < A < \{f(v_0)\} < U'$, then arguing as in the preceding paragraph, we get a contradiction. Thus $A' < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U'$. By (12), $\min U' - f(v_0) = 1$, and hence $\min \bar{B} - \max A' = 1$ by (15). If \bar{A} or $B \cup \bar{A}'$ is between U and $f(v_0)$, then again arguing as in the preceding paragraph, we get a contradiction. Thus $f(v_0) - \max U = 1$, and hence $f(v_0) - f(v_1v_{2k}) = 2l$ because $\min U - 1 = f(v_1v_{2k})$ and |U| = 2l - 1. Since

$$f(v_0) - f(v_1 v_{2k}) = \min A - \min \bar{B}, \qquad (16)$$

this implies min $A - \min \bar{B} = 2l$. Consequently $A' < \bar{B} < A < \bar{A} < B < \bar{A}' < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' \text{ or } \bar{A} < B < \bar{A}' < A' < \bar{B} < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U', \text{ and hence (iii) or (iv) holds. This concludes the discussion for the case where (12) holds.$

Next we consider the case where (11) holds. Arguing as in the case where (12) holds, we see that either

$$U < \{f(v_0)\} < A', \quad U' < A, \text{ and } f(v_0) \text{ is outside } U' \text{ and } A,$$
 (17)

or

$$A < \{f(v_0)\} < U', \quad A' < U, \text{ and } f(v_0) \text{ is outside } A' \text{ and } U.$$
 (18)

Assume first that (17) holds. Then by (13), $U' < \{f(v_1v_{2k})\} \cup U < A < \{f(v_0)\} < A'$, $U' < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < A'$, $\{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < A' < U' < A$, or $\{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < A' < A$. Suppose $U' < \{f(v_1v_{2k})\} \cup U < A < A' < A$.

 $\{f(v_0)\}\$ A'. Then by (4) and (11), $U < \overline{A'} < \{fv_0\}\} < \overline{A}$, one of B and \overline{B} is between U and $f(v_0)$, and the other one is larger than $f(v_0)$. Hence we have $f(v_0) - f(v_1v_{2k}) = 6l$ and $\min A - \min \bar{B} \leq 3l$, which contradicts (16). Next suppose $U' < A < \{f(v_1v_{2k})\} \cup U < 1$ $\{f(v_0)\}\ < A'$. Then by (4) and (11), $U' < \bar{A}' < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < \bar{A}$, one of B and \bar{B} is between U' and $\{f(v_1v_{2k})\}\cup U$, and the other one is larger than $f(v_0)$. Hence $f(v_0) - f(v_1 v_{2k}) = 2l$ and $f(v_0) - \min U' = 8l$. From $f(v_0) - f(v_1 v_{2k}) = 2l$, we get $\min A - \min \bar{B} = 2l$ by (16), and hence $\max \bar{B} + 1 = \min A$. Consequently $\max A' - \min \bar{B} = 1$ 9l or 7l, according as $\bar{A}' < \bar{B} < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < \bar{A} < B < A'$ or $\bar{B} < B'$ $A < \bar{A}' < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < A' < \bar{A} < B$. But in view of (15), this contradicts the earlier assertion that $f(v_0) - \min U' = 8l$. Now suppose $\{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < l$ A' < U' < A. Then by (4) and (11), $\bar{A} < \{f(v_1v_{2k})\} \cup U < \bar{A}' < \{f(v_0)\} < A' < U' < A$. By (13) and (4), this implies that one of B and \bar{B} is between U' and A, and the other one is between A' and $\{f(v_1v_{2k})\} \cup U$. Hence $f(v_0) - f(v_1v_{2k}) = 3l$ and min $A - \min \overline{B} = 2l$ or 10*l*, which contradicts (16). Thus $\{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < A' < A$. By (4) and (11), this implies $\{f(v_1v_{2k})\} \cup U < \bar{A} < \bar{A}' < \{f(v_0)\} < U' < A' < A$ or $\bar{A} < \bar{A}' < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < A' < A. \text{ If } \{f(v_1v_{2k})\} \cup U < \bar{A} < \bar{A}' < C.$ $\{f(v_0)\}\$ < U' < A' < A, then min $A' - \min U \ge 6l$ and max $A - \max U' \le 4l$, which contradicts (13). Thus $\bar{A} < \bar{A}' < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < A' < A$. By (13) and (4), this implies that one of B and \bar{B} is between A' and A, and the other one is between \bar{A} and \bar{A}' . Consequently $f(v_0) - f(v_1 v_{2k}) = 2l$, and hence min $A - \min \bar{B} = 2l$ by (15). Therefore $\bar{A} < B < \bar{A}' < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < A' < \bar{B} < A$, and hence (v) holds.

Assume now that (18) holds. Then by (13), $A < \{f(v_0)\} < U' < A' < \{f(v_1v_{2k})\} \cup U$, $A < \{f(v_0)\} < A' < U' < \{f(v_1v_{2k})\} \cup U, A' < \{f(v_1v_{2k})\} \cup U < A < \{f(v_0)\} < U',$ or $A' < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U'$. Suppose $A < \{f(v_0)\} < U' < A' < V'$ $\{f(v_1v_{2k})\} \cup U$. Then by (4) and (11), $A' < \{f(v_0)\} < U' < \bar{A} < \{f(v_1v_{2k})\} \cup U$, one of B and \bar{B} is between U' and $\{f(v_1v_{2k})\} \cup U$, and the other one is less than $f(v_0)$. Hence $f(v_1v_{2k}) - f(v_0) = 6l + 1$, which implies min $\bar{B} - \min A = 6l + 1$ by (16). Consequently $A < \bar{A}' < B < \{f(v_0)\} < U' < \bar{B} < A' < \bar{A} < \{f(v_1v_{2k})\} \cup U \text{ or } B < A < \bar{A}' < \bar{A}'$ $\{f(v_0)\}\$ $< U' < A' < \bar{A} < \bar{B} < \{f(v_1v_{2k})\}\cup U$, which contradicts (13). Next suppose $A < \{f(v_0)\} < A' < U' < \{f(v_1v_{2k})\} \cup U$. Then by (4) and (11), $\bar{A}' < \{f(v_0)\} < \bar{A} < \{f(v_0)\}$ U', one of B and \bar{B} is between $f(v_0)$ and U', and the other one is less than $f(v_0)$. Hence $f(v_1v_{2k}) - f(v_0) = 6l + 1$ and min $\overline{B} - \min A \le 5l + 1$, which contradicts (16). Now suppose $A' < \{f(v_1v_{2k})\} \cup U < A < \{f(v_0)\} < U'$. Then $A' < \{f(v_1v_{2k})\} \cup U < A < \{f(v_1v_{2k})\}$ $\{f(v_0)\} < \bar{A} < U' < \bar{A}'$ by (4) and (11). By (4) and (13), this implies that one of B and \bar{B} is between A' and $\{f(v_1v_{2k})\} \cup U$ and the other one is between U' and \bar{A}' , which contradicts (14). Thus $A' < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U'$. By (4) and (11), this implies $\{f(v_0)\}\ <\ U'\ <\ \bar{A}\ <\ \bar{A}'.\ \text{If}\ A'\ <\ A\ <\ \{f(v_1v_{2k})\}\ \cup\ U\ <\ \{f(v_0)\}\ <\ \bar{A}\ <\ \bar{A}'\ <\ U',$ then $\max U' - \max A \ge 6l + 1$ and $\min U - \min A' \le 4l + 1$, which contradicts (13). Thus $A' < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < \bar{A} < \bar{A}'$. By (13) and (4), this implies that one of B and \bar{B} is between A' and A, and the other one is between \bar{A} and \bar{A}' . Consequently $f(v_0) - f(v_1v_{2k}) = 2l$, and hence min $A - \min \bar{B} = 2l$ by (15). Therefore $A' < \bar{B} < A < \{f(v_1v_{2k})\} \cup U < \{f(v_0)\} < U' < \bar{A} < B < \bar{A}'$, and hence (vi) holds (note that the above argument shows that if one of (i) through (vi) holds, then the labeling under consideration is in fact edge-magic; in particular, (vi) yields the labeling described in Case 1 of Section 3).

3. Proof of theorem.

We give a constructive proof of the theorem. As in Section 2, write $V(W_n) = \{v_0, v_1, \dots, v_{n-1}\}$ so that $E(W_n) = \{v_i v_{i+1} \mid 1 \le i \le n-2\} \cup \{v_{n-1} v_1\} \cup \{v_0 v_i \mid 1 \le i \le n-1\}$. The proof is divided into five cases as follows.

```
Case 1: n \equiv 1 \pmod{4},
Case 2: n \equiv -2 \pmod{8},
Case 3: n \equiv 2 \pmod{8},
Case 4: n \equiv -1 \pmod{8},
Case 5: n \equiv 3 \pmod{8}.
```

Case 1 $n \equiv 1 \pmod{4}$ Write $n = 4k + 1 \ (k \ge 1)$. Thus $|V(W_n)| + |E(W_n)| = 12k + 1$. Define f by

$$f(v_0) = 6k + 1$$

$$f(v_{2m-1}) = \begin{cases} 3k + m & (1 \le m \le k) \\ -k + m & (k+1 \le m \le 2k) \end{cases}$$

$$f(v_{2m}) = 9k + 1 + m & (1 \le m \le 2k)$$

$$f(v_0v_{2m-1}) = \begin{cases} 9k + 2 - m & (1 \le m \le k) \\ 13k + 2 - m & (k+1 \le m \le 2k) \end{cases}$$

$$f(v_0v_{2m}) = 3k + 1 - m & (1 \le m \le 2k)$$

$$f(v_{2m-1}v_{2m}) = \begin{cases} 6k + 2 - 2m & (1 \le m \le k) \\ 10k + 2 - 2m & (k+1 \le m \le 2k) \end{cases}$$

$$f(v_{2m}v_{2m+1}) = \begin{cases} 6k + 1 - 2m & (1 \le m \le k - 1) \\ 10k + 1 - 2m & (k \le m \le 2k - 1) \end{cases}$$

$$f(v_{4k}v_1) = 4k + 1.$$

Then f is an edge-magic labeling of W_n with magic number 18k + 3 (see the parenthetic remark made at the end of the proof of Remark 2.3).

Case 2
$$n \equiv -2 \pmod{8}$$

Write $n = 8k - 2 \ (k \ge 1)$. Thus $|V(W_n)| + |E(W_n)| = 24k - 8$. Define

$$f(v_{0}) = 10k - 3$$

$$f(v_{2m-1}) = \begin{cases} 8k - 2 - m & (1 \le m \le k) \\ 18k - 5 - m & (k+1 \le m \le 3k - 1) \\ 4k - m & (3k \le m \le 4k - 1) \end{cases}$$

$$f(v_{2m}) = \begin{cases} 2k - m & (1 \le m \le k - 1) \\ 4k - 1 - m & (k \le m \le 2k - 1) \\ 8k - 2 - m & (2k \le m \le 3k - 1) \\ 10k - 3 - m & (3k \le m \le 4k - 2) \end{cases}$$

and let f(uv) = 30k - 9 - f(u) - f(v) for each $uv \in E(W_n)$. Then f is an edge-magic labeling of W_n with magic number 30k - 9.

Case 3
$$n \equiv 2 \pmod{8}$$

Write $n = 8k + 2 (k \ge 1)$. Thus $|V(W_n)| + |E(W_n)| = 24k + 4$. Define

$$f(v_0) = 10k + 2$$

$$f(v_{2m-1}) = \begin{cases} 8k + 2 - m & (1 \le m \le k) \\ 6k + 2 - m & (k+1 \le m \le 3k+1) \\ 4k + 2 - m & (3k+2 \le m \le 4k+1) \end{cases}$$

$$f(v_{2m}) = \begin{cases} 2k + 1 - m & (1 \le m \le k) \\ 16k + 3 - m & (k+1 \le m \le 2k) \\ 20k + 4 - m & (2k+1 \le m \le 3k) \\ 10k + 2 - m & (3k+1 \le m \le 4k) \end{cases}$$

and let f(uv) = 30k + 6 - f(u) - f(v) for each $uv \in E(W_n)$. Then f is an edge-magic labeling of W_n with magic number 30k + 6.

Case 4
$$n \equiv -1 \pmod{8}$$

Write $n = 8k - 1$ $(k \ge 1)$. Thus $|V(W_n)| + |E(W_n)| = 24k - 5$. Define

$$f(v_0) = 8k$$

$$f(v_{2m-1}) = \begin{cases} m & (1 \le m \le 3k - 1) \\ m + 1 & (3k \le m \le 4k - 1) \end{cases}$$

$$f(v_{2m-1}) = \begin{cases} 16k - 2 + m & (1 \le m \le 2k - 1) \\ 16k - 1 + m & (2k \le m \le 3k - 2), & k \ge 2 \\ 21k - 4 & (m = 3k - 1) \\ 16k - 2 + m & (3k \le m \le 4k - 3), & k \ge 3 \\ 18k - 2 & (m = 4k - 2), & k \ge 2 \\ 16k - 2 & (m = 4k - 1), \end{cases}$$

and let f(uv) = 32k - 4 - f(u) - f(v) for each $uv \in E(W_n)$. Then f is an edge-magic labeling of W_n with magic number 32k - 4.

Case 5
$$n \equiv 3 \pmod{8}$$

Write n = 8k + 3 $(k \ge 1)$. Thus $|V(W_n)| + |E(W_n)| = 24k + 7$. Define

$$f(v_0) = 8k + 6$$
.

In the case where k = 1, define

$$f(v_1) = 23$$
, $f(v_2) = 2$, $f(v_3) = 26$, $f(v_4) = 3$, $f(v_5) = 31$, $f(v_6) = 4$, $f(v_7) = 22$, $f(v_8) = 5$, $f(v_9) = 25$, $f(v_{10}) = 8$;

in the case where k = 2, define

$$f(v_1) = 38$$
, $f(v_2) = 6$, $f(v_3) = 39$, $f(v_4) = 9$, $f(v_5) = 40$, $f(v_6) = 2$, $f(v_7) = 41$, $f(v_8) = 5$, $f(v_9) = 42$, $f(v_{10}) = 13$, $f(v_{11}) = 44$, $f(v_{12}) = 7$, $f(v_{13}) = 45$, $f(v_{14}) = 8$, $f(v_{15}) = 46$, $f(v_{16}) = 4$, $f(v_{17}) = 55$, $f(v_{18}) = 3$.

Then f can be extended to an edge-magic labeling with magic number 46 and 78, respectively. We henceforth assume $k \ge 3$. Define

$$f(v_{2m-1}) = \begin{cases} 16k+5+m & (1 \le m \le 3k-1) \\ 16k+6+m & (3k \le m \le 4k) \\ 24k+7 & (m=4k+1) \end{cases}.$$

For labelings of v_{2m} $(1 \le m \le 4k + 1)$, we consider three subcases.

Subcase 5.1 $k \equiv 0 \pmod{3}$

Set k = 3l $(l \ge 1)$. Thus n = 24l + 3, $|V(W_n)| + |E(W_n)| = 72l + 7$. Define

$$f(v_{2m}) = \begin{cases} m+5 & (1 \le m \le 6l \text{ and } m \not\equiv 0 \pmod{3}) \\ m-1 & (1 \le m \le 6l \text{ and } m \equiv 0 \pmod{3}) \\ 12l+1 & (m=6l+1) \\ m+4 & (6l+2 \le m \le 9l-2 \text{ and } m \not\equiv 1 \pmod{3}), \quad l \ge 2 \\ m-2 & (6l+2 \le m \le 9l-2 \text{ and } m \equiv 1 \pmod{3}), \quad l \ge 2 \\ 15l+3 & (m=9l-1) \\ 9l-1 & (m=9l) \\ m+1 & (9l+1 \le m \le 12l-1) \\ 4 & (m=12l) \\ 3 & (m=12l+1). \end{cases}$$

Subcase 5.2 $k \equiv 1 \pmod{3}$

Set k = 3l + 1 $(l \ge 1)$. Thus n = 24l + 11, $|V(W_n)| + |E(W_n)| = 72l + 31$. Define

$$f(v_{2m}) = \begin{cases} m+5 & (1 \le m \le 6l \text{ and } m \not\equiv 0 \pmod{3}) \\ m-1 & (1 \le m \le 6l+3 \text{ and } m \equiv 0 \pmod{3}) \\ 12l+5 & (m=6l+1) \\ 6l+5 & (m=6l+2) \\ m+2 & (6l+4 \le m \le 9l+1) \\ 15l+8 & (m=9l+2) \\ m+1 & (9l+3 \le m \le 12l+3) \\ 4 & (m=12l+4) \\ 3 & (m=12l+5) \end{cases}$$

Subcase 5.3 $k \equiv 2 \pmod{3}$

Set k = 3l + 2 $(l \ge 1)$. Thus n = 24l + 19, $|V(W_n)| + E(W_n)| = 72l + 55$. Define

$$f(v_{2m}) = \begin{cases} 6 & (m = 1) \\ m + 7 & (2 \le m \le 6l + 4 \text{ and } m \equiv 2 \pmod{3}) \\ 2 & (m = 3) \\ m + 1 & (4 \le m \le 6l + 4 \text{ and } m \not\equiv 2 \pmod{3}) \\ 12l + 9 & (m = 6l + 5) \\ m + 6 & (6l + 6 \le m \le 9l + 2 \text{ and } m \equiv 0 \pmod{3}), \quad l \ge 2 \\ m & (6l + 6 \le m \le 9l + 4 \text{ and } m \not\equiv 0 \pmod{3}) \\ 9l + 7 & (m = 9l + 3) \\ 15l + 13 & (m = 9l + 5) \\ 9l + 5 & (m = 9l + 6) \\ m + 1 & (9l + 7 \le m \le 12l + 7) \\ 4 & (m = 12l + 8) \\ 3 & (m = 12l + 9) \end{cases}$$

Then in all of the three subcases, f can be extended to an edge-magic labeling of W_n with magic number 32k + 14. \square

References

[1] H. ENOMOTO, A. S. LLADO, T. NAKAMIGAWA and G. RINGEL, Super edge-magic graphs, SUT J. Math. 34-2 (1998), 105-109.

Present Address:

Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo, 162–8601 Japan.