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Small global solutions and the
nonrelativistic limit

for the nonlinear Dirac equation

Shuji Machihara, Kenji Nakanishi and Tohru Ozawa

Abstract

In this paper we study the Cauchy problem for the nonlinear Dirac
equation in the Sobolev space Hs. We prove the existence and unique-
ness of global solutions for small data in Hs with s > 1. The method
of proof is based on the Strichartz estimate of L2

t type for Dirac and
Klein–Gordon equations. We also prove that the solutions of the
nonlinear Dirac equation after modulation of phase converge to the
corresponding solutions of the nonlinear Schrödinger equation as the
speed of light tends to infinity.

1. Introduction

We consider the Cauchy problem for the nonlinear Dirac equation (NLD)

i∂tψ + icα∇ψ − c2βψ + 2λ(βψ|ψ)βψ = 0,(1.1)

ψ(0) = ψ0,

where ψ is a function from R
4 to C

4 of the variables (x, t) ∈ R
3 × R with

x = (x1, x2, x3) ∈ R
3, ∂t = ∂/∂t,∇ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , c > 0, λ ∈ C.

We follow the standard notation of relativistic quantum mechanics. The αj ’s
and β are 4×4 Hermitian matrices satisfying anticommutation relations, i.e.
αjαk + αkαj = 2δjkI, where δjk is Kronecker’s delta and I is the 4 × 4 unit
matrix, αjβ + βαj = 0, and β2 = I. α∇ stands for

∑3
j=1 αj∂j. (·|·) denotes

the Hermitian product in C4.
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Our first purpose in this paper is to show the global existence of solutions
of NLD for small data. Escobedo and Vega [5] have studied the local and
global existence of solutions with more general forms of nonlinearity, while
they remarked that they had not gained the global result for the cubic
nonlinearity as above which is supposedly the most important model in
relativistic quantum fields (see [4], [6], [22], [23], [24]). In fact, in [5] the
global existence for solutions has been proved for (1.1) with nonlinearity
replaced by 2λ|(βψ|ψ)|(p−1)/2βψ with p > 3. On the cubic nonlinearity
problem p = 3, the difficulty there consisted in that the Strichartz estimates
of L2

t type were unknown. Here we give an affirmative answer to this question
in the subcritical framework of Sobolev spaces. We construct the L2

t type
Strichartz estimate for Dirac and Klein–Gordon equations. The Strichartz
estimates which play on L2

t have been studied by Lindblad and Sogge [13],
Ginible and Velo [9] for wave equation and by Keel and Tao [10] for wave
and Schrödinger equations. We follow the argument of Keel and Tao [10]
which concludes the better estimate than we need. Although we obtain the
Strichartz estimate involving the end point, it is not necessarily required for
our proof since the problem we will consider is subcritical one. We employ
it as only L2

t type estimate.

To state the main results precisely, we introduce the following notation.
For any r with 1 ≤ r ≤ ∞, Lr = Lr(Rn) denotes the Lebesgue space on R

n.
For any s ∈ R and any r with 1 < r < ∞, Hs

r denotes the inhomogeneous
Sobolev space. For any s ∈ R and any r,m with 1 ≤ r,m ≤ ∞, Bs

r,m denotes
the inhomogeneous Besov space. We refer to [1] for notation and general
information on these spaces. We shall work in the three dimensional space
R3 and with functions with values in C4 except Lemma 3 below. We make
abbreviations such as Hs = Hs

2 , Bs
r = Bs

r,2. With the notation above, we
state our first result.

Theorem 1 Let s > 1. Let ψ0 ∈ Hs and let ‖ψ0‖Hs be sufficiently small.
Then there exists a unique solution ψ for (1.1) such that

(1.2) ψ ∈ C(R;Hs) ∩ L2(R;Bs−σ
r ) ∩ L∞(R;Hs),

where 1/r = 1/2 − 1/(2 + θ), σ = 1/2 + 1/(2 + θ) = ((4 + θ)/2)(1/2 − 1/r)
with sufficiently small θ > 0.

Moreover, there exist unique ψ± ∈ Hs such that

(1.3) lim
t→±∞

‖ψ(t) − U(t)ψ±‖Hs = 0,

where U(t) denotes the Dirac group, which solves the free Dirac equation.
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The case s = 1 is actually the critical case for the cubic nonlinearity from
the viewpoint of the scaling argument, and nothing is known even for local
solutions. The difficulty is due to the lack of Strichartz estimates on L2

t L
∞,

which is also related to the ill-posedness results for nonlinear wave equations
of Lindblad [11], [12]. The case s > 1 falls within the subcritical case for the
cubic nonlinearity. Theorem 1 ensures global existence of small solutions in
the subcritical case, which has been left open since [5].

Our second purpose is to study the nonrelativistic limit of NLD as
c → ∞. We will show that solutions of NLD after modulation of phase
converge to the corresponding solutions of a coupled system of nonlinear
Schrödinger type equations as the speed of light tends to infinity. Substi-
tution by u = 2eitβc2βψ into the (1.1) yields the modified nonlinear Dirac
equation (mNLD)

∂tu − ce2ic2tβα∇u = −iλ

2
(βu|u)βu,(1.4)

u(0) = φc,

where φc is equal to 2βψ0 in this situation though from now on it is conve-
nient to regard φc as new Cauchy data depending on c. As Najman [19] has
observed, if the Cauchy data φc converges to φ∞, say, as c → ∞, then the
solution uc of (1.4) is expected to converge to a function v : R

4 → C
4 which

satisfies the following nonlinear Schrödinger type equation (NLS)

∂tv − iβ

2
∆v = −iλ

2
(βv|v)βv,(1.5)

v(0) = φ∞.

There are a few papers on this problem. In [19] Najman proved under the
assumption that φc ∈ H2, φ∞ ∈ H2 and φc → φ∞ in Hs with 0 ≤ s ≤ 1, the
solutions uc of mNLD converge to the solution v of NLS in Hs locally in time.
In [15] Matsuyama showed under the assumption that φc ∈ H2, φ∞ ∈ H2

and φc → φ∞ in H2, the solutions uc converge to the solution v weakly
in H2 locally in time. In [16], for general space dimensions n, convergence in
weighted Sobolev spaces is studied locally in time in the setting of classical
solutions under the assumptions of stronger regularity for Cauchy data.

In this paper we shall improve those available results by reducing the
order of Sobolev spaces where φc, φ∞, uc(t), v(t) belong, down close to the
optimum as regards the scaling structure of solutions. More specifically we
prove the nonrelativistic convergence in the Sobolev spaces Hs with s > 1.
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Theorem 2 Let s > 1, and let φc, φ∞ ∈ Hs. Let uc be the solution of (1.4)
with uc(0) = φc and v be the solution of (1.5) with v(0) = φ∞. Let T ∗

c and
T ∗ be the maximal existence times of uc and of v, respectively. If

lim
c→∞

‖φc − φ∞‖Hs = 0,(1.6)

then lim infc→∞ T ∗
c ≥ T ∗, and for any T with 0 < T < T ∗,

lim
c→∞

‖uc − v‖L∞(0,T ;Hs) = 0.(1.7)

In Theorem 2 we treat both local and global solutions. Local existence
of solutions has been proved in [5]. Global existence of small solutions
with T ∗

c = ∞ is proved by Theorem 1 above. Our method of proof of
Theorem 2 is based on the observation of convergence of solutions from
(1.4) to (1.5), rather than the previous treatment of convergence from second
order equations of Klein–Gordon type to (1.5) as a singular limit. To make
a direct convergence go through, we exploit the Strichartz estimates that
are uniform in c.

2. Proof of Theorem 1

In this section, without loss of generality we may assume that c = 1. The
Dirac equation to be considered therefore takes the form,

∂tψ + α∇ψ + iβψ = f(ψ) ≡ 2iλ(βψ|ψ)βψ.

The corresponding linear Dirac equation becomes

(2.1) ∂tψ = −α∇ψ − iβψ.

Differentiating (2.1) in t, we obtain

∂2
t ψ = −α∇(−α∇ψ − iβψ) − iβ(−α∇ψ − iβψ) = ∆ψ − ψ,

which is the linear Klein–Gordon equation, where the associated Cauchy
data takes the form

(ψ(0), ∂tψ(0)) = (ψ0,−α∇ψ0 − iβψ0).

This implies that the solution ψ of (2.1) with Cauchy data ψ0 is repre-
sented as

ψ(t) = U(t)ψ0,

where U(t) is the free propagator defined on L2(R3; C4) defined as

U(t) = I cos t(1 − ∆)1/2 − (α∇ + iβ)(1 − ∆)−1/2 sin t(1 − ∆)1/2.



Nonrelativistic limit for the nonlinear Dirac equation 183

Accordingly the solution ψ of NLD will be studied in the form of the integral
equation

(2.2) ψ(t) = U(t)ψ0 +

∫ t

0

U(t − t′)f(ψ(t′))dt′.

To treat (2.2) by a contraction argument, we study the Strichartz estimates

for the operator U(t). For that purpose we single out K±(t) = e±it(1−∆)1/2

as essential parts of U(t).

Lemma 3 The space dimension is denoted by n. We have the estimates∥∥K±(t)u
∥∥

L
q1
t B

−s1
r1

� ‖u‖L2 ,(2.3) ∥∥∥∥
∫

t′<t

K±(t − t′)f(t′)dt′
∥∥∥∥

L
q2
t B

−s2
r2

� ‖f‖
L

q′3
t B

s3
r′3

.(2.4)

Here 2/qj = (n − 1 + θ)(1/2 − 1/rj), 2sj = (n + 1 + θ)(1/2 − 1/rj) for
0 ≤ θ ≤ 1, 2 ≤ qj, rj ≤ ∞, (qj , rj) 
= (2,∞), j = 1, 2, 3, and p′ denotes the
dual exponent to p defined by 1/p + 1/p′ = 1.

Remark. For the case n ≥ 3, the pair of exponents (1/q, 1/r) with q = 2,
or equivalently, 1/r = 1/2 − 1/(n − 1 + θ) ≡ 1/re is called “end point”,
since this case is just excluded from the standard duality argument on the
Strichartz estimates [8], [13], [25]. We want to use the Lemma 3 in the case
n = 3, q = 2 so that we are faced with the restriction 0 < θ ≤ 1, which is
caused by (q, r) 
= (2,∞).

Proof of Lemma 3. Regarding the free Schrödinger and wave equations,
the end point estimates were proved by Keel and Tao [10]. Here we follow
almost the same argument with necessary modifications. Below we concen-
trate our attention on the end point estimate and therefore we take n ≥ 3.
We abbreviate K±(t) to K(t) for simplicity.

For (2.3), by a duality argument it is sufficient to prove that

(2.5)

∥∥∥∥
∫ ∞

−∞
K(−t′)F (t′)dt′

∥∥∥∥
L2

� ‖F‖
Lq′

t Bs
r′
,

which follows if we can show that

(2.6)

∥∥∥∥
∫ ∞

−∞
K(−t′)ϕk ∗ F (t′)dt′

∥∥∥∥
L2

� 2ks‖ϕk ∗ F‖
Lq′

t Lr′ ,

where {ϕk}∞0 is the Littlewood–Paley dyadic decomposition on R
n and q, r, s

are as in Lemma 3.



184 S. Machihara, K. Nakanishi and T. Ozawa

Indeed, (2.5) follows from (2.6) as

∥∥∥∥
∫ ∞

−∞
K(−t′)F (t′)dt′

∥∥∥∥
L2

�
( ∞∑

k=0

∥∥∥∥
∫ ∞

−∞
K(−t′)ϕk ∗ F (t′)dt′

∥∥∥∥
2

L2

)1/2

(2.7)

� ‖2ksϕk ∗ F‖
l2Lq′

t Lr′

� ‖2ksϕk ∗ F‖
Lq′

t l2Lr′

= ‖F‖
Lq′

t Bs
r′
,

where we have used Minkowski’s inequality with q′ ≤ 2.

Firstly we prove (2.6) for non-endpoint. We use the decay estimate for
K(t) [2], [7], [20]

(2.8) ‖K(t)ϕk ∗ f‖Lr � |t|−(n−1+θ)(1/2−1/r)2(n+1+θ)(1/2−1/r)k‖ϕk ∗ f‖Lr′

with 0 ≤ θ ≤ 1, 2 ≤ r ≤ ∞. From the Hardy-Littlewood-Sobolev inequality
we have for q > 2,

∥∥∥∥
∫ ∞

−∞
K(t − t′)ϕk ∗F (t′)dt′

∥∥∥∥
Lq

t Lr

� 22ks

∥∥∥∥
∫ ∞

−∞
|t − t′|−2σ(1/2−1/r)‖ϕk ∗ F (t′)‖Lr′dt′

∥∥∥∥
Lq

t

� 22ks‖ϕk ∗ F‖
Lq′

t Lr′ .

Thus we obtain∥∥∥∥
∫ ∞

−∞
K(−t′)ϕk ∗F (t′)dt′

∥∥∥∥
2

L2

=

∫ ∞

−∞
〈
∫ ∞

−∞
K(t − t′)ϕk ∗ F (t′)dt′, ϕk ∗ F (t)〉dt

�
∥∥∥∥
∫ ∞

−∞
K(t − t′)ϕk ∗ F (t′)dt′

∥∥∥∥
Lq

t Lr

‖ϕk ∗ F‖
Lq′

t Lr′

� 22ks‖ϕk ∗ F‖2

Lq′
t Lr′ ,

which is precisely (2.6) for q > 2.
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For the estimate at end point, we consider following bilinear estimate
which guarantees (2.6) by duality argument,

(2.9) |T (ϕk ∗ F,G)| � 22ks‖F‖
Lq′

t Lr′‖G‖
Lq′

t Lr′

with
T (f, g) =

∫
t′<t

〈K(−t′)f(t′),K(−t)g(t)〉dt′dt.

This is further reduced to

(2.10)

∞∑
j=−∞

|Tj(ϕk ∗ F,G)| � 22ks‖F‖
Lq′

t Lr′‖G‖
Lq′

t Lr′

with

Tj(f, g) =

∫
t−2j+1<t′≤t−2j

〈K(−t′)f(t′),K(−t)g(t)〉dt′dt.

We show the following inequalities,

|Tj(ϕk ∗ F,G)| � 2kα(∞,∞)−jβ(∞,∞)‖F‖L2
t L1‖G‖L2

t L1,

|Tj(ϕk ∗ F,G)| � 2kα(a,2)−jβ(a,2)‖F‖L2
t La′‖G‖L2

t L2 ,

|Tj(ϕk ∗ F,G)| � 2kα(2,b)−jβ(2,b)‖F‖L2
t L2‖G‖L2

t Lb′ ,

where 2 ≤ a, b < re, α(a, b) = λ(1− 1/a− 1/b), λ = (n + 1 + θ)/2, β(a, b) =
σ − 1 − σ/a − σ/b, σ = (n − 1 + θ)/2.

For the first inequality we estimate

Tj(ϕk ∗ F,G) �
∫

t−2j+1<t′≤t−2j

‖K(t − t′)ϕk ∗ F (t′)‖L∞‖G(t)‖L1dt′dt

� 2kλ

∫
t−2j+1<t′≤t−2j

|t − t′|−σ‖ϕk ∗ F (t′)‖L1‖G(t)‖L1dt′dt

� 2kλ−j(σ−1)‖F‖L2
t L1‖G‖L2

t L1 .

We use non-endpoint estimate for the second inequality,

|Tj(ϕk ∗ F,G)| �
(∫ ∞

−∞

∥∥∥∫ t−2j

t−2j+1

K(−t′)ϕk ∗ F (t′)dt′
∥∥∥2

L2
dt

)1/2

‖G‖L2
t L2

� 2sk

(∫ ∞

−∞
‖ϕk ∗ F‖2

Lq′(t−2j+1,t−2j ;Lr′ )dt

)1/2

‖G‖L2
t L2

� 2sk+j/q′‖F‖L2
t Lr′‖G‖L2

t L2 .

By symmetry the third inequality also follows.
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By interpolation between these estimates, we have for all (1/a, 1/b) in a
neighborhood of (1/re, 1/re)

(2.11) |Tj(ϕk ∗ F,G)| � 2kα(a,b)−jβ(a,b)‖F‖L2
t La′‖G‖L2

t Lb′ ,

where, for the existence of a neighborhood of (1/re, 1/re) the point (q, r) =
(2,∞) is excluded.

We regard (2.11) as

|Tj(2
−kλϕk ∗ F,G)| � 2−jβ(a,b)‖2−kλ/aϕk ∗ F‖L2

t La′‖2−kλ/bG‖L2
t Lb′ ,(2.12)

= 2−jβ(a,b)‖F‖L2
t 2kλ/aLa′‖G‖L2

t 2kλ/bLb′ .

We use the bilinear interpolation which is found as in Lemma 6.1 in [10].
We use the real interpolation spaces (A0, A1)ϑ,q for 0 < ϑ < 1, 1 ≤ q ≤ ∞,
for reference [1].

We use the space

l̇sq = {{aj}∞−∞ ∈ lq(Z); ‖{aj}∞−∞‖l̇sq
= ‖{2sjaj}∞−∞‖lq(Z) < ∞}.

We define
T k = {Tj(2

−kλϕk ∗ ·, ·)}∞j=−∞.

We take a0 
= a1, b0 
= b1 such that

β(a0, b1) = β(a1, b0) ≡ β1, β(a0, b0) ≡ β0, β0 
= β1,

to obtain the following boundedness of T k as

(2.13)

T k : (L2
t 2

kλ/a0La′
0 ,L2

t 2
kλ/a1La′

1)ϑ0,2×(L2
t 2

kλ/b0Lb′0 ,L2
t 2

kλ/b1Lb′1)ϑ1,2→(l̇β0∞ , l̇β1∞)ϑ,1.

We use the interpolation space identities

(2.14) (2s1Lp1 , 2s2Lp2)ϑ,q = 2s3(Lp1 , Lp2)ϑ,q = 2s3Lp3,q,

where s3 = (1 − ϑ)s1 + ϑs2, 1/p3 = (1 − ϑ)/p1 + ϑ/p2, and Lp,q denotes the
Lorentz space. Thus we obtain the boundedness of T k as

(2.15) T k : L2
t 2

kλ/aϑ0La′
ϑ0

,2 × L2
t 2

kλ/bϑ1Lb′ϑ1
,2 → l̇βϑ

1 ,

where 1/aϑ0 = (1 − ϑ0)/a0 + ϑ0/a1, 1/bϑ1 = (1 − ϑ1)/b0 + ϑ1/b1, βϑ =
(1 − ϑ)βϑ0 + ϑβϑ1, ϑ = ϑ0 + ϑ1, which imply βϑ = β(aϑ0 , bϑ1).
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Applying this to aϑ0 = bϑ1 = re and using the fact that Lr′ ⊂ Lr′,2

for r′ ≤ 2, we obtain the boundedness

(2.16) T k : L2
t 2

kλ/reLr′e × L2
t 2

kλ/reLr′e → l̇01,

which is precisely (2.10) in the end point case. We note that α(re, re) =
(n + 1 + θ)(1/2 − 1/re).

For the retarded estimate (2.4), we start from (2.9). By duality argu-
ment,

(2.17)

∥∥∥∥
∫

t′<t

K(t′ − t)2−ksϕk ∗ F (t′)dt′
∥∥∥∥

Lq
t Lr

� ‖2ksϕk ∗ F‖
Lq′

t Lr′ .

From Minkowski’s inequality for q ≥ 2 and q′ ≤ 2, we obtain

(2.18)

∥∥∥∥
∫

t′<t

K(t′ − t)2−ksϕk ∗ F (t′)dt′
∥∥∥∥

Lq
t l2Lr

� ‖2ksϕk ∗ F‖
Lq′

t l2Lr′

which implies

(2.19)

∥∥∥∥
∫

t′<t

K(t′ − t)F (t′)dt′
∥∥∥∥

Lq
t B−s

r

� ‖F‖
Lq′

t Bs
r′
.

Thus we have (2.4) for the case q2 = q3. We estimate T (F,G) to gain another
cases. From (2.5) we have

|T (F,G)| =
∣∣∣∣
∫ ∞

−∞
〈
∫ t

−∞
K(−t′)F (t′)dt′,K(−t)G(t)〉dt

∣∣∣∣
≤

(
sup

t

∥∥∥∥
∫ t

−∞
K(−t′)F (t′)dt′

∥∥∥∥
L2

)
‖G‖L1

t L2

=

(
sup

t

∥∥∥∥
∫ ∞

−∞
K(−t′)X(−∞,t](t

′)F (t′)dt′
∥∥∥∥

L2

)
‖G‖L1

t L2

�
(

sup
t

‖X(−∞,t]F‖
Lq′

t Bs
r′

)
‖G‖L1

t L2

� ‖F‖
Lq′

t Bs
r′
‖G‖L1

t L2,

where XI denotes the characteristic function on the interval I. By symmetry
we have

|T (F,G)| � ‖F‖L1
t L2‖G‖

Lq′
t Bs

r′
.
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We have from duality argument,∥∥∥∥
∫

t′<t

K(t′ − t)F (t′)dt′
∥∥∥∥

L∞
t L2

� ‖F‖
Lq′

t Bs
r′
,(2.20)

∥∥∥∥
∫

t′<t

K(t′ − t)F (t′)dt′
∥∥∥∥

Lq
t B−s

r

� ‖F‖L1
t L2.(2.21)

By interpolating between two inequalities from (2.19) (2.20) and (2.21), we
have (2.4) for all cases.

Now we prove Theorem 1. We apply the contraction mapping principle
to obtain global solutions with small data. For s > 1 and M > 0, we define
the complete metric space Xs

M as

Xs
M = {ψ ∈ L∞(R;Hs) ∩ L2(R;Bs−σ

r ); ‖ψ‖Xs ≤ M},(2.22)

‖ψ‖Xs = ‖ψ‖L∞(R;Hs) + ‖ψ‖L2(R;Bs−σ
r ),

where 1/r = 1/2 − 1/(2 + θ), σ = ((4 + θ)/2)(1/2 − 1/r) with 0 < θ ≤ 1 to
be determined later.

We show that the map A, given by

(2.23) (A(ψ))(t) = U(t)ψ0 +

∫ t

0

U(t − t′)f(ψ(t′))dt′,

is a contraction on Xs
M . From the estimates (2.3), (2.4), we have

‖Aψ‖Xs � ‖ψ0‖Hs + ‖(α∇ + iβ)(1 − ∆)−1/2ψ0‖Hs(2.24)

+ ‖f(ψ)‖L1
t Hs + ‖(α∇ + iβ)(1 − ∆)−1/2f(ψ)‖L1

t Hs

� ‖ψ0‖Hs + ‖f(ψ)‖L1
t Hs .

For f(ψ) = 2iλ(βψ|ψ)βψ, we estimate

‖f(ψ)‖L1
t Hs � ‖ψ‖2

L2
t L∞‖ψ‖L∞

t Hs(2.25)

� ‖ψ‖2
L2

t Bs−σ
r

‖ψ‖L∞
t Hs � ‖ψ‖3

Xs ,

where the second inequality follows from the embedding

(2.26) Bs−σ
r ⊂ L∞,

provided 0 > 3/r− (s− σ) = θ/(θ + 2) + 1− s with θ > 0 sufficiently small.
This yields

‖Aψ‖Xs ≤ C1‖ψ0‖Hs + C2‖ψ‖3
Xs(2.27)

≤ C1‖ψ0‖Hs + C2M
3.
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Similarly, we have

‖f(ψ1) − f(ψ2)‖L1
t Hs � (‖ψ1‖2

Xs + ‖ψ2‖2
Xs)‖ψ1 − ψ2‖Xs

� M2‖ψ1 − ψ2‖Xs .

This yields

(2.28) ‖Aψ1 − Aψ2‖Xs ≤ C3M
2‖ψ1 − ψ2‖Xs .

By (2.27) and (2.28), if the Hs norm of the data is so small that M is chosen
to satisfy

(2.29) C1‖ψ0‖Hs + C2M
3 ≤ M, C3M

2 < 1,

then A is a contraction map on Xs
M to have a unique fixed point there.

The rest of the theorem follows by the standard argument.

3. Proof of Theorem 2

We study (1.4) in the integral form as

(3.1) uc(t) = Vc(t)φc +

∫ t

0

Vc(t)Vc(t
′)−1f(uc(t

′))dt′,

where

Vc(t)=eitc2β
{
I cos t(c4−c2∆)1/2+(cα∇−ic2β)(c4−c2∆)−1/2 sin t(c4−c2∆)1/2

}
.

To prove Theorem 2 on the basis of (3.1), we need the Strichartz estimates
for Vc(t) with explicit dependence on the parameter c. Since Vc(t) is a

linear combination of V±(t) = e±it(c4−c2∆)1/2
with bounded Fourier multipli-

ers, it suffices to have such estimates for V±(t), which can be found in [14,
Lemma 2.1]. We rewrite a subset of the estimates for reader’s convenience.

Lemma 4 Let n = 3. Then∥∥V±(t)|∇|−1/q1(1 − c−2∆)−1/(2q1)u
∥∥∥

L
q1
t Lr1

� ‖u‖L2 ,(3.2)

∥∥∥∥
∫

t′<t

V±(t − t′)|∇|−1/q2(1 − c−2∆)−1/(2q2)f(t′)dt′
∥∥∥∥

L
q2
t Lr2

(3.3)

� ‖|∇|1/q3(1 − c−2∆)1/(2q3)f‖
L

q′3
t Lr′3

,

where 1/qj = 1/2 − 1/rj , 2 < qj ≤ ∞, j = 1, 2, 3, and |∇|γ = (−∆)γ/2.
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Local existence of solutions for NLD has been proved in [5]. We shall prove
the uniform boundedness of solutions with respect to c. For 2 < q ≤ ∞, we
define

(3.4) Y s
q = Lq(0, T ;Hs−2/q

r ),

where 1/r = 1/2 − 1/q. For any 2 < q ≤ ∞, we apply (3.2) to have

(3.5) ‖Vc(t)φ‖Y s
q

� ‖φ‖Hs+‖|∇|1/q(1−c−2∆)1/(2q)(1−∆)−1/qu‖Hs � ‖φ‖Hs .

From an elementary calculation we have

Vc(t)Vc(t
′)−1 = ei(t−t′)c2β

{
I cos(t − t′)(c4 − c2∆)1/2

−ic2β(c4 − c2∆)−1/2 sin(t − t′)(c4 − c2∆)1/2
}

+ ei(t+t′)c2βcα∇(c4 − c2∆)−1/2 sin(t − t′)(c4 − c2∆)1/2.

Thus we use (3.3) to obtain

(3.6)

∥∥∥∥
∫ t

0

Vc(t)Vc(t
′)−1f(t′)dt′

∥∥∥∥
Y s

q

� ‖f‖L1
t Hs .

Therefore we have from (3.1)

‖uc‖Y s
q

� ‖φc‖Hs + ‖f(uc)‖L1
t Hs(3.7)

� ‖φc‖Hs + T 1−2/q̃‖uc‖2
Lq̃

t L∞
x
‖uc‖L∞

t Hs ,

for any 2 < q ≤ ∞.

Since we have Y s
q̃ ⊂ Lq̃

tL
∞ when q̃ > 2 is sufficiently close to 2, the above

estimate and (1.6) imply

(3.8) sup
c>1

‖uc‖Y s
q

� sup
c>1

‖φc‖Hs < ∞

for sufficiently small T and for any 2 < q ≤ ∞.

We follow the same procedure for the integral equation associated with
(1.5) replacing v by u∞,

(3.9) u∞(t) = V∞(t)φ∞ +
iβ

2

∫ t

0

V∞(t − t′)f(u∞(t′))dt′,

where
V∞(t) = e

i
2
tβ∆,

obtaining the same estimate u∞ ∈ Y s
q and also f(u∞) ∈ L1

t H
s.
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We are now in a position to prove Theorem 2. We subtract (3.9) from
(3.1), and divide the result into four parts as

(3.10) uc(t) − u∞(t) =
4∑

j=1

P (j)
c (t),

where

P (1)
c (t) = (Vc(t) − V∞(t))φ∞,(3.11)

P (2)
c (t) = Vc(t)(φc − φ∞),(3.12)

P (3)
c (t) =

∫ t

0

(
Vc(t)Vc(t

′)−1 − V∞(t − t′)
)
f(u∞(t′))dt′,(3.13)

P (4)
c (t) =

∫ t

0

Vc(t)Vc(t
′)−1

(
f(uc(t

′)) − f(u∞(t′))
)
dt′.(3.14)

Since φ∞ ∈ Hs, we deduce

(3.15) ‖P (1)
c ‖L∞

t Hs → 0,

from the strong convergence of Vc(t) to V∞(t) on Hs, which can be easily
verified by the dominated convergence theorem in the Fourier space and the
pointwise convergence of the symbol

(3.16)

Ṽc(t) = eitc2β

{
cos t(c4 + c2|ξ|2)1/2 − icαξ + ic2β

(c4 + c2|ξ|2)1/2
sin t(c4 + c2|ξ|2)1/2

}
= eitc2β(cos t(c4 + c2|ξ|2)1/2 − iβ sin t(c4 + c2|ξ|2)1/2) + o(1)

= eit(c2−(c4+c2|ξ|2)1/2)β + o(1) = e−it|ξ|2β/2 + o(1).

We also have the following convergence,
(3.17)

Ṽc(t)
−1 = Ṽc(−t) + (e−itc2β − eitc2β)

icαξ

(c4 + c2|ξ|2)1/2
sin t(c4 + c2|ξ|2)1/2

= Ṽc(−t) + o(1) = Ṽ∞(−t) + o(1).

We obtain from f(u∞) ∈ L1
t H

s,

(3.18) ‖P (3)
c ‖L∞

t Hs → 0.

From assumption (1.6), we have

(3.19) ‖P (2)
c ‖L∞

t Hs → 0.
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For any 2 < q ≤ ∞, we estimate P
(4)
c as

‖P (4)
c ‖Y s

q
� ‖f(uc) − f(u∞)‖L1

t Hs

� (‖uc‖2
L2

t L∞ + ‖v‖2
L2

t L∞)‖uc − u∞‖L∞
t Hs

+ (‖uc‖L2
t L∞‖uc‖L∞

t Hs + ‖u∞‖L2
t L∞‖u∞‖L∞

t Hs)‖uc − u∞‖L2
t L∞(3.20)

� T 1−2/q̃(‖uc‖2
Y s

q̃ ∩Y s∞ + ‖u∞‖2
Y s

q̃ ∩Y s∞)‖uc − u∞‖Y s
q̃ ∩Y s∞,

where q̃ > 2 is sufficiently close to 2.

We define Pc =
∑3

j=1 P
(j)
c namely uc−u∞ = Pc +P

(4)
c . This estimate to-

gether with the uniform bound on uc and u∞ implies that Pc is also bounded
in Y s

q . Moreover we already know

‖Pc‖L∞
t Hs → 0.

We have interpolation estimates

(3.21) ‖Pc‖Y s
q1

� ‖Pc‖1−θ
L∞

t Hs‖Pc‖θ
Y s

q2

with 1/q1 = θ/q2, 2 < q2 < q1 ≤ ∞. Therefore we have

(3.22) ‖Pc‖Y s
q
→ 0,

for any 2 < q ≤ ∞. Putting this and (3.20) together, we conclude that

(3.23) ‖uc − u∞‖Y s
q
→ 0,

for any 2 < q ≤ ∞ and sufficiently small T .

By a standard continuation argument, we finally obtain the convergence
up to the maximal existence time of u∞.
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