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THE DYNKIN SYSTEM GENERATED BY
THE LARGE BALLS OF Rn

Abstract

We prove that in an at least three dimensional Euclidean space the
Dynkin system generated by the family of all open balls with radii at
least one (that is, the smallest collection containing the open balls with
radii at least one and closed under complements and countable disjoint
unions) does not contain all Borel sets. We also give a simple charac-
terization of the sets of this Dynkin system.

A non-empty family D of subsets of a set X is said to be a Dynkin system
provided D is closed under complements and countable disjoint unions. (The
terms ‘σ-class’, ‘concrete quantum logic’ and ‘q-σ-algebra’ is also used for the
same notion; the latter two in the study of quantum logic.)

In 1988 and 1995 Olejček [5, 6] proved that in R2 and in R3 the Dynkin
system generated by all balls is equal to the Borel class. (Although it does not
make much difference, by a ball we always mean here an open ball.) Recently
Jackson and Mauldin [1] and independently Zelený [8] generalized this result
for any finite dimensional Euclidean space (in fact, in [1] for any finite di-
mensional Banach space). In this note we show that in Euclidean spaces with
dimension at least three it is not enough using large balls. More precisely we
show

Theorem 1. In Rn (for n ≥ 3) the Dynkin system generated by the family of
all (open) balls with radii at least 1 does not contain all Borel sets.

The motivation of this result came from infinite dimension: According to
two results about the positivity principle for large and small balls in a separable
Hilbert space ([3] Theorem 3 and Theorem 4; the proof of the main statement
is in [7]; see also in [4]) there is a strange analogy between the small balls in an
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infinite dimensional Hilbert space and the large balls in the finite dimensional
one. The analogy turned out to be true enough to enable the solution of the
following infinite dimensional question, which was asked 20 years ago: “Is it
true that in any separable Banach space the Dynkin system generated by the
family of all balls is equal to the Borel class?” Generalizing the proof of the
above Theorem 1 it is proved in [2] that the answer is negative in an infinite
dimensional separable Hilbert space. Actually, the proof in [2] carries over
without any essential change to showing Theorem 1. The aim of this note is
to show the simpler original proof of Theorem 1.

We shall also give a complete characterization of the sets of the Dynkin
system generalized by the large balls of Rn (n ≥ 3).

The idea of the proof of Theorem 1 is to show that the sets from the Dynkin
system generated by the large balls, modulo a countable set, can be obtained
by a relatively simply operation directly from large balls; in fact, as a union
of simple building blocks.

Under a generalized ball in Rn we will understand either a ball, or a half-
space or the whole space Rn; by a generalized sphere we will mean a sphere or
a hyper-plane. By the radius of an unbounded generalized ball or generalized
sphere we will mean infinite.

A stereographic projection P maps the generalized spheres to (normal)
spheres on a fixed sphere. We equip the set of generalized spheres by the
Hausdorff distance of the mapped spheres; that is,

d(S, T ) = max
(

sup
x∈P (S)

d(x, P (T )), sup
y∈P (T )

d(y, P (S))
)
.

One can easily check the following:

Lemma 2. Any monotone union or intersection of generalized balls with radii
at least 1 is a generalized ball with radius at least 1. Moreover, if the union is
not Rn then its boundary belongs to the closure of the set of the boundaries of
the generalized balls from B.

If the intersection of different generalized spheres S, T contains more than
one point then we shall say that S, T are crossing.

We will use the following obvious fact:

Lemma 3. Let S 6= T be crossing generalized spheres. Then there is ε > 0
such that any two generalized spheres S′, T ′ with d(S′, S) < ε and d(T ′, T ) < ε
are crossing.

The following lemma will ensure that the exceptional set will be countable:



Dynkin System Generated by Large Balls 861

Lemma 4. Suppose that S is a family of pairwise non-crossing generalized
spheres in Rn. Then the set M of those points that belong to at least two
different generalized spheres from S is countable.

Proof. For every x ∈ M choose generalized spheres S, T ∈ S such that
S 6= T and x ∈ S∩T ; denote by U, V,W the three components of Rn \ (S∪T ),
where the notation is such that ∂U = S, ∂V = T and x is the only point
of U ∩ V , and choose points with rational coordinates u ∈ U , v ∈ V , and
w ∈ W . We claim that x is uniquely determined by the triple 〈u, v, w〉; since
the set of such triples is countable, this will finish the proof. To prove the
claim, suppose, that from some x′ ∈M we arrived to the same 〈u, v, w〉 using
generalized spheres S′, T ′ ∈ S and components U ′, V ′,W ′ of Rn \ (S′ ∪ T ′).
Since the generalized spheres from S are non-crossing and since U ∩ U ′ 6= ∅,
we have that U ⊂ U ′ or U ′ ⊂ U ; similarly for V ’s and W ’s. Exchanging the
role of x and x′ and/or of U ’s and V ’s if necessary, there are only two cases to
consider: (a) U ⊃ U ′ and V ⊃ V ′ and (b) U ⊂ U ′, V ⊃ V ′ and W ⊂ W ′. In
case (a) we recall that U ∩V contains only x and that x′ ∈ U ′ ∩V ′, so x = x′.
In case (b) we get from W ⊂ W ′ that U ′ ⊂ U ∪ V ; so since U ′ is open and
connected, and U ∩ V is just one point, we infer that U ′ = U and we are back
in the already proved case (a).

The points x, y ∈ Rn are said to be separated by a generalized sphere S if
they lie in different components of Rn \ S. For a class of generalized spheres
S let ∼S be the equivalence relation on Rn \

⋃
S∈S S defined by

x ∼S y ↔ x, y are separated by no generalized spheres of S.

Lemma 5. Suppose that S is a non-empty closed family of pairwise non-
crossing generalized spheres with radii at least 1. Then each equivalence class
of ∼S is of the form B0 \

⋃
i≥1Bi, where B0 is a generalized (open) ball;

B1, B2, . . . ⊂ B is a (finite or infinite) sequence of pairwise disjoint generalized
balls with radii at least 1; and ∂Bi ∈ S ∪ {∅} for all i.

Proof. Let y ∈ Rn \
⋃

S∈S S. Let B contain Rn and all generalized balls
with boundary in S and let B1 contain those of B that contain y. Since the
generalized spheres from S are non-crossing, for every B,B′ ∈ B we have that
B ∩B′ = ∅ or B ⊂ B′ or B′ ⊂ B. According to Lemma 2 and using that S is
closed and Rn ∈ B1, Zorn lemma gives us a minimal generalized ball B0 from
B1. Let B2 be the family of those generalized balls B ∈ B for which B ⊂ B0

and y /∈ B. By Hausdorff maximal principle, each generalized ball from B2 is a
subset of a maximal generalized ball from B2; these maximal balls are disjoint,
hence there are only countably many of them and we may order them into a
sequence B1, B2, . . . . Clearly, any point which is not in U = B0 \

⋃
i≥1Bi is
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separated from y by an S ∈ S. On the other hand, every point of B0 that
is separated from y belongs to some generalized ball from B2, hence to some
Bk.

A set K will be called a K-set about a generalized sphere S if either K = S
or it is a non-empty set of the form B0 \

⋃
i≥1Bi, where B0 is a generalized

(open) ball with radius at least 1; B1, B2, . . . ⊂ B is a (finite or infinite)
sequence of pairwise disjoint generalized balls with radii at least 1; and ∂Ci =
S for an i ≥ 0.

Lemma 5 showed that a non-empty closed family of pairwise non-crossing
generalized spheres defines K-sets such that their union is Rn and the intersec-
tion of any two contains at most one point. As we will see later, any element
of the Dynkin system generated by the large balls (in at least 3 dimension)
can be built using these building blocks.

Lemma 6. Suppose that in Rn, where n ≥ 3, K and K ′ are K-sets about
crossing generalized spheres S and S′, respectively. Then K ∩K ′ is uncount-
able.

Proof. The boundary of a K-set about a generalized sphere S is clearly
always of the form S ∪S1 ∪S2 ∪ . . ., where S, S1, S2, . . . is a (finite or infinite)
sequence of pairwise non-crossing generalized spheres with radii at least 1. For
K and K ′ this way we get ∂K = S∪S1∪S2∪ . . . and ∂K ′ = S′∪S′1∪S′2∪ . . ..

The intersection of the crossing generalized spheres S and S′ is a general-
ized sphere in an (n− 1)-dimensional affine subspace, so (since n− 1 ≥ 2) it is
an uncountable set. Thus, by Lemma 4, there must be a point x ∈ S∩S′ such
that none of S1, S2, . . . , S

′
1, S
′
2, . . . contains x. Since S1, S2, . . . , S

′
1, S
′
2, . . . have

radii at least 1, a small neighborhood of x is disjoint to S1, S2, . . . , S
′
1, S
′
2, . . ..

Then in all cases it is easy to see that this neighborhood contains uncountable
points of K ∩K ′.

We say that the class S of generalized spheres separates E modulo M if
each generalized sphere of S and each equivalence class of ∼S is contained in
E ∪M or Ec ∪M . The generalized sphere A is essential for separating E
modulo M if for every x ∈ A \M there exists arbitrarily close y ∈ M c such
that y ∈ E if x ∈ Ec and y ∈ Ec if x ∈ E.

Lemma 7. If in Rn (where n ≥ 3), for i = 1, 2, the closed family of pairwise
non-crossing generalized spheres Si separates Ei modulo Mi; Ai ∈ Si is essen-
tial for separating Ei modulo a countable set Mi; and A1, A2 are crossing then
E1 ∩ E2 is non-empty.

Proof. By Lemma 5 each equivalence class of ∼Si
is a K-set. Since Si

separates Ei modulo Mi and Ai ∈ Si is essential for separating Ei modulo Mi,
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we have K-set Ki ⊂ Ei ∪M about generalized sphere arbitrarily close to Ai.
By Lemma 3 and Lemma 6, this implies that E1 ∩ E2 is non-empty.

Lemma 8. For every set E from the Dynkin system generated by the balls of
Rn (for n ≥ 3) with radii ≥ 1 one may choose a countable set M and a closed
(in the metric d) family S of pairwise non-crossing generalized spheres such
that S separates E modulo M and each generalized sphere of S is essential for
separating E modulo M .

Proof. If E is a ball, it suffices to take S = {∂E} and M = ∅. If the
statement of the lemma holds for E with some M and S, then it also holds
for Ec with the same M and S.

Hence we just have to find the required set M and family S assuming
that E =

⋃∞
k=1Ek, the sets Ek are disjoint, and there are countable sets Mk

and closed families Sk of pairwise non-crossing generalized spheres such that
for each k, Sk separates Ek modulo Mk and each generalized sphere of Sk is
essential for separating Ek modulo Mk.

Define S ′ as the family of those generalized spheres that belong to at least
one of the Sk and S ′′ as the closure of S ′ (in the metric d). By Lemma 7, S ′
is a family of pairwise non-crossing generalized spheres; and by Lemma 2 and
Lemma 3, so is S ′′. Let M0 be the set of those points that belong to at least
two different generalized spheres from S ′′. By Lemma 4, M0 is countable, and
so M =

⋃∞
k=0Mk is countable.

We claim that each generalized sphere T ∈ S ′′ is contained in E ∪ M
or Ec ∪ M . Indeed, suppose to the contrary that x ∈ (T ∩ E) \ M and
y ∈ (T \E)\M and choose k such that x ∈ Ek. Since x ∈ Ek\Mk, y ∈ Ec

k\Mk

and Sk separates Ek modulo Mk, we get that T /∈ Sk. Since x /∈M0, x is not
contained by any generalized sphere from S ′′ \ {T} ⊃ Sk, so x is contained in
an equivalence class of ∼Sk

. Using that Sk separates Ek modulo Mk we get
that this equivalence class is in Ek ∪Mk, so y is not in this equivalence class,
which means that x, y are separated by a generalized sphere S ∈ Sk ⊂ S ′′.
But then S, T ∈ S ′′ are crossing, which is a contradiction.

We prove that every S ∈ S ′′ such that S ∩ (Ec \M) 6= ∅ is essential for
separating E modulo M : The preceding paragraph shows that then S \M ⊂
Ec. Moreover, for every ε > 0 we find T ∈ Sk such that d(T, S) < ε/2 and,
using that T is essential for separating Ek modulo Mk, for any x ∈ S \M ⊂
Ec ⊂ Ec

k there exists arbitrarily close y ∈ Ek ⊂ E.
Finally, we define S as the family of those generalized spheres of S ′′ that are

essential for separating E modulo M . Thus S is clearly a closed subset of S ′′,
so it remains to prove that each equivalence class of ∼S is contained in either
E ∪M or in Ec ∪M . Let x ∈ E \ (M ∪

⋃
S∈S S) and y ∈ Ec \ (M ∪

⋃
S∈S S).
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We need to show that x 6∼S y. If S ∩ (Ec \M) 6= ∅ for some S ∈ S ′′ that
separates x and y, then (by the preceding paragraph) this S belongs to S, and
we are done. We may therefore assume that S \M ⊂ E for every S ∈ S ′′ that
separates x and y. By Lemma 5, the equivalence class of ∼S′′ that contains
y is of the form G = B0 \

⋃
i≥1Bi, where B0 is a generalized (open) ball;

B1, B2, . . . ⊂ B is a (finite or infinite) sequence of pairwise disjoint generalized
balls; and ∂Bi ∈ S ′′ ∪ {∅} for all i. Since each Sk separates Ek modulo Mk,
the class S ′′ separates E modulo M , so x cannot be in G. It cannot be on the
boundary of G either, so x, y are separated by one of the generalized spheres
∂Bi ∈ S ′′. Then ∂Bi ⊂ E ∪ M but G ⊂ Ec ∪ M , so ∂Bi is essential for
separating E modulo M , hence it is in S, which implies that x 6∼S y.

The following result is clearly stronger than Theorem 1, which we wanted
to prove:

Theorem 9. Every set E of the Dynkin system generated by the balls of Rn

(n ≥ 3) with radii ≥ 1 has diameter at least 2.

Proof. Using Lemma 8 and Lemma 5, up to some changes on a countable set,
E is the union of K-sets. On the other hand, clearly all K-sets have diameter
at least 2, even if we remove a countable set of points.

Remark 10. Lemma 8 is not true in 2-dimension: Let F1 and F2 be the
union of the closed discs with radii 1 and with centers of the form (2i, 2j) and
(2i+ 1, 2j + 1), respectively. Then E = F c

1 ∪ F c
2 is a counter-example.

The author does not know weather Theorem 9 (or at least Theorem 1)
holds in 2-dimension.

In the remaining part of this note we give a complete characterization of
the Dynkin system generated by the large balls of Rn for n ≥ 3. Some of the
details of the proof will be omitted.

Theorem 11. For n ≥ 3 a set E ⊂ Rn is in the Dynkin D system generated
by the balls of Rn with radii ≥ 1 if and only if

(1) E is a Borel set, and

(2) there is a collection K of K-sets such that any two of them have at
most one common point and the symmetric difference of ∪K and E is
countable.

Proof. If E is in the Dynkin system then (1) is obvious; Lemma 8 and
Lemma 5 imply (2).

For the other direction first note that any one point set is in the Dynkin
system D. (Indeed, using that D is clearly also closed under monotone union
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and monotone intersection and contains all the large closed balls as well, one
can first generate the union of a large open ball and a point of its bound-
ary, then the union of the complement of this set and the open ball is the
complement of the point.) Thus, if we modify a set of D on a countable set,
the set we get is still in D. Therefore we can assume that E = ∪K. More-
over, for generating the Dynkin system, we can also allow pairwise “almost”
disjoint countable union as well, where by almost disjoint we mean that the
intersection is a countable set.

Let K1 contain those K-sets of K that are generalized spheres and let K2

contain the others. Since K2 contains disjoint open sets, it is countable. On
the other hand, each K-set is obviously in the Dynkin system D, so we get
that ∪K2 ∈ D. Using that K contains pairwise almost disjoint K-sets, K1

contains generalized spheres and K2 contains open sets, we deduce that ∪K1

and ∪K2 are disjoint. Thus ∪K1 is a Borel set and we need to prove that it is
also in D.

Let B be the class of all generalized balls with boundary in K1. Since K1

is a class of pairwise non-crossing spheres, for any B1, B2 ∈ B we have either
B1∩B2 = ∅ or B1 ⊂ B2 or B2 ⊂ B1. Using this property, the following relation
is an equivalent relation on B: B1 ∼ B2 if they are contained in each other
and whenever B ∈ B meets one of them it also meets the other. Using that
all balls from B have radii at least 1, one can check that the set of equivalence
classes is countable: B1,B2, . . .. Let C1, C2, . . . be the corresponding classes of
generalized spheres from K. Since ∪C1,∪C2, . . . are almost disjoint it is enough
to prove that each of them (say ∪C1) is in the Dynkin system. The set ∪C1
is Borel since it is, up to a countable set, the intersection of the Borel set ∪K
and a closed set of the form B1 \B2, where B2 ⊂ B1 are generalized balls.

It is easy to extend C1 to a class C ⊃ C1 of pairwise non-crossing generalized
spheres with radii at least 1 such that they cover the whole Rn except a ball
B(O, 1) with radius 1. By Lemma 4 every point is covered once except a
countable set. Let e be a line through O that avoid all these exceptional
points. Let f ⊂ e be the closed half-line that has distance 1 from O and let
F = (∪C1) ∩ f . Then Ψ(S) = S ∩ f is a bijection between the generalized
spheres of C and the points of f . Clearly Ψ(∪C1) = F and F is a Borel
subset of f . On the other hand, in a half-line the Dynkin system generated by
the subintervals obviously contains all Borel sets. The pre-image (Ψ−1) of a
subinterval is of the form B1 \B2 (B1 ⊃ B2 ∈ C), so it is clearly in the Dynkin
system D generated by the large balls. The same way as we can generate F
from the subintervals of f we can generate ∪C1 from the corresponding sets of
the form B1 \B2, so ∪C1 ∈ D.
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