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A NEW CLASS OF
WEAKLY SYMMETRIC SPACES

J.C. GONZALEZ-DAVILA AND L. VANHECKE

ABSTRACT. We prove that any simply connected Riemann-
ian manifold which is equipped with a complete unit Killing
vector field such that the reflections with respect to the flow
lines of that field can be extended to global isometries, is a
weakly symmetric space.

1. Introduction. Weakly symmetric spaces have been introduced
by A. Selberg [23] in 1956. They may be characterized as connected
Riemannian manifolds on which any two points can be interchanged by
an isometry. Every Riemannian symmetric space is weakly symmetric,
but the converse is not true. However, weakly symmetric spaces have
many properties enjoyed by symmetric spaces. For example, in [23] it is
proved that the algebra of all isometry-invariant differential operators
on a weakly symmetric space is commutative and in [1], the authors
show that all their geodesics are orbits of one-parameter groups of
isometries of the manifold. Other geometric properties have been
considered in [2, 5, 6].

At this moment many examples of nonsymmetric weakly symmetric
spaces are known. We refer to [3, 4, 7, 14, 15, 17, 23, 29] for
a detailed description. In particular, it has been proved in [7] that
any simply connected p-symmetric space is a weakly symmetric space.
Such spaces have been introduced in [24] in the framework of contact
geometry where they play a similar role as the Hermitian symmetric
spaces in complex geometry. They provide examples of Riemannian
manifolds which are equipped with a complete unit Killing vector field
such that the reflections with respect to the flow lines can be extended
to global isometries. Such Riemannian manifolds are called Killing-
transversally symmetric spaces. Their local and global geometry as well
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as their classification has been studied in [11, 12] and in subsequent
papers.

The proof of the weak symmetry of a simply connected ¢-symmetric
space is based on the fact that such a space is a certain circle or
line bundle over a Hermitian symmetric space and on the existence
of real forms, that is, fixed point sets of anti-holomorphic involutions,
in Hermitian symmetric spaces with the same rank. The reflections
of the bundle space in the lifted real forms provide the isometries
interchanging two points.

The main purpose of this paper is to prove, using a similar procedure,
that any simply connected Killing-transversally symmetric space is
weakly symmetric. The proof will be given in Section 5. In Section 2 we
start with a brief description of the needed material about the Killing-
transversally symmetric spaces and in particular about the associated
principal fiber bundle structure. In Section 3 we prove some useful
results about immersions into manifolds equipped with a unit Killing
vector field, and in Section 4 we relate this to the study of lifts of
submanifolds of the base space to the total bundle space.

2. Preliminaries. Let (M,g) be an n-dimensional, smooth,
connected Riemannian manifold with n > 2. V denotes the Levi Civita
connection and R the associated Riemannian curvature tensor with the
sign convention

Ryv = Vv — Vv, Vv]

for U,V € X(M), the Lie algebra of smooth vector fields on M.

Further, let £ be a unit Killing vector field on (M, g) and §¢ the flow
generated by it. It is a Riemannian flow which is called an isometric
flow [26]. The leaves of this Riemannian foliation are geodesics and,
moreover, a geodesic which is orthogonal to the flow field £ at one of
its points is orthogonal to it at all of its points. Such geodesics are
called transversal (or horizontal) geodesics. Further, the foliation is
locally a Riemannian submersion. So, let m € M, and let U be a small
open neighborhood of m such that £ is regular on /. Then the map
m: U — U = UJE is submersion. Let ¢’ denote the metric on U’
defined by

gI(X,,Y’) — g(XI*,YI*)
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for X', Y' € X(U') and where X'*,Y"* denote the horizontal lifts of
X')Y' with respect to the (n — 1)-dimensional horizontal distribution
on U determined by the one-form n on M given by

n(U) = g(U,¢),
U € X(M). Then the Levi Civita connection V' of ¢’ is determined by
V’X/YI = W*VXI*Y/*,
XY e XU).
Next, let A denote the integrability tensor of O’Neill [19], see also [8,

22, 26]. Then we have

AU& = nga AEU =0,

AxY = (VxY)" = -AyX, g(AxY,§) = —g(AxEY)
for U € X(M) and where X,Y are horizontal vector fields. V denotes
the vertical component. Note that for U = ¢ the first two formulas
are consistent because ¢ is a Killing vector field of constant length and,
hence, its integral curves are geodesics. Further, put

HU = —Ayé
and define the (0, 2)-tensor field h by
h(U, V) =g(HU,V),

U,V € X(M). (Note that H coincides with the (1,1)-tensor field A
introduced by Kobayashi-Nomizu but we do not use this notation in

order to avoid confusion with the integrability tensor A.) Since £ is a
Killing field, h is skew-symmetric. Then we obtain easily

AxY = h(X,Y)E = Jn(IX, Y]

for all horizontal fields X,Y. This yields

h = —dn.



856 J.C. GONZALEZ-DAVILA AND L. VANHECKE

Further, V and V' are related by

VY™ = (Vi Y')* + (X", Y™*)E.

Now a straightforward computation yields
R(X,€,Y,€) = g(HX, HY) = —g(H?X,Y)

for horizontal vector fields X, Y. Here we use the notation R(X,Y, Z, W)
= g(RxyZ,W). This formula implies that the &-sectional curvature
K(X,¢&) of the two-plane spanned by X and & is nonnegative for all
horizontal X and, since H¢ = 0, K(X,£) = 0 for all horizontal X if
and only if h = 0, or equivalently, A = 0 or ¢ is parallel, that is, the
horizontal distribution is integrable. Moreover, K(X,&) > 0 for each
horizontal X if and only if H is of maximal rank n — 1. In this case n
is necessarily odd and then 7 is a contact form on M. This leads to

Definition 2.1. F is called a contact flow if n is a contact form,
that is, if H is of maximal rank.

In what follows, we shall also need

Definition 2.2. §; is said to be normal if R(X,Y, X,§) = 0 for all
horizontal vector fields X,Y.

Then we have that §¢ is normal if and only if
(VuH)V = g(HU, HV)¢ +n(V)H*U
for all U,V € X(M) and in this case the curvature tensor satisfies

(2.1) Ryvé =n(V)H?U —n(U)H?V,
Ry¢V = g(HU,HV)¢ 4+ n(V)H?U.

Here it is worthwhile to note that a Sasakian manifold is a Riemann-
ian manifold equipped with a normal flow §¢ such that K(X,¢) =1
for all horizontal X, see [9, 28] for more details.

Next we recall the notion of a locally or globally Killing-transversally
symmetric space. So let §¢ be an isometric flow on (M, g) as before.
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Let m € M and denote by o the geodesic flow line through m. A local
diffeomorphism s,, of M defined in a neighborhood U of m is said to
be a (local) reflection in o if for every transversal geodesic y(s), where
~(0) lies in the intersection of & and o, we have

(sm ©7)(s) = 7(=3)
for all s with v(4s) € U, s being the arc length of v. Now we consider

Definition 2.3. A locally Killing-transversally symmetric space,
briefly a locally KTS-space, is a Riemannian manifold (M, g) equipped
with an isometric flow §¢ such that the reflection s,, with respect to
the flow line through m is an isometry for all m € M.

These spaces may be characterized by [11]:

Proposition 2.1. (M, g,§¢) is a locally KTS-space if and only if §¢
is normal and

(VxR)(X,Y,X,Y) =0

for all horizontal X,Y.

Proposition 2.2. Let §¢ be a normal flow on (M,g). Then
(M, g,5e) is a locally KTS-space if and only if each base space U' of a
local Riemannian submersion m: U — U' =U/E is a locally symmetric
space.

So, according to the terminology used in [27], (M, g,J¢) is a locally
KTS-space if and only if §¢ is a normal transversally symmetric folia-
tion.

Further, we have

Definition 2.4. Let (M,g) be a Riemannian manifold and £ a
complete unit Killing vector field on it. Then (M, g, §¢) is said to be a
(globally) Killing-transversally symmetric space, briefly, a KTS-space,
if it is a locally KTS-space such that the local reflections s,, can be
extended to global isometries for each m € M.
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For all these notions and for further properties and details, we refer
to [11, 12]. We finish this section with some other important facts.

First we note that KTS-spaces are necessarily homogeneous spaces
[12]. ¢ is a regular vector field and the orbit space M’ = M/ admits
a unique structure of differentiable manifold such that the natural
projection w : M — M’ is a submersion. Moreover, M is a principal
fiber bundle over M’ whose structural group is the one-parameter group
of global isometries generated by £. Further, M’ is a symmetric space
and 7 intertwines the reflections s, of M with the geodesic symmetries
Sm/=n(m) Of M'. On M’ we consider the tensor field of type (1,1) defined
by

HX =rHX"™
and the corresponding (0,2)-version k' given by
hI(XI, Y/) _ g/(H’XI, Y/)

for all X')Y’' € X(M'). Then h = 7*(h'). Moreover, F¢ is nor-
mal if and only if V'H' = 0. Further, when the {-sectional cur-
vature is a nonvanishing constant k = c¢?, then H? = —kI and
(M,c?g,c *H,c '€, cn) is a Sasakian manifold which fibers over the
Kihler manifold (M’,c2g’,J = ¢ ' H') and this Sasakian manifold is a
p-symmetric space [24] if and only if (M, g, F¢) is a KTS-space.

Next we note that contact KTS-spaces are always irreducible. More-
over, a reducible simply connected KTS-space is a Riemannian product
of a Riemannian symmetric space and a contact KTS-space. For simply
connected contact KTS-spaces the following result is proved in [12].

Proposition 2.3. The base space (M',g') of a simply connected con-
tact KTS-space (M, g,§¢) is a (simply connected) Hermitian symmetric
space. Moreover, we have

(i) if M' = M} x M| x --- x M] is its de Rham decomposition and
Hi, 1 =0,1,...,7, are the smooth distributions on M obtained by the
horizontal lifts of the tangent vectors to M], then, for each m € M,
H(m) = Ho(m) @ Hi(m) @ --- & H,(m) is an H-invariant orthogonal
decomposition of the horizontal subspace H(m);

(ii) each sectional curvature K (X;,§), X; € Hj, j=1,...,r, isa
positive constant c?;
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(iii) the (1, 1)-tensor field
1 1
J=Jyx —H{ X ---x —H/,
C1 Cp

is a Hermitian structure on (M',g') where Jy denotes the canonical
almost complex structure on My = CP = E*(x1,... ,2*?) and H} =
H'op;, j=1,...,r, where p; : M' — M; denotes the projection of
M" onto Mj;

(iv) Hy = H' opg on E?P(x!,...  x?P) is given by
;0 0 , 0 0
Bk~ Mgt Daptk Ml gk
for certain positive real numbers i1, ... , fip.

3. Horizontal immersions. Let f be an immersion of an n-
dimensional manifold M into an 7i-dimensional Riemannian manifold
(M, g) and denote by g the induced metric from g. Then f : (M, g) —
(M,g) is an isometric immersion. Further, let R and R be the
Riemannian curvature tensors of the Levi Civita connections V and
V on (M,g) and (M, g), respectively. Moreover, we denote by «a the
second fundamental form of (M, f), by V- the connection in the normal
bundle N(M) and by R* its curvature tensor. In what follows, and
if the argument is local, we shall sometimes identify M with its image
f(M) under f to simplify the notation. Then we have the well-known
Gauss and Weingarten formulas:

(31) ?XY:VXY+a(X,Y),

VxU=-SyX +VxU
where X,Y € X(M) and U is normal to M. Sy is the shape operator
and it is related to a by g(a(X,Y),U) = g(Sv X,Y).

We recall the following Gauss and Codazzi equations:

R(X,Y,Z,W) = R(X,Y,Z,W) + g(a(X, W), (Y, Z))

(3.3) — §(a(X, 2),a(Y, W),

(3.4) (RxyZ)* = =(Vxa)(Y,2) + (Vya)(X, Z)
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for X,Y,Z,W € X(M), U,V € X(M)*. Here Vo is defined by
(3.5)  (Vxa)(Y,Z) = Vx(a(Y,2)) — (VxY, Z) — (Y, Vx Z)

for all XY, Z € X(M).

f is said to be totally geodesic if & = 0 and parallel if Va = 0.
The normal vector field u = (1/n)trace « is called the mean curvature
vector field of f, and f is said to be minimal if p = 0. p is said to be
parallel if V+4p = 0. Further, f is called a totally umbilical immersion
if o(X,Y) =g(X,Y)u for all X,Y € X(M).

Now let §z be the flow on (M, g) determined by a unit Killing vector
field £&. An isometric immersion f : (M,g) — (M,g) is said to be
tangent if ¢ is tangent to f(M). In that case we shall denote by & the
unit Killing vector field on (M, g) induced by &, that is, f.& = £of, and
by 71 the one-form on M given by = f*7. If £ is normal to f(M), that
is, fuTmM C H(f(m)) for all m € M, then f is said to be horizontal
(with respect to §¢). f is said to be anti-invariant if Hf. T, M C T M
for all m € M.

Many of the properties of horizontal submanifolds in Sasakian mani-
folds have analogs when we consider (M, g, SE). We give some examples
which we shall need later on.

Proposition 3.1. Let f : (M,g9) — (M,3,3¢) be a horizontal
immersion. Then we have

(i) f is anti-invariant and, if §¢ is a contact flow, 2n < — 1;
(ii) a is orthogonal to & and Sg = 0;
(iit) 7((Vxa) (Y, 2)) = g(a(Y, Z), HX);
(iv) 7(Vxp) = §(u, HX)
for all X,Y,Z € X(M).

Proof. From (3.1) we get
1(a(X,Y)) =5(VxY,§) = §(HX,Y).

The first term is symmetric in X, Y and the last term is skew-symmetric
in X,Y. Hence both terms vanish. So f is anti-invariant. Then (i) and
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(ii) follow at once. Further, for arbitrary vector fields X, W on M we
have - o

n(VxW) = Xij(W) +g(HX, W)
which, together with (3.5) and taking into account (ii), implies (iii).
Finally, (iv) follows similarly. O

From (ii), (iii) and (iv) in this proposition, we get

Corollary 3.1. Let ¢ be a contact flow on a (2d + 1)-dimensional
Riemannian manifold (M,g), and let f : (M,g) — (M,g,gg) be a
horizontal isometric immersion with dim M = d. Then we have

(i) if the second fundamental form of f is parallel, then f is totally
geodesic;

(ii) if the mean curvature vector of f is parallel, then f is minimal.
Now we introduce

Definition 3.1. The second fundamental form o, respectively the
mean curvature vector field u, of a horizontal immersion f : (M, g) —
(M,g,gg) is said to be n-parallel if (@on) (Y, Z), respectively Vxu, is
vertical, that is, see Proposition 3.1 (iii), (iv),

(3.6) (Vxa)(Y, 2) = g(a(Y, Z), HX)S,
respectively,
(3.7) Vin = g(u, HX)E)

for all X,Y,Z € X(M).

In what follows we shall suppose that the orbit space M = M/¢
admits a (unique) structure of differentiable manifold such that the

natural projection 7 : M — M is a submersion. As we have seen in
Section 2, this is always so locally. For the global case, see [13, 18].

Proposition 3.2. Let f : (M,g) — (M,g,gg) be a horizontal
isometric immersion. Then the composition f' = 7o f : (M,g) —
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(M, g') is an isometric immersion satisfying
—
H fi(m)X L fiTmM

for all X € T,,, M,m € M. In particular, if the £-sectional curva-

ture on M 1is a nonvanishing constant k = c?, then f' : (M,g) —
(H',g’, J = c_lﬁl) is a totally real immersion.

Proof. Using the definition of g’ and the fact that f is horizontal, it
follows at once that f’ is an isometric immersion. Further, since f is
anti-invariant, we get

JH X, 1Y) = § (FHLX, 7 fY) = GHX, fY) =0

for all X,Y € T,, M and all m € M. This completes the proof. ]

Now we derive some geometric relations between a horizontal isomet-
ric immersion f and its projection f’. We refer to [21] for the corre-
sponding theory in the study of the canonical fibrations of Sasakian
manifolds. First we need

Lemma 3.1. Let f: (M,g) — (M,§,8¢) be a horizontal isometric
immersion. Let X € X(M) and denote by Y a vector field along f.
Then we have

(3.8) 7.VxY = VY — 5(Y)H X.

Proof. Since ¢ is regular, any vector field Y along f is locally
projectable, that is, for each m € M, there exists a neighborhood U of
m € M such that #,Y) is well-defined. Hence, Z =Y —#(Y)éo f is a
locally projectable horizontal vector field along f. Using the formulas
given in Section 2, we then get

— —

VY =7.(VxZ) =7 (VxY) +7(Y)H X,

and so (3.8) holds. u]
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Next let o/, S’, i’ and V'+ be the second fundamental form, the shape
operator, the mean curvature vector field and the normal connection
of f/, respectively. Then we have

Proposi@n 3.3. For a horizontal isometric immersion f
(M,g) — (M, g,3¢), we have

(i) « takes its values in the horizontal subbundle H and T.a(X,Y) =
o (X,Y) for all X, Y € X(M);

(ii) p is horizontal and T.pu = p';
= Su.

(iii) of u is normal for f, then 7,u is normal for f' and Sk

Tl

Proof. (i) follows from Proposition 3.1 (ii). Then (ii) and (iii) follow
by using (3.8) and the Gauss formula (3.1). O

Corollary 3.2. The horizontal isometric immersion f is totally
geodesic, minimal or totally umbilical if and only if its projection f’
has the corresponding properties.

Corollary 3.3. If U is a normal vector for f, then @, U is normal
for f' and VU satisfies
!

7. VxU = VinU —j(U)H X

for tangent X.

Proof. The result follows easily from (3.8), Proposition 3.3 (iii) and
the Weingarten formula (3.2). u]

Corollary 3.4. V-1 is determined by
A(Vxn) =g(u, HX) and 7.Vxp= Vi,

and, hence, p is n-parallel if and only if u' is parallel.

Proof. The result follows from Proposition 3.1 (iv), Proposition 3.3
(ii) and Corollary 3.3. o
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Corollary 3.5. V, is determined by
1((Vxa)(Y, Z)) = g(a(Y, 2), HX),
T (Vxa)(Y, 2)) = (Vxa')(Y, 2).

So « is n-parallel if and only if ' is parallel.

Proof. The first formula is proved in Proposition 3.1. For the second
one we use Corollary 3.3 and Proposition 3.3 (i) in (3.5). O

Corollary 3.6. Let f be a horizontal immersion of (M,g) into
(M,g,8g)- If (M,g,8¢) is a locally KTS-space and a is n-parallel,
then (M, g) is locally symmetric.

Proof. Tt follows from Corollary 3.5 that o’ is parallel and Proposi-
tion 2.2 implies that M’ is locally symmetric. The result then follows
by applying the Gauss equation and (3.5). O

4. Horizontal lifts. Existence. Now we shall deiv/e a criterion to
characterize those immersions f’ into the base space M = M /£ which
are, at least locally, projections of horizontal immersions f.

Lemma 4.1. Let f : (M,g) — (H,g,gg) be a tangent anti-invariant
isometric immersion. Then there exists a codimension one totally
geodesic foliation § of M such that the restriction f|z : L — M to
each leaf L of § is horizontal.

Proof. The Gauss formula implies that Vx¢ = —HX is a normal
vector field if and only if Vx& = 0. Therefore, £ is a parallel unit
vector field of M and the horizontal distribution is integrable. Then
the corresponding foliation satisfies the desired result. O

Theorem 4.1. Let f’' be an isometric immersion of (M,g) into
the orbit space (MI = M/¢,g) of (M,g,gg). Then the following
statements are equivalent:

(i) f' satisfies
(1) H fl(m)X L fiT,M,
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forall X € T,, M and m € M,

(ii) f" has locally horizontal lifts, that is, for every initial data
(m,m) € M x M with f'(m) = 7(m), there exists a neighborhood
U =U(m) C M and a horizontal isometric immersion f : U — M with
f(m) =m such that To f = f\’u'

Proof. (ii) — (i) is the main content of Proposition 3.2.

To prove that (i) implies (ii), we consider the regular submanifold N
of M x M given by

N = {(m,m) € M x M | f'(m) = (m)}.

The projections @ : N — M and j : N — M are, respectively, a
submersion and an immersion satisfying f' o m = & o j. Equipping N
with the Riemannian metric j*g, m# becomes a Riemannian submersion.
Since j maps every fiber 771(m), m € M, isometrically onto the fiber

7=L(f'(m)), j is tangent. Moreover, using

§(Hj.X,3.Y) = § (7 Hj X, 7.5.Y) = §'(H 7§ X, 7,5,Y)
§H fim X, flm,Y) =0

it follows that j is also anti-invariant. Then, following Lemma 4.1, there
exists a codimension one foliation § of N such that j|. is horizontal
for each leaf £ of §. Let L; be the leaf containing m = (m,m).
Then ¢ = 7|, is a local isometry into M, and hence there exists a
neighborhood V and U of m and m, respectively, such that ) maps V
isometrically onto . Now f = j|z. o wlzll is the desired horizontal
immersion. O

We note that (4.1) is called the integrability condition for the immer-
sion f’, that is, the condition for the existence of a horizontal lift.

Corollary 4.1. If the {-sectional curvature of (M, 9,3¢) is a nonva-

nishing constant k = c2, then an isometric immersion f : M — M =
M /¢ admits locally horizontal lifts if and only if it is totally real with
respect to the almost Hermitian structure on M induced by H.
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From this corollary and from [12, Theorem 3.1], we obtain

Corollary 4.2. Let (M,g,gg) be a contact KTS-space fibering over

an irreducible Hermitian symmetric space (M, = M/£,5"). Then an

isometric immersion f': M — M admits locally horizontal lifts if and
only if it is totally real.

Now we prove

Corollary 4.3. Let (H,g,gg) be a simply connected KTS-space
fibering over a Hermitian symmetric space (M, = Mll X e X M;, g,J)
where each M;, t =1,...,r, is an irreducible Hermitian symmetric
space, and let f! be totally real immersions of Riemannian manifolds
M; into H; Then the ﬂoduct immersion f' = f] x --- x fl of
M = M; X --- X M, into M admits locally horizontal lifts.

Proof. Let X € T,,M, m € M. Then f.X can be decomposed
as fIX = Y. | fL.X; where X = > | X;, X; € T,,M;. From
Proposition 2.3 it follows that there exist real numbers cy,... , ¢, such
that

HX =Y cJfl.X;.
i=1

Since each f] is a totally real immersion into M;, it follows that f’
satisfies the integrability condition. u]

Finally, we note that a global version of this theorem can be obtained
for KTS-spaces M by applying [20, Theorem 5] taking into account
that M is a principal bundle over M whose structural group is the
one-parameter group of global isometries generated by the flow [12].

Theorem 4.2. Let (M,§,3¢) be a KTS-space fibering over (M' =
M/¢,g), and let f' : (M,g) — (M',g’) be an isometric immersion
satisfying the integrability condition (4.1) and (m,m) € M x M some
initial data with f'(m) = @(m). Then there exists a Riemannian
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manifold M, an isometric covering map P : M — M, a horizontal
isometric immersion f : M — M, and a point m € M such that

7o f=f oy, y(in) =m,f(im) = .

5. The weak symmetry of KTS-spaces. As mentioned in the
introduction, a connected Riemannian manifold is said to be weakly
symmetric if for any two points on it there exists an isometry inter-
changing them. Now we shall prove that this is the case for any simply
connected KTS-space. To do this we first derive the following result
which generalizes one given in [4] for reflections in submanifolds of
(locally) @-symmetric spaces.

Lemma 5.1. Let (M, §,3¢) be a (2d+1)-dimensional contact locally
KTS-space, and let f : (M,g) — (M,3,3¢) be a totally geodesic
horizontal isometric immersion with dim M = d. Suppose that the
following two conditions are satisfied:

() 7 T(M) € Tf(M);
(ii) Ru,u is normal to f(M) for all horizontal u,v normal to f(M).

Then the local reflections in f(M) are isometries.

Proof. In what follows we shall again identify M with f(M) to
simplify the notation.

Let T be the tensor field of type (1,2) on M given by
TyV = g(HU, V)¢ + R(U)HV — 7(V)HU

for U,V € X(M). It follows from [11] that 7' is a homogeneous
structure satisfying Ty U = 0. Hen(& Vuvly = 0. Next, let Ry =
R(U,-)U be the Jacobi operator of M with respect to U. Then the
Jacobi operator RE}” = (vgl_?,UR)(U, -)U of nth order is given by, see
4],

_ —(n) n . n — (1 n—v 14
B VW) = (-1) ZO(V)9<RUTU THW).
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If U is orthogonal to M, then the hypothesis implies
Ty(TM)C NM, Ty(NM)cCTM.

Further, since (i) is equivalent to H'NM c NM, (2.1), (2.2) and (ii)
yield . .
RyTM CTM, RyNM C NM.

Considering these properties of Ty and Ry with the above expression
for the Jacobi operator of order n, we get

0=g(®R:"V, X),0 = g® v, w),0 = g(RE TV X, v)

for all £ € N and all normal vectors U,V and tangent vectors X,Y.
The required result then follows from [10, Theorem 1]. O

Now we prove the main result of this paper.

Theorem 5.1. Any simply connected KTS-space is weakly symmet-
Tic.

Proof. Let (M,g,8¢) be a simply connected KTS-space. Then
M = My x M where M is a contact KTS-space and M5 is symmetric
[12, Theorem 5.1]. So M is weakly symmetric if and only if M;
is weakly symmetric [6]. Hence we may restrict to the case where
(M, g,Te¢) is a simply connected contact KTS-space.

Let p and ¢ be any two points in M and 7 a geodesic connecting
them. (This v exists since M is homogeneous and, hence, complete.
See [12] for details.) We will construct an isometry interchanging
these two points. Denote by m the midpoint between p and ¢ on
v, and let v be the unit tangent vector to v at m. We assume that
v is different from £. As is easily seen, the case v = £ may be
proved by a similar construction and by putting 7,v = 0 in the proof
below. From Proposition 2.3 it follows that the orbit space M’ = M/¢
is a Hermitian symmetric space M’ = M{ x M x --- x M] where
M} = CP = E?(z,...,2%), p > 0, and where M/, i = 1,...,r
is an irreducible, simply connected Hermitian symmetric space. In
each M/ there exist connected, complete, totally real, totally geodesic



WEAKLY SYMMETRIC SPACES 869

submanifolds P; with dimgP; = dimcM] and rank P; = rank M, see
[7, 16, 25]. We can take P; such that (w(m)); € P; and with (m.v);
tangent to P;, see [7]. Each P; is a reflective submanifold of M/, that
is, the reflection of M/ in P; is a well-defined global isometry of M].
Hence there exists a connected totally geodesic submanifold Q; of M/
with (m(m)); € Q; and such that T (,,)),Q: coincides with the normal
space of P; at (w(m)); [10, Theorem 3].

For i = 0, put

_ z p+k 4
71'* —Z oF + ik )

k=1

For simplicity we suppose that the first ¢ vectors, ¢ < p,

0
v =o' — + P l=1,...,q,
Oz

are the nonzero ones. (Any other case may be treated in a similar way.)
Here v; satisfies

(5.1) H"?v = —piv.
Hence,
0 0 , 0 0
{vl,...,vq,m, G S H'vy, .. ’qu’amp"‘q'*‘l"”’ax%}

forms an orthogonal basis of T(,r(m))OEZP . We consider the p-plane Qo
through (m(m))o parallel to {wj,... ,w,} where wy = H'vy,... ,wy =
H'vg, wyy = (8/9aPTatY), . w) = (8/0x?P).

Now Q@ = Qo X Q1 X --- X @, is a connected, complete totally
geodesic submanifold with 7(m) € @ and 7,v perpendicular to T} () Q.
Moreover, since Q) satisfies the integrability condition (4.1) and each
Qi,t=1,...,r, is totally real, we get by Corollary 4.3 that ) admits
locally a horlzontal lift. Let Q be a horizontal lift of Q with m € Q.
Then v is perpendicular to T,,Q and, following Corollary 3.2, Q is
totally geodesic.

Let u be a tangent vector of Q. Then u can be written as

u = uy +Zu'* Zuo wy +Zu'*
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where u; € TQj, j = 0,1,... ,r. Then, using (5.1) and Proposition 2.3,

we have
2 P i
Hu = —{ S bl +§:czu;*}
k=1 =1

and so F2TQ~ - T@.

Further, each @; is reflective and so, at each point of Q;, there
exists a totally real, totally geodesic submanifold of M/ containing this
point and tangent to the normal space of ); at this point. Taking
products we obtain totally geodesic submanifolds at each point of @)
tangent to the normal space of ) at this point. Again, all these
perpendicular totally geodesic submanifolds have local horizontal lifts
which are totally geodesic in M. Then the Codazzi equation (3.4) yields
that R,,u is perpendicular to Q whenever u,v are horizontal vectors
normal to Q. It follows from Lemma 5.1 that the local reflections
with respect to Q are isometries. As (M, g) is real analytic, complete
(since it is homogeneous), connected and simply connected, these local
isometric reflections can be extended to a global isometry which reverses
geodesics perpendicular to Q. Since v is perpendicular to Q, this
global reflection interchanges p and ¢ and, consequently, the theorem
is proved. ]

Remark 5.1. It follows from [11] that a simply connected naturally
reductive Riemannian manifold of dimension not greater than five is
symmetric or the product of a symmetric space and an irreducible
KTS-space or an irreducible KTS-space, and conversely. From this and
from Theorem 5.1 we get that any simply connected naturally reductive
Riemannian manifold (M,g) with dimM < 5 is weakly symmetric.
This result was proved in a different way for dimM < 4 in [6] and
for dimM =5 in [15].
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