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ESSENTIAL CLOSURES

Abstract

Based on the Zermelo-Fraenkel system of axioms ZF, we introduce
a theory of essential closures. It is a generalization of the concept of
topological closures in which a set may not be contained in its essential
closure. A typical essential closure collects all points which are essential
with respect to a submeasure; hence it is called a submeasure closure.
One of our main results states that a “nice” essential closure must be a
submeasure closure. Many examples of known and new submeasure clo-
sures are discussed and their applications are demonstrated, especially
in the study of the supports of measures.

1 Introduction

It was suggested in [1, Proposition 1] and [17, Lemma 10] that the probability
mass of a complete dependence copula C = CU,f(U) is concentrated on the
graph of f in the sense that VC(gr f) = 1. Here, the random variable U is
uniformly distributed on [0, 1], f : [0, 1]→ [0, 1] is measure-preserving and VC
denotes the Borel probability measure on [0, 1]2 induced by C. However, to
the best of our knowledge, due probably to the lack of a suitable tool, no one
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had determined an explicit formula of the support of VC in terms of the graph
of f . Recently in [16], a formula of suppVC in terms of gr f was obtained via a

“new” tool called an essential closure. In R2, the essential closure Ã of a set A
is the set of points x ∈ R2 for which the projection of each open neighborhood
of x in A onto a coordinate axis has a positive Lebesgue outer measure. It
was derived in [16, Theorem 3.3.3] that

suppVC = g̃r f

given that f is essentially refined, of which some examples are piecewise linear
functions.

The adjective “essential” is quite ubiquitous in mathematical analysis and
is often used to indicate that a defining condition holds outside of a negligible
set. As such, taking essential closure should mean taking closure by ignoring
“small” sets. For instance, in the above essential closure on R2, small sets are
precisely those sets whose coordinate projections each have Lebesgue outer
measure zero. As a tool in their study of absolutely continuous spectra for
some linear operators, Gesztesy et al. [9] defined an essential closure on R,
with respect to which small sets are sets of Lebesgue measure zero. Both es-
sential closures are our prototypes of general essential closures and share many
satisfying properties. Thus far, there seems to be no systematic treatment of
essential closures.

In this manuscript, our aim is to propose a set of postulates for general es-
sential closures and to develop a theory of essential closures. Among many re-
sults, the concept of non-essential or “small” sets is (re)introduced and proved
to be closely related to essential closures. Submeasure closures, defined as the
essential closures whose non-essential sets are sets of submeasure zero, and
their examples are investigated. They are shown to be useful in the study of
the supports of measures. An interesting result is that the class of submeasure
closures is large enough to contain all “nice” essential closures.

In section 2, we develop a theory of essential closures starting with a set
of four postulates. In section 3, we present a motivation behind the set of
postulates of essential closures from a topological point of view. In section
4, we construct concrete examples of essential closures via submeasures and
demonstrate their applications. Finally, we discuss some existing concepts
related to essential closures in the last section.

2 Essential closures

In sections 2 and 3, we denote both essential closures and essential closure
operators by E . Likewise, we use the notations A 7→ A and cl to denote both
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topological closures and topological closure operators. In addition, for a given
topological space X, N(x) denotes the collection of open neighborhoods of
x ∈ X and P(X) denotes the collection of subsets of X.

2.1 Postulates for essential closures

After experimenting with various potential sets of postulates for essential clo-
sures, we have come to a conclusion that the following set of postulates seems
the most natural.

Postulate 1. Let (X, τ) be a topological space equipped with an algebra Ω
over X. We say that a unary operation E : Ω→ Ω is an essential closure if for
every A,B ∈ Ω, the following hold:

1. E(A) is a closed set;

2. E(A) ⊆ A;

3. E(A ∪B) = E(A) ∪ E(B); and

4. E is idempotent; i.e., E ◦ E = E .

Remark. It follows directly from 2 and 3 of Postulate 1 that E(∅) = ∅ and
that E is monotonic with respect to the set inclusion, respectively.

Definition 2. A unary operation E on a topological space (X, τ) equipped
with an algebra Ω over X is said to be

1. strong if E(A \ E(A)) = ∅ for every A ∈ Ω; and

2. weakly strong if for each A ∈ Ω and x /∈ E(A), there is G ∈ N(x) ∩ Ω
such that E(A ∩G) = ∅.

Remark. 1. Let E be a unary operation on an algebra Ω satisfying 1, 2
and 3 of Postulate 1. If E(A \ E(A)) = ∅ for each A ∈ Ω, then E is
idempotent as

E(A) = E(A \ E(A)) ∪ E(A ∩ E(A)) ⊆ E(E(A)) ⊆ E(A) = E(A).

Thus, if E satisfies 1, 2 and 3 and is strong then it is an essential closure.
However, a weakly strong unary operation satisfying 1, 2 and 3 need not
be an essential closure. See Example 8.

2. A strong unary operation satisfying 1 of Postulate 1 is also weakly strong.
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Example 1. Let X = {0, 1}, τ = {∅, {0}, X} and Ω = P(X). Define a unary
operation E : Ω→ Ω by E(∅) = ∅ and E(A) = {1} if A is not empty. It is easy
to check that E is an essential closure. Moreover,

E(X \ E(X)) = E({1}c) = {1} 6= ∅.

Hence E is not strong. Note that E(X) 6= X.

Proposition 1. Let E be an essential closure on an algebra Ω over a topolog-
ical space X and suppose that E(X) = X. Then the following hold:

1. E(A)c ⊆ E(Ac) for each A ∈ Ω;

2. E(G) = G for every open set G ∈ Ω; and

3. intA ⊆ E(A) for each A ∈ Ω such that intA ∈ Ω.

Proof. Recall the properties of essential closures in Postulate 1.

1. Observe that X = E(X) = E(A ∪ Ac) = E(A) ∪ E(Ac). Hence we have
E(A)c ⊆ E(Ac).

2. If G ∈ Ω is open, then E(G)c ⊆ E(Gc) ⊆ Gc = Gc. Thus G ⊆ E(G) ⊆ G.
Since E(G) is closed, E(G) = G.

3. Since intA ∈ Ω is open, intA = E(intA) ⊆ E(A).

2.2 Non-essential sets

In this section, we introduce one of the most important concepts related to
essential closures, namely the concept of essential and non-essential sets. This
concept is at the core of the theory of essential closures. Non-essential sets
can be viewed as small sets with respect to an essential closure.

Definition 3. Let E be an essential closure on Ω. Then a set A ∈ Ω is said
to be non-essential if E(A) = ∅; otherwise, A is said to be essential. The
collection of non-essential sets is denoted by NΩ(E).

Theorem 2. Let E be an essential closure on Ω. Then E is weakly strong if
and only if, for each A ∈ Ω, E(A) is the intersection of the closed sets F ∈ Ω
such that A \ F is non-essential.
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Proof. Assume that E is weakly strong. For each A ∈ Ω, if x /∈ E(A), then
there exists G ∈ N(x) ∩ Ω such that E(A ∩G) = ∅. Therefore,

E(A)c ⊆
⋃
{G ∈ Ω: G is open and E(A ∩G) = ∅}.

So E(A) ⊇
⋂
{F ∈ Ω: F is closed and E(A \F ) = ∅}. For the other inclusion,

it suffices to show that any closed set F ∈ Ω with E(A \ F ) = ∅ necessarily
contains E(A). Observe that for such a set F ,

E(A) = E(A ∩ F ) ∪ E(A \ F ) = E(A ∩ F ) ⊆ E(F ) ⊆ F = F.

To prove the converse, let A ∈ Ω and suppose x /∈ E(A). Then, by the
assumption, x ∈ G for some open set G ∈ Ω such that E(A∩G) = ∅. In other
words, E is weakly strong.

According to Theorem 2, one can see that the collection of non-essential
sets acts as a generator of its corresponding weakly strong essential closure. To
study weakly strong essential closures, it suffices to study their non-essential
sets.

Corollary 3. Suppose E1 and E2 are weakly strong essential closures on Ω
such that NΩ(E1) = NΩ(E2). Then the two essential closures coincide.

Definition 4. Let E be an essential closure on an algebra Ω over a topological
space X. Then a set A ∈ Ω is said to be locally essential if E(G ∩ A) 6= ∅ for
every open set G ∈ Ω such that G ∩A 6= ∅.

Proposition 4. Let E be an essential closure on an algebra Ω over X and
suppose E(X) = X. Then every open set O ∈ Ω is locally essential.

Proof. Let G ∈ Ω be an open set such that G∩O 6= ∅. By Proposition 1(2),
E(G ∩O) = G ∩O ⊇ G ∩O 6= ∅.

Definition 5. An essential closure on Ω is said to be σ-non-essential if Ω is
a σ-algebra and the union of every countable collection of non-essential sets is
non-essential.

Lemma 5. Let E be an essential closure on an algebra Ω and x ∈ E(A). Then
for any G ∈ N(x) ∩ Ω, G ∩A is essential.

Proof. Suppose there exists G ∈ N(x) ∩ Ω with E(G ∩A) = ∅. Then

E(A) = E(A ∩Gc) ⊆ E(A) ∩ E(Gc) ⊆ E(A) ∩Gc = E(A) \G,

which contradicts the fact that E(A) \G is a proper subset of E(A).
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Definition 6. A topological measurable space is a triple (X, τ,Ω) where (X, τ)
is a topological space and Ω is a σ-algebra over X containing the topology τ .

The following result requires a technical assumption that for each point
x ∈ X and each G ∈ N(x), there is O ∈ N(x) with O ⊆ G. A topological
space with such a property is called regular. More information on regular
spaces can be found in Munkres’ book [13]. A regular measurable space is a
topological measurable space where the topology is regular.

Theorem 6. Let E be a σ-non-essential essential closure on a regular mea-
surable space. Then for every sequence of sets Ai in Ω,

E

( ∞⋃
i=1

Ai

)
=

∞⋃
i=1

E(Ai).

Proof. If x ∈ E (
⋃∞
i=1Ai) and G ∈ N(x), then there exists O ∈ N(x) such

that O ⊆ G. By Lemma 5, E (
⋃∞
i=1(O ∩Ai)) = E (O ∩

⋃∞
i=1Ai) 6= ∅. Since

the essential closure is σ-non-essential, there exists Aj with E(O ∩ Aj) 6= ∅.
Hence

∅ 6= E(O ∩Aj) ⊆ E(O) ∩ E(Aj) ⊆ O ∩ E(Aj) ⊆ G ∩
∞⋃
i=1

E(Ai).

This implies that x ∈
⋃∞
i=1 E(Ai). The other inclusion follows trivially from

the fact that the essential closure of a set is closed.

In what follows, we will consider various essential closures defined in the
same manner. Given an algebra Ω over X, I ⊆ Ω is an ideal if (1) ∅ ∈ I;
(2) for every A ∈ I, if B ∈ Ω is such that B ⊆ A, then B ∈ I; and (3) if
A,B ∈ I, then A ∪ B ∈ I. Given an ideal I in Ω and a set F ∈ Ω \ I, it is
straightforward to verify that the unary operation E = EI,F on Ω defined by

E(A) =

{
∅ if A ∈ I,
F otherwise

(1)

is an essential closure with respect to the topology τ = {∅, F c, X}.
The following example shows that an essential closure on a σ-algebra is

not necessarily σ-non-essential.

Example 2. Let X = N, τ = {∅, {1}c, X} and Ω = P(X). Consider an es-
sential closure E = EI,{1} where I = {A ∈ Ω: A is finite and 1 /∈ A}. Observe
that E(X \ E(X)) = {1} 6= ∅ =

⋃
x 6=1 E({x}). Hence there exists an essential

closure on a σ-algebra that is neither strong nor σ-non-essential.
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The following two examples show that the concepts of strong essential
closures and σ-non-essential essential closures are not related in an obvious
way, that is one does not imply the other.

Example 3. Let X = N, τ = {∅, X}, Ω = P(X) and E = EI,X where
I = {A ∈ Ω: A is finite}. It is easy to check that the essential closure E is
strong. However, E(X) = X 6= ∅ =

⋃
x∈X E({x}). Hence, there is a strong

essential closure on a σ-algebra that is not σ-non-essential.

Example 4. Let X = N, τ = {∅, {1}c, X}, Ω = P(X) and E = E{∅},{1}.
Clearly, E is σ-non-essential. However, observe that

E(X \ E(X)) = E({1}c) = {1} 6= ∅.

Hence, there is a σ-non-essential essential closure that is not strong.

Clearly, the non-essential sets of the essential closure EI,F defined by (1)
are exactly the sets in the ideal I. Observe also that the non-essential sets of
any given essential closure form an ideal. Conversely, if one has in mind which
sets should be considered small, then there always exists an essential closure
with respect to which the pre-assigned small sets are non-essential. We will
be more interested in σ-non-essential essential closures.

Definition 7. Let ∅ 6= S ⊆ Ω, where Ω is a σ-algebra over X. Define NΩ(S)
to be the smallest collection which satisfies the following conditions for all
B ∈ Ω and A,A1, A2, · · · ∈ NΩ(S):

1. S ⊆ NΩ(S) ⊆ Ω;

2. B ⊆ A implies B ∈ NΩ(S); and

3.
⋃∞
n=1An ∈ NΩ(S).

Remark. Notice that NΩ(S) is the smallest σ-ideal of Ω containing S; see
page 13 in Bauer’s book [3].

In the sequel, we often require that every subset of the space is Lindelöf.
Such a topological space is called hereditarily Lindelöf.

Theorem 7. Let (X, τ,Ω) be a Lindelöf measurable space and S be a non-
empty subcollection of Ω. Then there exists a unique σ-non-essential weakly
strong essential closure whose collection of non-essential sets is exactly the
collection NΩ(S). In fact, it is defined by

E(A) =
⋂
{F ∈ Ω: F is closed and A \ F ∈ NΩ(S)} for A ∈ Ω. (2)
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Proof. It is straightforward to verify that the unary operation E defined by
(2) is an essential closure on Ω. By the definition of E in (2), A ∈ NΩ(S)
implies E(A) = ∅. Conversely, suppose E(A) = ∅. Then for each x ∈ X, there
exists G ∈ N(x)∩Ω such that A∩G ∈ NΩ(S). Let G be the collection of open
sets G ∈ Ω such that A ∩ G ∈ NΩ(S). Hence G covers X, which is Lindelöf.
Let {Gn}n∈N be a countable subcover of G. Since A ∩ Gn ∈ NΩ(S) for all
n ∈ N, A =

⋃∞
n=1(A ∩Gn) ∈ NΩ(S) by property 3 in Definition 7. Hence the

collections NΩ(E) and NΩ(S) coincide.

Let A ∈ Ω and x /∈ E(A). Then x ∈ G for some open set G ∈ Ω such
that A ∩ G ∈ NΩ(S), which implies that E(A ∩ G) = ∅. Thus E is weakly
strong. Moreover, since the collection NΩ(S) is closed under countable union,
the induced essential closure is σ-non-essential. The uniqueness part follows
from Corollary 3.

In the previous theorem, a similar result also holds if we replace Lindelöf
and weakly strong with hereditarily Lindelöf and strong, respectively.

Theorem 8. Let (X, τ,Ω) be a hereditarily Lindelöf measurable space and S
be a non-empty subcollection of Ω. Then there exists a unique σ-non-essential
strong essential closure, defined by (2), whose collection of non-essential sets
is exactly the collection NΩ(S).

Proof. In view of Theorem 7, E is an essential closure and it suffices to show
that E is strong. Let A ∈ Ω. Since E(A)c is Lindelöf,

A \ E(A) = A \
⋂
{F ∈ Ω: F is closed and A \ F ∈ NΩ(S)}

= A \
∞⋂
n=1

{Fn ∈ Ω: Fn is closed and A \ Fn ∈ NΩ(S)}

=

∞⋃
n=1

{A \ Fn : Fn ∈ Ω is closed and A \ Fn ∈ NΩ(S)}

for some countable subcollection {Fn}n∈N of Ω. Hence, A \ E(A) ∈ NΩ(S) by
property 3 in Definition 7. In consequence, E is a strong essential closure. The
uniqueness of E follows clearly from Theorem 7.

In Theorems 7 and 8, since (X, τ,Ω) is a topological measurable space, Ω
is assumed to contain the topology τ . If the σ-algebra does not contain the
topology, the theorems may fail to hold. This is demonstrated in the following
example.
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Example 5. Choose pairwise distinct elements a, b and c. Put X = {a, b, c},
τ = {∅, {a}, {b}, {a, b}, X}, S = {∅} and Ω = {∅, {a}, {b, c}, X}. Notice that
Ω does not contain τ and NΩ(S) = {∅}. Using the same construction as in
Theorems 7 and 8, we have E({a}) = X while {a} = {a, c}. Hence the induced
mapping is not an essential closure since it violates the second property of
essential closures in Postulate 1.

2.3 Essential closedness

In this section, we introduce another important concept related to essential
closures, namely the concept of essential closedness.

Definition 8. Let E be an essential closure on Ω. A set F ∈ Ω is said to
be essentially closed if and only if E(F ) = F . We denote the collection of
essentially closed sets by CΩ(E).

Proposition 9. Let E be a strong essential closure on Ω. Then for any A ∈ Ω,
E(A) =

⋂
{F ∈ CΩ(E) : A \ F ∈ NΩ(E)}.

Proof. Since essentially closed sets are closed, it follows from Theorem 2 that
for any A ∈ Ω, E(A) ⊆

⋂
{F ∈ CΩ(E) : A \ F ∈ NΩ(E)}. The other inclusion

follows from the fact that E(A) is essentially closed and E is strong.

Example 6. The above result does not generally hold for weakly strong es-
sential closures. For example, let

X = {0} ∪
{

1

2n
: n ∈ N

}
be equipped with the subspace topology inherited from the standard topology
of R and let Ω = P(X). For each A ∈ Ω, define E(A) = ∅ if A is finite and
0 /∈ A; otherwise, E(A) = {0}.

It is straightforward to verify that E is a weakly strong essential closure and
CΩ(E) = {∅, {0}}. One can see that E({0}c) = {0}, but on the other hand,
there is no essentially closed set F such that E({0}c \ F ) = ∅. Therefore,
X =

⋂
{F ∈ CΩ(E) : E({0}c \ F ) = ∅} as it is the empty intersection. Thus

E({0}c) 6=
⋂
{F ∈ CΩ(E) : {0}c \ F ∈ NΩ(E)}.

Proposition 10. Let E be an essential closure on Ω and F ∈ Ω. If F is
essentially closed, then F is closed and locally essential.

Proof. Assume F is essentially closed. Then F is closed. Hence for any open
set G ∈ Ω such that G ∩ F 6= ∅, E(F \ G) ⊆ F \G = F \ G ( F . Moreover,
F = E(F ) = E(F \G) ∪ E(F ∩G). Thus E(F ∩G) 6= ∅.
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Proposition 11. Let E be a weakly strong essential closure on Ω and F ∈ Ω.
If F is closed and locally essential, then F is essentially closed.

Proof. Since F is closed, E(F ) ⊆ F = F . Suppose that F \E(F ) 6= ∅ and let
x ∈ F \ E(F ). Then there exists G ∈ N(x)∩Ω such that E(G∩ F ) = ∅. Since
F is locally essential and E(G ∩ F ) = ∅, G ∩ F = ∅. This contradicts the fact
that x ∈ G ∩ F . Therefore, F is essentially closed.

Together, Propositions 10 and 11 give a characterization of essential closed-
ness for weakly strong essential closures.

Corollary 12. Let E be a weakly strong essential closure on an algebra Ω and
F ∈ Ω. Then F is essentially closed if and only if F is closed and locally
essential.

3 Essential closure operators

In this section, we provide an alternative approach to postulating the concept
of essential closures. An advantage of this approach is that we need not assume
any a priori topological structure. Recall that a topological closure operator
on a set X is defined as a unary operation cl : P(X) → P(X) satisfying the
following properties for all A,B ⊆ X:

1. cl(∅) = ∅;

2. A ⊆ cl(A);

3. cl(A ∪B) = cl(A) ∪ cl(B); and

4. cl is idempotent.

It is well known that there is a one-to-one correspondence between the
collection of topological closure operators and the collection of topological
closures (equivalently, the collection of topologies) on a common space. If we
want to add the prefix “essential,” then the property that A ⊆ cl(A) should
be excluded. We propose a set of postulates for essential closure operators
accordingly.

Postulate 9. LetX be a non-empty set and Ω an algebra overX. An essential
closure operator on (X,Ω) is a unary operation E : Ω→ Ω which satisfies the
following properties for all sets A,B ∈ Ω:

1. E(∅) = ∅;
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2. E(A ∪B) = E(A) ∪ E(B); and

3. E is idempotent.

Remark. A topological closure operator restricted to any algebra is an es-
sential closure operator. Moreover, it is the unique essential closure operator
with the property that A ⊆ E(A) for each A in the algebra.

Next, we demonstrate a relationship between essential closures and essen-
tial closure operators. First, we need the following two technical lemmas.

Lemma 13. Let X be a non-empty set and Ω an algebra over X. Assume
that A 7→ A : Ω→ Ω satisfies the following properties for all A,B ∈ Ω:

1. ∅ = ∅;

2. A ⊆ A;

3. A ∪B = A ∪B; and

4. A 7→ A is idempotent.

Then A 7→ A can be extended to a topological closure operator on X.

Proof. Define cl : P(X)→ P(X) by

cl(A) =
⋂
C⊇A

C,

where C ranges over all sets in Ω. First, we verify that cl is indeed an extension.
Suppose A ∈ Ω. Then we have

cl(A) =
⋂
C⊇A

C ⊆ A ⊆
⋂
C⊇A

C ⊆
⋂
C⊇A

C = cl(A),

where the first inclusion follows from property 2 and the last inclusion follows
from the fact that A ⊆ C implies A ⊆ C. Hence the unary operation cl is an
extension of A 7→ A. Moreover, observe the following properties of cl.

• cl(∅) = ∅ = ∅ since ∅ ∈ Ω.

• A ⊆
⋂
C⊇A

C = cl(A).

• Observe that
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⋂
C⊇A∪B

C ⊆
⋂

D⊇A,E⊇B

D ∪ E =

( ⋂
D⊇A

D

)
∪
( ⋂
E⊇B

E

)
.

Hence cl(A ∪ B) ⊆ cl(A) ∪ cl(B). Moreover, the other inclusion follows
from the fact that cl is monotonic with respect to the set inclusion.

• If A ⊆ C, then cl(A) ⊆ cl(C) = C since C ∈ Ω. Hence

cl(cl(A)) =
⋂

C⊇cl(A)

C ⊆
⋂
C⊇A

C = cl(A).

The opposite inclusion holds.

Therefore, cl is a topological closure operator on X.

Lemma 14. Let E be an essential closure operator on an algebra Ω over X.
Then there exists a topology τ on X such that E(A) is closed and E(A) ⊆ cl(A)
for every A ∈ Ω.

Proof. Define A = A ∪ E(A) for each A ∈ Ω. It is straightforward to check
that A 7→ A : Ω → Ω satisfies the properties in Lemma 13. Let cl be a
topological closure operator extended from A 7→ A : Ω → Ω and let τ be the
topology induced by cl. Observe that E(A) ⊆ A ∪ E(A) = cl(A) for each
A ∈ Ω. Moreover, cl(E(A)) = E(A) ∪ E(E(A)) = E(A). Hence E(A) is closed
with respect to the topology τ for each A ∈ Ω.

Given an essential closure, if we take out its underlying topological struc-
ture, what we obtain is an essential closure operator. The following result,
which is one of our main results, shows that there is a natural way to induce
an underlying topology for a given essential closure operator. However, it is
not guaranteed that the induced topology coincides with the given topology.

Theorem 15. Let E be an essential closure operator on Ω. Define τE =
⋂
τα,

where the non-empty intersection is taken over all topologies τα on X satisfying
the properties in Lemma 14, and let clE be the topological closure relative to
τE . Then E : Ω→ Ω satisfies the following properties for all A ∈ Ω:

1. E(A) is closed in (X, τE); and

2. E(A) ⊆ clE(A).

In other words, E is an essential closure on (X, τE ,Ω). Furthermore, τE is
generated by the collection {E(A)c}A∈Ω.
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Proof. Let A ∈ Ω. Observe that E(A) is closed in (X, τE) because E(A)c ∈ τα
for all α. Moreover, E(A) ⊆ clα(A) ⊆ clE(A) because τE ⊆ τα. Therefore, E is
an essential closure on (X, τE ,Ω).

Let τ be the topology generated by the collection {E(A)c}A∈Ω. Since E(A)
is closed in (X, τE) for all A ∈ Ω, τ ⊆ τE . Consequently, clE(A) ⊆ clτ (A) for
all A ∈ Ω. Since E is an essential closure, E(A) ⊆ clE(A) ⊆ clτ (A) for all
A ∈ Ω. Moreover, E(A) is closed in (X, τ) for all A ∈ Ω since τ is generated
by {E(A)c}A∈Ω. Hence τ is a topology satisfying the properties in Lemma 14,
which implies that τE ⊆ τ . Thus the two topologies coincide.

Remark. Let A 7→ A be a topological closure operator, hence an essential
closure operator. One can see that the topology induced by a topological
closure operator A 7→ A, as an essential closure operator, coincides with the
topology induced by A 7→ A as a topological closure operator.

Given an essential closure operator E on (X,Ω), any topology τ containing
τE with the property that E(A) ⊆ clτ (A) for all A ∈ Ω is said to be compatible
with E . Notice that if τ is a compatible topology, then (X, τ,Ω, E) is an
essential closure space.

On a given essential closure operator space, there can be several compatible
topologies, among which the topology τE is the smallest. The induced topology
τE is called the canonical topology. The following result gives a characterization
of the canonical topologies.

Theorem 16. Let E be an essential closure on (X, τ,Ω). Then τ is the canon-
ical topology τE if and only if there exists a subbase of τ whose elements are
of the form E(A)c where A ∈ Ω.

Proof. If τ is canonical, then it is generated by the collection {E(A)c}A∈Ω.
On the other hand, assume that τ is generated by a subcollection of {E(A)c}A∈Ω.
Then τ ⊆ τE . Moreover, for each A ∈ Ω, E(A) is closed with respect to τ since
E is an essential closure. Thus τE ⊆ τ .

4 Submeasure closures

In this section, we construct concrete examples of essential closures and demon-
strate some of their applications, especially in the study of the supports of
measures. Let us remark that, even though we can avoid the argument of the
Axiom of Choice in all of our proofs, many (if not most) existing concepts and
results used below are so relevant to the axiom that it cannot be completely
disregarded. An example is the countability of the union of a countable col-
lection of countable sets, which is required in defining Lebesgue measures. As
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such, in the sequel, we additionally assume the Axiom of Choice, hence ZFC
(the Zermelo-Fraenkel system of axioms with the Axiom of Choice).

4.1 Definition and properties

Definition 10. Let Ω be a σ-algebra over X. A submeasure on (X,Ω) is a
set function µ : Ω→ [0,∞] satisfying

1. µ(∅) = 0;

2. µ(A) ≤ µ(B) for any A,B ∈ Ω such that A ⊆ B; and

3. µ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai) for any A1, A2, . . . ∈ Ω.

Remark. Let us note a few facts about our submeasures.

1. Our submeasures are defined on σ-algebras and are countably subaddi-
tive, unlike classical submeasures which are defined on algebras and are
finitely subadditive.

2. Every submeasure on a σ-algebra can be extended, perhaps not uniquely,
to an outer measure. In other words, every submeasure is a restriction
of some outer measure. The reason we do not simply call it an outer
measure or a restriction of an outer measure is for convenience in stating
our results.

Definition 11. A topological submeasure space is a quadruple (X, τ,Ω, µ)
where (X, τ,Ω) is a topological measurable space and µ is a submeasure on
(X,Ω).

Definition 12. Let (X, τ,Ω, µ) be a topological submeasure space. For any
measurable set A ∈ Ω, we say that x ∈ Aµ

if µ(G∩A) > 0 for every G ∈ N(x).
The set A

µ
is called the µ-closure of A.

Remark. The following are immediate results from the definition.

1. If µ(A) = 0, then A
µ

= ∅.

2. Every submeasure closure is weakly strong.

3. If µ and ν are submeasures on a common measurable space such that
µ� ν, then A

µ ⊆ A ν
for every measurable set A.
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Example 7. Recall the definition of the submeasure closure (A 7→ A
e
) on the

real line defined in [9]. It is an essential closure (with respect to the standard
topology τs) on the Lebesgue σ-algebra L(R). Now, we temporarily remove
the topology and view the essential closure as an essential closure operator on
L(R). We will show that the canonical topology (i.e., the induced topology
τA7→A e in Theorem 15) is, in fact, the given standard topology.

Recall that the collection of non-empty open intervals forms a subbase for
the standard topology. Moreover, notice that each non-empty open interval

(a, b) can be written as
(
A
e
)c

where A = (−∞, a] ∪ [b,∞) ∈ L(R). Hence by

Theorem 16, the canonical topology is the standard topology.

Example 8. Let X = (−∞, 0] and τ be the topology on X generated by the
collection of singletons {x} where x ∈ (−∞, 0). Notice that {x} is a neighbor-
hood of x for every point x ∈ (−∞, 0). However, the only neighborhood of 0
is X.

Define a measure µ on P(X) by setting µ(A) = 0 if A is countable and

µ(A) = ∞ otherwise. Observe that X
µ

= {0} while X
µ µ

= ∅. Thus the
µ-closure is not idempotent. Hence it is not an essential closure.

According to Example 8, a submeasure closure need not be idempotent.
Nevertheless, it is easy to verify that every submeasure closure satisfies the
other three properties in Postulate 1. As a result,

A
µ µ ⊆ Aµ

= A
µ

for every µ-measurable set A.
Two sufficient conditions for a submeasure closure to be an essential closure

are given in the following result.

Theorem 17. Assume that (X, τ,Ω, µ) is either a hereditarily Lindelöf sub-
measure space or an inner regular measure space. Then A 7→ A

µ
is a strong

essential closure.

Proof. Let A be a measurable set and G be the collection of the open sets G

such that µ(G∩ (A\Aµ
)) = 0. Observe that x ∈ A\Aµ

implies x /∈ A \Aµ µ

.
If (X, τ,Ω, µ) is a hereditarily Lindelöf submeasure space, then for each

x ∈ A \ Aµ
, there is G ∈ N(x) such that µ(G ∩ (A \ Aµ

)) = 0. Thus G
covers A \ Aµ

. Hence there exists a countable subcover {G1, G2, . . . } of G.
Consequently,

µ(A \Aµ
) ≤

∞∑
i=1

µ
(
Gi ∩ (A \Aµ

)
)

= 0.
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Therefore, A \Aµ µ

= ∅.
If (X, τ,Ω, µ) is an inner regular measure space, consider any compact set

K ⊆ A \ Aµ
. Then x ∈ K implies x /∈ A \Aµ µ

. Therefore, for each x ∈ K,
there is G ∈ N(x) such that µ(G ∩ (A \ Aµ

)) = 0. Thus G covers K. Hence
there exists a finite subcover {G1, . . . , Gn} of G. Consequently,

µ(K) ≤
n∑
i=1

µ(Gi ∩K) ≤
n∑
i=1

µ
(
Gi ∩ (A \Aµ

)
)

= 0.

Therefore, µ(A \Aµ
) = 0 by inner regularity. Thus A \Aµ µ

= ∅.

Observe that the two parts of the proof of Theorem 17 are very similar.
One proof uses a countable subcover while the other uses a finite subcover. So
in the sequel, if there are twin results like these, we shall omit the proof for
the case of inner regular measure spaces.

Theorem 18. Assume that (X, τ,Ω, µ) is either a Lindelöf submeasure space
or an inner regular measure space. Then A

µ
= ∅ if and only if µ(A) = 0.

Proof. Assume that (X, τ,Ω, µ) is a Lindelöf submeasure space and A
µ

= ∅.
Let G be the collection of the open sets G such that µ(G ∩ A) = 0. Since
A
µ

= ∅, G covers X. Thus there is a countable subcover {G1, G2, . . . } of G.
Therefore,

µ(A) ≤
∞∑
i=1

µ(Gi ∩A) = 0.

The converse is an immediate result from the definition of submeasure closures.
The case of inner regular measure spaces can be proved similarly.

Corollary 19. Assume that (X, τ,Ω, µ) is either a Lindelöf submeasure space
or an inner regular measure space.

1. If A 7→ A
µ

is an essential closure, then it is σ-non-essential.

2. If A 7→ A
µ

is a strong essential closure, then µ(A
µ
) ≥ µ(A) for every

measurable set A.

Proof. 1. Let {Ai}∞i=1 be a countable collection of non-essential sets. By
Theorem 18, µ(Ai) = 0. Consequently, µ (

⋃∞
i=1Ai) = 0. Again, by Theorem

18,
⋃∞
i=1Ai is a non-essential set.
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2. Observe that

µ(A) ≤ µ(A ∩Aµ
) + µ(A \Aµ

)

= µ(A ∩Aµ
)

≤ µ(A
µ
).

This completes the proof.

The following result gives a characterization of the σ-non-essential strong
essential closures on a hereditarily Lindelöf measurable space.

Theorem 20. Assume that (X, τ,Ω) is a hereditarily Lindelöf measurable
space. Then an essential closure E on Ω is strong and σ-non-essential if and
only if it is a submeasure closure on (X, τ,Ω).

Proof. Since the case E(X) = ∅ is trivial, assume that E(X) 6= ∅. Suppose
E is a σ-non-essential strong essential closure on Ω. Define µ : Ω → [0,∞] by
µ(A) = 0 if E(A) = ∅; otherwise, µ(A) = 1. We show that µ is a submeasure
on (X,Ω). Let {Ai}∞i=1 be a countable collection of measurable sets.

• Since ∅ is non-essential, µ(∅) = 0.

• Suppose A1 ⊆ A2. Then E(A1) ⊆ E(A2). If A2 is non-essential, then A1

is also non-essential. Hence µ(A1) = 0 = µ(A2). If A2 is essential, then
µ(A1) ≤ 1 = µ(A2).

• If there is an essential set Aj in {Ai} then µ (
⋃∞
i=1Ai) ≤ 1 ≤

∑∞
i=1 µ(Ai).

If every Ai is non-essential, then
⋃∞
i=1Ai is also non-essential. So

µ

( ∞⋃
i=1

Ai

)
= 0 =

∞∑
i=1

µ(Ai).

Therefore, µ is a submeasure on (X,Ω) and the µ-closure on (X, τ,Ω) is a
σ-non-essential strong essential closure by Theorem 17 and Corollary 19(1).
Moreover, the fact that E and the µ-closure coincide follows directly from
Corollary 3 and Theorem 18. Finally, the converse follows from Theorem 17
and Corollary 19(1).

A submeasure is said to be trivial if the space is of submeasure zero and
is said to be normalized if the space is of submeasure one.

Remark. An essential closure induces a normalized submeasure if the space
is essential. Otherwise, it induces the trivial submeasure.
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Example 9. Consider a µ1-closure and a µ2-closure on a common topological
measurable space. One can verify that the set function E defined as

E(A) = A
µ1 ∪Aµ2

is, in fact, the (µ1 + µ2)-closure. Moreover, if both the µ1-closure and the
µ2-closure are essential closures, then so is the (µ1 + µ2)-closure.

Example 10. If a µ-closure is a strong essential closure, then A \ Aµ
is a

non-essential set. However, A
µ \A can be an essential set. For example, take

µ = λ1, the 1-dimensional Lebesgue measure on [0, 1], and A = [0, 1] \ C,
where C is a positive Lebesgue measure Cantor set on [0, 1]. Then for each
x ∈ [0, 1] and G ∈ N(x), G ∩ A contains a non-empty open interval. Hence

λ1(G ∩A) > 0. Therefore, A
λ1

= [0, 1]. As a result,

A
λ1 \A = [0, 1] \A = C,

which is of positive Lebesgue measure.

4.2 Applications

In this section, we demonstrate some applications of submeasure closures,
especially the study of the supports of measures. An essential closure can be
viewed as a tool to eliminate the non-essential part of a set. In the case of an
essential closure defined via a measure, one can expect that eliminating the
non-essential part of the space should give the support of that measure.

4.2.1 The supports of measures

The support of a submeasure is defined analogously to the definition of the
support of a measure.

Theorem 21. Let µ be a submeasure on (X, τ,Ω). Then

suppµ = A
µ

for any measurable set A such that µ(Ac) = 0. In particular, if the µ-closure
is an essential closure, then suppµ is µ-essentially closed.

Proof. If x /∈ suppµ, then there exists G ∈ N(x) such that µ(G) = 0. Thus
µ(G∩A) = 0 for any measurable set A. Hence x /∈ Aµ

. Conversely, if x /∈ Aµ

then there exists G ∈ N(x) such that µ(G∩A) = 0. Since µ(Ac) = 0, we have
µ(G) ≤ µ(G ∩A) + µ(G ∩Ac) = 0. Therefore, x /∈ suppµ.
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Theorem 22. Let (X, τ,Ω, µ) be a hereditarily Lindelöf measure space. Then
a set A ∈ Ω is µ-essentially closed if and only if there is an absolutely contin-
uous measure ν � µ such that supp ν = A.

Proof. For each measurable set B, define ν(B) = µ(A∩B). Clearly, ν � µ.
It is left to show that supp ν = A. First of all, observe that A is closed and
ν(Ac) = 0. Hence supp ν ⊆ A. We prove the opposite inclusion by first noting
that

µ((supp ν)c ∩A) = ν((supp ν)c) = 0.

Suppose (supp ν)c ∩ A 6= ∅. Let x ∈ (supp ν)c ∩ A. Then (supp ν)c ∈ N(x)
and x ∈ A = A

µ
. Therefore, µ((supp ν)c ∩ A) > 0, a contradiction. Hence

(supp ν)c ∩A = ∅. In other words, A ⊆ supp ν.

Conversely, it suffices to show that supp ν ⊆ supp ν µ. If x /∈ supp ν µ, then
there exists G ∈ N(x), µ(G∩ supp ν) = 0. By the absolute continuity, we have
ν(G) = ν(G ∩ supp ν) = 0. So x /∈ supp ν.

The following result can be proved similarly. Notice the difference in the
inner regularity of the measure ν.

Corollary 23. Let (X, τ,Ω, µ) be a topological inner regular measure space.
Then a set A ∈ Ω is µ-essentially closed if and only if there is an inner regular
measure ν � µ such that supp ν = A.

Theorem 24. Let (X, τ,Ω, µ) be a hereditarily Lindelöf measure space where
µ is σ-finite. For any σ-finite measure η on (X, τ,Ω) with Lebesgue decompo-
sition η = ηa+ηs with respect to µ, if µ(supp ηs) = 0, then supp ηa = supp η µ.

Proof. It is straightforward to verify that supp η = supp ηa ∪ supp ηs. If
x /∈ supp ηa = supp ηa

µ (since ηa � µ, supp ηa is µ-essentially closed), then
there exists G ∈ N(x) such that µ(G ∩ supp ηa) = 0. Thus

µ(G ∩ supp η) ≤ µ(G ∩ supp ηa) + µ(G ∩ supp ηs) = 0.

Hence x /∈ supp η µ. Conversely, if x /∈ supp η µ, then there exists G ∈ N(x)
such that µ(G ∩ supp η) = 0. Therefore,

µ(G ∩ supp ηa) ≤ µ(G ∩ supp η) = 0.

Hence x /∈ supp ηa
µ = supp ηa.
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4.2.2 The essential supports of functions

In this section, we introduce the concept of the essential supports of functions,
which is partly motivated by the study of the supports of Radon-Nikodym
derivatives; see Chapter 23 in Fremlin’s book [8]. We are particularly inter-
ested in the study of Radon-Nikodym derivatives via techniques from geomet-
ric measure theory.

For any pair of Radon measures (see Definition 1.5 and Corollary 1.11 in
Mattila’s book [12]) ν and µ on Rn, equipped with a σ-algebra containing
the Borel sets, such that ν � µ, it was shown in [12, Theorem 2.12] that the
function

Dν,µ(x) = lim
ε→0+

ν(B(x, ε))

µ(B(x, ε))
(3)

is defined µ-almost everywhere on Rn and coincides µ-almost everywhere with
the Radon-Nikodym derivative of ν with respect to µ.

Similarly, for any locally finite measure ν defined on the Borel σ-algebra
over Rn such that ν � λn, it was shown in [2, Theorem 2.3.8] that the function
Dν,λn is defined Lebesgue almost everywhere on Rn and coincides Lebesgue
almost everywhere with the Radon-Nikodym derivative of ν with respect to
λn.

Definition 13. Let ν and µ be σ-finite measures on a metric measurable space
(X, d,Ω). We say that ν is differentiable with respect to µ if ν � µ and Dν,µ

defined in (3) exists µ-almost everywhere and coincides µ-almost everywhere
with the Radon-Nikodym derivative of ν with respect to µ.

Proposition 25. Let ν and µ be σ-finite measures on a metric measurable
space such that ν is differentiable with respect to µ. Then suppDν,µ = supp ν.

Proof. If x /∈ supp ν, then there exists ε > 0 such that ν(B(x, ε)) = 0. Hence
Dν,µ(x) = 0. So {x : Dν,µ(x) 6= 0} ⊆ supp ν. Therefore, suppDν,µ ⊆ supp ν.
Conversely, if x /∈ suppDν,µ, then there is G ∈ N(x) such that Dν,µ ≡ 0 on
G. Observe that ν(G) =

∫
G
Dν,µ dµ = 0. Thus x /∈ supp ν. Hence supp ν ⊆

suppDν,µ. Therefore, suppDν,µ = supp ν.

Radon-Nikodym derivatives are unique up to a set of measure zero. As a
result, the concept of topological supports fails to detect the essential parts of
such functions. We demonstrate an extreme case in the following example.

Example 11. Consider the trivial measure ν ≡ 0 on the Lebesgue σ-algebra
L(R), which is absolutely continuous with respect to the Lebesgue measure.
Observe that both f ≡ 0 and g = χQ are the Radon-Nikodym derivatives of ν
with respect to λ1. However, supp f = ∅ while supp g = R.
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In the above example, even though Q is negligible in the sense that it has
Lebesgue measure zero, it is dense in R.

Definition 14. Let f be an extended real-valued measurable function on a
topological submeasure space (X, τ,Ω, µ). Define the essential support of f

with respect to µ by ess suppµ f = {x ∈ X : f(x) 6= 0}
µ
.

Remark. In Ondreját’s work [15], the essential support of a function f on
a set D ⊆ Rn is defined to be the intersection of all closed subsets F in D
such that f = 0 Lebesgue almost everywhere on the complement of F . It is
straightforward to verify that this existing concept agrees with Definition 14.

Similarly to the concept of almost everywhere for measures, for the case
of submeasures, we say that a property holds almost everywhere if the set of
elements for which the property does not hold is a subset of a submeasure zero
set.

Proposition 26. Let f and g be extended real-valued measurable functions
on a topological submeasure space (X, τ,Ω, µ). If f and g are equal µ-almost
everywhere, then ess suppµ f = ess suppµ g.

Proof. Since f = g µ-almost everywhere, we have

µ({x ∈ X : g(x) 6= 0}) = µ({x ∈ X : f(x) 6= 0}),

which implies that the essential supports of f and g coincide.

Theorem 27. Assume that (X, τ,Ω, µ) is either a hereditarily Lindelöf sub-
measure space or an inner regular measure space. For each extended real-
valued measurable function f , let [f ]µ denote the class of extended real-valued
measurable functions on X which are equal to f µ-almost everywhere. Then
there exists f0 ∈ [f ]µ such that

supp f0 = ess suppµ f

which is µ-essentially closed.

Proof. Define f0 to be the function that coincides with f on ess suppµ f and
vanishes elsewhere. Since the µ-closure is a strong essential closure,

{x ∈ X : f(x) 6= f0(x)} = {x ∈ X : f(x) 6= 0} \ ess suppµ f

= {x ∈ X : f(x) 6= 0} \ {x ∈ X : f(x) 6= 0}
µ

is µ-non-essential. Hence µ({x ∈ X : f(x) 6= f0(x)}) = 0 by Theorem 18.
Thus f and f0 are equal µ-almost everywhere; i.e., f0 ∈ [f ]µ. By Proposition
26, we have ess suppµ f = ess suppµ f0.
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If f0(x) 6= 0, then x ∈ ess suppµ f by the construction. Therefore, we have
that {x ∈ X : f0(x) 6= 0} ⊆ ess suppµ f . Hence

supp f0 ⊆ ess suppµ f = ess suppµ f0 ⊆ supp f0.

Thus supp f0 = ess suppµ f0 = ess suppµ f . As a consequence, supp f0 is
µ-essentially closed.

Proposition 28. Let ν and µ be σ-finite measures on (X, τ,Ω) with ν �

µ, and let
dν

dµ
denote the Radon-Nikodym derivative. Then ess suppµ

dν

dµ
=

supp ν.

Proof. Let f denote dν
dµ . If x /∈ supp ν, then there exists G ∈ N(x) such

that ν(G) = 0. Thus f = 0 µ-almost everywhere on G. Therefore, we have
that µ(G ∩ {x ∈ X : f(x) 6= 0}) = 0. Hence x /∈ ess suppµ f . Conversely,

if x /∈ ess suppµ f , then x /∈ {x ∈ X : f(x) 6= 0}
µ
. Therefore, there exists

G ∈ N(x) such that µ(G ∩ {x ∈ X : f(x) 6= 0}) = 0. Thus f = 0 µ-almost
everywhere on G. Hence ν(G) = 0. So x /∈ supp ν.

Corollary 29. Let ν and µ be σ-finite measures on a metric measurable
space such that ν is differentiable with respect to µ. Then ess suppµDν,µ =
suppDν,µ.

Proof. This follows directly from Propositions 25 and 28.

Example 12. There exists an absolutely continuous measure ν � µ with
full support such that µ is not absolutely continuous with respect to ν. To
see this, let µ be the 1-dimensional Lebesgue measure on [0, 1] and let ν be
a measure on [0, 1] defined, for each Lebesgue measurable set B ⊆ [0, 1], by
ν(B) = λ1(B ∩ Ac), where A is a positive Lebesgue measure Cantor set on
[0, 1]. Obviously, ν � λ1 by construction. Moreover, by Proposition 28,

supp ν = ess suppλ1
χAc = Ac

λ1
= [0, 1].

Therefore, ν has full support. However, ν(A) = 0 while λ1(A) > 0.

Example 13. Let (X, τ,Ω, µ) be a hereditarily Lindelöf measure space and
let f be an extended real-valued measurable function. We already know that∫

X

f dµ =

∫
supp f

f dµ.
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Let G be the collection of the open sets G such that µ(G∩{f 6= 0}) = 0. Since
for each x /∈ ess suppµ f , there is G ∈ N(x) with µ(G∩{f 6= 0}) = 0, G covers
(ess suppµ f)c. Thus there is a countable subcover {G1, G2, . . . } of G.

By the countable additivity of measures, it is straightforward to show that
µ((ess suppµ f)c ∩ {f 6= 0}) = 0. Thus∫

X

f dµ =

∫
ess suppµ f

f dµ =

∫
supp f0

f0 dµ,

where f0 is a representative of the class [f ]µ in Theorem 27. Also note that

supp f0 = ess suppµ f ⊆ supp f .

In this case, we see that f0 is indeed a good representative of the class [f ]µ.

4.2.3 Local Hausdorff dimension

In the sequel, letHs denote the s-dimensional Hausdorff measure. More details
on the Hausdorff measures and Hausdorff dimension dimH can be found for
example in Falconer’s book [5] and Fremlin’s book [8].

Definition 15. Let (X, d) be a metric space and τd denote the topology in-
duced by the metric d. The s-Hausdorff closure is defined to be the submeasure
closure on (X, τd,P(X)) induced by Hs.

Lemma 30. If a set A is s-Hausdorff essentially closed, then it has local
Hausdorff dimension at least s.

Proof. Suppose there exist x ∈ A and G ∈ N(x) such that dimH(G∩A) < s,
where dimH denotes the Hausdorff dimension. See [5]. Then Hs(G ∩ A) = 0,

contradicting the fact that x ∈ A = A
Hs

.

Theorem 31. Let ν be an n-stochastic measure on [0, 1]n. Then supp ν is
1-Hausdorff essentially closed. In particular, by Lemma 30, supp ν has local
Hausdorff dimension at least one.

Proof. It suffices to show that supp ν ⊆ supp νH
1

. If x /∈ supp νH
1

, then
there exists G ∈ N(x), H1(G ∩ supp ν) = 0. Note that ν(G) = ν(G ∩ supp ν).
Suppose ν(G ∩ supp ν) > 0. Then

H1(π1(G ∩ supp ν)) = λ1(π1(G ∩ supp ν)) > 0,

where π1 denotes the orthogonal projection onto the first variable. Thus
H1(G∩ supp ν) > 0, a contradiction. So ν(G) = ν(G∩ supp ν) = 0, which im-

plies x /∈ supp ν. Therefore, supp ν = supp νH
1

. Hence supp ν is 1-Hausdorff
essentially closed.
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It is well known that there is a one-to-one correspondence between the
collection of n-stochastic measures and the collection of n-copulas. More in-
formation on n-copulas can be found in Nelsen’s book [14].

Example 14. In [6, Theorem 1], Fredricks et al. show that for each s ∈
(1, 2), there is a copula with a fractal support of Hausdorff dimension s. Also,
there are copulas with supports of Hausdorff dimension 1 and 2, examples
of which include the Fréchet-Hoeffding bounds and the independence copula,
respectively. Moreover, Theorem 31 implies that the support of a copula is of
Hausdorff dimension at least 1. Together with the result of Fredricks et al.,
it follows that the supports of copulas are of Hausdorff dimension at least 1
and for each possible value s ∈ [1, 2], there is a copula whose support is of
Hausdorff dimension s.

5 Existing and related concepts

In this section, we discuss various concepts that are related to the concept of
essential closures. Most of them are related to measures and submeasures as
expected.

5.1 Lebesgue closure

Recall the definition of the essential closure on R introduced in [9] and called
by us Lebesgue closure. It is easy to see that the Lebesgue closure coincides
with the λ1-closure defined in the previous section. Also recall from [9] the
definition of the Lebesgue closure defined on S1, the unit circle with center at
the origin in R2.

According to [8, Theorem 265E], the pushforward Lebesgue measure on S1

through the canonical map (θ 7→ eiθ) coincides with the Hausdorff measure H1

on S1. As a result, the Lebesgue closure on S1 coincides with the H1-closure
on S1.

5.2 Lebesgue density closures

To avoid confusion, the essential closures cl∗ in Buczolich and Pfeffer’s work
[4] and in Fremlin’s book [7], defined for each Lebesgue measurable set A ⊆ Rn
by

cl∗A =

{
x ∈ Rn : lim sup

ε→0+

λn(B(x, ε) ∩A)

λn(B(x, ε))
> 0

}
,
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will be called Lebesgue density closures. Note that, with respect to the stan-
dard topology on Rn, the Lebesgue density closure fails to satisfy at least the
first property of essential closures in Postulate 1.

For each λn-density closure cl∗ on the Lebesgue σ-algebra L(Rn), we define

the modified λn-density closure of A ∈ L(Rn) by E(A) = cl∗A. As a conse-
quence of taking the topological closure of cl∗A, E is forced to satisfy the first
property of essential closures. Surprisingly, not only that E is an essential
closure, but it can also be shown that E coincides with the λn-closure defined
on L(Rn).

Firstly, we show that the modified λn-density closure and the λn-closure
coincide on the Borel σ-algebra B(Rn). Let A ⊆ Rn be Borel measurable. For
each Borel measurable set B ⊆ Rn, define λA(B) = λn(B∩A). It is clear that
λA is σ-finite and λA � λn on the Borel σ-algebra. According to Theorem
2.3.8 in Ash’s book [2], λA is differentiable with respect to λn. As a result,

DλA,λn(x) = lim
ε→0+

λA(B(x, ε))

λn(B(x, ε))
= lim sup

ε→0+

λn(B(x, ε) ∩A)

λn(B(x, ε))

defines the Radon-Nikodym derivative of λA with respect to λn. By Proposi-
tion 25 and Theorem 21, we have

E(A) = cl∗A = suppDλA,λn = suppλA = A
λA

.

Moreover, it is straightforward to verify that A
λA

= A
λn

. Hence E(A) = A
λn

for each Borel measurable set A ⊆ Rn.
Finally, we extend the result to the Lebesgue σ-algebra L(Rn). Let A ⊆ Rn

be Lebesgue measurable. There is a Borel measurable set B ⊆ Rn such that
A ⊆ B and λn(B \ A) = 0. According to Lemma 475C in Fremlin’s book [7],
cl∗ is distributive over finite unions and cl∗(E) = ∅ if λn(E) = 0. As a result,

cl∗(B) = cl∗(A) ∪ cl∗(B \A) = cl∗(A).

Similarly, A
λn

= B
λn

. Thus E(A) = cl∗(A) = cl∗(B) = E(B) = B
λn

= A
λn

for each Lebesgue measurable set A ⊆ Rn.

5.3 Lower density operators

The essential interiors int∗ in Buczolich and Pfeffer’s work [4] and in Fremlin’s
book [7] are lower density operators. In general, lower density operators are
defined as follows.

Let Ω be a σ-algebra over a set X and P ⊆ Ω be a σ-ideal. For A,B ∈ Ω,
we denote A ∼ B when the symmetric difference A4B is in the σ-ideal P.
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Definition 16 ([11, p. 207]). A lower density operator on (X,Ω,P) is a unary
operation Φ: Ω→ Ω satisfying the following conditions for all A,B ∈ Ω:

1. If A ∼ B, then Φ(A) = Φ(B);

2. Φ(A ∩B) = Φ(A) ∩ Φ(B);

3. Φ(∅) = ∅ and Φ(X) = X;

4. A ∼ Φ(A).

For more details on lower density operators, see the classical book of Lukeš,
Malý and Zaj́ıček [11]. According to Lemma 475C in Fremlin’s book [7],

cl∗(A) = int∗(Ac)c, (4)

for each measurable set A. Motivated by the above relation, we derive a result
on the essential closure operators induced by lower density operators.

Theorem 32. Let Φ and E be unary operations on a σ-algebra Ω over X
satisfying

E(A) = Φ(Ac)c for all A ∈ Ω. (5)

Then Φ is a lower density operator on (X,Ω,P) if and only if

1. E is a σ-non-essential essential closure operator on (X,Ω),

2. A ∼ E(A) for all A ∈ Ω,

3. P = NΩ(E),

4. E(X) = X.

Proof. Assume that Φ is a lower density operator on (X,Ω,P). By (5), we
have

• E(∅) = Φ(X)c = ∅,

• E(A ∪B) = Φ(Ac ∩Bc)c = E(A) ∪ E(B) for all A,B ∈ Ω, and

• E(E(A)) = Φ(Φ(Ac))c = Φ(Ac)c = E(A) for all A ∈ Ω.

Hence E is an essential closure operator.
For each A ∈ Ω, A ∼ Φ(Ac)c = E(A) because Ac ∼ Φ(Ac). Consequently,

if An is non-essential for each n ∈ N, then
⋃∞
n=1An ∼

⋃∞
n=1 E(An) = ∅. Thus

E(
⋃∞
n=1An) = Φ(X)c = ∅. Hence E is σ-non-essential.
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If A ∈ P, then A ∼ ∅. Therefore, E(A) = ∅. Conversely, if E(A) = ∅,
then A ∼ Φ(Ac)c = ∅, which implies that A ∈ P. Hence P = NΩ(E). Finally,
E(X) = Φ(∅)c = X.

To prove the converse, assume that conditions 1, 2, 3 and 4 hold. Since E
is σ-non-essential, P is a σ-ideal. Let A,B ∈ Ω.

• Since E(A) = Φ(Ac)c, Φ(A) = E(Ac)c.

• If A ∼ B, then A \ B and B \ A are non-essential since P = NΩ(E).
Thus E(A \B) = ∅ = E(B \A). Therefore,

E(Ac) = E(Ac ∩Bc) ∪ E(B \A) = E(Ac ∩Bc) ∪ E(A \B) = E(Bc).

Hence Φ(A) = Φ(B).

• That Φ(A∩B) = Φ(A)∩Φ(B) follows directly from the assumption that
E(A ∪B) = E(A) ∪ E(B).

• Obviously, Φ(∅) = ∅ and Φ(X) = X.

• Since Ac ∼ E(Ac), Φ(A) = E(Ac)c ∼ A.

Hence Φ is a lower density operator on (X,Ω,P).

Corollary 33. Let Φ be a lower density operator on (X,Ω,P). Define E by
equation (5). Then E is an essential closure operator on (X,Ω). Moreover,
the induced topology τΦ is a compatible topology for E.

Proof. According to Theorem 32, E is an essential closure operator on (X,Ω).
Recall from [11, Proposition 6.37] that BΦ = {A ∈ Ω: A ⊆ Φ(A)} is an open
base for τΦ. To show that τΦ is a compatible topology for E , it suffices to show
that, with respect to τΦ, i) E(A) is closed and ii) E(A) ⊆ cl(A) for all A ∈ Ω.

Observe that Φ(A) is open in τΦ since Φ(A) ∈ BΦ for all A ∈ Ω. Thus
E(A) is closed in τΦ. Moreover, for each A ∈ Ω,

int(A) =
⋃
{O ∈ τΦ : O ⊆ A}

=
⋃
{G ∈ Ω: G ⊆ Φ(G) and G ⊆ A}

⊆
⋃
{G ∈ Ω: G ⊆ Φ(G) ⊆ Φ(A)}

⊆
⋃
{G ∈ Ω: G ⊆ Φ(A)}

⊆ Φ(A).

Consequently, E(A) ⊆ cl(A) for each A ∈ Ω. Therefore, τΦ is a compatible
topology for E .
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The following corollary is an immediate application. Recall that each cl∗

is not an essential closure with respect to the standard topology. However,
with a suitable topology, it turns into one.

Corollary 34. Each Lebesgue density closure cl∗ is an essential closure on
(Rn, τint∗ ,L(Rn)).

Proof. This follows from Corollary 33 and equation (4).

5.4 Stochastic closures

We will call essential closures defined in [16] stochastic closures to avoid con-
fusion. It has been verified that these stochastic closures are indeed essential
closures. The next question is whether these essential closures are strong and
σ-non-essential, and if they are, what are their corresponding submeasures?

For each integer 1 ≤ d ≤ n, define Sd : P([0, 1]n)→ [0,∞] as follows:

Sd(A) =
∑
W

λ∗d(πW (A))

where the sum is taken over all d-dimensional standard subspaces (i.e., sub-
spaces spanned by a collection of standard basis elements) W of Rn. It is easy
to verify that Sd is an outer measure, hence a submeasure, on [0, 1]n. More-
over, it is easy to see that for each d ∈ N, the d-stochastic closure coincides
with the Sd-closure, hence strong and σ-non-essential.

5.5 Prevalence

The concept of prevalent sets is a measure-theoretic approach to defining what
it means for a statement to hold “almost everywhere” in a possibly infinite-
dimensional complete metric vector space. It was observed in [10] that the
concept of prevalent sets extends the concept of Lebesgue almost everywhere
in finite-dimensional Euclidean spaces. It is well known that there is no non-
trivial translation-invariant measure in infinite-dimensional spaces. So we ask
whether there is something weaker, e.g., a non-trivial translation-invariant
submeasure whose submeasure zero sets are exactly the shy sets; i.e., the
complements of the prevalent sets. Via the theory of essential closures, such
a submeasure can be constructed. Let us recall some basic properties of shy
sets. Let A,A1, A2, . . . be shy sets and v be a vector. Then the following hold:

1. A+ v is shy;

2. B ⊆ A implies B is shy;
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3.

∞⋃
n=1

An is shy.

Observe that, with a suitable underlying σ-algebra, the collection of shy sets
satisfies the properties in Definition 7. In the sequel, let V be a hereditarily
Lindelöf complete metric vector space.

Theorem 35. There exists a finite non-trivial translation-invariant submea-
sure on V whose submeasure zero sets are exactly the shy sets.

Proof. The σ-algebra generated by the open subsets and the shy subsets of
V will be called the prevalence σ-algebra and denoted by L(V ). According
to Hunt et al. [10], the collection of shy sets on V satisfies the properties in
Definition 7 with respect to L(V ). By Theorem 8, there exists a unique σ-
non-essential strong essential closure whose collection of non-essential sets is
exactly the collection of shy sets. We call the induced essential closure the
prevalence closure.

By Theorem 20, the prevalence closure induces a submeasure on L(V ).
Note that an induced submeasure is not unique. We call such a submeasure
a prevalence submeasure. Moreover, by Theorem 18, the collection of non-
essential sets, which is the collection of shy sets, is exactly the collection of
prevalence submeasure zero sets. In addition, it is worth mentioning that the
space V is essentially closed with respect to the prevalence closure. This is
due to the fact that non-empty open sets are not shy, hence are of positive
prevalence submeasure.

To conclude, we have a prevalence submeasure on L(V ) whose prevalence
submeasure zero sets are exactly the shy sets on V . Moreover, it is straight-
forward to verify that the prevalence closure commutes with the translations.
However, a prevalence submeasure is generally not translation-invariant. Nev-
ertheless, there is a special prevalence submeasure that is translation-invariant.

In the proof of Theorem 20, the normalized submeasure obtained from the
prevalence closure will be called the normalized prevalence submeasure and
denoted by µp. For each vector v ∈ V , observe that µp(A+ v) = 0 if and only
if A + v is shy, which in turn is valid if and only if A is shy. Equivalently,
µp(A) = 0. Since µp assumes the value of either 0 or 1, the normalized
prevalence submeasure µp is translation-invariant.
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