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POLYNOMIAL CHARACTERIZATION OF THE
COMPACT RANGE PROPERTY

RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

ABSTRACT. Among other results it is proved that, for a
Banach space F and an integer m, the following assertions are
equivalent:

(a) F has the compact range property;

(b) for every Banach space E, each m-homogeneous Pietsch
integral polynomial from E into F is compact;

(c) every m-homogeneous 1-dominated polynomial from
C([0, 1]) into F is compact;

(d) every m-homogeneous polynomial from L1([0, 1]) into F
is completely continuous.

A Banach space F is said to have the compact range property (CRP,
for short) if every F -valued countably additive measure of bounded
variation has compact range [15]. Every Banach space with the weak
Radon-Nikodým property has the CRP. A dual Banach space has the
CRP if and only if its predual contains no copy of l1. We refer to [9,
10, 15, 17] for more about the CRP.

We recall the following characterizations of the CRP in terms of
(linear bounded) operators:

Theorem 1. For a Banach space F the following facts are equivalent:

(a) F has the CRP;

(b) for any compact Hausdorff space K, every absolutely summing
operator from C(K) into F is compact;

(c) every absolutely summing operator from C([0, 1]) into F is com-
pact;
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(d) if (Ω, Σ, µ) is a finite measure space then every operator from
L1(µ) into F is completely continuous;

(e) every operator from L1([0, 1]) into F is completely continuous;

(f) for any Banach space E, every Pietsch integral operator from E
into F is compact.

The equivalence (a) ⇐⇒ (e) is stated in [17,7]. The other implications
may be seen in [9, 10].

Here we extend this result to the polynomial setting.

Throughout, E and F denote Banach spaces, and BE stands for
the closed unit ball of E. By N we represent the set of all natural
numbers. Given m ∈ N, we denote by P(mE, F ) the space of all m-
homogeneous (continuous) polynomials from E into F . Recall that
to each P ∈ P(mE, F ) we can associate a unique symmetric m-linear

P̂ : E × (m)· · · × E → F so that

P (x) = P̂
(
x, (m). . . , x

)
, x ∈ E.

For the general theory of polynomials on Banach spaces, we refer to [8]
and [14].

We use the notation ⊗mE := E ⊗ (m)· · · ⊗ E for the m-fold tensor

product of E, ⊗m
ε E := E ⊗ε

(m)· · · ⊗ε E for the m-fold injective tensor
product of E, and ⊗m

π E for the m-fold projective tensor product of E

(see [7] for the theory of tensor products). By ⊗m
s E := E ⊗s

(m)· · · ⊗s E
we denote the m-fold symmetric tensor product of E, i.e., the set of all
elements u ∈ ⊗mE of the form

u =
n∑

j=1

λjxj ⊗
(m)· · · ⊗ xj , n ∈ N, λj ∈ K, xj ∈ E, 1 ≤ j ≤ n.

By ⊗m
π,sE we denote the closure of ⊗m

s E in ⊗m
π E. For symmetric tensor

products, we refer to [11]. For simplicity, we write ⊗mx := x⊗ (m)· · · ⊗x.

Given P ∈ P(mE, F ), let

P̂ : ⊗mE −→ F
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be the linearization of P̂ , defined by

P̂

( n∑
j=1

x1j ⊗ · · · ⊗ xmj

)
=

n∑
j=1

P̂ (x1j , . . . , xmj)

where xkj ∈ E (1 ≤ k ≤ m, 1 ≤ j ≤ n); and let

P : ⊗m
s E −→ F

be the linearization of P , given by

P

( n∑
j=1

λjxj ⊗
(m)· · · ⊗ xj

)
=

n∑
j=1

λjP (xj)

where xj ∈ E (1 ≤ j ≤ n).

Recall that P ∈ P(mE, F ) is completely continuous if, for every
sequence (xn) ⊂ E weakly convergent to x, we have that (P (xn))
converges in norm to P (x); P is compact if P (BE) is relatively compact
in F .

Given 1 ≤ r < ∞, a polynomial P ∈ P(mE, F ) is r-dominated (see,
e.g., [12, 13]) if there exists a constant k > 0 such that, for all n ∈ N
and (xi)n

i=1 ⊂ E, we have

( n∑
i=1

‖P (xi)‖r/m

)m/r

≤ k sup
x∗∈BE∗

( n∑
i=1

|x∗(xi)|r
)m/r

.

For m = 1 we obtain the absolutely r-summing operators.

A polynomial P ∈ P(mE, F ) is Pietsch integral if it can be written
in the form

P (x) =
∫

BE∗
[x∗(x)]m dG(x∗), x ∈ E

where G is an F -valued regular countably additive Borel measure, of
bounded variation, defined on BE∗ , where BE∗ is endowed with the
weak-star topology. A similar definition may be given for the Pietsch
integral multilinear mappings (see [1]).
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We refer to [6, 7] for the theory of absolutely summing and Pietsch
integral operators between Banach spaces.

We first give a characterization of the CRP in terms of polynomials
on L1(µ) spaces.

Theorem 2. Given a Banach space F , the following assertions are
equivalent:

(a) F has the CRP;

(b) for all m ∈ N and any finite measure µ, every m-homogeneous
polynomial from L1(µ) into F is completely continuous;

(c) there is m ∈ N such that for any finite measure µ, every m-
homogeneous polynomial from L1(µ) into F is completely continuous;

(d) there is m ∈ N such that every m-homogeneous polynomial from
L1([0, 1]) into F is completely continuous.

Proof. (a) ⇒ (b). Let P ∈ P(mL1(µ), F ). Choose a sequence
(fn) ⊂ L1(µ) weakly convergent to some f . By the Dunford-Pettis
property of L1(µ), the sequence (⊗mfn)n converges weakly to ⊗mf in
⊗m

π L1(µ) [5, Theorem 16]. Since ⊗m
π L1(µ) is an L1(ν) space with ν

finite, the operator

P̂ : ⊗m
π L1(µ) −→ F

is completely continuous, Theorem 1. Therefore, we have

P (fn) = P̂ (⊗mfn) norm−→ P̂ (⊗mf) = P (f),

so P is completely continuous.

(b) ⇒ (c) ⇒ (d) are obvious.

(d) ⇒ (a). Let T : L1([0, 1]) → F be an operator. Suppose (fn) ⊂
L1([0, 1]) is weakly convergent to some f , and ‖Tfn − Tf‖ > 4ε > 0.
Without loss of generality, we can assume f 
= 0. Choose ϕ ∈ L∞([0, 1])
with ϕ(f) = 1.

Let P : L1([0, 1]) → F be the polynomial given by

P (g) := (ϕ(g))m−1Tg (g ∈ L1([0, 1])).
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Then,

‖P (fn) − P (f)‖ =
∥∥(ϕ(fn))m−1Tfn − (ϕ(f))m−1Tf

∥∥
≥ ∥∥(ϕ(fn))m−1Tfn − (ϕ(fn))m−1Tf

∥∥
− ∥∥(ϕ(fn))m−1Tf − (ϕ(f))m−1Tf

∥∥
= |ϕ(fn)|m−1 · ‖Tfn − Tf‖
−

∣∣∣(ϕ(fn))m−1 − (ϕ(f))m−1
∣∣∣ · ‖Tf‖

>
1
2
· 4ε − ε = ε

for n large enough, which contradicts (d).

We now give the characterization of the CRP in terms of polynomials
on C(K) spaces.

Theorem 3. Given a Banach space F , the following assertions are
equivalent:

(a) F has the CRP;

(b) for all m ∈ N and any Banach space E, every m-homogeneous
Pietsch integral polynomial from E into F is compact;

(c) for all m ∈ N, every m-homogeneous Pietsch integral polynomial
from a C(K) space into F is compact;

(d) for all m ∈ N, every m-homogeneous 1-dominated polynomial
from a C(K) space into F is compact;

(e) there is m ∈ N such that every m-homogeneous 1-dominated
polynomial from a C(K) space into F is compact;

(f) there is m ∈ N such that every m-homogeneous 1-dominated
polynomial from C([0, 1]) into F is compact.

Proof. (a) ⇒ (b). Let P ∈ P(mE, F ) be Pietsch integral. By [1], so
is P̂ . By [18], the operator

P̂ : ⊗m
ε E −→ F

is well-defined and Pietsch integral. By Theorem 1, P̂ is compact.
Letting i : ⊗m

π,sE → ⊗m
ε E be the natural inclusion, we have that P̂ ◦ i
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is compact. Since P̂ ◦ i is the linearization of P , we conclude that P is
compact [16, Lemma 4.1].

(b) ⇒ (c) and (d) ⇒ (e) ⇒ (f) are obvious.

(c) ⇒ (d) is clear, since every 1-dominated polynomial on a C(K)
space is Pietsch integral [4].

(f) ⇒ (a). Let T : C([0, 1]) → F be an absolutely summing operator.
For each 1 ≤ i ≤ m − 1 there are operators

ji : ⊗i
π,sC([0, 1]) −→ ⊗i+1

π,s C([0, 1])

and
πi : ⊗i+1

π,s C([0, 1]) −→ ⊗i
π,sC([0, 1])

such that πi ◦ ji is the identity map on ⊗i
π,sC([0, 1]) (see [2, p. 168]).

Consider the polynomial

P := T ◦ π1 ◦ · · · ◦ πm−1 ◦ δm : C([0, 1]) −→ F

where δm : C([0, 1]) → ⊗m
π,sC([0, 1]) is the polynomial given by

δm(f) := ⊗mf . Then P is 1-dominated (see details in [3], p. 910).
Hence, by (f), P is compact. Since

T ◦ π1 ◦ · · · ◦ πm−1 : ⊗m
π,sC([0, 1]) −→ F

is the linearization of P , it is compact as well [16, Lemma 4.1].
Therefore, the operator

T = T ◦ π1 ◦ · · · ◦ πm−1 ◦ jm−1 ◦ · · · ◦ j1

is compact and, by Theorem 1, we conclude that F has the CRP.
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