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Abstract. A graph G is called edge-magic if there exists a bijection f from V(G)UE(G)to (1,2, ---, V(G)|+
|E(G)|} such that f(x) + f(y) + f(xy) = C is a constant for any xy € E(G). In this paper, we show that a wheel
graph W, is edge-magic if n # 0 (mod 4).

1. Statement of the main result.

Let G be a simple undirected graph, and let V(G) and E(G) denote the vertex set and the
edge set of G, respectively. A bijection f from V(G)U E(G) to {1,2---,|V(G)| + |E(G)l}
is called an edge-magic labeling of G if there exists a constant C (called the magic number
of f) such that f(x) + f(y) + f(xy) = C for any edge xy € E(G). An edge-magic
labeling f of G is called a super edge-magic labeling if f(V(G)) = {1,2,---,|V(G)|} and
FE@) = {IVG)|+1,|V(G)|+2, -+, |V(G)|+|E(G)|}. Agraph G is called edge-magic
(resp. super edge-magic) if there exists an edge-magic (resp. super edge-magic) labeling of
G.

For n > 4, the wheel graph W, of order n is defined as the join C,—; + K of the
cycle C,—; of order n — 1 and the complete graph K of order 1. In this paper, we prove the
following theorem:

THEOREM. Let n be an integer withn > 5 and n # 0(mod 4). Then W, is edge-magic.

This theorem was conjectured by Enomoto, Llado, Nakamigawa and Ringel [1, Conjec-
ture 3.3]. They verified that the theorem is true when n < 30. They also gave an important
result about edge-magic labeling of W,,, which we state as a remark:

REMARK 1.1 ([1, Theorem 2.4]). Let n > 4 be an integer. Then W, is not super
edge-magic. Moreover, W, is not edge-magic if » = 0 (mod 4).

Our proof of the Theorem is constructive. However, the edge-magic labeling given in this
paper is rather complicated. Thus for completeness’ sake, we include in Section 2 a proof of
the fact that W, does not have certain simpler forms of edge-magic labelings.
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2. Nonexistence and characterization of certain types of edge-magic labelings.

In this section, we determine certain types of edge-magic labelings of W,. Write
V(Wp) = {vo,v1, -+ ,vn—1} so that E(W,) = {vivipa|l =i < n—2}U{vpqu1} U
{vovi|1 <i <n—1}.Forsubsets X,Y C {1,2,---,|[V(W)|+ |[E(W,)|}, wewrite X <Y
to mean max X < min?Y.

REMARK 2.1. Ifn =2k + 1, then W, has no edge-magic labeling f of the form
fam-1)=a+m (A =<m=<k), f(m)=b+m (A=<m=k).

PROOF. Suppose that such a labeling f exists. Then f(vy) + f(vy) = (@+ 1)+ b+
k) = a+b+k+1.Ifk = 0(mod 2), f(vk)+f (vk+1) = (b+k/2)+(a+k/2+4+1) = a+b+k+1;
ifk =1(mod?2), f(vi)+ f (vk+1) = (@a+*k+1)/2)+(b+(k+1)/2) = a+b+k+1. Thusin
both cases, letting C be the magic number of f, we have f(vjvak) = C— (f(v1) + f(vk)) =
C — (f(vr) + f(vk+1)) = f(vkvr+1), which is a contradiction. [

REMARK 2.2. Ifn =2k + 2, then W, has no edge-magic labeling f of the form
fom-)=a+m (A1=<m=<k+1), f(ow)=b+m (1=<m=k).

PROOF. By Remark 1.1, we may assume k& > 2 and k& = 0 (mod 2). Suppose that such
a labeling f exists. Then f(x) =|VGI+IEG)|+1—- f(x)(x € V(G)U E(G)) is also
the same type of labeling. Thus we may assume thata +k+ 1 < b+ 1, and hence f(vovy) =
C—b+14+f(v9)) < C—(a+k+1+ f(vo)) = f(vovak+1), where C is the magic number of
f.Write A = {a+1,--- ,a+k+1},A = {C—(a+k+1+ f(v0)), -+, C—(a+1+ f(v0))},
B={b+1,---,b+k,B={(C—@®+k+ f)), -, C—®b+1+ fo)), U =
{C—(a+b+2k+1),--- ,C—(a+b+2)}. Thus |A| = |A| =k+1,|B)=|B| =k, |U| =2k
and
AUAUBUBUUU{f(v), fivaxs)} ={1,---,6k +4}. ¢))
Setdij=b—a—-k—-1,dy=C—(a+b+2k+2+4+ f(v))andd; =a+b+1+ f(vg)—C.
Thus dj = minB —maxA — 1 = minA —maxB — 1 = f(vijvus1) —maxU — 1,dy =
min B—max A—1 =minA—max B—1andds = minA—max B—1 = min B—max A —1.
Having in mind the equality

min A + max A = min B + max B, )
we divide our proof into four cases:

Case ]l A<B<B<A

Since dj = min B — max A — 1 = min A — max B — 1, it follows from (1) thatd; = 0
or 1. Suppose d; = 0. Then since d) = f(vjvak+1) —max U — 1, f(viva+1) = max.U + 1.
First assume that U < A < B < B < A. Then f(viva+1) < |U| +2 = 2k + 2. On the
other hand, min A — min A > |A| + |B| + |B| = 3k + 1 and, since f is edge-magic, we also
have f(vivak4+1) + min A = f(v1vn+1) + f(v1) = f(vovau+1) + f(vo) = min A + f (vo).
Consequently f(vivk+1) = min A — min A + f(vo) > 3k + 1, which is a contradiction.
Next assume that A < B < U < B < A. Then f(vivag+1) < 4k + 3. On the other hand,
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min A — min A > 5k + 2, and hence f(vv2k41) = min A —min A + f(vo) > 5k + 2, which
is a contradiction. Finally assume that A < B < B < A < U. Then f(vivak41) = 6k + 3 or
6k + 4, and f(vg) = 1, 2k +2, 4k + 3 or 6k + 4. On the other hand, min A —min A = 3k + 1
or 3k + 2, and hence f(vg) = f(vivak+1) — (min A — min A) = 3k + 1, 3k + 2 or 3k + 3,
which is a contradiction.

Suppose now that d; = 1. Then since max A + 1 = min B — 1 and since each of A, B
and U has cardinality at least 2, max A +1 ¢ AUA U B U B U U. Similarly max B + 1,
maxU +1¢ AUAUBUBUU. Since max A + 1, max B + 1, max U + 1 are distinct and
belong to {1, 2, - - - , 6k + 4}, this contradicts (1). '

Case 2 A<B<B<A

By (1) and (2), d; = O or 1, and we also have d; = minB —maxA — 1 > |B| = k.
Suppose d; = 0. Then since f(viva+1) —maxlU — 1 =d; > k > 2, at least one of A U B
and B U A is between U and f(vivak+1), and hence dy > |A| + |B| = 2k+1 > k+3.
Since diy = min B — max A — 1, this implies U is between B and B. Consequently d; =
min B—max A—1 > |B|+|U| = 3k,andd; = f(vivpe41)—maxU—1 < |BUA|+1 < 2k+2.
This forces k = 2and A < B < U < B < A < {f(v0)} < {f(vivak+1)}. In particular,
max B < minA and minU < f(vg). Therefore max B + minU < min A + f(vo), which
contradicts the fact that max B + min U = f(va) + f(varkvak+1) = f(vovar+1) + f(vo) =
min A + f(vo).

Suppose now that d; = 1. Since |U| > 4, this implies maxA + 1, maxB + 1 ¢
AUAUBUBUU, and hence by (1), {max A + 1, max B + 1} = { f (vo), f(vivak+1)}. Since
max A + 1 < max B + 1, this implies that min A < f(vo) and f(vivk+1) < max B + 2 =
min A. Consequently min A + f(viva+1) < f(vo) + min A, which contradicts the fact that
min A + f(v1v2k41) = f(vo) + min A.

Case 3 B<A<A<B

By (1) and (2), d3 = O or 1, and we also have di > k + 1. Suppose d3 = 0. Then
at least one of BU A and A U B is between U and f(vivaks1). On the other hand, since
di < |A|+|U|+2 < 3k+ 3, it is not possible that both BU A and A U B are between U and
f(vivak41). Therefore 2k +1 = |BU A| < dj < |BU A| + 1 < 2k + 2, which implies that
U cannot be between A and A, and hence d; < |A| + 2 < k + 3. Consequently k¥ = 2 and
U < B < A < {f(vivaks1)} < {f(v0)} < A < B. This implies that f(vivak+1) < min A
and min A < f (vo), which contradicts the fact that min A + f(v1v2k+1) = min A + f (vo).

Suppose now that d3 = 1. Since |U| > 4, this implies minA — 1, minB —1 ¢ AU
AU B U BUU, and hence by (1), {min A — 1, min B — 1} = {f(vo), f(vivak+1)}. Since
minA < minA < maxA = min B — 2, this implies that f(vg) < minA < minA <
f(vivak+1) or f(V1v2k+1) < MInA < minA < f(vo), which contradicts the fact that
min A + f(v1v2k41) = min A + £ (vo).

Case 4 B<A<A<B
By (1) and (2), d; = 0 or 1. Suppose di = 0. Then f(viva+1) = ma_le + 1, If
U<B<A<A<B,then f(vivyy1) =2k +1or2k+2,andminA —minA =k + 1 or
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k+2;if B<A<U <A < B, then f(vivags1) =4k +2o0rdk +3,and min A —min A =
3k+2o0r3k+3;if B<A <A < B < U, then f(vivag+1) = 6k + 3 or 6k + 4, and
minA —minA = k + 1 or k + 2. In all cases, f(vo) = 1, 2k + 2, 4k + 3 or 6k + 4. From
these observations, we see that min A — min A # f(vo) — f(vivak+1), which contradicts the
fact that min A + f(vivay1) = f(vo) + min A.

Suppose now that d; = 1. Then as in Case 1, max A + 1, max B + 1, max U + 1 are
distinct and max A + 1, max B + 1, maxU +1 ¢ AU A U B U B U U, which contradicts
1. O

REMARK 2.3. Letn = 2k 4+ 1 with k > 3, and suppose that W,, has an edge-magic
labeling f of the form

a+m (A<m<x<l
f(v2m—1)—[ a+m d+1<m<k)
fvam)=b+m (1 <m<k).

Then k = 0 (mod 2) (i.e.,, n = 1 (mod 4)), ! = k/2, and one of the following holds:
G a=T7l+1,a =3l+1andb =9l +1;
) a=11l+1,ad =71+ 1andb=>5]+1;
(iii)) a=3l,a’ =—land b = 5I;
Gv) a=7l,a’" =3landb =1;
V) a=11l+1,ad =71+1andb=1; or
vi) a=3l,d =—-landb=9l + 1.

PROOF. If1 < k < 2] — 1, then as in Remark 2.1, we have f(v;) + f(vx) = a +
b+k+1= f(u)+ f(vky1). Thusk > 2I. Set A ={a+1,---,a+1}, A = (C —

(a+l+f(vo)),-'-,C—(a+1+f(vo))},A’ = {a’-|-l+1,...’a’+k_},A/ = {C —
@ +k+ f)), -, C—@+1+1+ fwo)}, B={b+1,--- ,b+k},B={C—(b+
k+ f(wo), -, C—@B+1+ fwo)}, U ={C—(@+b+2D),---,C—(a+b+2))},

U ={C—(@+b+2k),---,C—(a +b+2l+ 1)}, where C is the magic number of f.
Thus |A| = |A|=1,|A'| =|A'|=k—L,|B|=|B|=k,|\U| =2l — 1, U’} =2k — 2] and

AUAUAUAUBUBUUUU U{f(w), fvivar)} ={1,---,6k+1}. (3
Note that

min A + max A = min A’ + max A’ = min B + max B, (C))

and that if k > 2/ + 1, then -
Ul < U] -2. (S
We prove four claims.
CLAIM 1. Suppose that k > 2/ + 1 and {f(viv)} < A < U < B < A, and that B

is outside A and U, i.e., either B < A or U < B. Then! = 1, and either {f(vivx)} < A <
U<B<B<{f()}<Aor{f(vivix)} <A <U < B < B < {f(v)} < A.

PROOF. By (4) and the assumption that A < B < A, wehave A < B < A, and hence
U < B < A by the assumption that B is outside A and U. Assume first that B < B. By (4),
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either both A’ and A’ are between B and B or both A’ and A’ are outside B and B, and either
both A’ and A’ are between A and A or both A’ and A’ are outside A and A. Consequently, if
B < U’ < A, then (max A — min B) — (max B — min A) = |U’| — (U| + 1) or |U’| — |U]|
according as f(vo) is between A and B or not, and hence max A — min B > max B — min A
by (5), which contradicts (4). Thus U’ is outside B and A, and hence (max B — min A) —
(max A — min B) > |U| — 1. Since max B — min A = max A — min B by (4), this implies
that/ = 1 and f(vg) is between B and A (and U’ is outside A and B), as desired. If B < B,
we similarly obtain/ = 1 and B < {f(vw)} < A. O

CLAIM 2. Supposethatk >2l+1,{f(viv)} < A < U < A, B is outside f(viva)
and A, and B is outside f(vivak) and A. Then either B < {f(vjvx)} < A < U < A <
{f(wo)} < Bor B < {f(vivar)} < A < U < A < {f(vo)} < B, and U’ is either between A
and A or outside B and B.

PROOF. Assume first that A < B. Then by (4) and by assumption, B < {f(viva)}.
If A < U < B, then arguing as in Claim 1, we obtain (min B — max A) — (minA —
max B) = |U’| — 2 or |U’| — 1 according as f(vg) is between B and A or not, and hence
min B — max A > min A — max B by (5), which contradicts (4). Thus U’ is outside A and
B. Similarly U’ is outside B and A. Consequently U’ is either between A and A or outside B
and B. Since min A — max B = min B — max A, this implies A < {f(vo)} < B, as desired.
If B < {f(viva)}, we similarly obtain A < {f(v)} < B. O

CLAIM 3. Suppose thatk > 2/ + 1, A < B < {f(vivi)} < A < U, and B is
outside f(vivzk) and A. Then A < {f(w))} < B < B < {f(mivw)} < A < U or
A<{f(w)}<B<B<{f(vivax)} <A <U.

PROOF. By (4) and by assumption, A < B < {f(vivy)}. Assume first that B < B.If
A < U’ < B, then (max B — max A) — (min A — min B) = |U’| — 2 or |U’| — 1, and hence
max B — max A > min A — min B, which contradicts (4). Thus U’ is outside A and B. Since
min A —min B = max B — max A by (4), this implies that f(vo) is between A and B (and U’
is outside B and A), as desired. If B < B, we similarly obtain A < {f(vo)} < B. O

CLAIM 4. Suppose thatk > 2l +1, A < A < U, B is outside A and U, and B is
outside A and U. Then ! = 1, U’ is either between A and A or outside B and B, and one of
the following holds:

i B <A <A <U < B, one of f(vivx) and f(vo) is between B and A, and the
other one is either between A and A or outside B and B; or

() B<A <A <U < B, one of f(vjvx) and f(vp) is between B and A, and the
other one is either between A and A or outside B and B.

PROOF. Assume first that U < B. Thenby (4), B < A.If B < U’ < A, then (max A—
max B) — (min B — min A) > [U’| — (JU| + 2), and hence max A — max B > min B — min A
by (5), which contradicts (4). Thus U’ is outside B and A. Similarly, if A < U’ < B, then
(min B —min A) — (max A —max B) > (|U|+|U’|) —2 > 0, which contradicts (4). Thus U’
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is outside A and B. Consequently, U’ is either between A and A or outside B and B. Now if
1> 2, then |U| =2l —1 > 3, and hence (min B —min A) — (max A —max B) > |U|—2 > 0,
which contradicts (4). Thus/ = 1, and hence |U| = 1. Since min B—min A = max A—max B
by (4), this implies that one of f(vjvk) and f(vg) is between B and A, and the other one
is neither between B and A nor between A and B. Consequently (i) holds. If B < A, we
similarly see that (ii) holds. [

NowsetT ={C—(a+b+k), - --,C—(@a+b+20+ 1)} fT # @, then

min7 —1=C—(@+1)—(b+k)= f(viva) 6)
and
maxT +1=C—(@+b+2]) =minU. @)

From (3), (6) and (7), it follows that T is the union of some of A, A, A’, A’, B, B, U’ and
{f(vo)}. Since |T| = k — 21 is less than each of |A’|, |A’|, |B|, | B| and |U’|, this means that
T is the union of some of A, A and {f(vp)}. Note that if T # @, then k > 2/ + 1. We now
divide our proof into seven cases:

Case 1 T ={f(vo)}

In this case, max U — f(vp) = |U| = 2] — 1. We also have max A — min B > |A| +
|[Bl—1=k+1!—1ormax A — min B < 0, according as B < A or A < B. Consequently
(max U + min B) — (max A + f(vp)) = (maxU — f(vp)) — (max A — min B) # 0. On
the other hand, since f is edge-magic, we have maxU + min B = f(viv) + f(v2) =
f(vouy) + f(vg) = max A+ f (vo), which is a contradiction.

Case 2 T=A

Since k — 2! = I, k = 3l. Suppose A < A. We first show that B is outside A and
A. Suppose that A < B < A. Then since maxA + 1 = maxT + 1 = minU by the
assumption of Case 2 and (7), A < U < B < A and B cannot be between A and U.
We also have { f(vijvk)} < T = A by (6). Hence by Claim 1, f(vp) > max B. On the
other hand, since A < A, maxA > minA = minT > f(vjvx) by (6). Consequently
f(vo) + max A > max B + f(viva), which contradicts the fact that f(vp) + max A =
fwo) + f(vovy) = f(vak) + f(vivak) = max B + f(vivak). Thus B is outside A and A.
Hence in view of (6) and (7), we can apply Claim 2 to see that

B <{f(viva)} <A <U <A<{f(vw)} <B

_ - 8
or B<{f(vivap)}) <A <U < A <{f(vw)} <B ®

and
U’ is between A and A or outside B and B . 9)

Now if A’ is between A and A, then arguing as in Claim 1 with B replaced by A’, we obtain
{f(vo)} < A, which contradicts (8). Thus A’ is outside A and A. Hence arguing as in Claim
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2, we get

A < {fuivw)} <A <U<A<{f(v)} <A

- - 10
or A < {fwiva)} <A <U < A <{f(vg)} <A’. (19

By (3), (8), (9) and (10), f (vp) = max A + 1, min B — f(vp) is either equal to 1 or |A’| +1 =
k — 1+ 1 or less than 0, and max A —max U is equal to |A| = [ or |A| 4 |U’| = 2k —1. On the
other hand, since min B + max U = f(v3) + f(viv2) = f(vov1) + f(vg) = max A+ f (vo),
min B — f(vg) = max A —max U. Since k = 3/, these imply that! = 1,and U’ = {1, 2, 3, 4}
or {16, 17, 18, 19}. Consequently f(vg) —minU’ = —6 or 13, and max A" — min B =6, and
hence f(vg) — min U’ # max A’ — min B, which contradicts the fact that max A’ + min U’ =
f(vo) + min B.

Suppose now that A < A. If A < B < A, then by Claim 3, max B < max U and
f(vo) < min A, and hence max B + f(vo) < max U + min A, which contradicts the fact that
max U + min A = max B + f(vg). Thus B is outside A and A, and hence it follows from
Claim 4 that I = 1. Since A < {f(vivak)} < A by (6), it also follows from Claim 4 that
B < {f(w)} <A < {f(viva)} <A <U < Bor B <{f(vo)} < A < {f(vivar)} <A<
U < B. Hence arguing as in the preceding paragraph, we see that A’ is also outside A and
A, f(vo) = min A—1, min A— f(vo) is equal to |AU{ f (vivax)}|+1 = 3 or |AU{ f (v1var) }|+
|U’| +1 =7, and max B — max U is either equal to |B| = 3 or |B| 4+ |A’| = 5 or less than 0.
On the other hand, since min A +max U = max B+ f(vo), min A — f(vo) = max B—maxU.
Consequently min A — f(vg) = max B—max U = 3,and U’ = {1, 2, 3,4} or {16, 17, 18, 19}.
This implies that min U’ — min A = 7 or —12, and f(viv2x) — max A’ = 6 or —7, and hence
minU’ — min A # f(vivy) — max A’, which contradicts the fact that f(vivy) + min A =
min U’ + max A’.

Case 3 T=A

Since k — 2/ =1, k = 3l. Suppose A < A.IfA < B < A, then arguing as in the second
paragraph of Case 2, we obtain f (vo) < min B and max A < max U, which contradicts the
fact that f(vo) + max A = min B + max U. Thus B is outside A and A. Hence arguing
again as in the second paragaph of Case 2, we see that/ = 1, minA — f(vo) = 1, and
max B — max U is either equal to 3 or 5 or less than or equal to —5. Consequently min A —
f(vo) # max B — max U, which contradicts the fact that min A + max U = f(vg) + max B.

Suppose now that A < A. If A < B < A, then arguing as in the first paragraph of
Case 2, we obtain f(vp) > max B and max A > f(vivat), which contradicts the fact that
f(vo) + max A = max B + f(vivy). Thus B is outside A and A. Hence arguing as in
the first paragraph of Case 2, we see that f(vg) = maxA + 1, f(vo) — minA = [/, and
max U — max B > 3l or < 0. Consequently f(vg) — minA % max U — max B, which
contradicts the fact that f(vg) + max B =min A + max U.

Case 4 T =AU{f(vp)}orT = AU({f(vo)}
Suppose first that T = AU{ f (vp)}. Then by (6) and (7), the assumption of one of Claims
1 through 4 is satisfied. On the other hand, it follows from (6) that A U { f(vo), f(viva)}
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consists of consecutive integers, and hence the conclusion of none of Claims 1 through 4 can
hold, which is a contradiction. If T = A U { f(vg)}, then arguing as iri Claims 1 through 4
with the roles of A and A replaced by each other, we can similarly get a contradiction.

Case 5 T=AUA

In this case, B is outside A and A. Suppose A < A. Then it follows from Claim 4
that / = 1, and f(vp) is outside B and B. In view of (6), it also follows from Claim 4 that
B<{fmv)) <A <A <U< B < {f(w)orB < {flvivp)) <A <A <U <
B < {f(vo)}. Consequently, arguing as in Case 2, we see that max A — f(vjvy) = 1, and
max B — f(vg) < 0, which contradicts the fact that max A+ f(vo) = f(viva) + max B.
If A < A, then similarly max A — f(vivk) = 2 and max B — f(vg) < 0, which again
contradicts the fact that max A + f(vo) = f(vivk) + max B.

Case 6 T =AUAU{f(v)}

In this case, B is outside A and A. Suppose A < A. Then it follows from Claim 4 that
I = 1. In view of (6), it also follows from Claim 4 that B < {f(vivx)} < A < {f(vo)} <
A<U < BorB < {f(vivar)} < A < {f(v)} < A < U < B. Consequently, arguing
as in Case 2, we see that max A — f(uivy) = 1, and max B — f(vg) > 5 or < 0, which
contradicts the fact that max A + f(vo) = f(vivx) +maxB. If A < A, then similarly,
max A — f(viv) = 3, and max B — f(vp) = 5 or < 0, which again contradicts the fact that
max A + f(vg) = f(vivy) + max B.

Case 7 T=9

In this case, since |T| = k — 2] = 0, we have k = 2/, and hence |A’| = |A’| = I and
|B’| = |B’| = |U’| = 2l. We also have minU — 1 = f(vyvy) and |{f(viv)} U U| = 2L.
Hence by (4), either

f(vp) is between A and A, between A’ and A’, and between B and B, (11)

or
f(vo) is outside A and A, outside A’ and A’, and outside B and B . 12)

It is easy to verify the assertion of the remark for k = 4. Thus we henceforth assume k > 6
(sol > 3).

First we consider the case where (12) holds. If f(vg) is outside A and U’, and outside A’
and U, then min U —min A’ = 1 (mod /) and max U’ —max A = 0 (mod /), which contradicts
the face that

minU —min A’ = maxU’ — max A . (13)
Thus f(vg) is between A and U’, or between A’ and U. Assume first that f (vp) is between A’
and U. Suppose A’ < {f(vg)} < U. Then min U — min A’ = 2 (mod/). On the other hand,
A < U’ by (13), and hence max U’ — max A = 0 or 1 (mod /) according as f(vp) is outside
A and U’ or between A and U’. Since ! > 3, this contradicts (13). Thus U < {f(vo)} < A’.
This implies min A’ — min U = 0 (mod[). Also by (13), U’ < A. If U’ < {f(vg)} < A, then
max A — max U’ = 1 (mod!), which contradicts (13). Thus f(vg) is outside U’ and A, and
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hence U < {f(vg)} < A’ < U < AorU < {f(v)} < U < A" < A by (12) and (13).
Suppose U < {f(vo)} < A’ < U’ < A. Then by (12), f(vo) — max U = 1. Since

f(vo) —maxU = min A — max B, (14)

this implies min A—max B = 1. In particular, U’ < B < A, and hence max A —max U’ > 3I.
In view of (13), this implies A’ or A U B is between U and A’, i.e., U < {f(vg)} < A’ < A’
orU < {f(v))}) <A < B < A’. Butif A’ < A’,thenby (4), A < B < A’ < A/, and
hence U < {f(v0)} < A < B < A’. Thus U < {f(v0)} < A < B < A’. Consequently we
obtain min A’ — minU > 5/ and max A — max U’ < |A’ U B U A| = 4l, which contradicts
(13). Thus U < {f(vo)} < U’ < A’ < A. Again by (12), f(v9) — max U = 1, and hence
minA — max B = 1 by (14). If A’ or A U B is between f(vg) and U’, then arguing as
above, we obtain min A’ — minU > 7/ and max A — max U’ < 5l, a contradiction. Thus
min U’ — f(vp) = 1. Since

minU’ — f(vg) = min B —max A’, (15)

this implies min B — max A’ = 1. Consequently { f(viv)}UU < {f(v)} < U’ < A’ <
B<A<A<B<Aor{f(iva)JUU <{f(vp))}) <U <A<B<A <A <B<A
by (4) and (12), and hence (i) or (ii) holds.

Assume now that f(vg) is outside A’ and U, and between A and U’. If U’ < {f(vg)} <
A,then U < A’ by (13), and hence max A — max U’ = 1 (mod!/) and min A’ —minU = —1
(mod!), which contradicts (13). Thus A < {f(vo)} < U’. By (13), this implies A’ < U,
and hence A’ < {f(viva)}UU < A < {f(vp)} < U’ or A < A < {f(vjuv)}UU <
{(fwo)} < U.IfA" < {f(vivae)}UU < A < {f(vp)} < U’, then arguing as in the preceding
paragraph, we get a contradiction. Thus A’ < A < {f(viva)} U U < {f(w)} < U’. By
(12), min U’ — f(vp) = 1, and hence min B — max A’ = 1 by (15). If A or BU A’ is between
U and f(vo), then again arguing as in the preceding paragraph, we get a contradiction. Thus
f(vo) —max U = 1, and hence f(vg) — f(vivak) = 2] because min U — 1 = f(vyvy) and
|U| =2l — 1. Since

f(vo) — f(vivak) = minA — min B, (16)

this implies min A —min B = 2I. Consequently A’ < B<A<A<B<A < {f(vivar)}U
U<{f(w)})<UorA<B<A <A <B<A<{f(wva)}UU < {f(v)} < U’, and
hence (iii) or (iv) holds. This concludes the discussion for the case where (12) holds.

Next we consider the case where (11) holds. Arguing as in the case where (12) holds, we
see that either

U< {f(v)} <A, U’ <A, and f(vp) is outside U’ and A, an
or
A <{f(w)) <U', A <U, and f(vg) isoutside A’ and U . (18)

Assume first that (17) holds. Then by (13), U < {fhiva)lUU < A < {f(vo)} < A/,
U' <A< {foiva)}UU < {f(vo)} < A, {f(1va)}UU < {f(v0)} < A" < U’ < A,
or {f(vivap)} VU < {f(vo)} < U’ < A" < A. Suppose U’ < {f(vivar)}UU < A <



162 YASUHIRO FUKUCHI

{f(vo)} < A’. Then by (4) and (11), U < A’ < {fvg)} < A, one of B and B is between U
and f(vp), and the other one is larger than f(vg). Hence we have f(vg) — f(vivak) = 6l and
min A — min B < 3[, which contradicts (16). Next suppose U’ < A < {f(vivp)}UU <
{f(vo)} < A’. Then by (4) and (11), U’ < A’ < {f(vivax)} UU < {f(v0)} < A, one of
B and B is between U’ and { f(vivar)} U U, and the other one is larger than f(vg). Hence
f(vo) — f(vivae) = 2l and f(vo) — minU’ = 8. From f(vg) — f(vivak) = 2I, we get
min A —min B = 2/ by (16), and hence max B+ 1 = min A. Consequently max A’ —min B =
9/ or 71, according as A’ < B < A < {f(niva)}UU < {f(vo)) <A <B < A'or B <
A< A < {fwva)}UU < {f(vg)} < A’ < A < B. But in view of (15), this contradicts
the earlier assertion that f(vp) — min U’ = 8. Now suppose { f(viv)} UU < {f(vo)} <
A’ < U’ < A. Thenby (4) and (11), A < {f(vivar)}UU < A’ < {f(vo)} < A’ < U’ < A.
By (13) and (4), this implies that one of B and B is between U’ and A, and the other one is
between A’ and {f(viva)} U U. Hence f(vg) — f(viva) = 3/ and min A — min B = 2/
or 10/, which contradicts (16). Thus {f(vivar)} UU < {f(v9)} < U’ < A’ < A. By
(4) and (11), this implies {f(nivx)}UU < A < A’ < {f(vo)} < U < A’ < Aor
A<A <{fmvlUU < {f(w)} < U’ < A" < A. If {fvyiv)}UU < A < A’ <
{f(wvo)} < U’ < A" < A, then minA’ — minU > 6/ and max A — max U’ < 4l, which
contradicts (13). Thus A < A’ < {f(viva)}UU < {f(vg)} < U’ < A’ < A. By (13) and
(4), this implies that one of B and B is between A’ and A, and the other one is between A and
Al Consequently f(vo) — f(vivak) = 2/, and hence min A — min B =2l by (15). Therefore
A<B <A <{f(vivi)}UU < {f(vo)} < U’ < A’ < B < A, and hence (v) holds.
Assume now that (18) holds. Then by (13), A < {f(vg)} < U’ < A’ < {f(vijv)}UU,
A< {fw)} <A <U <{fmv)}UU, A" < {f(wiva)} VU < A < {f(vp)} < U’,
or A < A < {f(viv)}UU < {f(vo)} < U’. Suppose A < {f(w)} < U < A’ <
{f(vivak)} U U. Then by (4) and (11), A’ < {f(vo)} < U’ < A < {f(vivx)} U U, one
of B and B is between U’ and {f (v1var)} U U, and the other one is less than f(vp). Hence
f(viva) — f(vo) = 6l + 1, which implies min B — min A = 6/ + 1 by (16). Conséquently
A<A <B<{fw) <U <B<A <A< {flmyuum)lUUorB < A < A <
{f(ve)} < U’ < A’ < A < B < {f(vivk)} U U, which contradicts (13). Next suppose
A < {f(vo)} < A" < U’ < {f(vivx)} U U. Then by (4) and (11), A’ < {f(v)} < A <
U’, one of B and B is between f(vp) and U’, and the other one is less than f(vg). Hence
f(uivg) — f(vo) = 6l + 1 and min B — min A < 5/ + 1, which contradicts (16). Now
suppose A’ < {f(vivk)}UU < A < {f(vg)} < U’. Then A’ < {f(viva)}UU < A <
{f(vo)} < A < U’ < A’ by (4) and (11). By (4) and (13), this implies that one of B and B
is between A’ and { f (v{v2x)} U U and the other one is between U’ and A’, which contradicts
(14). Thus A’ < A < {f(vivax)} U U < {f(v)} < U’. By (4) and (11), this implies
A < A< {friva)}UU < {f(wp)) <A <A <U' orA’ < A < {f(mv)}UU <
(fw)} < U <A< A.IfA < A < {fmu)}UU < {f(w)} <A < A < U,
then max U’ — maxA > 6/ + 1 and minU — min A’ < 4/ + 1, which contradicts (13).
Thus A’ < A < {f(miva)}UU < {f(vo)} < U < A < A’. By (13) and (4), this
implies that one of B and B is between A’ and A, and the other one is between A and A’.
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Consequently f(vo) — f(vivak) = 2/, and hence min A — min B = 2/ by (15). Therefore
A <B <A< {f(viva)}UU < {f(vo)} < U’ < A < B < A’, and hence (vi) holds (note
that the above argument shows that if one of (i) through (vi) holds, then the labeling under
consideration is in fact edge-magic; in particular, (vi) yields the labeling described in Case 1
of Section 3).

3. Proof of theorem.

We give a constructive proof of the theorem. As in Section 2, write V(W) = {vp, v1, - -,
Up—1} so that E(W,) = {vijvig1 |l <i <n -2} U{vp—1v1}U{vov; |1 <i <n —1}. The
proof is divided into five cases as follows.

Case 1: n= 1 (mod4),
Case 2: n=-2 (mod8),
Case 3: n= 2 (mod8),
Case 4: n=-1 (mod8),
Case 5: n= 3 (mod8).

Case 1 n=1(@(mod4)
Write n =4k + 1 (k > 1). Thus [V(W,)| + |E(W,)| = 12k + 1. Define f by

F(vo) = 6k + 1
oy [PEEm Gsmsh
Vm-U=0 phm k41 <m <2k

fom)=9%+14+m (1<m <2k
£ = 9% +2-m (A <m<k)
POPm-D = N3k 42 —m k+1<m <2k
f(vovzm)=3k+l—m (1§MS2k)
6k+2—2m (1<m<k)
FWam—-1v2m) = {10k 12 _ 2m (k+1<m<2k)
. 6k+1—-2m (1<m=<k-1)
f(amvom+1) = 10k+1—-2m ((k<m<2k-—1)
fuakvy) =4k + 1.

Then f is an edge-magic labeling of W, with magic number 18k + 3 (see the parenthetic
remark made at the end of the proof of Remark 2.3).

Case 2 n=—2(mod8)
Write n = 8k — 2 (k > 1). Thus |V (W,)| + |E(W,)| = 24k — 8. Define
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f(vo) = 10k — 3

[8k—2—m (A <m<k)
fam_) =418k —5—-m (*k+1<m<3k—1)
|4k —m Bk<m<dk-—-1)

[2k —m A<m<k-1)
4k —1—m k<m<2k-1)
8—2—m Rk<m<3k-1)
|10k —3—m @Bk<m<4k-2),

f(vam) = {

and let f(uv) = 30k — 9 — f(u) — f(v) for each uv € E(W,). Then f is an edge-magic
labeling of W,, with magic number 30k — 9.

Case 3 n=2(mod8)

Write n = 8k 4+ 2 (k > 1). Thus |V(W,)| + | E(W,)| = 24k + 4. Define

f(vo) =10k + 2

(8k+2—m (1 <m<k)
fuam—1)=4{6k+2—m ((k+1<m<3k+1)
4k+2-—m @Bk+2=<m=<4k+1)

(2k+1-—m (1 <m<k)
16k+3—m (k+1<m<2k)
20k+4—m Qk+1=<m<3k)
| 10k+2—m @Gk+1<m<4k),

f(vam) = 1

and let f(uv) = 30k + 6 — f(u) — f(v) for each uv € E(W,). Then f is an edge-magic
labeling of W,, with magic number 30k + 6.

Case 4 n = —1 (mod8)
Write n = 8k — 1 (k > 1). Thus |V(W,)| + |E(W,)| = 24k — 5. Define
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f(vo) = 8k
£ )= m l<m<3k-1)
VIm-U =V 41 Ghk<m<4k—1)
(16k—2+m (1<m<2k—1)
16k—14+m Rk<m<3k-2), k=2
) 21k — 4 (m=3k—1)
= {
Vom 16k —2+m Gk<m<4k—3), k>3
18k — 2 m=4ak—2), k>2
| 16k — 2 (m=4k—1),

and let f(uv) = 32k — 4 — f(u) — f(v) for each uv € E(W,). Then f is an edge-magic

labeling of W,, with magic number 32k — 4.

Case 5 n =3 (mod8)

Write n = 8k + 3 (k = 1). Thus |V(Wy,)| + |E(W,)| = 24k + 7. Define

f(vo) =8k +6.

In the case where k = 1, define

fu) =23, f(v)=2,

f(v3) =26, f(vg) =3,

f(vs) =31,

flve) =4, fw) =22, f(vg)=5, [f(v) =25, [f(vio)=38;
in the case where k = 2, define
fv) =38, f(m)=6, f()=39, f(va)=9, [f(vs)=40,
flue) =2,  f(uv)) =41, f(g) =S5, f(v) =42, f[f(vio)=13,
fi) =44, fi2)=7, f(vz)=45, f(via)=8, [f(uvs)=46,
fvie) =4, f(v17) =55, f(vg) =3.

Then f can be extended to an edge-magic labeling with magic number 46 and 78, respectively.

We henceforth assume k > 3. Define

16k+5+m (1<m<3k-1)

fam—1) = {16k +6+m 3k <m < 4k)
24k + 7 (m=4k+1).
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For labelings of v,,, (1 < m < 4k 4 1), we consider three subcases.

Subcase 5.1 k = 0 (mod3)
Setk =3l (> 1). Thusn =24l + 3, |V(W,)| + |E(W,)| = 72l + 7. Define

(m+5 (1 <m <6landm # 0 (mod 3))

m—1 (1 <m <6land m =0 (mod 3))

1214+1 (m=6l+1)

m+4 (6/l+2<m<9—-2andm #1(mod3)), 1>2
m—2 (6l4+2<m=<9—-2andm=1(@mod3)), 1 >2
15/4+3 (m=91-1)

9 -1 @Mm=9)

m+1 Ol+1<m<12l-1)

4 (m = 12])

3 m=121+1).

f(v2m) = |

Subcase 5.2 k =1 (mod3)
Setk=314+1(>1). Thusn =24l + 11, |V(Wy,)| + |E(W,)| = 72l + 31. Define

(m+5 (1 <m <6landm # 0 (mod3))
m—1 (1 <m<6l+3andm =0 (mod 3))
1214+5 (m=6l+1) ’

6l+5 Mm=6l+2)

fm)={m+2 (GBI+4<m=<9+1)

1514+8 (m=91+2)

m+1 Ol4+3<m=<12l+3)

4 (m =12 +4)

3 (m=121+5).

Subcase 5.3 k = 2 (mod3)
Setk=3l+2( >1). Thusn =241 + 19, |V(W,)| + E(W,)| = 72] + 55. Define
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(6 m=1)
m+7 (2 <m <6l +4and m = 2 (mod 3))
2 (m=23)

m+1 4<m<6l+4and m # 2 (mod 3))

121+9 (m=6l+5)

m+6 6l+6<m<9l+2andm =0(mod3)), [>2
foam)=3{m (6l +6 <m <9+ 4 and m % 0 (mod 3))

ol +17 (m=09143)

151+13 (m=91+5)

9l +5 (m =91 +6)

m+1 Ol+7<m<1214+7)

4 (m =121 4+ 8)

|3 (m=12149).

Then in all of the three subcases, f can be extended to an edge-magic labeling of W, with
‘magic number 32k + 14. [J
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