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BILINEAR WEIGHTED HARDY INEQUALITY
FOR NONINCREASING FUNCTIONS

MARTIN KREPELA

Abstract: We characterize the validity of the bilinear Hardy inequality for nonin-
creasing functions

179" N pa(wy < Cllfllars (oy)lgllar2 (v);
in terms of the weights v1, va, w, covering the complete range of exponents p1,p2,q €
(0, 09].
The problem is solved by reducing it into the iterated Hardy-type inequalities
1

(7(/1(9**(75))%(75) dt) gwm d:):) ’ < 0(7(9*(x))ww(z) dx)i
0 0

0

co  ea 5 1 N )
(0/ (x/(g**(t))a‘{’(t) dt) () dz) < C(O/(g*(x))vw(x) dx) .

Validity of these inequalities is characterized here for 0 < a < 8 < oo and 0 < vy < oo.
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1. Introduction

Consider the bilinear Hardy operator

Ha(1,9)(0) = 5 [ 16)ds [ gts)ds,

defined for all nonnegative measurable functions f, g on (0,00). In this
article, we will find necessary and sufficient conditions for the bounded-
ness

Ha: Lge(v) X L2 (v2) = L (w)
with p1,p2,q € (0,00]. In other words, the goal is to provide equivalent
estimates of the constant

a Coy = sup 19" Lo w)
foea 1fllarr o) 19l ap2 (vp)

in terms of py, po, q, v1, V2, W.
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Let us at first summarize the used notation and symbols. Let (2, u)
be an arbitrary totally o-finite measure space. Then .# denotes the
cone of all extended real-valued py-measurable functions on &#. Next,
A+ denotes the cone of all extended nonnegative Lebesgue-measurable
functions on (0, o).

If p € (0,1) U (1,00], then p' := ﬁ. If p = 1, then p' := oco.
Notice that for p € (0,1) the number p’ is negative. Furthermore, the
conventions “% = 0.00 := 0” and “% := 00” for a € (0,00] are used

throughout the text.

A weight is any nonnegative measurable function v on (0, c0) such that
for all ¢t € (0,00) it holds 0 < V(t) < oo, where V is defined by V (¢) :=
fg v. If the weight is denoted by another letter, the corresponding capital
letter plays an analogous role.

We say that a function u € # is integrable near the origin if there
exists € > 0 such that foe u < 00. Notice that weights are integrable near
the origin by definition.

The symbol A < B means that A < CB, where C is an absolute
constant independent of relevant quantities in A, B. In fact, throughout
this article such C' depends only on the exponents (p, g, «, 3, etc.), thus
it does not even depend on the weights. If both A < B and B < A, we
write A ~ B.

By A(.) we denote the characteristic condition which appears on
the line denoted by the number in the brackets. Certain significant
optimal constants C_ ) are denoted in a similar way. These symbols have
a unique meaning throughout the whole paper. Symbols By, By, etc. are
used in the proofs as an auxiliary notation for various quantities, and
their meaning may differ between the theorems. However, within the
proof of a single theorem or lemma, each symbol B; is uniquely defined.

The text deals with various function spaces. The weighted Lebesgue
space LP(v) consists of all extended real-valued Lebesgue-measurable

functions h on (0, 00) such that [|A[|z»(,) < co. The functional || - || 1w
is defined by

oo 1
P
Vo) == ( [ n@roe) dx) . pe(0.00),
(0]
|hllLo ) = €53 Sup |h(z)|v(), p = oo.

The symbol L% _(v) stands for the set of all nonnegative and nonincreas-

ing functions from L?(v).
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If f € A, then f* denotes its nonincreasing rearrangement and f**
the Hardy—Littlewood maximal function of f, i.e.

Fr(t) 1=%/f*(s)ds, t> 0.
0

For details see [3]. For the definitions of rearrangement-invariant (ab-
breviated r.i.) spaces and r.i. (quasi-)norms see [3, 7, 18]. If X and YV’
are r.i. spaces (or just r.i. lattices), we say that X is embedded into Y
and write X < Y if there exists C' € (0,00) such that for all f € X it
holds
1fllv < Cllx.

The least possible constant C' in this inequality is called the optimal
constant of the embedding X — Y and is equal to the norm of the
identity operator between X and Y, denoted ||Id||x_v.

Let v be a weight and p € (0, 00]. The weighted Lorentz spaces AP(v)
and I'?(v) consist of all functions f € .# for which ||f||sr(,) < oo and
| fllrr vy < o0, respectively. Here it is

[ llap @y = 7 ler ) and [|fllee ) == 1 l2p o)

For more information about the Lorentz A and I" spaces see e.g. [7] and
the references therein.
Let ¢, ¥ be weights. For g € .# define

z B

19l 8 () = [ 7 ([ oremar) v dx] . a.f e (0,00),

0 0

Q=

lgll7e 00 (,8) = eS:fgp(/(g**(t))aw(t) dt) (), a € (0,00),

o B
o

9l kot (o) = [7(/(9**@))“@(15) dt)

x

d)(fb’)dw] ;B € (0,00),

Q=

ol = esssun( [ @0 p0ar) “wi). a€ 0.0)

Then, as usual, it is J*?(¢,¢) = {f € A; ||f||jo.(p,4) < 00} and
K*P(p,¢) == {f € M;||flkop(py) < oo} The “K-spaces” were
defined in [18], where they appeared as optimal spaces in certain Young-
type convolution inequalities. Besides that, in [16] it was shown that the
associate space to the generalized I space is also a “K-space”.
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Now, let us briefly present some background to the problems we are
about to investigate. The aforementioned operator Hs is a bilinear ver-
sion of the classical Hardy operator H;, which is defined by

Hif(t) = %/f(s) ds

for all f € .#,. Boundedness of H; between weighted Lebesgue spaces
is equivalent to the validity of the weighted Hardy inequality

2) [/oo<i/zf(s)ds>qw(x) ax| §C’(/oofp(a:)v(x) dm)’l’

for all f € #,, with C being a constant independent of f. The
weights v, w for which this inequality is valid, have been characterized by
Muckenhoupt [23], Bradley [5], and Maz’ja [22]. The weighted Hardy
inequality has a broad variety of applications and represents now a ba-
sic tool in many parts of mathematical analysis, namely in the study of
weighted function inequalities. For the results, history, and applications
of this problem, see [21, 25, 20].

In the last decades, much attention has been drawn by the so-called
restricted inequalities. By this term it is meant that an inequality is not
supposed to be satisfied by the whole set of nonnegative functions, but
rather only by a certain, restricted, subset. In this way, one may ask
under which conditions the inequality (2) is satisfied for all nonincreasing
f € A This is equivalent to the validity of

[t frasyena] <c(Jirurarny.

for all f € .4, with an independent C. Moreover, this corresponds to
the boundedness Hy: L% (v) — L(w), or, in yet different words, the
existence of the embedding of the Lorentz spaces AP (v) < I'(w).

The first results on the case AP(v) — I'?(v), 1 < p < oo were obtained
by Boyd [4] and in an explicit form by Arino and Muckenhoupt [2]. The
problem with v # w and p # ¢, 1 < p,q < oo was first successfully
solved by Sawyer [26]. Many articles on this topic followed, providing
the results for a wider range of parameters, see [30, 8, 9, 28, 10, 7, 6].
In [7] the results available in 2000 were surveyed.

1

3)
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The restricted operator inequalities may often be handled by the so-
called “reduction theorems”. These, in general, reduce a restricted in-
equality into certain nonrestricted inequalities. For example, the restric-
tion to nonincreasing or quasiconcave functions may be handled in this
way, see e.g. [27, 15, 17, 12].

Let us however turn the focus to the bilinear variants of the Hardy-
type inequalities. Recently, Aguilar, Ortega, and Ramirez [1] found
necessary and sufficient conditions for the boundedness Hy: LP!(v1) X
LP2(vy) — L9(w), where w(t) := t2?w(t). In other words, they charac-
terized the validity of the weighted bilinear Hardy inequality

o [J(f o fros)soa] cc( o) (Jow)?

for all f,g € .#,. The covered range of exponents in there was 1 <
p,q < oo. For some related results see also the references in [1].

The paper [1] motivated the work presented here. Indeed, here we
consider a restricted version of (4) which may be called the bilinear
Hardy inequality for nonincreasing functions and written in the form

70(/ Fas [ ) Wl <o [y ) (farrm) ™

Notice that C(y) is the least constant C' for which the above inequality
holds for all f,g € .

The proofs in [1] are based on the standard technique of discretization.
Here, however, we choose a different approach. The idea is as follows. In
the first step, let g in (1) be fixed. Treating C(1) as the optimal constant
in the embedding AP*(vy) < I'Y((¢**)%w), one gets

I1d|aP1 (w1)>Ta((g**)aw)

C(1y = sup
geM llgllaP2 (vs)

The two-side estimate of ||Id||xr1 (v, )—ra((g**)ew) i3 known for all p1,q €

(0,00] and it is equivalent to ||g||x, a certain rearrangement-invariant

(quasi-)norm of g. Hence, in the next step, if we can find the optimal

constant [|Id|| a2 (v,)—x, the whole problem is solved.

It will be shown that ||-|| x can be expressed as a sum of (quasi-)norms
in the r.i. spaces J#(p,1) and K*8(p,1) (see Section 2 for the def-
initions). In Section 3 we find characterizations of the embeddings
A (w) = J¥P(p,9) and AV (w) < K*P(p,9) for 0 < a < B < 0
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and 0 < 7 < co. In other words, we characterize the weights and expo-
nents such that the inequalities

B

(70 </ Ore dt)w(x) dm) % - C< 7 (9" (2)) w(x) dm)i,
(/ : " ol Ty !
(/(z/(g**(t))aw(t)dt> ¢(m)dx> go(o/(g (@) w(z) dx)

0
hold for all functions g € .#. These results will be then used to find
the desired estimates of the optimal constant C(y) in the bilinear Hardy
inequality (this is the matter of Section 4). However, the description of
the relation of the K-spaces to the other types of r.i. spaces, as well as
the above weighted inequalities, are of independent interest.

2. Auxiliary results

Here we present various, usually known propositions which will be use-
ful further on. First we may recall the following simple but useful prin-
ciple. Let a,b € [—00,00] and let f, g be nonnegative continuous func-
tions on (a,b), f nondecreasing, and g nonincreasing. Then the deriva-
tives f'(x), ¢'(x) exist at a.e. x € (a,b). Denote f(a+) := lim,—q4 f(2),
f(b—) :=lim,_p— f(x), similarly for g. Integration by parts then gives

/f 2)de + flat)glat) = f /f z)dz,

with the convention “0.co := 0” taking effect if needed. Thus, if we,
for instance, consider a := 0, b := oo, f := W, g := V= and o, €
(0,00), we get
(5) / W @) (@)V 4 (@) dz ~ W (00)V " (00)

0

+/Wa W @) (x) da.
0

Analogous situations arise if we take f(z) := (f;o w) , etc. However, if
a < 1, there might appear a certain problem related to the integrability
of the involved functions (cf. [28, p. 93]). Observe that if we take o €
(0,1) in (5) and a function w € .# which is not integrable near the
origin, then the equivalence in (5) fails, as the left-hand side is equal to
zero while the right-hand side is infinite. Since we originally assumed



BILINEAR WEIGHTED HARDY INEQUALITY FOR NONINCREASING FUNCTIONS 9

that w was a weight, which is by definition integrable near the origin,
this problem, in fact, could not arise in (5). It may nevertheless do so in
other situations when the involved function is not a weight in this sense
and which thus require slightly more attention. We return to this issue
in Proposition 2.3 below.

Anyway, combining or splitting weighted conditions using integration
by parts in the described way is a common trick (see e.g. [30, Lemma,
p. 176]). If there is no potential danger as described above (e.g. if the
relevant exponents are greater than 1), we will use the technique through-
out the text without detailed comments, and we will refer to it simply
as to integration by parts.

Another well-known principle, to which we refer as to the LP-duality,
is expressed as follows. If f € 4., p € (1,00) and v is a weight, then

(o)~ on et

We continue with other preliminary results.

Proposition 2.1. Let f,g € A4+ and 0 < A < co. Then the identity

% U(]f(t) dt)kg(s)ds] = Af(ﬂf)i(jf@) dt>“9(8) ds

holds for a.e. © > 0 for which the integral on the left-hand side is finite.
Analogously, the identity

] 08 su] o r0) a0

holds for a.e. x > 0 for which the integral on the left-hand side is finite.

Proof: Let us prove the first statement, the second one is analogous. Let

xo—sup{xe 0, 00} /(/f dt) ds<oo}

Then, for any = € [0, (), Fubini theorem yields

/ (/ Far) g(s)s = / [/ A(/ f(t)dty_lf(y)dy} o(s)ds
o (] o) "
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The expression on the second line is nondecreasing and continuous
in x, therefore its derivative with respect to z exists and is equal to

M) [5(JF @) dt))ﬁ1 g(s)ds at a.e. point x € (0, ). O

Proposition 2.2. Let 0 < p < g < oo and let v, w be weights. Then it

holds
gt s (fo)'(f1)

@ is nondecreasing 0 x x

Q

Proof: This statement is analogous to a similar statement for nonincreas-
ing functions (see [7, Theorem 3.1]). From there it can be also obtained
directly by the change of variables x — % in the integrals. O

Proposition 2.3. Let 1 < p < oo and 0 < g < p < co. Let v, w be
weights. Then

O OL UK
(6) Clo) = re (f2(F*(®)Po(t) dt)% ~ Ay + Ags),
where
(M) Am = /(%)ﬁw(t) dt]
- [/ (VvVg)))H”(t)dt] + W3 (0a)V 75 (00)
and

o o [Ty (frrse) ]

In particular, if C) < oo, then the function s v(s)sP' V=P (s) is
integrable near the origin.

Furthermore, if ¢ > 1, orif ¢ < 1 and the function s — v(s)spr_P/(s)
is integrable near the origin, then Agy =~ A(qg), where

o e ([T (i) TG

t
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Proof: This assertion is stated in [7, Theorem 4.1(iii)] under the addi-
tional condition that ¢ # 1. However, it is true even for ¢ = 1, which
may be checked using [11, Theorem 3.1(iv)] and [14, Theorem 3.1].
Let us say more on the equivalence Agy ~ Ag). If ¢ > 1 and the
function u, defined by u(s) := v(s)s?' V= (s) for s > 0, is not integrable
near the origin (a simple example of such function u was given in [28,
p. 93]), then both A(gy and A(g) are infinite. However, if ¢ < 1 and u is
not integrable near the origin, then Ay = oo but Ay = 0, since the
(¢=Dp
P—q

exponent is negative. O

Proposition 2.3 will be later used e.g. in the proofs of Lemmas 3.2
and 3.3 and Theorem 4.3. In the calculations within the proofs, we will
need to use conditions in the form of Ay). The reason is that the function
involving w appears only once in there and the resulting expression may
be understood as the (quasi-)norm in a certain space. Nevertheless, for
the final conditions which we state in the lemmas or theorems, we prefer
the “safe” form in the style of Ay, i.e. avoiding the potentially negative
exponents. In this way, the finiteness of the condition automatically
implies the integrability of the “problematic” function near the origin.

The proposition below is a modification of [29, Proposition 2.7].

Proposition 2.4. Let |- ||x be a functional acting on My such that for
all A\ >0 and all g,h € Ay such that g < h a.e. it holds ||g||x < ||h]x
and || Agllx < A|lgllx. Let v be a weight. Then

—1
(ess sup v(y))
y€(0,0)

Proof: Let f* € .. Then, by the properties of | - || x, one has
-1
(ess sup v(y))
y€(0,0)
—1
(ess sup v(y)>
y€(0,9)

—1
(ess sup v(y))
y€(0,0)

Taking the supremum over f € .#, we get the inequality “<” in (10).

ret |1fllas )

X

Il x < esssup f*(x)esssupv(y)
x>0 y€(0,z)

X

esssupv(y) esssup [ ()
y>0 z€(y,00)

X

Il £l aco (w)

X

Next, there exists g € .# such that g* = (ess SUPyc(0,0) v(y))_1 a.e. It
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is easy to observe that

—1
llgll Ace (v) = ess Sélp v(z) (ess sup v(y)) =1
>

y€(0,x)
. * —1
Hence, it holds % =llg*|x = H (ess SUDye(0,0) v(y)) HX and thus
the “>” inequality in (10) is satisfied. O

3. Embeddings

In this section we characterize certain embeddings A— J and A— K.
These results will later form a crucial step in the proof of the bilinear
Hardy inequality.

At first, observe that the embedding AY(w) — K> (p, 1) is charac-
terized easily by rephrasing the problem as an embedding A < T'.

Proposition 3.1. Let p, ¥, w be weights and 0 < o, 8,7 < oo. Then

w,oo))'

11A| A7 ()= cevso0 (o,) = €58 sup V(@) [l a7 w)—re (ox
x>
Proof: We have

Sup esssup Ul™)e)" ib(x) =esssupt(z) sup U (6"))"
e 0 ([Fgpw)t 0 e ([ ()

Q=

H
2=

—= eSS S(l)lp w(m)||IdHA'y(w)*>F“(WX[T,,OQ))' D
x>

The embeddings A < I have been fully characterized (see [7, 6]).
Similarly it can be dealt with the embedding A7 (w) — J**(p, 1), where
the problem reduces to a characterization the boundedness of the dual
Hardy operator on the cone of nonincreasing functions. Results regard-
ing the latter problem are also at our disposal, se e.g. [17].

Recall that if ¢, ¥, w are weights, then ®(¢) := fot o, U(t) := fot 1),
Qt) == fot w for t > 0. In the couple of lemmas below there will appear
a function o, defined by

1 o
(11) o(x) == sup (tff?(t)) T 2>0,
te(0,z)
where w is a weight and «,y € (0,00) are exponents specified later.
The function o is continuous and nondecreasing on (0,00), hence its
derivative ¢’ exists at almost every point x > 0 and, furthermore,
for all z > 0 it holds o(z) = [ o'(t)dt + o(0+), where o(0+) :=
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Yo

lim sup; o (tQ_% (t)) """ . This notation and properties of ¢ are used

in the lemmas without further comment.
The lemma below brings a characterization of the embedding A7 (w) <
JoB(p,9) for 0 < @ < B < 0o and a < 7 < o0.

Lemma 3.2. Let ¢, ¥, w be weights. Denote

(fooo (foz(g**)aﬂo) . P(x) da:) 7
(12) C(lg) = sup n .
gEM (fooo(g*)ww) 5

(i;b Let 0 < a <y < B <ooandl <~. Then Cuay =~ Anz) + Aqay,
where

T [% x y—a oo %3
1 B Yo

(13) A@zy:=supQ 7 (x) (/‘1)51#) +sup(/®wza9alww) </¢>

x>0 x>0

0 0 x
and
(14)
o
z @ o s a(y—1) Yo oo 1
_ et) .\ p(s) /y” w(y) T-e / 4

s | [ ([ Ay 2 () ] (]

(ii) Let 0 < a < B <y <ooand 1l <. Then Cuay ~ Aqs) + Agie)s
where

(15)

oo T _B_
Ags) = [ [or @ ( / @gw) et (@) dw]

0 0

y=8
B

[ e ]
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s ’ a(y=1) B(y=c)

Yly) . \ T \ae=8)
Xo/y ydy) ds) B(

<
~_
2
4
=
&
o
8
| S

" (y)
([ 2) ) 2

ooy (1) 8-a z O o(s) EICES) VB
X/(/ o dt> P(y) dy( 7 (s) ds) dx .
x x 0
(iii) Let 0 < a <y < B < oo and v < 1. Let o be given by (11). Then
C(lQ) ~ A(lS) —+ A(17), where

Y-
Yo
1

(17 Aan = sup V (i % dt)ﬂi(j)a(s) ds] (71/))‘13

S

Rlw

x

+ igyga%(w) [7(/5 ﬁ(j) dt) 71/)(8) ds] ’ .

(iv) Let 0 < @ < B <y < 1. Let o be given by (11). Then C(13) =
A(15) + A(lg) + A(19)7 where

(18) Aus) = 7(/(/ sot(j) dt>ﬂ“2(j)a(s)ds) 53
" (7 ) ) da:]
and ‘
19)  Auw = [/ (/ (/ @t(f) dt)gz/;(s) ds> &
.. y=p
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Proof: We have
1

fo hﬁ awa B)

(20) C(12) = sup sup
gEM hE M (

U hle) f3 (™ (1) p(t) didr) =
uﬂwmﬁ

1
(21) = sup 5=

R (fooo hiea e ) B

X

Q=

% sup (fo ®)%p ft h(z) dz dt)
geM (f )?

:Bo.

In step (20) we used duality of LP-spaces and (21) follows by Fubini
theorem and changing the order of the suprema.
To make the notation shorter, define the function u by

svlw(s)

0.
s 07

(22) u(s) :=

Now suppose that v > 1. Assume that u is integrable near the origin.
Then by Proposition 2.3 it holds

Yo

(fo (fo p(t f )dxdt)W & Qe 7 (s )w(s)ds) e

B—a

m%%wﬁﬂ“

(2 () [ h(z) do dt) =

+h81§; ﬂ 1
e (fomhm¢m) Fo Q7 (c0)

Y-«

oo { oo - = 2(a=1) 7
fo (fs %ft h(z)dz dt)ﬂY (fo u(y) dy) = y(s) ds)
+ sup o
hedt (foohﬁ%ad)agﬁ)ﬁia

=: By + B2 + Bs.



16 M. KREPELA

Consider now the case (i). It holds

—a
. v )“’AY

(fo (fg h(z)dz) 7= Q=7 (s)w(s) ds

)%“

(fooo ([Z°h(x)dz) e grla (s)
(fo hF—=a az/;u B)

(23) Bi~ sup
he 4

B 8 a
(oo

+ sup
he. +

1

o =ap(fore) T (fo)]
+i‘;%(j smemn) ™ ([

x

where (23) follows by Fubini theorem and (24) by Hardy inequality (see
[21, p. 3-4]). Next, Fubini theorem and LP-duality yield

I K e (NG

Therefore, we have

a 7 Y ’Y’Yifla r B %
BQ+B1zsup(Qa*W(oo)+/Qa*vw) (/@avj))
x>0
0

x

x y—a o %
Yo
+sg}3</@wza9azww) (/1/)) ~ Aasy.
0 T

Notice that this equivalence in fact does not involve the function w at
all, hence it holds for any u € .#,. The assumption on u will be used
only in the next part. By Fubini theorem, Bj is equal to

y(a—1) }Tx

0 (7 mte) 7 50 aea) ™ (7 a)a9) s as
B—a

(J5=newats) 7

sup
he A
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This expression is, by the dual version of [24, Theorem 1.1], equivalent
to

y—a
x s y(ax—1)

L l/ (J )™ (Joora) ™ e dSI (Y

s

+i£[7<j¢£)a>§¢@yhlﬁ(]u@%k)ti

which is, in turn, equivalent to A(14) by Proposition 2.3, since u is in-
tegrable at the origin. Finally, observe that if u is not integrable at the
origin, then necessarily both By = oo (see the proof sketch of Proposi-
tion 2.3) and A(14) = co. On the other hand, if A4y < oo, then u is
integrable at the origin. Hence, C(12) = By < oo holds if and only if
A(13) + A(14) < 00. Moreover, 0(12) ~ A(13) + A(14), all without any
additional assumptions on the weight w.

In case (ii), using an appropriate version of Hardy inequality and
LP-duality (cf. the analogous situation in (23), (24), and (25)), we prove
that By + By ~ A(y5). To estimate B3, we use [24, Theorem 1.2]. Then
we get

x x (y=a)

B ~ L]O(O/ (S/ ﬁ(j) dt> = (OS yg;y;‘/“((yy)) dy) = sg;;(f((SS)) ds) )
x (7w> o dx]

y=8
B

S B ad
«@

AT )

x T

y=8
z ’ ¥(B-1) ’ B
%l T~N=B 7
x( ]2 3’(3) as) T e g, .
Q' (s)
0

Using the assumption of integrability at the origin of u, one may show
then by integration by parts that the above expression is equivalent
to A(16). While handling the second term in the sum, one also needs to
use Proposition 2.1. Finally, the additional assumption on « is removed
in the same way as in case (i).
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Now we assume 0 < v < 1. From [6, Theorem 3.1] it follows that
BO = B1 + BQ + B4, where

Yo i

oo m o0 oo %Ot S oo e
[fo SUPg< i< (ﬁ) (fs %ft h(:L‘)d:tcdt)Y %fs h(z) dz ds

By := sup Fa
he.d o
i Gl
Furthermore,

oo _y oo p(t) foo ’yza ‘Y;aa
Jo o' (s) (fs e 7 h(z)da dt) ds
(26) By~ sup i
ne (fo hF—a (xwu 5) “
_ 1
o (0+) ( > ‘st) [ h(x dxds) “
+ sup s
he (fooo hﬁfﬂad)oﬁﬂ) Ba
v o
0570/ (4 i) 7 542 ) ™ as|
(27) = sup 5
he s (fO‘X’ hﬁ%¢%ﬁ) Fo
C 1
o5 (04) (J37 hia) fy 242 dsda)”
+ sup

B
h B
cM (Oooh/jfalﬁagﬁ) Bo

=: B5 + B@.

For (26) one uses integration by parts and (27) follows by Fubini theorem.
Next, by LP-duality, we get




BILINEAR WEIGHTED HARDY INEQUALITY FOR NONINCREASING FUNCTIONS 19

Consider now the case (iii). From the dual version of [24, Theorem 1.1]
it follows

y=—a
T y

e f([a) ] (1)

S

ea(f) ™ [7 () e dS] .

x x

Using this characterization, the expression of Bg from (28) and integrat-
ing by parts, one obtains Bs + Bg ~ A(17). Earlier (when considering
B >~ > 1) we proved that By + By ~ A(13)- The same is true here, as
the argument is correct even for 5 > v with 0 < v < 1. Hence, it follows
that C12y =~ By + Ba + Bs + Bs =~ A(13) + A(17) and the proof of this
part is complete.

We proceed with (iv). Estimating B; and Bs is done in the same way
as in (ii). It remains to show that Bs + Bs ~ A(1s) + A(19). By the dual
version of [24, Theorem 1.2], one has

o oz T ' ~ /3({\{—:;3 o Lﬁ 1B
T—a a(y— =

29) B~ [ T (] 220) ™ w0a) 7 (J2) 7 stwras

0 0 s T i
=8
FOF e NG NTF NS v

+ /(/(/ Qé;(a dt) P(s) ds) (/(J’/) o' (x)dz

0 x x 0 i

=:B7 + Bs.
Now, integration by parts provides

y=8
x B

(30) Apg)~ Brto 5o (04) [7( / ‘i(j) dt)‘m <7¢>”ﬁﬁ¢(x) dm]

0 0

Next, it holds
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thus, by Proposition 2.2, we get

(70 ()
5

a(y=5)
B

z 8
o

IED

0

Applying this in (30) (and considering (28)) we obtain
(31) B7 < Aasy < Br + Bs.

Furthermore, from Proposition 2.1 and integration by parts it follows
that Bg + Bg ~ A(19). Combining this estimate with (31) and (29), we
finally get Bs + Bg ~ Bg + Br + Bg ~ A1) + A(19), which we needed to
prove. O

The next lemma characterizes the embedding AY(w) — K8 (p,1))
for0<a<f<ooand a<vy<oo.

Lemma 3.3. Let ¢, ¥, w be weights. Denote

(fooo (fzoo(g**)a(p) P(x) dm)
(32) C(gg) = Sup

gct (= (g*)1w) 7

1
B

S

g) L@t Oh< a < Yy S ,8 < o0 (l’I’Ld 1 < - Then 0(32) ~ A(33) “+ A(34) —+
(35)» whnere

~

(33) Az = 22}3 |:7</S gp) " Qv (s)w(s) ds] U (x)

+i1§39_%(w) [/z(/zga)gw(s) ds] ’ ,
0
60 Aw=ap [7 ([ou) e

T s

s

g wly) |\ T -
X 7 d dS UB(x N
(!m@y> o
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and

@ A= V ()

1
z 1

¥(s) ds:| B (/ SS;;L,‘)((SS)) ds) "

0

B
a

911) Let (}JL< a<f<y<ooandl <ry. Then Crgy ~ Awse) + Ay +
(38)» wnere

. Aosey 1= [7(?(/5 ‘P)WTXQ“%V(S)W(S) ds)m

T x

a(y=1) B(y—o) VB

><</ ywlf”(yy) dy> o ds> a”m\lmﬁﬂ(x)w(x)dx] :

y=8

X( z/ </>t(j) dt)%@)(j S(;;U,J((SS)) ds> LIS dx] = |

(i) Let 0 < a <y < B < o0 and v < 1. Let o be given by (11). Then
0(32) ~ A(gg) + A(gg) + A(40), where

7(/00%015(;)“)“ 305(5) U(S)ds] UH ()

(39) A(gg) = sup
z>0



22 M. KREPELA

and

(40) Agaoy = sup o5 () [70(7 ‘Dt(of) dt) () ds]

x S

=

(iv) Let 0 < a < f < v < 1. Let o be given by (11). Then C39) ~
A@e) + A(ar) + Agaz), where

e [Z(]O (70 @ dt>ﬂ¢s@"(s) ds)wq“ﬁf () (a) dx] )
and
" e [

® 4 B
) (/ %dy) " h(@) 070 (2) dx] ‘

Proof: The proof is to a great extent analogous to that of Lemma 3.2

but there are some additional steps which we show below.
Let u be defined by (22). If 1 > v, LP-duality and Proposition 2.3
gives

1 (I @) e i he) deat)

5= Sup .
)Ta e (Joo(g*)rw) ™

Con= o (

B o
X 1 B—a o) a—
Jo o hFaqpa=F

T
Yo

(f0°° (fos @(t) [T h(z)dz dt) e gaty ()w(s) ds)
o (s hﬂﬁuwaaﬁ)ﬁﬁ“

(Js= (0) i hia) do ) *

hed B _a \ Ba 1
T(hEntE et ) 7 ad o)

oo
oo oo %a s) rs s a(vy=1) \ v
S (e () de de) T 2 () de(fy uly) dy) e ds)
(43)  + sup — :

he # 8 o
(fooohﬁ_"d}”_ﬁ)

Ba
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If w is integrable near the origin, then the term (43) is equivalent to

(3 ey )

(fy=nrswasa) 7

sup
he#

(i) Suppose that « is integrable near the origin. As in Lemma 3.2(i),
using Hardy inequality, [24, Theorem 1.1] and the dual version of it one
shows that C(3g) =~ A(33) + B1 + A(35), where

e J([0a)™ () T e] v

Integration by parts gives By + Ba >~ A(34) with

x 1

o[ 0) ([ o) oo

0

Using the proof idea of [13, Lemma 2.2] (a similar problem was also
treated in [19, Proposition 3.2]), one checks that By < By + A(ss). This
implies that By + A(35) ~ A(34) + A(35), hence C(32) ~ A(33) + A(34) +
A(3s). Finally, we make the following observation, same as in Lemma 3.2.
If u is not integrable near the origin, then C(32) = oo (see (43)) and
A5y = oo. Hence, the equivalence C(3p) >~ A(z3) + B1 + A(ss) holds
even without additional assumptions on u.

(ii) Analogously to (i) we assume that u is integrable near the origin
and get C(32) ~ A(36) + B3 + A(sg), where

S

)™ ([t aete) ™

0 x s

B3 :=

=58

VB
X WTF (z)¢(x) dx:| .
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By integration by parts it follows that Bz + By ~ A(37), where

Bim [ /oo ( 7 o ) ”( / o) Ty e dx]
0 x 0

Following the idea of [14, Theorem 3.1] (cf. [19, Proposition 3.3]) one
shows that By < B3 + A(zg). Then Bz + A(3g) ~ A(z7) + A(ss) and thus
C32) =~ Ae) + Air) + Agzg). The final dropping of the integrability
assumption on w is performed in the same way as in (i).

In the remaining part of the proof we will assume that v € (0, 1],
which is the case in (iii) and (iv).

y=8
B

(iii) Using the same ideas as in Lemma 3.2(iii), one shows that C3z) ~
A(33) + Bs + 14(40)7 where

Bs := il;% [?(70@)5) dt) ﬁU'(s) ds] s (z).

T s

Integration by parts yields

z>0
x

oo 1
Bs + sup (/ % dt> g%(m)@%(m) ~ A(gg),

hence Bs S A(3g). Moreover, it also holds

1

sup(/ %t) dt) "o (1) UF (2) < Bs + Aoy,

which is proved by using the same argument from [13] as in (i). Combin-
ing the obtained relations, we conclude that C(32) =~ A(33)+A(39)+A40)-

(iv) In an analogy to Lemma 3.2(iv) it is proved that C(39) ~ A(36) +
Bg + A(s2), where

oo

e | (Jr20) ™ rea) o]

T E]
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For any x > 0, integration by parts gives

(20 a) ™22 saex (22 ) “oia

x B x S

Hence, one gets

[T T TA-B) Bli—a) %ﬁ
a(y— Y-«
A1y ~ Bs + /</ Ws(j) ds) oa(=F) (x)\IJ’Y 7 (z)(z) dm]
LO T
r =8
v a(’v B) ’ QE:YY (ﬁyi B o
~ Bg + /(/ SOS(S ) (/0’) W=7 (z)yY(x) de
LO T 0
=8
—a yyan a(’Y B) 8 7
+07"v7&(0+) /(/ ) U5 (z)y(x) dz
0 T
=: B¢ + B7 + Bs.

Using the same argument as in (ii) (based on [14]), we can show that

B7 < Bs + A2). Next, since the function s — "’S(j) is nonincreasing, we
obtain

a(y=8) ’
mwﬂsﬁgm%m - B [oo oo('s)sgggxr
/de) v f<>w<>d] < O/(z/wsad)wud

by using the characterization of the embedding A < A [7, Theorem 3.1].
Thus, since

0/(/“0d) b(@)d

we get the inequality Bg < A(s2). Summarizing, we obtained A4y +
A(a2) = Bs + A(az), hence C(32) ~ A(36) + A(a1) + Aa2) and the proof is
completed. O

o o (04) S Away,
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Although a < v was assumed in the above statements, the proof
method is not limited to this case. In fact, only the assumption a < 3 is
crucial for the duality approach. We may hence consider the case 0 < v <
a < 8 < co and characterize the embedding AY(w) < J%# (i, 1)) using
the same technique as before. The proof becomes actually considerably
simpler in this case.

Proposition 3.4. Let p, 1, w be weights.
(i) Let 1 <y <a < B <oo. Then Cray >~ Aa) + Aws), where

T

s Y ot @a
(44) Agagy = sup < 0/ @§w> +i1;13 ( / w) " (x)

and

(45) Agas) = sup (7(/t ‘PS(S)

m\H

S

W(t) dt) ' ( / g ;U/J((tt)) dt) v

0

as)

(iih) Let 0 <y <1landy < a < f <oo. Then Cuay ~ Awua) + Aue)s
where

1
B

(46) Aue) = sup (?( / @ ds) gw(t) dt) Q77 (2).

T T

Proof: Just as in (20) and (21), one has

1
C12) = sup .
he# ( ) Ba
1
X sup (fo )% ft £$ dxdt) _
:

9t (o~ (g7)w)
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Consider the case (i). Then

(47) Be sup sup o POSLT h(s)dsdt)® 0% (@)
T heuy z>0 ( .

—a

e yats)

1
P

(S 22 17 (s) dsdt) (Jy v wyo™" (at)”
+ sup sup o
hed y x>0 foo Bo

B a
o hB—«a wa—[i>

(fox h(I’) - Q_% ()

(48) ~ sup sup .
R (e

([ h) o= ()27 ()

+ sup sup =
x>0 he s 1 (fooo ha/%al/,aia) Bo
1 : %
(S ns) 2 22 atds) ™ (Jy e wt@ " (at)”
+sup sup
x>0 he A

(fo hﬁ aqpa—p ﬂ) °
(49) = Awg) + Aus)-

Step (47) follows by [7, Theorem 4.1(i)], step (48) by Fubini theorem
and changing the order of the suprema, and (49) is due to LP-duality.

Case (ii) is proved analogously, using [7, Theorem 4.1(ii)] to esti-
mate B. O

Proving an analogous proposition concerning the embedding A7 (w) <
KB (p,1),0 <y <a< B < oo, is left to an interested reader.

4. Bilinear Hardy inequality

At this point we have all the preliminary results needed to character-
ize the validity of the Hardy-type inequality (4) or, in other words, to
provide equivalent estimates on C(;). The form of the results depends
on the values of the exponents pi, ps, and ¢ and their mutual relation.
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In fact, in this three-parameter setting, 23 different cases are possible
and need separate treatment. For a better orientation, we present all
the possible settings in the table below with references to the theorem in
which each particular case is presented. Note that in some cases the roles
of p; and py may be switched in the corresponding theorem, compared
with the entry in the table.

Configuration of the exponents Theorem
0<prps<1 q < oo 4.2(i)
g =00 4.4(i)
q < oo 4.1(ii)
0<p1 <1<p2 p2 < 00 4.4(ii)
q=00
0<p1,p2<yq p2 = 0 4.4(iii)
q < oo 4.1(i)
1< p1,po Pp1,p2 <00 4.4(iv)
q =00 p1 < p2 =00 4.4(v)
p1 = p2 = 00 4.4(vi)
p2 <1 4.2(iii)
0<p1 <1 1< pa <oo 4.2(ii)
0<p1<g<p2 P2 = 00 4.5(ii)
1< p2 < 00 4.1(iii)
p2 = 00 4.5(1)
1/g>1 1 4.
0<prps <1 /a=>1/p1+1/p2 3(V.)
1/g>1/p1 + 1/p2 4.3(vi)
> (i
<00 1/q=>1/p1+1/p2 | 4.3(iii)
0<p2<1<m 1/g>1/p1+1/p2 | 4.3(iv)
0 <gq<p1,p2 p1 =00 4.5(iv)
1/¢>1 1 4.3(i
P pa <00 1/q,l/pﬁrl/pz - 3(.1')
> :
1< propo /a>1/p1+1/p2 ('1.1.)
p1 <p2 =00 4.5(iii)
P1=p2 =0 4.5(v)

Let us now present and prove the results. We start with the configu-
rations in which only the “classical” spaces appear, i.e. those where all

the exponents are finite. First such case is 1 < p; < ¢ < 0.
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Theorem 4.1. Let vy, va, w be weights.

(i) Let 1 < p1,p2 < q. Then Cqy ~ A(so) + Aéézl) + A?éll) + A(s2), where

1 1

(50) Agsoy = fugwi(t)Vf“ OV, ™2 (t),
>

- [t F s o
o agy= s ([Sa) v @[ e)
0<t<z<oo / B} Vi (s)

and

oo t 1 t

L Pl o7 ;D/ i/
A(s2) 1= sup /ng) ds ! /8 11/}1(8) ds )" /S 21,]2(8) ds ).
>0\S 8 S Vi(s) ) V2 (s)

(ii) Let 0 <pa <1 <p1 <q. Then Cyy ~ Aoy + A25"22) + A?éll) + A(s3),

where

x

(52) Al = sup ( / “’(S)dsfvipli(a;)tvj”lf(t)

o<t<z<oco s

and

oo t N

% P} I _1
(53) A(s3) 1= sup </ wgi) ds) </ 5 1:,}1(8) ds> LV, P2 (1).
t>0 S ) Vit (s)

t

(iii) Let 1 < p1 < ¢ < pa < 0. Define ry = %. Then C(1y =~
A(54) + A(55) + A(56), where

T 1
T T2

G0 ey sy @ ([ WEOur o)

0

(55) A(SS):—ii%m_é(x)[/z(/zw;:)ds);;;”(/t%ds>;i dtr,

t

(=]
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and

¥ Pl =
(56) A(se):=sup (/ vl(j)s : dS) "
@>0 0 Vl ! (S)

Proof: Since 1 < p; < ¢ < 00, by [7, Theorem 4.1(i)], we get

1
*k a -+ —
Cor= sw s [6)0) T @lali,

gEAP2 (vg) >0

) 1 z 1
**(s))%w(s a sP1yq(s vy _
+ sup sup(/wds) (/ = ( )d5> 1”9”]\?}2(112)
gEAP2 (v2) @>0 \J s 0 Vit(s)
@ 1
7% *%\q a —1
=supV; (z) sup (g)w Hg”AP2(v2)
>0 gEAP2 (vg) 2
[ hoi(s) ) i :
sP1yq (s 1 q _
soup( [ L a) T (/ 0 45) e
z>0 " lel(s) gEAP2 (vg)

1

= sup Vi " (@)][1d][ P2 (v2) T (wx o))

x>0 s

z ’ 1
sPru1(s) o]
+Sup</ VP )ds Al APz (0) P (sr(s)5= 0 x 00 o0 ()
0 1

=: B1 + BQ‘

Now we separate the different cases. In (i), [7, Theorem 4.1(i)] yields
Bi+ By = Aso) + Aty + ARy + As)- In (i), [7, Theorem 4.1(ii)]
gives that By ~ A(50) + A%L;é) and By ~ Ai;)ll) + A(s3). Finally, in (iii),
Proposition 2.3 yields By + By =~ A5y + A(ss) + A(se)- O

Now we consider the case 0 <p; <1, p1 <gq.
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Theorem 4.2. Let vy, va, w be weights.

(i) Let 0 < p1,p2 <1 and 0 < p1,p2 < q. Then C(1y >~ Aoy + A(lé) +

A?él A1527) + A 57), where
oo o s
(57) Ay =, _SUP, ( / v dS) W (B, " (@)
t

(i) Let 0 < p1 <1 < py < o0 and p1 < q < p2. Then C(1y =~ Ay +
A(55) + A(58) + A(59 where

(58)  Ags) —Supach []o( / i )Zi ngt)%_gg(t)dtr

and

r

- (T w(s Bs w(t
() Ao = supati ™ () [/ (a5
T t

(iii) Let 0 < p1 < q<pz2 < 1. Then Cy ~ Asay + Asy + Ageo), where
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Proof: Similarly as in Theorem 4.1, by [7, Theorem 4.1(ii)] (since 0 <
p1 <1, p1 < ¢ < o) we obtain

T

1
sk 1 -
Cor= sw su( [l6)0) W @lal,

gEAP2 (vy) >0
0

o0 1
**(s))w(s 9 -1 _
+ sup sup( / wds) VP @llgll s o

gEAP2 (vy) >0 s
T

1
p1

=supV; (@) [1d[[AP2 (v3) T4 (w0 2))

.
1
+ ilifo) zVy (x)”IdHAm(vz)qrq(s.qw(s)squ[z’m)(S))
=: B1 + Bs.

In (i), by [7, Theorem 4.1(ii)], we have By + By >~ A(50) —|—A(52) +A(52) +
A%57) + A?517) In (ii) it is By + By ~ A(54) —+ A(55) + A(58) =+ A(59) by
Proposition 2.3 and finally in (iii) one gets By +Ba >~ A(54)+A(58)+A60)
by [6, Theorem 3.1]. O

We continue with the case 0 < ¢ < p1,p2 < co. This case is usually
the most complicated one, especially if p1,p2 < 1. Recall that if ¢ €
(0,1) U (1,00), then ¢ := while if ¢ = 1, then ¢’

ql’

Theorem 4.3. Let vy, vo, w be weights. Let 0 < q¢ < p1,p2 < 0o. Define
ri:= 2L e {1,2}, and R := pLpg

pi—q’ P1P2—P1g—P2q’
(i) Let 1 < py,pe and * . < p—l + —. Then Cyy ~ A(61) —|—A(61) —|—A(62) +
2,1 1,2 2,1 1,2
A( )—I—A( )—I—A( )—I—A( )+A(64), where
R A e
(61) Azgl) = sgg( WriwV, pi) v; P (x),

T () \ o
(/)™
5 Vi'(t)



(i) Let 1 < py,pz and % > 1
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1
R T O R
z>0 ta 54 Vpi ¢

0

s o Vi)

=
QL.
I
VE
45
lg—|
\8
VR
w
\8
~+| &
RIPES
Q|
=
(oW
5
N———
Sk
w | €
[
S|
<
OQ
o~
< |3
e
~
—~
o~
=
o,
~
N———
SN
NS
o
)
| I
kﬂ"—‘

x , .

Pioy. =

x (/t ;l(t) dt>p'.
o Vi'(®)

1,2 2,1 1,2
Then Cqy = Ags) + Ags) T Agge) +

1
p1 P2’

A?élﬁ) + A%éi) + A% where

(65)

(67)”

o w . "
5 TN e
/(/ijw\/_ pj)’” j
J
0 0

Azgs) =

[y ey
xo/(/ “;(f) dt)’d)g(?(()/y‘;’uély))dy) 45V () da

i
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and
7T oowt 1% s P;vi 1% p-rju
(67) Al = /(/(/ tz(q)dt) %(/y . ®) 4 ) ds) ;
ARG 0 Vit(y)
w [ o o
(/ ut)g) dt) u;gﬁ) (/y gz(y) 4 ) .
J 0 Vit(y)
z ri(pj—1) r
x(/ S0(8) 45} T e
5 Vs
1,2 2,1
(iii) Let p2 < 1 < p1 and % < p% + p%' Then C(yy ~ A(m) + A(m)

A:(Léé) + A:(Léé) + Aes), where

w(t P2 w(s w2 o
(68) Ags) = sup /(/#dt) ¥ sup ¥V, P(y)| Vi P (x)
z>0 ) ) ST ye(o,s)
_ BN
oo S 1 oy 1 1
wop | [ ([ 50a) “(s)w(s)ds] 2V, 7 (@)
x>0

+ sup / (7 u;g) dt)gw(s) sup y”VQ;g(y)dS]

z>0

X
VR
—

V)
=|%
=~ <
—~ | =
& %
N

o,

)
~

L8

5
=

zVy " (x).

X
VS
\m

N

3
T &
— | =
NS

=

o,

<
N———
i
(oW
V2]
| I
2
|
‘H




(iv )Letp2<1<p1and7>pfl+
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1,2 2,1
p%. Then C(y) ~ A(6 A(65

A%%) + Ae), where

o z ro
w(t P2 w(s e P1-72
Aeo) = /(/( (q) dt> (q) sup y"?V, 2 (y)dS)
2N\ t ST ye(0,9)

==

==

y€(0,z)

/w(t) dt>HV1_7() ((s)ds sup g™V, (y)]

P1

[T w7 ws) - EE
({5 a)™ 5 s v P s
0

0 (t) r2 ( ) z v ( ) ro(p1—1) R
P2 1 P1—T2
X(/w dt) ne) sup y"2V, p2( )(/S 1/)1 i ds) dz
lel(s)

J 2 29 ye(0,0) )
oo oo oo l S p/ 7‘7} 7‘77‘
n /(/(/ Ut’gz) dt) P1 wg? (/y 1:01/11(11) dy> » ds) P2—71
0 x s s 0 Vl ! (y)

“i
IR

1
o0 1L z ’ - r
X w(s) as )" w(z) s"1v (5) ds )™ su RV”_IP2 (y) dz
qu I2‘1 pll p y 2 y .
5 (s) y€(0,2)

x

(v) Let p1,p2 <1 and < 1 -+ —. Then Cqy =~ A(61) +A(61) +A(70) +

13
A(70) + A(71) + A(71) + A(72) + A(72), where

/(/ w(t) dt)p’i w(s) sup ym‘/iipiz‘(y) ds
) L4 87 ye(o,s)

s

(70) A<7j0 =sup
>0
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j =
Pz P%f w(s) —% J
(71) A(71) = sup:pV ST‘/J (s)ds ’

and

1
~5 T w _Ti i
( ) A’Z72) —SL;[;;L‘Vi pi(x) [/(/ UZQ(Z) dt)p] w(j) sup y JV pj (y) dS] ‘

2
570 ye(o,s)

(vi) Let p1,p2 <1 and l > i Jri. Then Cyy ~ A(65) +A(65 +A(73) +

2,1
Ay + A(74) + A(74) + A(75) + A(75), where

(73)

L/“(/“(

r. rj

L)) ey )

'S y€(0,s)
r‘—Pj 7-j N %
P4 Ty
(/ ) r o) sup yJV Y(y)dsV, " (z)dz| ,
0 s 57 ye(0,5)
(74)
o oo s T . Tj
i, w(t) v w(s) e e
A(7J4) [/(/(/ m d) v V] PJ(S)dS
0 x x
] . rj—p; - y %
Pj T p; . — N
< (/ wt(q)‘“> C )y T ) ds sup *V5 T () da|
‘ r oz s y€(0,z)
and
(75)

AE%JE)) = [

2 “
€T y€(0,x) te(0,x)

1
T 77] _Ti T R
X(/ e dt>pj U0 sup yov, () sup V5 (t)dm] .
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Proof: Consider first the case 1 < p;. Assume that the function wu,
defined by

u1 () :=/81}71(8)ds, x>0,

S VFi(s)

is integrable near the origin. Then, applying Proposition 2.3, we obtain

(76)
1
_ri =y
(5 G * v @ as)
C(1)~ sup 1
i (fo mv?)
v . =
foo (foo ((g** (s8)%w(s) dS)Tl x spl'ul (s) ds a’ pl’ul(z) dx !
0 x sq 0 Pl( ) P1 ()
+ sup
geM (fo P2v2) %

t o U507 ﬁmT<>
gEM (fooo(g*)pzm)@

=:B1 + B2 + Bs.

(i) We use Lemma 3.2(i) with the setting o := ¢, 8 := r1, v := pa,

-
p=w, P(t) =V ? (t)vi(t), w := ve, we obtain the characterization
of By, and Proposition 2.3 to get the characterization of B3. We obtain
the equivalence

2,1
B1+ Bs ~ By + A(Gz) + A(63),

where

F ot \T r2 N7y L
B, ::s,u1>(/W71\/1 “v1> 1V2 +Sup</W‘l‘/2 “w) 2V1 Pl ().
>0 >0
0

Integration by parts yields

AL+ A% = Biswp W (2)V, P (), 72 (x).

z>0
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Moreover, the following series of inequalities holds true.

1 1

sup Wi (2)V, ™" (2)V, 7 (x)

z>0

1

(st wi @uton, ™ @ar)

~ sup

seu (s (g ()r2va (1) dt) 7=
(e “Wm()@W{@win

< sup 1

geM (IO P2U2( )dt)g

1
1 T

<fooo (fot(g**)qw) P1 (g**(t))‘%u(t)Vﬁ (t )dt) 1
< sup :
e (Jo= (g~ ())r2va(t) dt) P2

~ By + Bs.

The first step is due to the characterization of A < A [7, Theorem 3.1(ii)]
and the last equivalence follows by integration by parts. Notice that the
resulting relation

1 1

(77) sup W4 (2)V, ** (z)V, * (z) < By + Bs
x>0

is established also if we consider the settings of cases (iii) and (v), i.e. if
p1 < 1or py <1 and the other relations between the parameters remain
unchanged. To continue, combining the obtained estimates we get

2 2,1 2,1 2,1
(78) By + B3 ~ A(e1) + A1) + Az T Ales)

To deal with B, we use Lemma 3.3(i), setting o := ¢, 8 := r1, v := pa,
/ Tf} , o
p(t) = 22, () = (fy sPon()V P s)ds) T rhen (VT (D), w =
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. We obtain

1,2
A(az) + Aggy

1 s ’ 1 ’ 1

e 0/ </ wt(qt) dt>q<0/ t;zl((;) dt)”;ﬁl((;) " v, 7 (@)
o () ([ )

We now handle the third term in the sum by integration by parts and
the fourth one in the same way as an analogous term in the proof of

Lemma 3.3(i), concluding that By ~ A(62) + A(63) + A164) + A?éi). To
gether we get

1,2 2,1
(19) Cay=Ag) + A((n) +A (62) + A(sz) + A(es) +A (63) + A(64) + Agays

still assuming the integrability of u; near the origin. Now we perform
the usual final argument to drop the assumption on u;. If u; is not
integrable near the origin, then both A1622) = 00 and By = oo, the latter
by Proposition 2.3. Since By = oo, it also holds C(;) = oco. Then the
both sides of (79) are infinite, hence the equivalence holds trivially. The
same argument may be repeated in cases (ii)—(iv), only replacing A%ég)

with another appropriate condition, when needed.

(ii) Here we use Lemmas 3.2(ii) and 3.3(ii) again, with the same re-
spective settings of parameters as in the case (i), to estimate By and Bs.
Besides that, we also make use of Proposition 2.3 to estimate Bs. For
B1 and B3 we so obtain

2,1 2,1
Bi + B3 ~ A(65) + A(65 A(GS)

In order to get this equivalence, we in fact also need to prove the in-
equality
T r %

Vi o ON\mEE . n .
/(/Wm wV; pl) wer (p)w(z)Vy P (x)Vy P2 () de| S Bi+Bs.
0

It is done by reusing the argument used to establish (77) (notice the
supremal condition from (77) being replaced by an integral condition
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this time, this is due to the different setting of parameters). The above
inequality is also true in case (iv). Now we continue with By. We get

By~ [?(70(/ % dt) ‘ V, 7 (s)ua(s) ds) e wg)

x

%) Yy w(t) ;% oy T SP,IUI(S) T%}(lp—l;;) %
X /(/ T dt) Vo, 7 (y)va(y) dy( A B ds) dx
T 0

x

1 s

Gy g

E]

==

s

xwiqx)/z</zll;gt) dt)‘zi(/ y";l;l((z) dy>;}s"’//1:/jl((5)) ds VQ’"liil?ﬂ () dx]
1Y 1 (s

0 s 0
+ B5 + BG7
where
[0 )5 wls) ([ g Nk )7
Bs = /(/ (/ 124 dt> 2 (/ o dy) ds)
0 S Vs 5 s Va2 (y)
T a2y b
a7
x(/s :1(3) ds) Py :,)l(m) dx
0 Vit(s) Vit(z)
and
TOT(Tww N* ([ vhum  \@ ), w2
Bg := /(/(/ 2 dt) (/ i dy) = ds)
0 T s 0 ‘/1 ! (y) Vl ! (S)
7 = =
(]3¢ ()2
) 5 Vit Vit(z)
T r1(p2—1) R

x(/ spépl,&(s) ds) T e
Vo2 (s)

0

Using integration by parts together with Proposition 2.1, one shows that

the first two terms in By are equivalent to A:(Lézﬁ), hence By ~ Aéé%) +
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Bs+ Bg. Similarly we prove that By ~ A?élﬂ. Next, again by integration
by parts we get

e’}

o ry z , r1P2
Fleeey yPro1(y) Pi(p2—71)
Ay~ Bt [/ ()™ ([ a
0 1 (Y)

x 0

x p/ pa(r1—1) %
2 po—1
(/JQ T | < Be+ B,
VY2 (s)

0

hence Bs + Bg ~ A(67) + A2 !

(67)
A?617) Altogether, it holds

and therefore also By ~ A(66) —+ A3627

2,1
Ca)~ B1+ By + Bs A(65) + A(65) + A(GG) + A(66) + A(67) + A(67)

Finally, the assumption of integrability of u; is removed in a similar way
as in (i).

(iii) Using Lemmas 3.2(iii) and 3.3(iii) with the same setting as in (i)
and then repeating the argument from (i) to show (78), we get

1,2 2,1 1,2 1,2
C(l) ~ By + By + B3 ~ A(Gl) A(Gl) A( 62) + A(GS) + A(68)

Then we prove that this statement holds also if u; is not integrable near
the origin, by imitating the argument from (i).

(iv) Here we use Lemmas 3.2(iv) and 3.3(iv) to get the estimate of
By + Bs 4+ B3. Further adjustments of the conditions are made using the
corresponding arguments from (ii). We omit the details.

Now suppose that p; < 1, which is the case in (v) and (vi). For
i € {1,2} denote

oi(z) = Oiug y”‘/fﬁ(y), x> 0.
ysx
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Using [6, Theorem 3.1] and integration by parts, we obtain
(80) Cny~Bi1+ Bs

1

EES o ** "
( I's ( Jo @@ dt) @) @) o () dw>

+ sup Y
geM (f() p2v2)
L o
~ Bi + B3 + sup .
gt (J5=(g*)Pews) 72
1 . :
L o) (J5 e 4
sup
gEM (J5 (g ’721’2)i

=: B1 + B3 + B7 + Bs.

(v) We use Lemma 3.2(iii), setting a := ¢, 8 := r1, ¥ := Do, ¢ :=

N

w, 1 =V, “wy, w:= vy, to obtain estimates of By; Lemma 3.3(iii),
setting a := ¢, f := 11, 7 = D2, p(t) = wt(qt)7 = o7, w = vg, tO

estimate Br; and [6, Theorem 3.1] to estimate Bs and Bg. Using the
obtained expressions in (80) and applying also the argument used in (i)
to show (77), we get

(81)  Cay =~ Al + A%)y + Bo+ Bio+ Bu+ Biz + Bis + Al + Az,

where

By = supo? (x) r(/ w(t) dt)rqlvqul(s)m(s)ds] ,

pmciton ([ 50 ) 22 Broa]

x 1o s o ry >
Bi1 = sg};(/ai) ! [/(/ wt(qt) dt> ! Vy, @ (s)va(s) ds] ,
0 T T
1
x x r1 1 _L
By = Sl;}()) /(/ U;(f) dt) ’ o1(s)ds Vy (),
0 s

Bus = sup o (z) 7(7 “t’g) dt) 0 o (s) ds
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By integration by parts one verifies the following inequalities; By <

AZL Buo+ B S AR, B S Ajzg)s and Big S Al From these
estimates and (81) it follows
2,1 2,1 2,1
C(l) SA 61) + A(Gl) + A(70) + A(70 A<71) + A (71) + A(72) + A(72

Next, integration by parts yields the followmg A(m) Big + Blg,
A7) S Bio + Bu + Bis, Am) S Bo+ A%, and A%y < Bis + A3
Using all these inequalities in (81), we get

A(Gl) +A (61) + A(?o) +A (70) + A(m +A (71) + A:722) + A(72) Cy-

(71)’ (72)°

The proof of this part is then completed.

(vi) Analogously to the case (v) we use Lemma 3.2(iv) to estimate By,
Lemma 3.3(iv) to estimate By, and [6, Theorem 3.1] to get an estimate
of B3y and Bg. Inserting these expressions into (80) and merging some
of them by integration by parts (similarly to the case (ii)), we obtain

(82) Cry =~ Ags) + AQsy + Ay + Ay + Apsy + Bio + Bia + Buis + Bu,

where
oo oo s 1 - T1
¢ L p2—71
Bis:= /(/ (/ dt) Vi 7 (s)vi(s) ds)
0 x x

1
[ee] K] 1 R

2 ([P oo e

&
i
0\8

Big:=

0\8

( / ) n o (3)dsVy 72 () do

0 s

Performing integration by parts, one gets Big < A( 74y By S A(é),

1,2
Bl5 S A(74), and Blﬁ S A(73)

the “B-parts” in (82), and so we obtain

We apply these inequalities to replace

1,2 2,1
C(l) ~ A (65) + A(es) + A(73) + A(73 + A<74) + A (74) + A(75) + A(75
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Now observe that

w(t

(83) A%, = Buo + o7 (04) ]o Y ar)

1
'V, 72 (o0)

[7(/95 wt(qt ) %Vz”}:izp2 (z)v2(w) dl’] '
< Bis+ Bro+o]" (04) V( ] 7"”t(qt) dt) %VQWI%%PZ (@)v2(x) dm] '

(84) < Bis + Bio

a{}l(o+)[7(/$ w()

(85) 5316 + B10.

-

r2

2T e N5 _p2
dt) (/V;rp2 v2> VP2 (2)va(z) de

Indeed, the estimates (83) and (85) follow by integration by parts, while
(84) is granted by Proposition 2.2. We proved that A(73) < Bis + Bw

By 51mllar means it is shown that A(74) < Big + Bis + Big and A

(73) Using these three estimates together with (82), we get

2,1 2,1 2,1 2,1
A(65) + Ags) T A(73) + Az A(74) + Ay + A(75) + Az S Cay-
This completes case (vi) and thus the whole proof. O
The next part deals with the “weak cases”, i.e. such configurations of

D1, P2, ¢ that at least one of these exponents is infinite. The following
theorem covers the case ¢ = oo

Theorem 4.4. Let vy, va, w be weights. Let ¢ = oo
(i) Let 0 < p1,p2 < 1. Then C(qy ~ A(ge), where

_a _a
wiw) sup sV; "' (s) sup tV, "2 (¢).

2
2 se(0.2) te(0,)

(86) A(se) = esssup
z>0

(ii) Let 0 <py <1< py <oo. Then Cpy ~ Ay, where

1
w(;:) sup sV pl ( tp2_1 1 pQ()dt)pz.
x s€(0,x)

(87) A(sry := esssup
z>0
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(iii) Let 0 < p1 <1 < py =o00. Then Cqy >~ A(sg), where

--L dt
(88) A(gg) 1= ess sup w(;v) sup sV, ™! (5)/ :
>0 7 se(0,x) €SS SUPy, e (0,¢) Uz(y)

(iv) Let 1 < p1,p2 < 0o. Then C(1) =~ A(sg), where

x 1 z 1
(89) A(sg) :=esssup w(z) (/ 5”/1711/11717/1 (s) ds)p1 (/ tp1271V217p2 (t) dt)p2 .
>0
0 0

x2

(v) Let 1 < p1 < pa =o00. Then C(yy =~ Agp), where

T 1w
(90)  Ago) := ess sup% (/ Sp’l—lvll—p/l (s) ds) ] / dt
@>0
0 0

essSup, ¢ g4 v2(y)

(vi) Let p1 = p2 = co. Then Cy = A(g1), where

x x

(91)  A(o1) :=esssup w(;n) / ds / dt .
>0 T2 ) eSSSUDyc (o) v1(y) ) eSS5UPye(0,) va(y)

Proof: We have

esssup,q f*(2) g™ (z)w(x)

C(1) = sup sup

tet ger |IFlIar1 o) ll9llar2 v)
() dt Fgt(t)dt
= esssup w(;r) sup fo / () sup 09 ( )
>0 x fe# Hf”Apl(vl) gEM HQHAP2(v2)

R ()
—NY e QA1 1)1 (x0,00) 1T A2 (1) 21 (0. )

Now, in all the cases we simply use the characterizations of the embed-
ding AP(v) < A' (x(0,.)) provided by [7, Theorem 3.1] and Proposi-
tion 2.4. O

Finally, we complete the list with the last remaining case in which
0<g<ooand 0<ps <p; =o0.

Theorem 4.5. Let v1, v, w be weights. Let p1 = 0o and 0 < q¢ < 0.
(i) Let 1 < py < q. Then Cqy =~ Agay + A(gz), where

1

x s q q s
(92) Az = sup / w(s) ( / d > at| v, 72 (x)
=>0 |/ 54 ) eSS SUP,, ¢ (0,1 v1(y)
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and
1

< y q T, % Pl 2
(93) Aoz, = sup /wgs) (/ dt ) da (/ s 21/12(3) dg)z)z.
£>0 24 ) €SS SUPy¢ (0,1) v1(y) J ‘/-2172 ()

x

(ii) Let 0 < ps <1 and pa < q. Then C(1y =~ A(g) + A(gay, where

T w(s / dt 1
(94) A(gyy :=sup / g ) (/ ) de
>0 524 J esssuDPye (o, v1(y)

T

1

N N

:EVQ_ P2 (x).

(iii) Let 1 < py <00 and 0 < q < pa. Then C(1) =~ A(gs) + Ags), where

s ro

e [07(0/1 wij) (0/ €8s Supyj(i,t) v1(y) ) q dt) ;

" . v
X w(w)(/ dt ) Vy, P2 (x)dx
x4 J esSSUDye (o, v1(y)

s )

o0 oo q ro
(96) Aog):= / / / d dat) "
524 essSuP, ¢ (g,¢) V1(Y)
0

T

and

N ) ([ )

(iv) Let 0 < g < p2 < 1. Then C(y) =~ Ags) + A(gr), where

)

o

1
)
dx] .

T2

(97) A 7 7 / g "
(97) = 2 524 esssupye(o’t)vl(y)

x

/ dt ! o
x w(f) (/ ) sup y"2V, 7 (z)dx
x24 ) €SS SUPy¢ (0,1 vi(y) ) yem

(v) Let 0 < g < pa = 00. Then C(yy =~ Ags), where

oo x x q
(98) Aps)i= /w(;;) (/ dt / ds ) da
) x ) €SS SUDP, ¢ (0,4) V1(Y) ) €SS SUD, ¢ (0,¢) V2(Y)

Q=
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Proof: From Proposition 2.4 it follows

U2 (7 (@)% (g™ () w(x) dz) 5

C(1) = sup sup

get fedl 11l Ao o1y g1l A2 (vy)
o x a q
k% d
Ja @ ([ L)
x4 ess SUP, ¢ (0,5) V1(Y)
~ sup =2 o
get 191l aP2 (v)
=~ ||IId]|

872 (02) =1 (o 57 [ (ess supye 0,0 21 0) '] )

The rest is done by application of the characterization of the involved
embedding I" < A, which can be found in [7, Theorem 4.1] (cases (i)
and (ii)), Proposition 2.3 (for case (iii)), [6, Theorem 3.1] (case (iv)),
and finally Proposition 2.4 for case (v). O
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