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Causal Inference: A Missing Data
Perspective
Peng Ding and Fan Li

Abstract. Inferring causal effects of treatments is a central goal in many
disciplines. The potential outcomes framework is a main statistical approach
to causal inference, in which a causal effect is defined as a comparison of
the potential outcomes of the same units under different treatment condi-
tions. Because for each unit at most one of the potential outcomes is observed
and the rest are missing, causal inference is inherently a missing data prob-
lem. Indeed, there is a close analogy in the terminology and the inferential
framework between causal inference and missing data. Despite the intrinsic
connection between the two subjects, statistical analyses of causal inference
and missing data also have marked differences in aims, settings and methods.
This article provides a systematic review of causal inference from the missing
data perspective. Focusing on ignorable treatment assignment mechanisms,
we discuss a wide range of causal inference methods that have analogues
in missing data analysis, such as imputation, inverse probability weighting
and doubly robust methods. Under each of the three modes of inference—
Frequentist, Bayesian and Fisherian randomization—we present the general
structure of inference for both finite-sample and super-population estimands,
and illustrate via specific examples. We identify open questions to motivate
more research to bridge the two fields.

Key words and phrases: Assignment mechanism, ignorability, imputation,
missing data mechanism, observational studies, potential outcome, propen-
sity score, randomization, weighting.

1. INTRODUCTION

Causal inference concerns the design and analy-
sis for evaluating the effects of a treatment. A main-
stream statistical framework for causal inference is
the potential outcomes framework, under which each
unit has a set of potential outcomes corresponding to
all possible treatment levels (Neyman, 1990, Neyman,
1935, Rubin, 1974, 1977, 1978). Following the dictum
“no causation without manipulation” (Rubin, 1975,
page 235), a “cause” under the potential outcomes
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framework strictly refers to a treatment or manipula-
tion, and a causal effect is defined as a comparison of
the potential outcomes under different treatment con-
ditions for the same set of units.

The intrinsic connection to missing data stems from
the fundamental problem of causal inference (Holland,
1986), that is, for each unit at most one of the potential
outcomes—the one corresponding to the treatment to
which the unit is exposed—is observed, and the other
potential outcomes are missing. Because the potential
outcomes of the same unit are never simultaneously
observed, the potential outcomes are often referred to
as “counterfactuals” in the literature. Therefore, causal
inference is inherently a missing data problem and es-
timating causal effects requires properly handling the
missing potential outcomes. Despite the intrinsic con-
nection between the two subjects, statistical analyses of
causal inference and missing data—each with a large

214

http://www.imstat.org/sts/
https://doi.org/10.1214/18-STS645
http://www.imstat.org
mailto:pengdingpku@berkeley.edu
mailto:fl35@duke.edu


CAUSAL INFERENCE: A MISSING DATA PERSPECTIVE 215

and sometimes separate literature—also have marked
differences in aims, settings and methods. In this pa-
per, we will provide a systematic review of causal in-
ference from a missing data perspective. Below we first
go through some primitives.

1.1 Causal Inference and the Treatment
Assignment Mechanism

Consider a simple random sample of units drawn
from a target population, indexed by i ∈ {1, . . . ,N},
which comprises the participants in a study designed
to evaluate the effect of a treatment W on some out-
come Y . For example, in comparative effectiveness re-
search, W can be the exposure to a new treatment and
Y a health outcome; in economics, W can be the enroll-
ment to a job training program and Y the employment
status. Without loss of generality, we consider binary
treatments; extension to general treatment regimes has
been discussed elsewhere (e.g., Imbens, 2000, Hirano
and Imbens, 2004, Imai and van Dyk, 2004). Each
unit can potentially be assigned to a treatment w, with
w = 1 for an active treatment and w = 0 for control.
Let Wi be the binary variable indicating whether unit i

is assigned to the treatment (Wi = 1) or to the control
(Wi = 0). The number of treated and control units are
N1 and N0, respectively. At baseline, a vector of p pre-
treatment covariates Xi are observed for unit i. From
now on, we use bold font to denote matrices or vec-
tors consisting of the corresponding variables for the N

units; for example, let W = (W1, . . . ,WN)′ be the N -
vector of treatment indicators, and X = (X′

1, . . . ,X
′
N)

be the N × p covariate matrix. Each unit has a po-
tential outcome under each assignment vector, Yi(W).
Assuming the standard stable unit treatment value as-
sumption (SUTVA) (Rubin, 1980), that is, no interfer-
ence between units and no different versions of a treat-
ment, each unit has two potential outcomes Yi(1) and
Yi(0).

The most common causal estimand is the average
treatment effect (ATE)—the difference between the av-
erage potential outcomes had all units in a target popu-
lation were taking the treatment versus not. The ATE
has both superpopulation (PATE) and finite-sample
(SATE) versions:

τP ≡ E
{
Yi(1) − Yi(0)

}
,

(1)

τS ≡ 1

N

N∑
i=1

{
Yi(1) − Yi(0)

}
.

In the PATE estimand τP , all potential outcomes
are viewed as random variables drawn from a super-

population. In the SATE estimand τS , all potential out-
comes are viewed as fixed values or, equivalently, all
inferences are conditional on the vectors of the poten-
tial outcomes Y(1) and Y(0). SATE has been mostly
discussed in the context of randomized experiments,
whereas PATE is usually the target estimand in obser-
vational studies. The subtle distinction in their defini-
tions leads to important differences in inferential and
computational strategies, as discussed later. Other es-
timands of common interest include the average treat-
ment effects for the treated (ATT) and conditional or
individual ATE (Athey and Imbens, 2015, Athey et al.,
2017).

Four quantities are associated with each unit i,
{Yi(0), Yi(1),Wi,Xi}. Only the potential outcome cor-
responding to the assigned treatment, Y obs

i = Yi(Wi),
is observed, and the other potential outcome, Y mis

i =
Yi(1 − Wi), is missing. Given the observed assign-
ment indicator Wi , there is a one-to-one map be-
tween (Y obs

i , Y mis
i ) and {Yi(0), Yi(1)} with the rela-

tionships Y obs
i = Yi(1)Wi + Yi(0)(1 − Wi) and Y mis

i =
Yi(1)(1 −Wi)+Yi(0)Wi . In general, causal effects are
not identifiable without further assumptions. The cen-
tral identifying assumption concerns the assignment
mechanism, that is, the probabilistic process that deter-
mines which units receive which treatment condition,
and hence which potential outcomes are observed and
which are missing. Causal studies can be broadly clas-
sified by assignment mechanisms (Imbens and Rubin,
2015, Chapter 3). The vast majority of causal stud-
ies assume an ignorable assignment mechanism, also
known as the unconfounded assignment mechanism.

ASSUMPTION 1 (Ignorable assignment mechanism).
An assignment mechanism is ignorable (or uncon-
founded) conditional on X if it does not depend on the
potential outcomes, that is,

Pr
(
W|Y(0),Y(1),X

) = Pr(W|X).(2)

Assumption 1 implies that the treatment is random-
ized among the units with the same value of the ob-
served covariates; in other words, there is no unmea-
sured confounding. This holds by design in classical
randomized experiments where the assignment mech-
anism is known and depends only on the covariates
(Rubin, 1978, Rosenbaum and Rubin, 1983b). How-
ever, in observational studies, Assumption 1 cannot be
ensured by design or directly validated by the data; it
is an untestable sufficient condition allowing for causal
inference. In this paper, we require an ignorable assign-
ment for most of the discussion and will comment on
its violation in Section 5.
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1.2 Missing Data and the Missing Data Mechanism

The assignment mechanism is a special case of a
missing data mechanism. Specifically, in the setting
of missing or incomplete data, for each unit i, let Oi

be the full data—the vector containing all the rele-
vant data, observed or unobserved, and Ri be the miss-
ing data indicator with the same dimension as Oi .
If an entry of Oi is observed, then the correspond-
ing entry of Ri equals 1; if an entry of Oi is miss-
ing, then the corresponding entry of Ri equals 0. Let
O = (O ′

1, . . . ,O
′
N)′ and R = (R′

1, . . . ,R
′
N)′ be the col-

lection of the individual data and missing data indica-
tors, respectively. Let θ and ψ be the set of param-
eters associated with O and R, respectively; for sim-
plicity, below we assume that the parameter spaces of
θ and ψ are distinct. Given the missing data indica-
tors, we can partition the relevant data into the ob-
served data Oobs and the missing data Omis. The miss-
ing data mechanism—the conditional distribution of
R given O and a parameter ψ—is broadly classified
into three categories: (i) missing completely at ran-
dom (MCAR): Pr(R|O, θ,ψ) = Pr(R|ψ); (ii) missing
at random (MAR): Pr(R|O, θ,ψ) = Pr(R|Oobs,ψ);
(iii) missing not at random (MNAR) Pr(R|O, θ,ψ) =
Pr(R|Oobs,Omis,ψ). MCAR is a special case of MAR,
and both are ignorable missing data mechanisms. For
more subtle clarification, see Rubin (1976), Seaman
et al. (2013) and Mealli and Rubin (2015).

If we consider the full data matrix in a causal setting
as O = (Y(1),Y(0),W,X), then the missing data in-
dicator is R = (W,1N − W,1N,1N×p); consequently,
the observed data contain Oobs = (Yobs,W,X) and the
missing data contain Omis = Ymis. The fundamental
problem of causal inference is reflected by the fact that
1N − W, the missing data indicators for Y(1), and W,
the missing data indicators for Y(0), sum to 1N ; that
is, the two potential outcomes cannot be simultane-
ously observed, and thus missing data are unavoidable.
Gelman et al. [(2014), page 198] call these missing po-
tential outcomes intentional missing data, in contrast to
the unintentional missing data due to unfortunate cir-
cumstances such as survey nonresponse, loss to follow-
up, censored measurements or clerical errors. Uninten-
tional missing data are extensively discussed in other
articles in this issue; in this article, we focus on inten-
tional missing data in causal inference, assuming W
and X are fully observed.

1.3 Connection and Distinction

Based on the representation in Section 1.2, the as-
signment mechanism creates a missing data mecha-

nism of the potential outcomes. There is a broad par-
allel between the classification of assignment mech-
anisms in causal inference and the classification of
missing data mechanisms. Specifically, the assignment
mechanism of completely randomized experiments,
namely, Pr(W|Y(0),Y(1),X, θ,ψ) = Pr(W|ψ), is in
parallel to MCAR. The assignment mechanism of
observational studies with unmeasured confounding,
namely, Pr(W|Y(0),Y(1),X, θ,ψ) = Pr(W|Yobs,

Ymis,X,ψ), is in parallel to MNAR. MAR gen-
erally corresponds to ignorable assignment mech-
anisms. However, because the observed covariates,
treatment and outcomes play very different roles in
causal inference, the original form of ignorable as-
signment mechanism can be generalized to a class
of assignment mechanisms that satisfy the condition:
Pr(W|Y(0),Y(1),X) = Pr(W|Yobs,X). For example,
this class includes stratified randomized experiments,
the assignment mechanism of which only depends on
the covariates, namely, Pr(W|Y(0),Y(1),X, θ,ψ) =
Pr(W|X,ψ). Another example is the randomized ex-
periments where the units i = 1, . . . ,N are assigned
sequentially, with the assignment of unit i depending
only on the covariates of units 1, . . . , i and the ob-
served outcomes of units 1, . . . , i − 1, that is, Pr(Wi |
W1, . . . ,Wi−1,Y(0),Y(1),X, θ,ψ) = Pr(Wi |Y obs

1 ,

. . . , Y obs
i−1,X,ψ) (Imbens and Rubin, 2015, Chapter 3).

A third example is the sequentially ignoble assignment
mechanism in studies with time-varying treatments,
where the treatment assignment is ignorable at each
time point t conditional on the observed history un-
til time t − 1, including baseline covariates, observed
treatments and immediate outcomes (i.e., time-varying
covariates) (Robins, 1986). Evident from the case of
MAR, there is a richer class of assignment mecha-
nisms than missing data mechanisms. In fact, there
are a variety of complex assignment mechanisms with
no analogous missing data mechanisms, such as la-
tent ignorable assignment with intermediate variables
(Frangakis and Rubin, 1999) and locally ignorable as-
signment in regression discontinuity designs (Li, Mat-
tei and Mealli, 2015).

There are several important distinctions between
causal inference and the standard missing data analy-
sis. First, the central goal of causal inference is (uncon-
founded) comparison—comparing the potential out-
comes of the same units under two or more treatment
conditions, whereas the common goal in standard miss-
ing data analysis is to infer a population parameter—
not necessarily comparison—defined on the full data,
θ = f (O), from the observed data Oobs. This has at
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least two consequences: (a) The crucial concept of co-
variate balance between two groups in causal infer-
ence is usually not considered in missing data analy-
sis; see Zubizarreta (2015) for an exception; (b) The
widely used Fisher randomization test for causal com-
parisons has no analog in missing data analysis; see
Section 5.1 for details. Second, the missingness of po-
tential outcomes is highly structured: for each unit, the
missing data indictors of all potential outcomes must
sum to one, and thus at least half of the potential out-
comes are missing by design. Critically, there is no in-
formation to infer the association between the two po-
tential outcomes. In contrast, in standard incomplete
data setting, missing data can occur in any part of the
full data matrix without structural constraints and usu-
ally there is information to infer the association be-
tween any two variables. Third, causal inference dif-
ferentiates between pre-treatment and post-treatment
variables, whereas the standard missing data methods
do not differentiate between them. For example, it is
usually scientifically meaningless to postulate a model
of pretreatment variable conditional on post-treatment
variables, for example, Pr(X|Y(1),Y(0)), but such or-
dering restriction between variables is rarely imposed
in missing data analysis. For example, ordering infor-
mation between longitudinal variables is usually ig-
nored in the popular multiple imputation by chained
equation (MICE) algorithm (van Buuren, 2012).

Despite these distinctions, the inferential frame-
work of causal inference and missing data analysis are
closely related, with common roots in survey sampling.
In particular, two overarching methods underpin both
causal inference and missing data analysis: weighting
and imputation. Although mathematically imputation
can be represented as a special form of weighting,
these two methods are often derived from different
perspectives and implemented differently. Weighting
methods weight—usually based on the probability of
being missing or assigned to one group—the observed
data to represent the full data, and imputation methods
physically impute the missing values—often based on
a stochastic model—using the observed data. More-
over, sensitivity analysis on the missing data mecha-
nism and the treatment assignment mechanism is rou-
tinely conducted in both domains.

Focusing on ignorable assignment mechanisms, in
this article we review a wide range of causal inference
methods that have analogues in missing data analy-
sis, such as imputation, inverse probability weighting
and doubly robust methods. We also provide examples
where ideas originated from causal inference lend to

missing data analysis, such as truncation by death and
covariate balance. We organize the review by the mode
of inference with Frequentist in Section 2, Bayesian in
Section 3 and Fisherian in Section 4. Within each mode
of inference, we first present the general structure of
causal inference and then illustrate via specific exam-
ples; also, depending on the study setting, we switch
between two sampling models of the units: we usually,
with a few exceptions, adopt the finite-sample model
for randomized experiments and the super-population
model for observational studies. Section 5 concludes
with a discussion on open questions and future research
directions.

2. THE FREQUENTIST PERSPECTIVE

In a broad sense, the Frequentist or classical infer-
ence focuses on repeated sampling evaluation of statis-
tical procedures, such as unbiasedness or consistency,
variance and efficiency, and mean squared error of a
point estimator, coverage rate of an interval estimator,
optimality and minimaxity. Here, we discuss the fre-
quentist perspective in a narrow sense, reviewing the
procedures motivated by frequency properties. In par-
ticular, we first connect the classical randomization-
based inference and model-based imputation in com-
pletely randomized experiments, we then review meth-
ods using weighting or generally unbiased estimating
equations in unconfounded observational studies and
we finally discuss principal stratification in the case of
post-treatment variables.

2.1 Model-Based Imputation in Randomized
Experiments

For illustration purposes, we consider a classical
completely randomized experiment with covariates,
where the inferential goal is to find point and inter-
val estimators for the SATE, τS . Recall that in finite-
sample inference all potential outcomes Y(1) and Y(0)

are viewed as fixed and the randomness comes solely
from the treatment indicators W. It is intuitive to im-
pute the missing values—Yi(0) for the treated units and
Yi(1) for the control units—based on some models of
the potential outcomes, and use the imputed potential
outcomes, denoted by Ŷi(w), to estimate the SATE,
giving the following predictive estimator:

τ̂ pre = 1

N

{
N∑

i=1

WiYi(1) +
N∑

i=1

(1 − Wi)Ŷi(1)

(3)

−
N∑

i=1

WiŶi(0) −
N∑

i=1

(1 − Wi)Yi(0)

}
.
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As a starting point, we consider fitting linear mod-
els based on least squares: in the treatment group,
Ŷi(1) = X′

i β̂1 + γ̂1, and in the control group, Ŷi(0) =
X′

i β̂0 + γ̂0. Here, we highlight that the regression lines
include intercepts, and the covariates are centered at
zero (i.e., X̄ = ∑N

i=1 Xi = 0). Define (Ȳ obs
1 , Ȳ obs

0 ) and
(X̄obs

1 , X̄obs
0 ) as the means of the outcomes and co-

variates under treatment and control groups, respec-
tively. Because the least squares coefficients satisfy
γ̂w = Ȳ obs

w − β̂ ′
wX̄obs

w (w = 1,0), using some algebra
we can simplify the estimator in (3) to

τ̂ pre = γ̂1 − γ̂0
(4)

= (
Ȳ obs

1 − β̂ ′
1X̄

obs
1

) − (
Ȳ obs

0 − β̂ ′
0X̄

obs
0

)
.

Therefore, τ̂ pre is identical to the regression adjusted
estimator in Lin (2013) motivated by an estimation
strategy in survey sampling (Cochran, 2007). Without
using any covariates or simply setting β̂1 = β̂0 = 0, the
estimator τ̂ pre reduces to the classical Neymanian unbi-
ased difference-in-means estimator, τ̂Neyman = Ȳ obs

1 −
Ȳ obs

0 , which essentially imputes the missing potential
outcomes using the observed sample means Ȳ obs

1 and
Ȳ obs

0 . Lin (2013) studied the repeated sampling prop-
erties of τ̂ pre over the distribution of W, showing that
(a) it is consistent and at least as efficient as τ̂Neyman

even if the linear potential outcome models are mis-
specified, (b) it is identical to the regression coefficient
of W in the linear regression Yobs ∼ W + X + W × X
with full interactions between treatment and covariates,
and (c) asymptotically the Huber–White variance esti-
mator (Huber, 1967, White, 1980) is conservative for
the randomization-based sampling variance of τ̂ pre. Li
and Ding [(2017), Example 9] supplemented these re-
sults with the asymptotic normality and the optimality
of τ̂ pre.

To emphasize, the estimator τ̂ pre is motivated by
imputing missing potential outcomes based on lin-
ear models, but its frequency properties over com-
plete randomization do not require any modeling as-
sumptions. Recently, Bloniarz et al. (2016) extended
the above approach to deal with high dimensional co-
variates, replacing the least squares coefficients by
the LASSO coefficients (Tibshirani, 1996). Invoking
super-population assumptions, Wager et al. (2016) con-
sidered other machine learning methods as generaliza-
tion of the least squares method. So far all these dis-
cussions are in the context of completely randomized
experiments; rigorous investigations of other types of
experiments are desirable.

2.2 Imputation and Weighting in Observational
Studies

As the PATE, τP , is the primary target estimand
in most observational studies, we now shift to the
super-population view. We assume the units are a
simple random sample from the target population,
that is, {Yi(1), Yi(0),Wi,Xi}Ni=1 are independent and
identically distributed. Then a sufficient condition for
identifying τP is strong ignorability (Rosenbaum and
Rubin, 1983b), consisting of Assumption 1 and the
overlap (also known as positivity) assumption, which
requires the propensity score, e(Xi) ≡ Pr(Wi = 1|Xi),
is strictly between 0 and 1 for all values of Xi .

2.2.1 Imputation methods. The most popular
method for causal inference in observational studies
is regression adjustment (Rubin, 1979), which, simi-
lar to the case in randomized experiments, essentially
imputes missing potential outcomes from a regression
model. Let (p1,p0) be the proportions of treated and
control units. Under Assumption 1, the conditional
mean functions of the potential outcomes satisfy that
for any w,w′, x,

mw(x) ≡ E
{
Yi(w)|Xi = x

}
= E

{
Yi(w)|Wi = w′,Xi = x

}
(5)

= E
{
Y obs

i |Wi = w,Xi = x
}
,

where the first identity is the definition, the second
identity is about the counterfactual mean if w �= w′ and
the last identify is the conditional mean function of the
observed outcomes. Therefore, the PATE can be iden-
tified from the observed data:

τP = [
p1 E

{
Yi(1)|Wi = 1

} + p0 E
{
Yi(1)|Wi = 0

}]
− [

p1 E
{
Yi(0)|Wi = 1

} + p0 E
{
Yi(0)|Wi = 0

}]
(6)

=
[
p1 E

{
Y obs

i |Wi = 1
} + p0

∫
m1(X)F0(dx)

]
−

[
p1

∫
m0(x)F1(dx) + p0 E

{
Y obs

i |Wi = 0
}]

,

where F1(x) and F0(x) are the distributions of the co-
variates in the treatment and control group, respec-
tively. If {m̂1(x), m̂0(x)} are the fitted conditional
mean functions based on the treated and control out-
come data, then {Ŷi(1), Ŷi(0)} = {m̂1(Xi), m̂0(Xi)} are
the fitted values of the possibly missing potential out-
comes. This strategy gives the predictive estimator (3),
which reduces to the regression-adjusted estimator (4)
if both conditional mean functions are modeled as lin-
ear.
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The predictive estimator (3) also reduces to the pop-
ular matching-without-replacement estimator if both
m̂1(Xi) and m̂0(Xi) are fitted by the nearest-neighbor
regression (Abadie and Imbens, 2006). It is worth com-
menting more on matching, which has a long tradi-
tion in statistics and particularly in causal inference.
An early example of matching was given in Chapin
(1947). Championed by Rubin (a collection of impor-
tant papers were reprinted in Rubin, 2006b) and later
by Rosenbaum (Rosenbaum, 2010, Part II), matching
has been increasingly embraced by both methodolo-
gists and practitioners as a model-free alternative to the
regression adjustment method. Instead of a regression
model, matching methods use the mean outcome of the
units with similar covariates in the opposite group (i.e.,
matches) to impute the missing potential outcome. In
standard missing data analysis, matching-based impu-
tation is also commonly used, where the missing val-
ues of one unit are imputed by the observed values
of the units who are matched on other characteristics.
However, in large complex datasets with incomplete
data, model-based imputation methods are generally
more flexible and versatile than matching-based ones
(e.g., van Buuren, 2012, Li et al., 2014, Murray and
Reiter, 2016). Indeed, in these cases matching is of-
ten combined with regression models, such as the pre-
dictive mean matching method (Rubin, 1986, Little,
1988). The idea of combining matching and regres-
sion is also used in causal inference, for example, in
the bias-corrected matching estimator (Abadie and Im-
bens, 2011). In this article, we view matching as a
special case of imputation methods and refer inter-
ested readers to elsewhere for a comprehensive review
of the vast literature on matching (e.g., Stuart, 2010,
Rosenbaum, 2010).

Another representation of the PATE is

τP =
∫ {

m1(x) − m0(x)
}
F(dx)

(7)
= E

{
m1(X) − m0(X)

}
,

where F(x) is the distribution of the covariates in the
whole population. This representation motivates the
following projective estimator:

τ̂ pro = 1

N

N∑
i=1

{
m̂1(Xi) − m̂0(Xi)

}
,

which is in general different from the predictive esti-
mator τ̂ pre, as discussed in the survey sampling litera-
ture (Firth and Bennett, 1998). However, the Normal
equation of the linear model and the score equa-
tion of the logistic model both satisfy

∑
Wi=w Y obs

i =

∑
Wi=w m̂w(Xi), ensuring that τ̂ pro = τ̂ pre if we fit

separate linear or logistic models with intercepts for
the observed outcomes under treatment and control. In
contrast to the case of completely randomized exper-
iments as discussed in Section 2.1, consistency of the
estimators τ̂ pro and τ̂ pre in observational studies does
rely on correct specification of the conditional mean
functions m1(x) and m0(x) (Tsiatis et al., 2008).

A special case of the regression adjustment/
imputation method is to use the estimated propensity
scores as a predictor additional to the covariates in the
outcome model; such a model has been shown in many
empirical studies to outperform the same model with-
out the propensity scores. In particular, Little and An
(2004) and Zhang and Little (2009) advocated using
penalized splines of the estimated propensity scores
in the outcome model, in the context of both causal
inference and missing data. The common idea origi-
nates from survey methodology, where the sampling
probabilities (equivalently the survey weights) usually
contain information about the units besides the covari-
ates and have been used to augment the inference about
population parameters.

2.2.2 Weighting methods. A second class of widely
used causal inference methods in observational stud-
ies is weighting, particularly propensity score weight-
ing. Rosenbaum and Rubin (1983b) showed that if the
assignment mechanism is unconfounded given the co-
variates Xi (i.e., Assumption 1), then it is also un-
confounded given the scalar propensity score e(Xi).
The classical Horvitz–Thompson estimator (Horvitz
and Thompson, 1952) in survey sampling motivates the
following representation of the PATE:

τP = E

{
WiY

obs
i

e(Xi)

}
−E

{
(1 − Wi)Y

obs
i

1 − e(Xi)

}
.(8)

This suggests that one can define an inverse probability
weight (IPW) for each unit in the treatment as 1/e(Xi)

and in the control group as 1/{1− e(Xi)}, and estimate
the PATE by the difference in the weighted average of
the outcomes in the two groups. Li, Morgan and Za-
slavsky (2018) show that the IPW is a special case of
the general class of balancing weights, which balance
the weighted distributions of the covariates between
treatment and control groups in any pre-specified tar-
get population.

If we fit a model for Pr(Wi = 1|Xi) and obtain the
estimated propensity score ê(Xi), then the sample ana-
logue of (8) gives the IPW estimator of the PATE:

τ̂ ipw = 1

N

N∑
i=1

WiY
obs
i

ê(Xi)
− 1

N

N∑
i=1

(1 − Wi)Y
obs
i

1 − ê(Xi)
.(9)
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The consistency of τ̂ ipw requires a correctly speci-
fied propensity score model. If we replace the N ’s in
the denominators by

∑N
i=1 Wi/ê(Xi) and

∑N
i=1(1 −

Wi)/{1 − ê(Xi)}, respectively, the resulting estimator
is called the Hájek estimator, which often has smaller
mean squared error than estimator (9) (Hájek, 1971).
When the fitted values ê(Xi) are close to 0 or 1, the
IPW estimator is unstable, leading to large variance
and bias. Common remedies include trimming units
with extreme weights (Crump et al., 2009, Yang and
Ding, 2018) and coarsening propensity scores (Zhou
et al., 2015). Another approach is to stratify on ê(Xi)

(Rosenbaum and Rubin, 1983b), which can be viewed
as a special case of τ̂ ipw with the estimated propen-
sity scores coarsened before being plugged into (9).
Li, Morgan and Zaslavsky (2018) advocated changing
the inverse probability weights in τ̂ ipw to the overlap
weights [i.e., weights control units by e(Xi) and treated
units by 1 − e(Xi)], which shifts the focus to the tar-
get population with the most overlap and automatically
bypasses the problem of extreme weights.

The Horvitz–Thompson idea that a unit being
weighted inverse-proportionally to its probability of
being sampled applies to both causal inference and
missing data. Unsurprisingly, the IPW approach is also
widely adopted in missing data analysis, particularly
for handling incomplete outcome data. For example, in
order to estimate a population parameter from a sample
with incomplete outcome data, we can first estimate the
probability of being observed based on the covariates
for each unit, corresponding to the propensity score,
and then run a weighted regression model where each
observed unit is inversely weighted by its probability
of being observed.

2.2.3 Combining imputation and weighting:
Doubly robust methods. A third class of popular meth-
ods is the doubly robust estimation, which combines
the virtues of regression adjustment and propensity
score weighting. Based on (7) and (8), it is straight-
forward to verify that

τP = E

{
WiY

obs
i

e(Xi)
− Wi − e(Xi)

e(Xi)
m1(Xi)

}

−E

{
(1 − Wi)Y

obs
i

1 − e(Xi)
+ Wi − e(Xi)

1 − e(Xi)
m0(Xi)

}
= E

[
m1(Xi) + Wi{Y obs

i − m1(Xi)}
e(Xi)

]

−E

[
m0(Xi) + (1 − Wi){Y obs

i − m0(Xi)}
1 − e(Xi)

]
.

This motivates the following estimator:

τ̂ dr = 1

N

N∑
i=1

{
WiY

obs
i

ê(Xi)
− Wi − ê(Xi)

ê(Xi)
m̂1(Xi)

}

− 1

N

N∑
i=1

{
(1 − Wi)Y

obs
i

1 − ê(Xi)
(10)

+ Wi − ê(Xi)

1 − ê(Xi)
m̂0(Xi)

}

= 1

N

N∑
i=1

[
m̂1(Xi) + Wi{Y obs

i − m̂1(Xi)}
ê(Xi)

]

− 1

N

N∑
i=1

[
m̂0(Xi)(11)

+ (1 − Wi){Y obs
i − m̂0(Xi)}

1 − ê(Xi)

]
.

The equivalent forms (10) and (11) follow from trivial
mathematical manipulations but have profound statis-
tical implications. We can view (10) as the IPW es-
timator augmented by an outcome model, and show
that if the propensity score model is correctly specified
then τ̂ dr is consistent for τ no matter whether the out-
come models is correctly specified. Alternatively, we
can view (11) as the projective estimator augmented by
inverse probability weighting, and show that if the out-
come models are correctly specified then τ̂ dr is consis-
tent for τ no matter whether the propensity score model
is correctly specified. This property is called double-
robustness (DR) (Scharfstein, Rotnitzky and Robins,
1999, Bang and Robins, 2005), that is, τ̂ dr is consis-
tent for τ if either the propensity score model or the
outcome models are correctly specified. Moreover, the
DR estimator achieves the semiparametric efficiency
bound if both the propensity score and outcome models
are correctly specified (Robins, Rotnitzky and Zhao,
1995, Robins and Ritov, 1997). For more discussion on
efficiency, see Hahn (1998), Hirano, Imbens and Rid-
der (2003), Imbens (2004) and Qin (2017). The DR es-
timator is closely connected to missing data analysis; in
fact, the concept of DR was first proposed in the con-
text of missing data and was later formally extended to
causal inference (Lunceford and Davidian, 2004, Bang
and Robins, 2005).

The DR estimator has attracted increasing attention
from both theoreticians and practitioners. Below we
comment on several issues appearing frequently in the
recent literature. First, the propensity score model is
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often chosen to be logistic in practice, and the out-
come models linear. With low dimensional covariates,
we can add power series of the covariates to approx-
imate complex propensity score and outcome mod-
els (Newey, 1997, Hirano, Imbens and Ridder, 2003,
Mercatanti and Li, 2014). Second, with high dimen-
sional covariates, the DR estimator works well un-
der more general assumptions than many other es-
timators, and in order to achieve better asymptotic
properties, for example,

√
n-consistency, the DR esti-

mator is probably the only way to go (van der Laan
and Rose, 2011, Belloni, Chernozhukov and Hansen,
2014, Chernozhukov et al., 2016, Athey, Imbens and
Wager, 2018, Belloni et al., 2017). More importantly,
in high dimensions, it is crucial to regularize the es-
timators as suggested by, for example, Chernozhukov
et al. (2016) and Athey et al. (2017). Third, the un-
stable properties of τ̂ dr can be more severe than τ̂ ipw

with extreme estimated propensity scores, especially
when both the propensity score and outcomes mod-
els are misspecified (Kang and Schafer, 2007). In this
case, trimming or truncating the estimated propen-
sity scores seems crucial for reliable analysis. Alter-
natively, Graham, de Xavier Pinto and Egel (2012),
Hainmueller (2012) and Imai and Ratkovic (2014) pro-
posed to construct weights that balance the covariates
directly, which can avoid the problem of extreme es-
timated propensity scores. Interestingly, the idea of
building propensity score models based on covariate
balance has long been used in the causal inference, but
it is only recently adopted in missing data problems.
Specifically, Zubizarreta (2015) constructed more sta-
ble weighting estimators for missing data analysis by
directly constructing weights to balance covariates of
units with observed and unobserved outcomes.

2.3 Principal Stratification

An important problem in causal inference is to deal
with post-treatment variables—variables that are po-
tentially affected by the treatment and possibly affect
the outcome. Cochran (1957) and Rosenbaum (1984b)
show that adjusting for post-treatment variables in the
same fashion as adjusting for pre-treatment covariates
would bias the estimation of causal effects in gen-
eral. Since the landmark papers by Angrist, Imbens
and Rubin (1996) and Frangakis and Rubin (2002),
a large literature on this topic has been developed. The
post-treatment variable settings include a wide range
of specific examples, such as treatment noncompliance
(e.g., Imbens and Rubin, 1997), outcomes truncated by
“death” (e.g., Rubin, 2006a, Zhang, Rubin and Mealli,

2009), surrogate endpoints (e.g., Gilbert and Hudgens,
2008, Zigler and Belin, 2012), mediation analysis (e.g.,
VanderWeele, 2008, Gallop et al., 2009, Elliott, Raghu-
nathan and Li, 2010) and fuzzy regression discontinu-
ity designs (e.g., Li, Mattei and Mealli, 2015, Chib and
Jacobi, 2016).

2.3.1 Randomized experiments with noncompliance.
To introduce the basic setup, we start with the simplest
setting of a completely randomized experiment with
noncompliance. We need some new notation to ac-
commodate the post-treatment setting. For unit i (i =
1, . . . ,N) in a study sample, let Zi be the treatment as-
signed to (1 for treatment and 0 for control), and W obs

i

be the treatment received (1 for treatment and 0 for
control). When Zi �= W obs

i , noncompliance occurs. Be-
cause Wi is a post-treatment variable, it has two poten-
tial outcomes, Wi(0) and Wi(1), with W obs

i = Wi(Zi).
As before, the outcome Yi also has two potential out-
comes, Yi(0) and Yi(1). Angrist, Imbens and Rubin
(1996) classified the units according to the joint po-
tential treatment statuses Ui = (Wi(1),Wi(0)), which
was later called the principal stratification by Frangakis
and Rubin (2002). The principal stratum Ui takes four
values: (1,0) = c for compliers, (0,0) = n for never
takers, and (1,1) = a for always takers and (0,1) = d
for defiers. Due to the fundamental problem of causal
inference, individual principal stratum Ui are not ob-
served.

The key property of principal strata is that they are,
by definition, not affected by the treatment assign-
ment, and thus can be regarded as a pre-treatment
variable. Therefore, comparisons of Yi(1) and Yi(0)

within a principal stratum—the principal causal effects
(PCEs)—have a causal interpretation:

τu = E
{
Yi(1) − Yi(0)|Ui = u

}
= E

{
Yi(1)|Ui = u

} −E
{
Yi(0)|Ui = u

}
,

(u = n, c, a,d).

Note that PCE also has both finite-sample and super-
population versions. The conventional causal estimand
in the noncompliance setting is the intention-to-treat
(ITT) effect, ignoring noncompliance; ITT can be de-
composed into the sum of the four PCEs:

τP = E
{
Yi(1) − Yi(0)

} = ∑
u=c,n,a,d

πuτ
P
u ,

where πu = Pr(Ui = u) is the proportion of the stra-
tum u. Inferences about the PCEs are often scientif-
ically relevant; for example, the PCE for compliers—
commonly known as the complier average causal effect
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(CACE) or the local average treatment effect (LATE)
(Imbens and Angrist, 1994)—is informative about the
efficacy of the treatment received, whereas the ITT is
informative about the effectiveness of the treatment as-
signed.

The main challenge to the inference of principal
stratification is the missing latent stratum membership
Ui . Specifically, the observed cells of Z and W obs usu-
ally consists of a mixture of units from more than one
principal strata, and one has to disentangle the causal
effects for different principal strata from observed data.
Therefore, the general structure of inference with prin-
cipal stratification is similar to that of a mixture model,
and standard methods for mixture models such as the
EM algorithm (Dempster, Laird and Rubin, 1977) and
data augmentation (Tanner and Wong, 1987) are rou-
tinely used in principal stratification, as illustrated be-
low in Section 2.3.2.

2.3.2 Implicit weighting via the EM algorithm.
Throughout the discussion, we will use Pr(·|·) and θ·|·
to denote generic conditional distributions and the cor-
responding parameters, respectively. If we have full
parametric models for Pr(Ui |Xi, θW |X) and Pr(Yi(z)|
Ui,Xi, θY |U,X), then we can use the EM algorithm
to obtain the maximum likelihood estimator for θ =
(θW |X, θY |U,X) treating U as the missing data. In-
troducing the shorthand notation πi,u = Pr(Ui = u|
Xi, θW |X) and fi,uz = Pr(Yi(z)|Ui = u,Xi, θY |U,X),
the complete-data log-likelihood, based on (Z,Wobs,

U,Yobs,X), is

l(θ,U)

= ∑
Zi=1,W obs

i =1

I (Ui = c){logπi,c + logfi,c1}

+ ∑
Zi=1,W obs

i =1

I (Ui = a){logπi,a + logfi,a1}

+ ∑
Zi=1,W obs

i =0

I (Ui = n){logπi,n + logfi,n1}

+ ∑
Zi=1,W obs

i =0

I (Ui = d){logπi,d + logfi,d1}

+ ∑
Zi=0,W obs

i =1

I (Ui = a){logπi,a + logfi,n0}

+ ∑
Zi=0,W obs

i =1

I (Ui = d){logπi,d + logfi,d0}

+ ∑
Zi=0,W obs

i =0

I (Ui = c){logπi,c + logfi,c0}

+ ∑
Zi=0,W obs

i =0

I (Ui = n){logπi,n + logfi,n0}.

We emphasize that l(θ,U) is a function of the parame-
ter θ and depends on the missing principal strata U.

In the E-step of the EM algorithm, we need to
find Q(θ |θ [t]) = E{l(θ,U)|Z,Wobs,Yobs,X, θ [t]}, the
conditional expectation of the complete-data log-like-
lihood given the observed data and the value of the pa-
rameter at iteration t , which reduces to calculating the
conditional probabilities of Pr[t](Ui = u) = Pr(Ui =
u|Zi,W

obs
i , Y obs

i ,Xi, θ
[t]). For example, for unit with

Zi = 1 and W obs
i = 1, we have

Pr[t](Ui = c) = π
[t]
i,cf

[t]
i,c1

π
[t]
i,cf

[t]
i,c1 + π

[t]
i,af

[t]
i,a1

,

Pr[t](Ui = a) = 1 − Pr[t](Ui = c),

where π
[t]
i,u and f

[t]
i,u1 are evaluated at θ [t]. This ef-

fectively creates two weighted observations: one has
(Zi = 1,W obs

i = 1,Ui = c, Y obs
i ,Xi) with weight

Pr[t](Ui = c), and the other has (Zi = 1,W obs
i =

1,Ui = a, Y obs
i ,Xi) with weight Pr[t](Ui = a). For

units with other combinations of Zi and W obs
i , we can

similarly obtain Pr[t](Ui = u) and create weighted ob-
servations.

In the M-step of the the EM algorithm, we need
to maximize Q(θ |θ [t]), or, equivalently, the log-like-
lihood function from the weighted samples obtained
from the E-step. To be more specific, Zhang, Rubin and
Mealli (2009) and Frumento et al. (2012) proposed to
use a multinomial logistic model for Pr(Ui |Xi, θW |X)

and Normal linear models for Pr(Yi(z)|Ui,Xi, θY |U,X).
If the parameter spaces of θW |X and θY |U,X are distinct,
then we can update them in the M-step separately:
based on the weighted samples, θ

[t+1]
W |X can be obtained

by fitting a weighted multinomial logistic regression,
and θ

[t+1]
Y |U,X can be obtained by fitting weighted least

squares with different combinations of (Zi = z,Ui =
u).

In the analysis of randomized experiments with non-
compliance, two assumptions are often invoked: mono-
tonicity [i.e., Pr(Ui = d) = 0], and exclusion restric-
tion for noncompliers [i.e., Yi(1) = Yi(0) for Ui = a

and n]. These assumptions ensure nonparametric iden-
tification of the CACE, and thus the result is not sen-
sitive to parametric assumptions. Without these two
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assumptions, subtle identification and inferential is-
sues arise. Although the identifiability of parametric
models is guaranteed by the identifiability of mixture
models, the likelihood function may display patho-
logical behavior (Ding et al., 2011, Frumento et al.,
2016, Feller et al., 2016), and standard Frequentist
inferential tools, for example, the bootstrap, do not
apply. Without these two assumptions, the PCEs are
only partially identified without additional paramet-
ric assumptions; the identification issue will be fur-
ther discussed in the Bayesian perspective in Sec-
tion 3.1.

2.3.3 Truncation by death or missing data? Though
post-treatment variables do not have direct analogue in
missing data analysis, principal stratification has sev-
eral applications that shed new lights to some chal-
lenging missing data problems. One such application
is the truncation by “death” problem. Consider a med-
ical study that aims to evaluate the effect of a new
treatment (Zi) on the quality of life (Yi); here, some
patients may die before the outcome was measured
and the post-treatment variable Wi is the survival sta-
tus. Another example in labor economics is to evaluate
the effects of a job training program (Zi) on hourly
wage (Yi); here, some subjects may be unemployed
and Wi is the employment status. A common fea-
ture of these two problems is that the outcome is not
well defined or truncated if Wi = 0, that is, unit i is
dead or unemployed. The name “truncation by death”
comes from the original medical application (Rubin,
2006a).

Traditionally, the truncation by “death” problem
was viewed as a standard missing data problem,
with Wi being the missing data indicator. A famous
model in this context is the Heckman selection model
(Heckman, 1979), which consists of an outcome equa-
tion (Y ∼ Z + X) and a selection equation (W ∼
Z + X). This effectively assumes that the outcome is
well defined for all units, which, however, is not easy to
justify scientifically. Rubin (2006a) proposed to tackle
this problem from a principal stratification perspective,
namely, estimating the average causal effect among
the units who would always survive under both treat-
ment and control—the survivor average causal effect
τSACE:

τSACE = E
{
Yi(1) − Yi(0)|Wi(1) = Wi(0) = 1

}
.

Estimating τSACE is again a missing data problem, but
now the missingness arises from the latent stratum la-
bels U rather than the original outcome Y. This alterna-
tive view is arguably more scientifically relevant than

the traditional one. Zhang, Rubin and Mealli (2009)
developed the EM-based estimation strategy in Sec-
tion 2.3.2; recent extensions can be found in Ding et al.
(2011), Frumento et al. (2012), Yang and Small (2016)
and Ding and Lu (2017).

3. THE BAYESIAN PERSPECTIVE

The Bayesian paradigm offers a unified inferen-
tial framework for missing data and causal infer-
ence. Under the potential outcomes framework, each
unit is associated with several quantities including
the potential outcomes, some of which are observed
and some are missing. Bayesian inference considers
the observed values of these quantities to be realiza-
tions of random variables and the unobserved val-
ues to be unobserved random variables (Rubin, 1978),
which are no different from unknown model param-
eters. Because inferences for the finite-sample and
super-population estimands have subtle but impor-
tant differences, below we will discuss them sepa-
rately.

3.1 Finite-Sample Inference

Finite-sample causal estimands, defined as functions
of the N × 2 potential outcome matrix {Y(0),Y(1)},
can also be represented as functions of missing and
observed potential outcomes, because τS = τ(Y(0),

Y(1)) = τ(Yobs,Ymis,W). Finite-sample Bayesian
causal inference centers around building a model to im-
pute the missing potential outcomes given the observed
data and then deriving the posterior distributions of the
estimands.

Let Pr{Y(0),Y(1),W,X|θ} be the joint probabil-
ity density function of the random variables for all
units governed by a model parameter θ . For ease
of exposition, we assume these random variables
for each unit are independent and identically dis-
tributed conditional on θ , and thus we can factor the
complete-data likelihood as

∏N
i=1 Pr{Yi(0), Yi(1),Wi,

Xi |θ}. Imposing a prior distribution Pr(θ) on the pa-
rameter, we obtain the joint posterior distribution of
the missing data and the parameter as

Pr
(
Ymis, θ |Yobs,W,X

)
(12)

∝ Pr(θ)

N∏
i=1

Pr
(
Yi(0), Yi(1),Wi,Xi |θ)

.

Note that in equation (12) and the formulas below, we
follow the convention of Bayesian statistics and use
∝ to denote “proportional to” a probability density,
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dropping the normalizing constant. Formula (12)—
followed immediately from the Bayes theorem—is
fundamental to finite-sample Bayesian causal infer-
ence: One can first obtain the posterior distribution of
Ymis from (12), and then obtain the posterior distribu-
tion of τS = τ(Yobs,Ymis,W) because Yobs and W are
known.

To make the role of (12) more explicit, we discuss
two strategies to simulate the posterior distribution of
Ymis, motivated by both computational and statistical
considerations. The first strategy is based on data aug-
mentation (Tanner and Wong, 1987) or more generally
Gibbs sampling (Gelfand and Smith, 1990), that is, we
iteratively simulate Ymis and θ given each other and the
observed data, based on Pr(Ymis|Yobs,W,X, θ) and
Pr(θ |Ymis,Yobs,W,X). Although this is a routine al-
gorithm in Bayesian inference, explicating some steps
is helpful for gaining insights. In particular, given the
observed data and the parameter θ , the missing poten-
tial outcomes Ymis have a posterior distribution as

Pr
(
Ymis|Yobs,W,X, θ

)
∝ Pr

(
Y(0),Y(1),W,X|θ)

∝
N∏

i=1

Pr
(
Wi |Yi(0), Yi(1),Xi, θ

)
(13)

· Pr
(
Yi(0), Yi(1)|Xi, θ

)
· Pr(Xi |θ).

It is common to parameterize the assignment mecha-
nism, the distribution of potential outcomes and the
distribution of covariates with different and a priori
independent sets of parameters, say θW |X , θY |X and
θX , respectively. Then, given unconfoundedness, the
assignment mechanism Pr(Wi |Yi(0), Yi(1),Xi , θ) and
the covariate distribution Pr(Xi |θ) drop out in (13),
which simplifies to

Pr
(
Ymis|Yobs,W,X, θ

)
∝ ∏

i:Wi=1

Pr
(
Yi(0), Yi(1)|Xi, θY |X

)
· ∏
i:Wi=0

Pr
(
Yi(0), Yi(1)|Xi, θY |X

)
(14)

∝ ∏
i:Wi=1

Pr
(
Yi(0)|Yi(1),Xi, θY |X

)
· ∏
i:Wi=0

Pr
(
Yi(1)|Yi(0),Xi, θY |X

)
.

Because the posterior distribution (14) factors into N

terms, for treated units we impute the missing control

potential outcomes from Pr(Yi(0)|Yi(1),Xi, θY |X), and
for control units we impute the missing treatment po-
tential outcomes from Pr(Yi(1)|Yi(0),Xi, θY |X). Im-
puting the missing potential outcomes Ymis depends
crucially on the joint distribution of {Yi(1), Yi(0)}
given Xi . Given the observed data and the imputed
Ymis, the posterior distribution of θY |X can be obtained
by a complete-data analysis based on Pr(θY |X|Y(1),

Y(0),X) ∝ Pr(θY |X)
∏N

i=1 Pr(Yi(1), Yi(0)|Xi, θY |X).
The above general framework was first proposed by

Rubin (1978) and has been widely adopted in the liter-
ature; recently Heckman, Lopes and Piatek (2014) ex-
tended it to more specific econometric models. How-
ever, this strategy has a limitation of mixing fully iden-
tifiable and non (or weakly) identifiable parameters.
Due to the simultaneous presentation of several infer-
ential frameworks in this article, we need to clarify the
different notions of identifiability in each framework.
Under the Frequentist paradigm, a parameter is identi-
fiable if it can be expressed as a function of the dis-
tribution of the observed data (Bickel and Doksum,
2015). In other words, a parameter is identifiable in
the Frequentist sense if two distinct values of it give
two different distributions of the observed data. Under
the Bayesian paradigm, there is no consensus. For ex-
ample, Lindley (1972) argued that in Bayesian analy-
sis, all parameters are identifiable because with proper
prior distributions, posterior distributions are always
proper. However, Gustafson (2015) argued that a pa-
rameter is only weakly or partially identifiable, if a
substantial region of its posterior distribution is flat, or
its posterior distribution depends crucially on its prior
distribution even with large samples. Specifically, be-
cause Yi(1) and Yi(0) are never jointly observed, the
data provide little information about the parameter that
governs the association between Yi(1) and Yi(0). Con-
sequently, the posterior distribution of τS will be sen-
sitive to its prior distribution. Therefore, it may be
more sensible to isolate the parameter—denoted by
θm—that governs the marginal distributions from the
parameter—denoted by θa—that governs the associa-
tion between Yi(1) and Yi(0). This motivates the fol-
lowing strategy to simulate the posterior distribution of
Ymis.

The second strategy is based on the definition of con-
ditional probability, that is,

Pr
(
Ymis, θ |Oobs)
= Pr

(
θ |Oobs) Pr

(
Ymis|θ,Oobs),

where Oobs = (X,Yobs,W). Here, we first simulate θ

given the observed data, Pr(θ |Oobs), and then simulate
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Ymis given θ and the observed data, Pr(Ymis|θ,Oobs).
Following the above arguments, we partition θY |X into
θm
Y |X and θa

Y |X , and impose independent priors on them.
Therefore, the posterior distribution of θ becomes

Pr
(
θ |Yobs,W,X

)
∝ Pr

(
θa
Y |X

)
Pr

(
θm
Y |X

) ∏
Wi=1

Pr
(
Yi(1)|Xi, θ

m
Y |X

)
(15)

· ∏
Wi=0

Pr
(
Yi(0)|Xi, θ

m
Y |X

)
.

Not surprisingly, the posterior distribution of θm
Y |X is

updated by the likelihood, but the posterior of θa
Y |X re-

mains the same as its prior. This is due to the a pri-
ori independence between θm

Y |X and θa
Y |X; otherwise the

posterior of θa
Y |X will be updated indirectly via its de-

pendence on θm
Y |X , as pointed out by Gustafson (2009).

Richardson, Evans and Robins (2010) suggested trans-
parent parametrization by separating identifiable and
nonidentifiable parameters in Bayesian causal infer-
ence; Ding and Dasgupta (2016) suggested sensitivity
analysis by varying θa

Y |X in a certain range (more de-
tails in Example 2 below). After drawing θY |X from
its posterior distribution (15), we can impute the miss-
ing potential outcomes Ymis using the same formula as
(14).

To illustrate the idea, we discuss two examples aris-
ing from the Bayesian analysis of completely random-
ized experiments.

EXAMPLE 1 (Two-by-two table). In a completely
randomized experiment with treatment W and binary
outcome Y , the joint potential outcomes {Yi(1), Yi(0)}
can take four values with counts Ny1y0 = #{i : Yi(1) =
y1, Yi(0) = y0} for y1, y0 = 0,1, and the observed data
can be summarized by a two-by-two table with counts
nwy = #{i : Wi = w,Y obs

i = y} for w,y = 0,1.
Following the first strategy, we can impose a multi-

nomial model for {Yi(1), Yi(0)} with a Dirichlet prior
for the probabilities{

Yi(1), Yi(0)
}|(π11, π10, π01, π00)

∼ Multinomial(π11, π10, π01, π00),

(π11, π10, π01, π00)

∼ Dirichlet(α11, α10, α01, α00).

Given the observed data and the parameter, it is
straightforward to impute the missing potential out-
comes. For example, for units with Wi = 1 and Y obs

i =
1, we draw the missing Yi(0) from Bernoulli(π11/

(π11 + π10)); for other three types of units, we can

similarly draw their missing potential outcomes. After
imputing the missing potential outcomes, the counts
(N11,N10,N01,N00) are known, and we can then draw
the parameters from their posterior:

(π11, π10, π01, π00)|(N11,N10,N01,N00)

∼ Dirichlet(α11 + N11, α10 + N10,

α01 + N01, α00 + N00).

This data augmentation scheme gives us the poste-
rior distributions of (N11,N10,N01,N00), which im-
mediately imply the posterior distribution of τS =
(N10 − N01)/N . However, the posterior distribution
of τS is sensitive to the choice of the hyperparam-
eters (α11, α10, α01, α00), because they determine the
a priori dependence between the two potential out-
comes; see Ding (2014), Section 3, for the conse-
quence of using the Jeffreys “noninformative” prior:
(π11, π10, π01, π00) ∼ Dirichlet(1/2,1/2,1/2,1/2).

Following the second strategy, Ding and Dasgupta
(2016) reparametrize the joint distribution of the po-
tential outcomes as (π1+, π+1, γ ), where π1+ = π11 +
π10 = Pr(Yi(1) = 1) and π+1 = π11 + π01 =
Pr(Yi(0) = 1) govern the marginal distributions, and
γ = Pr(Yi(1) = 1|Yi(0) = 1)/Pr(Yi(1) = 1|Yi(0) =
0) governs the association. From (π1+, π+1, γ ), we
can uniquely determine (π11, π10, π01, π00). Ding and
Dasgupta (2016) advocate treating γ as the sensitiv-
ity parameter and obtaining posterior distribution of
τS for a fixed γ . If we postulate independent priors
π1+ ∼ Beta(α1, β1) and π+1 ∼ Beta(α0, β0), the pos-
terior distributions are π1+ ∼ Beta(α1 +n11, β1 +n10)

and π+1 ∼ Beta(α0 + n01, β0 + n00). After drawing
π1+ and π+1, we can impute all the missing poten-
tial outcomes. For example, for units with Wi = 1 and
Y obs

i = 1, we draw Yi(0) from a Bernoulli(γ π+1/(1 −
π+1 + γπ+1)); for other three types of units, we
can similarly draw their missing potential outcomes.
Therefore, we can obtain the posterior distribution of
τS for a fixed γ . Varying γ in a selected range yields a
Bayesian sensitivity analysis.

EXAMPLE 2 (Bayesian post-stratification). For il-
lustration purposes, we present an example of model-
based covariate adjustment in a completely randomized
experiment, which is the Bayesian analogue of the Fre-
quentist post-stratification (Miratrix, Sekhon and Yu,
2013). For each unit i, we observed the binary treat-
ment indicator Wi , outcome Yi and a discrete covariate
Xi taking values in {1, . . . ,K}. Assume the following
joint model for the potential outcomes given the covari-
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ate:(
Yi(1)

Yi(0)

) ∣∣∣(Xi = k, θY |X)

∼ N

((
μ1[k]
μ0[k]

)
,

(
σ 2

1[k] ρ[k]σ1[k]σ0[k]
ρ[k]σ1[k]σ0[k] σ 2

0[k]

))
,

(k = 1, . . . ,K; i = 1, . . . ,N),

where θm
Y |X = {μ1[k],μ0[k], σ 2

1[k], σ 2
0[k]}Kk=1 and θa

Y |X =
{ρ[k]}Kk=1. The observed likelihood factors into two
parts: the data in treatment group {(Xi, Y

obs
i ) : Wi = 1}

contribute to the likelihood of {μ1[k], σ 2
1[k]}Kk=1, and

the data in the control group {(Xi, Y
obs
i ) : Wi = 0}

contribute to the likelihood of {μ0[k], σ 2
0[k]}Kk=1. Im-

portantly, the observed likelihood does not depend on
θa
Y |X .
Imposing independent priors on all the parameters,

we can easily obtain their posterior distributions. For
example, the conventional noninformative prior for
the Normal models yield conjugate posteriors, because
within each stratum Xi = k it is a standard Normal
model. For convenience of description, we define nw[k]
as the number of units, and (Ȳ obs

w[k], s2
w[k]) as the sam-

ple mean and variance of the outcomes under treat-
ment w within stratum Xi = k. If p(μw[k]) ∝ 1 and
p(σ 2

w[k]) ∝ 1/σ 2
w[k] for w = 0,1 and k = 1, . . . ,K ,

then according to Gelman et al. [2014, Section 3.2],
the posterior distributions of the parameters are

σ 2
w[k]|Oobs ∼ (nw[k] − 1)s2

w[k]/χ2
nw[k]−1,

(16)
μw[k]|σ 2

w[k],Oobs ∼ N
(
Ȳ obs

w[k], σ 2
w[k]/nw[k]

)
.

For fixed values of θa
Y |X and given each draw of θm

Y |X ,
we can impute the missing potential outcomes as fol-
lows: for treated units (Wi = 1) within stratum Xi = k,
we draw

Yi(0)|Xi = k,Wi = 1, Y obs
i , θY |X

∼ N

(
μ0[k]

+ ρ[k]
σ0[k]
σ1[k]

(
Y obs

i − μ1[k]
)
, σ 2

0[k]
(
1 − ρ2[k]

))
,

and for control units (Wi = 0) within stratum Xi = k,
we draw

Yi(1)|Xi = k,Wi = 1, Y obs
i , θY |X

∼ N

(
μ1[k]

+ ρ[k]
σ1[k]
σ0[k]

(
Y obs

i − μ0[k]
)
, σ 2

1[k]
(
1 − ρ2[k]

))
.

Consequently, we obtain the posterior distribution of
τS . In practice, we suggest varying the ρ[k]’s from 0
to 1, which correspond to conditionally independent
potential outcomes and perfectly correlated potential
outcomes.

Example 2 deserves some further discussions. First,
for simplicity we can further assume that ρ[k] = ρ and,
therefore, reduce the number of sensitivity parameters
to one. Second, the above strategy works well for small
K and large nw[k]’s. In particular, the posterior dis-
tributions (16) are well defined if nw[k] ≥ 1, and the
marginal posterior mean of μw[k] is finite is nw[k] ≥ 3.
For large K and small nw[k]’s, we have a large num-
ber of parameters and, therefore, need to impose a
more sophisticated prior on θm

Y |X . Ideally, we want to
choose a prior that yields good Frequentist properties
under the randomization inference framework, because
the original design is a completely randomized experi-
ment. This deserves further research. Third, with a dis-
crete covariate, we can also define the ATE over sub-
populations:

τS
k = 1

N[k]
∑

i:Xi=k

{
Yi(1) − Yi(0)

}
,

where N[k] = n1[k] +n0[k] is the number of units within
covariate stratum Xi = k. According to Example 2, ob-
taining the posterior distribution of τS

k is straightfor-
ward.

3.2 Super-Population Inference

In general, a super-population causal parameter is a
function of the model parameters for the joint distribu-
tion of {Xi,Yi(1), Yi(0)}, written as τ = τ(θY |X, θX).
Therefore, Bayesian inference for super-population
causal parameters reduces to obtaining posterior dis-
tributions of θY |X and θX . Examples of such causal
parameters include the subgroup treatment effect

τP (x) ≡ E
{
Y(1)|X = x; θm

Y |X
}

(17)
−E

{
Y(0)|X = x; θm

Y |X
}
,

the PATE

τP ≡ E
{
Yi(1) − Yi(0)

}
(18)

=
∫

τP (
x; θm

Y |X
)
FX(dx; θX).

In most cases, however, we are unwilling to model the
possibly multidimensional pretreatment covariate Xi

and, therefore, condition on the observed values of the
covariates, which is equivalent to replace θX with F̂X ,
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the empirical distribution of {Xi}Ni=1. Therefore, most
Bayesian causal inferences in fact focus on the condi-
tional ATE:

τX ≡
∫

τP (
x; θm

Y |X
)
F̂X(dx)

(19)

= N−1
N∑

i=1

τP (
Xi; θm

Y |X
)
.

Note that in general τX is neither the PATE nor the
SATE. Because we are often unwilling to model X, we
omit the discussion of τP and focus on τX in this sub-
section.

It is worth giving two concrete examples for the
causal estimands above. Here, we assume that the co-
variate vector Xi contains an intercept. For a con-
tinuous outcome, if Yi(w)|Xi ∼ N(β ′

wXi, σ
2
w) for

w = 1,0, then τP (x) = (β1 − β0)
′x and τX = N−1 ·∑N

i=1(β1 − β0)
′Xi = (β1 − β0)

′X̄. For a binary out-
come, if Pr(Yi(w) = 1|Xi) = F(β ′

wXi) for w = 1,0
with F(·) being the link function [e.g., the stan-
dard Normal distribution F(·) = �(·) gives the pro-
bit model], then τP (x) = F(β ′

1x) − F(β ′
0x) and τX =

N−1 ∑N
i=1{F(β ′

1Xi) − F(β ′
0Xi)}.

A salient feature of the estimands in (17)–(19) is that
they depend only on θm

Y |X but not on θa
Y |X . For this

type of estimands, we do not need to impose a joint
model of {Yi(1), Yi(0)} given Xi , because the likeli-
hood, and thus the posterior distribution of θm

Y |X re-
quires only the specification of the marginal distribu-
tions of Yi(w) given Xi for w = 0,1. Bayesian infer-
ence for estimands (17)–(19) is straightforward once
we obtain the posterior distributions of the parameter
θm
Y |X following the second strategy in Section 3.1.
Moreover, we can infer parameters that depend on

the joint distribution of the potential outcomes. For ex-
ample, we can consider δ1 = Pr(Yi(1) ≥ Yi(0)) and its
conditional version δX

1 = N−1 ∑N
i=1 δ1(Xi), where

δ1(x) = Pr
(
Yi(1) > Yi(0)|Xi = x, θm

Y |X, θa
Y |X

)
.

We give an example to illustrate inferring δX
1 under a

Normal linear model as in Heckman, Lopes and Piatek
(2014).

EXAMPLE 3 (Normal linear model). Assume(
Yi(1)

Yi(0)

) ∣∣∣(Xi, θY |X)

∼ N

((
β ′

1Xi

β ′
0Xi

)
,

(
σ 2

1 ρσ1σ0

ρσ1σ0 σ 2
0

))
,(20)

(i = 1, . . . ,N),

where θm
Y |X = (β1, β0, σ

2
1 , σ 2

0 ) and θa
Y |X = ρ. The

model (20) implies

Yi(w)|Xi, θ
m
Y |X ∼ N

(
β ′

wXi, σ
2
w

)
, (w = 0,1)(21)

and

Yi(1) − Yi(0)|Xi, θY |X
(22)

∼ N
(
(β1 − β0)

′Xi,σ
2
1 + σ 2

0 − 2ρσ1σ0
)
.

Therefore, we can derive from (22) that

δX
1 = 1

N

N∑
i=1

�

{
(β1 − β0)

′Xi

(σ 2
1 + σ 2

0 − 2ρσ1σ0)1/2

}
.

Based on the marginal model (21) we can obtain the
posterior distribution of θm

Y |X , for example, via standard
Normal posterior calculations. Since the observed data
do not contain any information about ρ, we can vary it
from 0 to 1 and obtain the posterior distribution of δX

1
for each fixed ρ.

The Bayesian framework offers a unified and flexible
approach to inferring causal parameters in complex set-
tings. Indeed, there is a rapidly growing literature in ap-
plying advanced Bayesian models and methods—such
as Bayesian nonparametric methods, Bayesian model
selection and model averaging—to causal inference.
A comprehensive review of the Bayesian approach to
causal inference is highly relevant, but is beyond the
scope of this paper.

4. THE FISHERIAN RANDOMIZATION
PERSPECTIVE

The Fisherian randomization perspective to causal
inference focuses on p-values under null hypotheses
obtained by comparing the observed values of test
statistics with their randomization distribution (Fisher,
1935). Broadly speaking, the Fisherian perspective be-
longs to the Frequentist perspective because the p-
value is commonly viewed as a Frequentist notion. For
its special emphases and historical reasons, we clas-
sify the Fisherian perspective as a separate inferential
framework. This perspective is rather unique to causal
inference because standard missing data problems do
not involve comparisons of different treatment groups.
The Fisherian framework is also closely related to the
Bayesian perspective in that a key step is to impute all
the missing potential outcomes.

Because the Fisherian framework has been largely
developed in randomized studies, we will focus on the
finite-sample inference.
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4.1 Fisher Randomization Test of the Sharp Null
Hypothesis

The Fisherian randomization test considers a finite
population of N units with N1 receiving treatment
and N0 receiving control. For the ease of exposition,
we discuss the case with a known propensity score
Pr(W|X) such as in (stratified) completely randomized
experiments. We first present a general form of the
Fisher randomization test for a sharp null hypothesis
that Yi(1) − Yi(0) = τi with a known constant vector
τ = (τ1, . . . , τN). The null hypothesis is sharp because
it allows for imputing all the missing potential out-
comes: for a unit with Wi = 1, we have Yi(1) = Y obs

i

and Yi(0) = Y mis
i = Y obs

i − τi ; for a unit with Wi = 0,
we have Yi(0) = Y obs

i and Yi(1) = Y mis
i = Y obs

i + τi .
Originally, Fisher (1935) considered the sharp null H #

0
with τi = 0 for all i = 1, . . . ,N , or equivalently Y(1) =
Y(0) = Yobs.

In general, a test statistic t (W,Y(1),Y(0),X) is a
function of the treatment assignment vector, poten-
tial outcomes and pretreatment covariates. For exam-
ple, it can be the difference-in-means of the outcomes,
N−1

1
∑N

i=1 WiYi(1) − N−1
0

∑N
i=1(1 − Wi)Yi(0), or the

difference-in-means of the residuals from linear re-
gressions of Y(1) and Y(0) on X, N−1

1
∑N

i=1 Wiεi1 −
N−1

0
∑N

i=1(1 − Wi)εi0, where ε1s and ε0s consist of
the residuals from the linear regressions of Y(1) and
Y(0) on X without an intercept, respectively (Tukey,
1993, Rosenbaum, 2002a). Because X is fixed and
{Y(1),Y(0)} are known under the sharp null, the dis-
tribution of t (W,Y(1),Y(0),X) is determined by the
only random component W. Therefore, we can calcu-
late or simulate the randomization distribution of the
test statistic according to Pr(W|X), and then obtain the
p-value Pr(̃t ≥ t), defined as the tail probability of the
test statistic t with respect to its randomization distri-
bution t̃ .

4.2 Fisherian p-Value as a Posterior Predictive
p-Value

We first review the posterior predictive p-values. Al-
though general forms exist (Gelman, Meng and Stern,
1996), we use Meng’s (1994) formulation of the poste-
rior predictive p-value (ppp) and tailor it to the finite-
sample causal inference. Recall that Oobs and Omis de-
note the observed and missing data, respectively. Con-
sider testing a null hypothesis H0.

If Omis were known, then we can choose a test statis-
tic t (Oobs) to measure a deviation from H0, and ob-
tain the p-value p(Omis). We highlight the dependence

of the p-value on Omis, because the distribution of
t (Oobs) depends on Omis in general. The ppp-value
with missing potential outcomes is defined as the mean
of p(Omis) over the posterior distribution of Omis given
the observed data Oobs, �(Oobs|Oobs),

(23) ppp =
∫

p
(
Omis)�(

Omis|dOobs).
In order to obtain the posterior distribution of Omis,
we often need to invoke a model for the complete data
Pr(Oobs,Omis|θ) and a prior Pr(θ). The joint posterior
of (Omis, θ) can be obtained from

Pr
(
Omis, θ |Oobs) ∝ Pr(θ)Pr

(
Oobs,Omis|θ)

,

and the posterior �(Omis|Oobs) can be obtained by
marginalizing over θ .

The above formulation is generic and applicable to
general finite-sample causal inference. Below we dis-
cuss an application, using the Fisher randomization test
to obtain p(Omis) and using a Bayesian model to obtain
the posterior distribution of the missing potential out-
comes. Therefore, the ppp discussed in this subsection
has both Bayesian and Fisherian favors.

The pure randomization-based test was often viewed
as a model-free robust procedure that had no con-
nection to the Bayesian inference. However, Rubin
(1984) first interpreted the Fisher randomization test as
a Bayesian posterior predictive check. We assume that
Pr(W|X) has a known probabilistic law as in random-
ized experiments. With a known unit-level treatment
effect vector τ , the posterior distribution �(Omis|Oobs)

contains point masses at the imputed values of the
missing potential outcomes. Therefore, the posterior
predictive replicates can be obtained by drawing W ac-
cording to its probabilistic law without changing the
values of {X,Y(1),Y(0)}, and the ppp using statistic
t (W,Y(1),Y(0),X) is identical to that obtained from
the Fisher randomization test in Section 4.1.

4.3 Nonsharp Null Hypotheses

Although the Bayesian interpretation of the Fisher
randomization test in Section 4.2 is “intellectually
pleasing” (Rubin, 2005), its real advantages are not
obvious in the case of a sharp null hypothesis. When
the null hypothesis is not sharp, it is often challenging
to conduct exact randomization tests without sacrific-
ing statistical power (Nolen and Hudgens, 2011, Ding,
Feller and Miratrix, 2016). Fortunately, we can still ob-
tain ppp’s in these cases, because we can first obtain
p-values for fixed values of the unknown missing po-
tential outcomes, and then average the p-values over
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the posterior distributions of these unknown potential
outcomes. We give two examples to illustrate this gen-
eral approach.

EXAMPLE 4 (Testing treatment effect variation).
We are interested in testing whether the unit-level treat-
ment effects are constant (Ding, Feller and Miratrix,
2016), a model that is often assumed in randomization-
based causal inference (Rosenbaum, 2002b):

HC
0 : Yi(1) − Yi(0) = τ

for some τ and for all i = 1, . . . ,N.

Because the null hypothesis HC
0 depends on an un-

known parameter τ , it is not sharp, and thus the miss-
ing potential outcomes cannot be imputed as in Sec-
tion 4.1. However, for a fixed value of τ , the null hy-
pothesis that Yi(1) − Yi(0) = τ for all unit i is sharp,
and all the missing potential outcomes can be imputed:
for a unit with Wi = 1, we have Yi(1) = Y obs

i and
Yi(0) = Y mis

i = Y obs
i − τ ; for a unit with Wi = 0, we

have Yi(0) = Y obs
i and Yi(1) = Y mis

i = Y obs
i + τ . Ding,

Feller and Miratrix (2016) suggested using the follow-
ing shifted Kolmogorov–Smirnov statistic for HC

0 :

tSKS
(
W,Y(1),Y(0),X

)
= max

y

∣∣∣∣N−1
1

∑
Wi=1

I
(
Y obs

i − τ̂ ≤ y
)

− N−1
0

∑
Wi=0

I
(
Y obs

i ≤ y
)∣∣∣∣,

where τ̂ is the difference in means of the outcomes in
treatment and control groups. For a fixed value of τ ,
we can first impute all the missing potential outcomes,
and then obtain the p-value p(τ ) = Pr(̃tSKS ≥ tSKS|τ)

using the Fisher randomization test, where t̃SKS repre-
sents the randomization distribution of the test statistic
tSKS that can be simulated by Monte Carlo. Note that in
this example, because under HC

0 there is a one-to-one
map between τ and Omis = Ymis, we use the simple
notation p(τ ) for p(Omis).

However, we do not know τ and need to obtain
its posterior distribution. Assume that the first part
of the joint model Pr(W|X) is known as in (strat-
ified) completely randomized experiments. We need
only to model the second part Pr(Y(1),Y(0)|X, τ, θ) =
Pr(Y(0)|θ) × I {Y(1) = Y(0) + τ1N } and impose pri-
ors on (τ, θ). For notational simplicity, we illustrate
the idea with a Normal linear model Y(0) = Xβ + ε
with an intercept, where ε ∼ N(0, σ 2IN) and θ =
(β, σ 2). As a result, the observed outcomes follow

Yobs = τW + Xβ + ε, and under the usual Normal and
inverse-χ2 priors for (τ, β, σ 2), the posterior of τ can
be easily obtained in closed form (Gelman et al., 2014,
Chapter 14). The final ppp-value is obtained by aver-
aging p(τ ) over the posterior distribution �(τ |Oobs),
which is ppp(HC

0 ) = ∫
p(τ)�(dτ |Oobs).

Ding, Feller and Miratrix (2016) also discussed sev-
eral alternative test statistics. In practice, we may also
want to impose more flexible outcome models beyond
the Normal linear model, but the essence of the ppp
remains the same.

EXAMPLE 5 (Testing treatment effects among com-
pliers). We revisit the principal stratification ap-
proach to noncompliance (Section 2.3) under the Fish-
erian perspective. Recall that for unit i, let Xi , Zi ,
Wi(1), Wi(0), Yi(1) and Yi(0) be covariate, treat-
ment assignment, potential values of the actual treat-
ment and the outcome, respectively. Recall that Ui =
{Wi(1),Wi(0)} is the latent principal stratum. Rubin
(1998) and Rosenbaum (2002b) considered testing the
following null hypothesis for the compliers:

H c
0 : Yi(1) = Yi(0) (for Ui = c, i = 1, . . . ,N).

Assuming monotonicity and exclusion restriction, this
null hypothesis is equivalent to Fisher’s sharp null hy-
pothesis H #

0 in Section 4.1 that the treatment does not
affect the outcomes of any units. This equivalence im-
plies that we can simply conduct the usual Fisher ran-
domization test discussed in Section 4.1 for H c

0 based
on the data (X,Z,Yobs), ignoring the information of
noncompliance Wobs. However, this exact randomiza-
tion test does not make full use of the observed data,
and consequently can lose power in some cases.

Define (Ȳ obs
1 , Ȳ obs

0 ) and (W̄ obs
1 , W̄ obs

0 ) as the ob-
served means of the treatments received and outcomes
under treatment and control assignments. Two com-
monly used estimators for the CACE are (i) the Wald
estimator tWald = (Ȳ1 − Ȳ0)/(W̄1 − W̄0) (Angrist, Im-
bens and Rubin, 1996), and (ii) the 2SLS estimator
tTSLS that is the coefficient of Wobs in the regression
Yobs ∼ Wobs + X using Z as an instrument for Wobs

(Angrist and Pischke, 2008). It is intuitive to use one of
them as a test statistic in the randomization test. Unfor-
tunately, the null distributions of these test statistics de-
pend on the unknown potential values of the treatment
received Wmis: for unit with Zi = 1, we have Wmis

i =
Wi(0), and for units with Zi = 0, we have Wmis

i =
Wi(1). If Wmis were known, then we can simulate the
distribution of the test statistic t (e.g., tWald or tTSLS) to
obtain the p-value p(Wmis) = Pr(̃t ≥ t |Wmis), where t̃
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is the posterior replicates of the test statistic t . The final
ppp-value is the posterior mean of p(Wmis) given the
data, which is ppp(H c

0 ) = ∫
p(Wmis)�(dWmis|Oobs).

Operationally, the key is to obtain the posterior
draws of Wmis. Under Y(1) = Y(0) = Yobs, the ob-
served outcomes Yobs can be viewed as pretreatment
covariates under monotonicity, exclusion restriction
and H c

0 and, therefore, we do not need to model the
outcome. Assume that first part of the joint model
Pr(Z|X,U,Yobs) = Pr(Z|X) is known, as often guar-
anteed by the design of experiments. Therefore, we
need only to model the second part Pr(U|X,Yobs, θ)

and impose a prior Pr(θ). Assuming exchangeabil-
ity of the units, we define πu(Xi, Y

obs
i , θ) = Pr(Ui =

u|Xi,Y
obs
i , θ) for u = c,n and a, which, for exam-

ple, can be modeled as multinomial logistic. We can
obtain the posterior distribution �(Wmis|Oobs) as a
byproduct of the iteration of the data augmentation al-
gorithm for sampling (Wmis, θ), by discarding the pos-
terior draws of θ . In particular, given Wmis, we know
U and, therefore, we can use (U,X,Yobs) to obtain
a posterior draw of θ , for example, according to the
posterior distribution of a multinomial logistic model.
Given θ , we can impute Wmis as follows: for a unit
with (Zi = 1,W obs

i = 1), draw Wi(0) from Bernoulli
with probability πa(Xi, Y

obs
i , θ)/{πa(Xi, Y

obs
i , θ) +

πc(Xi, Y
obs
i , θ)}; for a unit with (Zi = 1,W obs

i = 0),
set Wi(0) = 0; for a unit with (Zi = 0,W obs

i = 1), set
Wi(1) = 1; for a unit with (Zi = 0,W obs

i = 0), draw
Wi(1) from Bernoulli with probability πc(Xi, Y

obs
i , θ)/

{πc(Xi, Y
obs
i , θ) + πn(Xi, Y

obs
i , θ)}. Rubin (1998) de-

scribed this strategy for the one-sided noncompliance
with Wi(0) = 0 for all units under a completely ran-
domized experiment; his simulation studies for the case
with a binary outcome without X showed meaningful
power gains in some scenarios.

4.4 Extension

In Section 4.3, we focused on obtaining the p-value
based on a test statistic t (Oobs), a function of the ob-
served data only. In general, we can use a discrepancy
variable t (Oobs,Omis), which can be a function of both
the observed and missing data, to obtain the p-value
(Meng, 1994, Gelman, Meng and Stern, 1996). In both
cases, the p-value is a function of Omis.

The above discussion of the Fisher randomization
inference applies naturally to randomized studies in
which Pr(W|X) is known and determined by the de-
signers of the experiments. Complications arise in ob-
servational studies. If Assumption 1 holds and X is

discrete, then we can use the estimated propensity
score P̂r(W|X) to simulate the treatment W, or equiv-
alently conduct conditional randomization test as if
the data come from a stratified completely randomized
experiment. With continuous or multidimensional X,
we need to model Pr(W|X). Rosenbaum (1984a) pro-
posed a conditional randomization test given the suffi-
cient statistics of a logistic model for Pr(W|X). Rubin
(2007, 2008) and Imbens and Rubin (2015) suggested
stratifying on the estimated propensity scores to ap-
proximate completely randomized experiments within
strata, possibly followed by a Fisherian analysis.

Although we focused on obtaining p-values from
Fisher randomization tests, we can invert a sequence of
tests to obtain confidence sets of parameters of interest.
With a few exceptions, this is often conducted under
an additional assumption of constant treatment effect
(Rosenbaum, 2002b). However, with nonsharp null hy-
potheses, simultaneously imputing missing potential
outcomes and inverting a sequence of tests seems infe-
rior to both the Frequentist and Bayesian perspectives
discussed before, which focus on point and interval es-
timation directly.

Moreover, it is important to evaluate the frequency
properties of the ppp-values. Under the classical Fre-
quentist evaluation in which the parameters are fixed
constants, the Fisherian p-values are exact when the
null hypotheses are sharp, but they are often conserva-
tive when the null hypotheses are not sharp (Robins,
van der Vaart and Ventura, 2000). However, alternative
frequency evaluations often give different conclusions.
Meng (1994) considered the prior predictive evalu-
ation, in which the model parameters are generated
from proper prior distributions and the data are then
generated conditional on the model parameters. Un-
der Meng’s (1994) scheme, some ppp-values may be
anti-conservative. Rubin (1998) considered the poste-
rior predictive evaluation, in which the model parame-
ters and missing data are generated conditional on the
observed data and the null hypotheses. Under Rubin’s
(1998) scheme, the ppp-values have exact frequency
properties.

As a final remark on the Fisherian perspective, nei-
ther did Fisher formally use potential outcomes nor did
he agree with using Bayes’ theorem for statistical in-
ference (Fisher, 1935). Rubin (1980) reformulated the
randomization test using Neyman’s (1990) potential
outcomes notation, and extended it by combining p-
values with Bayesian techniques. Alternatively, assum-
ing that the units are independent and identically draws
from a super population, Hoeffding (1952) and Chung
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and Romano (2013) stated the “sharp” null hypothesis
as Yi(1) ∼ Yi(0), that is, the treated and control po-
tential outcomes have the same distribution, and inter-
preted randomization tests as permutation tests. This
interpretation works well under the sharp null hypothe-
ses for completely randomized experiments, but is less
straightforward for nonsharp null hypotheses with nui-
sance parameters. The super-population version of the
analysis in Section 4.3 remains an open question.

5. DISCUSSION

We have reviewed a wide range of causal inference
methods that have analogues in missing data analy-
sis under three modes of inference. Although a com-
prehensive review of all relevant topics is beyond the
scope of this paper given, the vast literature in both
causal inference and missing data, we regard the fol-
lowing important areas merit further attention.

5.1 Partially Identified Parameters and Bounds

In the Bayesian perspective, we commented on the
identifiability issue due to the fundamental problem of
causal inference and recommended to use a transpar-
ent parametrization strategy (see Section 3.1), which
also applies to the Fisherian perspective. We now com-
ment more on the identifiability issue in the Frequentist
perspective, which often involves bounding the param-
eter of interest by the distributions of the observables.
Cochran (1953) derived bounds for nonignorable miss-
ing data in surveys, and Manski (1990) obtained more
fruitful results for both missing data and causal infer-
ence problems.

The first important class of partially identified pa-
rameters depend on the association between the poten-
tial outcomes. For example, the parameters

δ1 = Pr
(
Y(1) ≥ Y(0)

)
, δ2 = Pr

(
Y(1) > Y(0)

)
measure the probability that the treatment is not worse
than the control and the probability that the treatment is
better than the control, respectively. Lu, Ding and Das-
gupta (2015) emphasize that for ordinal outcomes, δ1
and δ2 are well defined even though τi = Yi(1) − Yi(0)

is not. In general, we are interested in the distribution
of the treatment effect �(c) = Pr(Yi(1) − Yi(0) ≤ c).
Without imposing further assumptions, we can only
bound parameters such as δ1, δ2 and �(c) by the
marginal distributions Pr(Yi(1) ≤ y1) and Pr(Yi(0) ≤
y0).

Inferring such parameters is arguably more challeng-
ing than most standard missing data problems. It is

also an example where some theoretical development
in causal inference lends to research on missing data.
Specifically, a small but growing literature is on the so-
called “misaligned missing data” problem (e.g., Ding
and Song, 2016), where some variables cannot be ob-
served simultaneously, similar to the joint potential
outcomes Y(1) and Y(0). Ding and Song (2016) made
the connection and borrowed some results from causal
inference to address the problem (Fan, Guerre and Zhu,
2017).

Inference involving simultaneous counterfactual po-
tential outcomes is controversial for some researchers
who were only willing to model observables. For
example, Dawid (2000) advocated “causal inference
without counterfactuals” through a decision theoretic
perspective. Interestingly, despite his original critique,
Dawid, Musio and Murtas (2017) invoked counterfac-
tuals to define the “probability of causation (PC).” For
example, if a unit responds to the treatment, then

PC = Pr
(
Yi(0) = 0|Wi = 1, Yi(1) = 1

)
is the probability that the treatment is effective. The
parameter PC obviously involves the joint values of the
counterfactuals. Indeed, such joint counterfactuals are
often unavoidable in defining certain causal estimands,
such as δ1, δ2 and �(c). Heckman, Lopes and Piatek
(2014) provided more discussions on this issue.

Another important class of partially identified pa-
rameters arises from principal stratification. If we do
not invoke monotonicity, exclusion restriction or para-
metric models, in general we cannot identify the means
of the potential outcomes within the latent principal
strata. Zhang and Rubin (2003) derived large-sample
bounds of the causal parameters based on the observed
data, followed by Cheng and Small (2006), Grilli and
Mealli (2008), Imai (2008), among others.

Unfortunately, the bounds are often too wide to be
useful in practice, and additional information is often
required to sharpen them (Mattei and Mealli, 2011,
Yang and Small, 2016). It is also nontrivial to con-
struct confidence intervals for the bounds or for the
parameters themselves, because the bounds often cor-
respond to nonsmooth operations of the observed data
distribution and, therefore, the standard delta method
or the bootstrap may not apply (Andrews, 2000, Fan
and Park, 2010).

5.2 Nonignorable Assignment Mechanisms and
Sensitivity Analysis

Our discussion is limited to ignorable (or uncon-
founded) assignment mechanisms. However, in obser-
vational studies the assignment mechanism is gener-
ally unknown, and it is the norm rather exception that
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the untestable unconfoundedness assumption (2) is vi-
olated to a certain degree. The critical reliance on un-
confoundedness in causal inference is similar to the
dependence on the vulnerable MAR assumption in
missing data analysis. In causal inference, the stan-
dard approach is to conduct sensitivity analysis around
unconfoundedness. The main idea is to examine the
causal estimates from the same inferential procedure
given an unmeasured covariate whose confounding ef-
fects (i.e., degree of violation to unconfoundedness)
are encoded as sensitivity parameters and are var-
ied within a realistic range by the analyst. Cornfield
et al. (1959) first started this school of thoughts, whose
method was directly extended in Ding and Vander-
Weele (2016). Rosenbaum and Rubin (1983a) broad-
ened this approach by parametrically modeling the dis-
tributions of the outcome and the treatment conditional
on the unmeasured confounder. Semi and nonpara-
metric versions of this method have been developed
(e.g., Rosenbaum, 1987, Imbens, 2003, Ichino, Mealli
and Nannicini, 2008, Robins, Rotnitzky and Scharf-
stein, 2000), and extensions to principal stratification
are also available (e.g., Schwartz, Li and Reiter, 2012,
Mercatanti and Li, 2017, Ding and Lu, 2017).

Sensitivity analysis is also extensively conducted in
the context of nonignorable missing data, but with dif-
ferent emphasis and implementation than that in causal
inference. Specifically, the two standard models for
nonignorable missing data are the selection models and
the pattern-mixture models (Little and Rubin, 2002,
Chapter 15); in both models, the missing data mech-
anism is directly modeled and estimated from the data,
together with the outcome model. Because sensitiv-
ity to model specification is a serious scientific prob-
lem for both selection and pattern-mixture models, in
real applications it is prudent to consider a variety of
missing data models, rather than to rely exclusively
on one model. One attractive direction for both causal
inference and missing data with nonignorable assign-
ment/missing data mechanisms is to utilize external
data sources to augment the analysis, which requires
considerable efforts in the study design.

5.3 Unintentional Missing Data

We have mainly focused on the intentional miss-
ing data (i.e., missing potential outcomes) in causal
inference. Unintentional missing data are prevalent
in observational studies and there is a growing lit-
erature on drawing causal inference from incomplete
data. A straightforward approach consists of two in-
dependent steps: first impute the missing data and

then draw causal inferences from the imputed com-
plete data (e.g., Mitra and Reiter, 2011). However,
how the missing values are imputed may have a non-
trivial impact on the subsequent causal analysis (e.g.,
Mitra and Reiter, 2016). In particular, missing data
in covariates (Rosenbaum and Rubin, 1984, Ding and
Geng, 2014, Yang, Wang and Ding, 2017), treatment
(Molinari, 2010, Mebane and Poast, 2013, Zhang et al.,
2016), and outcomes (Frangakis and Rubin, 1999,
Chen, Geng and Zhou, 2009, Mattei, Mealli and Pacini,
2014, Liublinska and Rubin, 2014) are often of dif-
ferent nature and may require different handling. The
problem is even more challenging in complex set-
tings such as post-treatment variables (e.g., Mercatanti,
2004, Mealli et al., 2004). More research in under-
standing such an impact would be valuable to practice.

5.4 Software

Open-source and user-friendly software packages
are crucial for bridging theory and practice, and de-
serve much effort and investment from methodolo-
gists. In statistics, authors are increasingly releasing R
packages implementing their methods. This is partic-
ularly important for causal inference methods, which
are widely used in many substantive disciplines in-
cluding medicine, policy, psychology, social sciences
and others. We list a few most popular packages here:
twang (Ridgeway et al., 2017) provides functions for
propensity score estimating (via generalized boosted
models) and weighting methods; packages Matching
(Sekhon, 2011) and MatchIt (Ho et al., 2011) pro-
vide functions for matching methods. These packages
can be used in combination with other R packages,
for example, for hierarchial models (lme4), Bayesian
modeling (rjags), to apply to more complex prob-
lems. Besides R, Stan (Carpenter et al., 2017) is new
open-source probabilistic programming language par-
ticulary suitable for advanced statistical modeling and
computation; Stan has attracted much interest from
both academia and industry recently and can be used
for implementing many causal inference methods dis-
cussed in this review.
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