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We consider the vector difference equation

(1a) y(t+1) = At)y(t)

where A(t) is a complex n X n matrix function defined on the integer
interval [tg,00) = {to,to + 1,t0 + 2,...}. We also will consider the
difference operator analog of equation (1a)

(1b) Ay(t) = B(t)y(t)

where B(t) is a complex n x n matrix function defined on the integer
interval [tg,00). An asterisk will denote the conjugate transpose and
A will denote the forward difference operator, that is, Ay(t) = y(t +
1) - y(@).

The main theorem will give necessary and sufficient conditions for
the existence of a nontrivial solution of equation (la) which tends to
zero. The theorem is a generalization of the trivial scalar case that all
solutions of u(t+1) = a(t)u(t) tend to zero provided the limit of [] a(¢)
is zero. The related result using equation (1b) is a discrete analog
of a theorem of Hartman [1, 2] which gave necessary and sufficient
conditions for the existence of a solution for a first order system of linear
differential equations which tends to zero. Hartman’s result implied
a result of Milloux [4] for a certain second order scalar differential
equation which demonstrated the existence of a nontrivial zero-tending
solution.

Theorem 1A. Assume

lim {[y(2)|]

t—o0
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exists as a finite number for every solution y of (1a).

(1a) has a nontrivial solution yo satisfying
Jim yo(t) = 0,

if and only if

(2a) lim det[A(7)] = 0.

Theorem 1B. Assume

Jim [ly(t)]

exists as a finite number for every solution y of (1b).

(1b) has a nontrivial solution yo satisfying
tllglo yo(t) =0,

if and only if

(26) lim t det[I + B(1)] =0,

t—o00
T=to

where I is the identity matrix.

Then equation

Then equation

Proof of Theorem 1A. Let Y (t) be a fundamental matrix for equation

(1a). We will show that
lim Y*(¢)Y (¢)

t—o0

exists. The (p, ¢)th element of Y*(¢)Y (¢) is

Yp (£)Y4(t)
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where y,(t),y,(t) are the p'" and ¢"" columns of Y (¢). By the polar-
ization identity

4y5 (8)yq(t) = D *llyq (1) + i*y, (1)1
k=0

where i = —1. Since y,(t) + i*y,(¢) is a solution of equation (la), we
have that
Hm s (£)y,(6)

exists and is finite. Hence

lim Y*()Y (t) = H

t—o0

exists where H is an n X n Hermitian matrix.

By Liouville’s formula for (1a),

det Y (t) = { 1:[ det[A(T)]] det Y (to).

T=to

If (2a) holds, then
tlim det Y (t) = 0.
—00

Hence,
det / = lim [det Y(t)]* = 0.

Choose ¢y € C™\{0} such that Heg = 0. Set yo(t) = Y (¢)co on [tg, 00),
then y¢ is a nontrivial solution of (1a) and

: 2 1 * Yk
Jim [[3o(6)|[* = Jim ¥ (1) (t)eo
= cyHco = 0.
Now assume (1a) has a nontrivial solution y such that

lim yo(¢) = 0.

t—o0

Then yo(t) = Y (t)co for some ¢y € C™\{0}. Hence

0= Jim |15o(8)|* = ci Hoo.
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It follows that det H = 0. This implies that
lim detY (¢) = 0.
t— o0

Using Liouville’s formula we get that (2a) holds. O

The next theorem gives criteria in terms of the coefficient matrix
A(t) for equation (la) to have the property that every solution has
magnitude with finite limit. The proof of this result is very elementary.
Here, inequalities between matrices will be in the negative semi-definite
sense.

Theorem 2A. If

(3a) A*(H)AR) < I
on [tg,00), then
Jim ()]

exists as a finite number for every solution y of (1a).

Theorem 2B. If

(3b) B(t) + B*(t) + B*(t)B(t) <0
on [tg,00), then
lim |

exists as a finite number for every solution y of (1b).

Proof of Theorem 2A. Let y be a solution of (1a) and set

w(t) = |lyOI* =" )y (?)-

Then
Aw(t) = y*(t + 1)Ay(t) + Ay* (£)y(?).
Hence,
Aw(t) = y* () A" () [A(t) — I]y(t) + y" (1) [A"(t) — I]y(t)
=y (t)[AT(t)A(t) — Iy(t
<0
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on [tg,00). Hence lim;_, ||y(t)|| exists and is finite. O

The following corollary follows immediately from Theorem 1A and
Theorem 2A.

Corollary A. If

on [tg,00) and

then equation (1a) has a nontrivial solution yo with

lim yo(¢) = 0.

t— o0
Corollary B. If
B(t)+ B*(t) + B*(t)B(t) <0
on [tg, ) and
t

tl;nolo det[I + B(7)] =0,

T=to

then equation (1b) has a nontrivial solution yo with

lim yo(¢) = 0.

t—o0

We now consider two examples. First, the second order scalar euation
(4) u(t+2)+a(t)u(t+ 1) +b(t)u(t) =0

where a and b are complex valued functions with b(t) # 0 on [tg, 00).
Write equation (4) as a second order system by letting

v(t) = u(t+1).
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Then the matrix A for equation (la) where y is the vector function

[u,v]T is given by
0 1
40 =y iy

Therefore,

: _ [P~ 1 atpr)
(5) A(t)AU)—I—[a*(t)b(t) (I ]

Equation (5) is negative semi-definite if and only if a(¢t) = 0 and
|b(t)| < 1 on [ty,00). Note that the determinant of A(¢) is b(t). Hence,
equation (4) has a nontrivial zero-tending solution, if a(t) = 0, [b(¢)| < 1
and [[;~ b(t) = 0. This result is trivial for difference equations, but note
it is not true that under these conditions every solution of equation (5)
tends to zero. To see this, consider the solution w of the initial value
problem of equation (4) with b(t) = 1 when ¢ is an even integer and
b(t) = 1/t when ¢ is odd, and the initial conditions »(0) = 1, u(1) = 1.

We now consider a more general second order system

(6) w(t + 1) = a(t)u(t) + b(t)v(t)
v(t+ 1) = c(t)u(t) + d(t)v(t)

on [tg,00), where here we assume a, b, ¢, d are complex valued functions
defined on [tg,00). Then

2 2 * *
+le*=1 a*b+c*d
AA_ 1= |l
(M b +od* B2+ |d? -1
Since a Hermitian matrix is negative semi-definite if and only if its
principal minor determinants satisfy certain sign conditions, (7) satis-
fies (3a) when

(8) laf” +1¢[* <1
(9) b]> + |d]> <1
and

(10) [lal? +le[* = 1]b]* + |d]* = 1] > a"b + c"d|*.



A THEOREM OF MILLOUX FOR DIFFERENCE EQUATIONS 259

Also, condition (2a) is satisfied when
¢
(11) lim [a(s)d(s) — b(s)c(s)] = 0.

t—o0
s=to

Hence, the system (6) has a nontrivial zero-tending solution provided
conditions (8-11) are satisfied.

We now give an example which satisfies the conditions (8-11). If
—0.1 < b(t) < 0.98 then the system

ey =07 09 o

has a nontrivial solution y(t) satisfying
tlggo wo(t) =0.

Using methods similar to the proofs of the earlier results in this paper,
one can easily prove the following results.

Theorem 3A. Assume

lim |y(¢)|] < oo

t—o0

exists for all solutions y of equation (1a) (in particular, this is true if
A*(t)A(t) > I in a neighborhood of infinity). If

t
(12a) tlgglo 1__! |det A(T)| = o0

then there is a solution yo of (1a) such that
(12b) Tim [lgo(t)]] = oo,
Theorem 3B. Assume

i <
Jim [Jy(2)] < o
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exists for all solutions y of equation (1b) (in particular, this is true if

B(t) + B*(t) + B*(t)B(t) > 0 in a neighborhood of infinity). If

¢
(12Db) tllglo 11 | det[I + B(7)]| = o0
T=to

then there is a solution yo of (1b) such that
(13b) Jim [[s0(0)]| = oc.

Unlike Theorem 1A and Theorem 1B where conditions (2a) and
(2b) were necessary and sufficient, the conditions (12a) and (12b) are
sufficient but not necessary as illustrated in the following example.
Consider the system

(14) e =17 9o

on the larger interval [1,00). Note that yo(t) = [0 (¢ — 1)!]T is a
solution of (14) satisfying (13a) and that

t
tll)rgo 11 |det A(T)| =1,
that is, the limit in (12a) is finite.
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