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ON AN EXAMPLE OF A FUNCTION WITH

A DERIVATIVE WHICH DOES NOT HAVE

A THIRD ORDER SYMMETRIC RIEMANN
DERIVATIVE ANYWHERE

Abstract

In this paper we construct a differentiable function F' : R — R that
does not have a third order symmetric Riemann derivative at any point.
In fact,

SRD3F(I) — liminf F(z+3h)73F(z+h)+33F(th)7F(173h) - —c0
h—0 (2h)

and

WSF(ZL‘) — limsup F(z+3h)73F(z+fz;z>?igF(mfh)7F(z73h) = 400
h—0

for every x € R.

1 Introduction

The three well-known classical theorems concerning convexity of a function,
of a derivative and of a second derivative using second, third and fourth or-
der Riemann derivates (see [4], [5], [6], [7]), require limsup,liminfand
liminf respectively, in their statements. Also, the non-classical but natural
generalization (non-Riemann for orders greater or equal to five) using divided
differences also uses liminf (see [3]). The present work, besides other conse-
quences, states that we can not replace lim inf by lim sup for the third Riemann
derivate.
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2 Construction of a Periodic Function and its Properties

Let a € RT. Define f, : R — R as follows:

i) f, is periodic of period 13a;

ii)
—a3, if z € [0, a);
—23 +4(z — a)?, if z € [a, 2a);
fa(z) = ¢ =23 +4(x — a)® — 6(z — 2a)3, ifz € [2a,3a);
(v — 4a)3, if z € [3a,4a);
0, if z € [4a, 6.54].

iii) fo(6.5a + ) = — f,(6.5a — z) if = € [0,6.5q].
b
Let b € R and define G = G, = ﬁfa. It is easy to see that

G(10a) = G(12a) = —G(a) = —G(3a) = ab (1)
G(1la) = G(—2a) = —G(15a) = [6{11%};] G=- [égl?};} G = 4ab (2)
0<G(y) <4ab if y € [4a, 134] (3)
—4ab < G(y) <0 if y € [0, 9a] (4)
—ab < G(y) <0 if y € [~10a, —4d] (5)
0<G(y) <ab if y € [-9a, —3a) (6)
G" existonR and |G| <4b, |G"|< 129 on R (7)

a

3 Main Auxiliary Inequalities
Let a,b,G as in 2. Then for every = € R there are h, k € [a,12a] such that

G(z+3h) —3G(z+ h) + 3G(x — h) — G(x — 3h) > 8ab (8)

G(z + 3k) — 3G(z + k) + 3G(x — k) — G(x — 3k) < —8ab (9)

PROOF. i) Let z € [—a, 14a]. We consider the following cases:



A DIFFERENTIABLE FUNCTION FOR WHICH SRD?f DOES NOT EXIST 205

(a) o Ifz € [—a,3a] take h = x + 2a. Then = + h € [0,8a], z — 3h €
[—12a, —4a], h € [a,5a]. Thus by (2),(4),(5), G(z —h) = G(—2a) = 4ab, G(z +
h) <0,G(x — 3h) < 0. This proves (8).

B. If x € [3a,6a] take h = 15a—x.Then z+h = 15a, x—h € [—9a, —3al, z+
3h € [33a,39al,h € [9a,12a]. Thus by (2),(6),(3), G(x + h) = G(15a) =
—4ab,G(x — h) > 0,G(x + 3h) > 0. This proves (8).

v. If ¢ € [6a,10a] take h = x+2a. Then z—h = —2a, x+h € [14a, 22a], x—
3h € [-26a,—18al, h € [8a, 12a]. Thus by (2),(4), G(z — h) = 4ab,G(x + h) <
0, G(x — 3h) < 0. This proves (8).

§. If © € [10a,14a] take h = —z + 15a. Then x + h = 15a, © —
h € [5a,13a],x + 3h € [17a,25a],h € [a,ba]. Thus by (2),(3), G(x + h) =
—4ab,G(x — h) > 0,G(x + 3h) > 0. This proves (8).

(b) a. If z € [—a,3a] take k = —x + 11la. Then x + k = 1lla,z — k €
[—13a, —5a], x + 3k € [27a,35a],k € [8a,12a]. Thus by (2),(4), G(z + k) =
dab, G(x — k) < 0,G(z + 3k) < 0. This proves (9).

B. If x € [3a,6a] take k = x — 2a. Then z — k = 2a,z + k € [4a,10a],
x — 3k € [—6a,0], k € [a,4a]. Thus by (2),(6),(3),G(x - k) = - 4ab, G(x + k)
> 0, G(x - 3k) > 0. This proves (9).

~. If z € [6a,10a] take k = —z + 11la. Then z + k = 1la,x — k € [a,9a),
x 4 3k € [13a,21a),k € [a,5a]. Thus by (2),(4), G(z + k) = 4ab,G(z — k) <
0, G(x + 3k) < 0. This proves (9).

§. If x € [10a,14a] take k = x — 2a. Then z — k = 2a,z + k € [18a, 264],
x — 3k € [-22a, —14a], k € [8a,12a]. Thus by (2),(3), G(z — k) = —4ab, G(z +
k) >0, G(z —3k) > 0. This proves (9).

1) Let € R. There exists a ng € Z such that ng < é—a < ng+ 1. Then

T e [13@710, 13a(n0+1)). So z—13ang € [0,13a). Putting zo = x—13ang, zo €
[—a,14a] and so (8) and (9) are true for x = xy by i). Since G has period
13a, (8) and (9) are also true for all . O

4 A Mean Value Theorem for Divided Differences
Let n € N and let f be continuous on [c, d] such that f,) exists on [c,d]. Let

T <Xy <0 < Tpy1; 2 € [e,d],i=1,2,...,n+ 1.
Then there is a ¢ € (21, x,41) such that

Vo (w1, 22, .., Zng1) = fin) (o).

(A proof may be found in [1] pp.193 th.III).
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5 Bounds for the Numerator of Riemann Third Order
Ratio

Let G asin 2 and z,h € R. Then
Gz +3h) — 3G(z + ) + 3G( — h) — Gz — 3h)| < 144h2§,
PRrROOF. Let h # 0, then
|G((z + 3h) — 3G(z + ) + 3G(x — h) — G(z — 3h)| =
|G(z + 3h) + 3G(z — h) — 4G(x) — (G(x — 3h) + 3G(x + h) — 4G(z))| =
|12R%Vy(z + 3h, x,x — h; G) — 12h2Va(z — 3h, 2,2 + h; G)| <

6h2(|2!Va(z + 3h, 2,2 — h; G)| + |2'Va(x — 3R, z,z + h; G)|)
Now (7) and 4 complete the proof. O

6 Main Result

There exi%ts a function F': R — R such that F’ exist on R
and SRD F = 0o, SRD*F = —oc0 on R.

PROOF. Let b € (0,1). Define

1 18y 4yb

—_—,———_—— e —_— b
9) = 133 by 1_yb7y€[0,)

Then g is continuous on [0,b) and g(0) > 0. Thus there is an a € (0,b) such
that g(a) > 0. Let G = G, as in 2. Define F), = Ggnpn  (n € N),

F= Z F,
n=1
Then by (2),(7)
[Pl < 4(ab)", |Fy| < 40" (n € N).
Thus

&S] o0
2 Fu o DE
n=1 n=1
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converge uniformly, thus F” exists on R and

F' = iF,’L.
n=1

Let € R.Then by 3, for each n € N there are h,, = hy,(z),k, = kn(x) €
[a™,12a™] such that

Fo(x + 3hy) — 3F,(z + hy) + 3F, (2 — hy) — Fr(z — 3hy,) o ( b )“
(2h,,)3 — 123

F,(z + 3ky) — 3F,(x + k) + 3F,(x — k) — Fp(x — 3ky,) _ 1 <£>n
(2k,)3 - 123
Now fix an n.
Using the above estimates, 5 and (2) we get

F(x + 3k,) —3F(x + k) + 3F(x — ky,) — F(x — 3ky,)
(2ky)? B

"i Fo(z + 3kn) — 3F (2 + ky) + 3Fm(x — ky) — Fo(z — 3k,,)

(2%n)? +

m=1

Fo(z+3k,) —3F,(x + k) + 3F, (2 — ky) — Fru(x — 3kn)+

(2ky,)?
i Fon (@ + 3kn) = 3Fm (2 + kn) + 3F(x = kn) — Fin (2 — 3kn) _
3 <
m=n+1 (an)
b\m
n— 2(Z
k() Ly
= (2k,)3 123 \a?
i Fon (% + 3kn) — 3Fm (2 + k) + 3Fm (x — k) — P (2 — 3kn) _
m=n+1 (21{:”)3 o
n—1 00
18 bym 1 /by 4 .
an mz::l (5) T (12)8 ((72) + mgﬂ(“b) -

18(§)n—2 1 /b\n 4 (ab)"*!
a (@) tmea s
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18 (g)” 1 (b)"+ 4 (ab)"t!

wt ) T

a’ 1—ab
blfaa (%)n - %(Zb?)n * ﬁd;b (%)n - _<a%)ng(a)‘

Similarly,

F(x+3hy,) —3F(x+ hy) +3F(x — hy) — F(x — 3hy) >(b

CIME )ng(a)-

a?
Now since n was arbitrary fixed point of N and since lim %k, =0, lim h, =0
n—oo

n—oo

b
and — > 1,g(a) > 0 we get
a

F(z + 3hy,) —3F(x + hy) + 3F(x — hy) — F(x — 3hy,)

S (2h,)? -
and
lim F(x+3k,) —3F(z + k,) + 3F(x —kn) — F(x — 3ky) e
n— oo (an)3
These show that
F — 3F F(zx—h)— F(x —
Jimn sup (x4 3h) —3F(z+h) —&—2 (x —h) (x — 3h) oo
BN\O (2h)
and
liminf F(x +3k) —3F(x + k) +3F(x — k) — F(x — 3k) C
(AN (2k)3
These easily imply
SRD F(z) = 00, SRD*F(z) = —o0
respectively,which complete the proof. O

7 Some First Category Subsets of C[0, 1]

On C[0, 1] with d(f,g) = max |f(z) — g(z)|
z€[0,1]



A DIFFERENTIABLE FUNCTION FOR WHICH SRD?f DOES NOT EXIST 209

i) Thereis a F € C[0,1] such that SRD F = oo and SRD?F = —cc on the
open interval (0, 1).

ii) Let Hy be the set of all functions f in C[0,1] such that there is a z in
(0,1) with SRDSf(a:) < 0o and Hj be the set of all functions f in C[0, 1] such
that there is a z in (0,1) with SRD®f(z) > —oo. Then H,, Hy are of first
category in CI0, 1].

iii) Let © be the set of all functions f in C[0,1] such that SRDSf = oo and
SRD®f = —oc0 on (0,1). Then H = C[0,1] — © is of first category in C[0, 1].

PRrROOF. i) Follows easily from 6.

ii) For Hy, we will prove that the complement of Hy is dense in C[0, 1]
and that the set H; is of type F,. Take ¢ > 0 and let U(p, €) be the set of all
functions f in C[0, 1] such that d(f,p) < e where p is a polynomial. To show
U(p,e) N (C[0,1] — Hy) # 0. Each function of the form p + nF (n > 0) where
F is the function of 7 i) belongs to C[0,1] — H;. Indeed, if the polynomial p
satisfies [p®®)| < L on [0, 1] then, by 4

<L

’p(w +3h) —3p(x + h) + 3p(x — h) — p(z — 3h) ‘
(2h)?

and for each z in (0,1) and h # 0

(22)3{@4‘7717)@—0—3}1) —3(p+nF)(z + h)+

3(p+nF) (@ — h) — (p+nF) (@ — 3h)} _

p(z +3h) = 3p(z + h) + 3p(z — h) —p(z —3h)

(2h)?
F(x +3h) —3F(x+ h)+3F(z — h) — F(z — 3h) S
g (2h)3 =
F(x +3h) —3F(x+ h)+3F(x — h) — F(z — 3h)
—L+n (2h)? .

Thus SRDS(p + nF)(z) = 00.This easily implies that SRD’ (p+nF) =00 on
(0,1), thus p +nF € C[0,1] — Hy.
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Set n = m Then p +nF € U(p,€). Thus U(p,€) N (C[0,1] — Hy) # 0.
Let F), be the set of all functions f in C[0,1] with the property that there is

azin [1,1— 1] such that if 0 < |h| < 3~ then

n

flz+3h) = 3f(x+h) +3f(@—h) — fl@—3h) _
(2h)3 7

n=2,3,.... Since
oo
H, = U F,
n=2

and C]0, 1] is a complete space, by Baire’s theorem it is sufficient to show that
F, is closed in C[0, 1].

Let n be fixed. We prove that F,, is closed. Let {fx} be any sequence in
F, such that fy — f in C[0,1] as k — oo. Then the sequence of functions
{fx} converges to f uniformly on [0,1]. Since fj € F,, there is for each k a
point @y, € [+,1 — 1] such that if 0 < |h| < 3= then

fre(zr +3h) — 3fk(zr + h) + 3fk(xx — h) — fr(xp — 30)
(2h)?

<n

Since {z} C [1,1— 1] there is a subsequence {zy,} of {xx} such that {zy,}
converges to a point zg € [£,1 — L]. Clearly the subsequence {fx,} of {fi}

converges uniformly to f on [0,1]. Also if 0 < |h| < 3~ then

sz (mkz + 3h) - 3sz (‘rkl + h) + 3sz (‘rkl - h) - sz (mkz - 3h) <n
(2h)? o

I =1,2,.... Since {fx,} converges to f uniformly and z, — ¢ as | — oo,
letting | — oo

f(zo 4+ 3h) = 3f(wo + h) +3f(z0 — h) — f(zo — 3h)
(2h)?
This shows that f € F, and so F,, is closed. Therefore H; is of the first
category in C[0,1]. Similarly Hs is also of the first category in C]0, 1].
iii) It follows easily, since H = Hy U Hy and 7 ii). O

<n.

8 A Specific Set of First Category

Let H; be the set of all functions f in C[0, 1] for which a third order symmetric
Riemann derivative exist in at least one point x of (0,1). Then Hy is a set of
first category in C[0, 1].
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PROOF. Since H is of first category by 7 iii) in C[0,1] and Hs; C H, the set
H; is of first category in C[0,1]. O

Remark. There exists a continuous function F : R — R such that SRDlF =

o0, and SRD'F = —o0 on R.
This is the work of [2].
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