Chapter X
Game Quantification

by PH. G. KoLAITIS

Game quantification interacts with the model theory of infinitary logics, abstract
model theory, generalized recursion theory, and descriptive set theory. The aim of
this chapter is to examine these connections and give some applications of the
game quantifiers to the above areas of mathematical logic.

The chapter is divided into four sections. The first presents the basic notions and
the interpretation of infinite strings of quantifiers via two-person infinite games.
Section 2 deals with the interaction between game quantification and global
definability theory, the main theme being that certain second-order statements can
be reduced to formulas involving the game quantifiers which can, in turn, be
approximated by formulas of L . This section also includes a proof of Vaught’s
covering theorem, as well as applications of game quantification to the model theory
of L,,,, and admissible fragments. In Section 3, we show that the game logics are
absolute and unbounded, and most of the model-theoretic properties of these
logics will then follow from this fact. Section 4, the final section, discusses the
interaction with local definability theory. Here we consider the basic relation of
the game quantifiers to inductive definability and higher recursion theory, and give
some of their uses in descriptive set theory.

1. Infinite Strings of Quantifiers

This section presents the main definitions and basic results about infinite strings of
quantifiers (QyxoQ;x,0Q,x,...) where, for each i=0, 1, 2,..., Q; is the
existential quantifier 3 or the universal quantifier ¥ on a set A. The interpretation of
such strings is via two-person infinite games of perfect information. We first
describe the interpretation in an informal way and indicate the expressive power of
certain infinite strings. The precise definitions involve the notions of a winning
strategy and a winning quasistrategy. The Gale-Stewart theorem is then proven
and used to push negation through infinite strings in certain cases.

Throughout this section, 4 is a non-empty infinite set, A~ = ( J,, 4" is the
set of all finite sequences from 4, and 4 is the collection of all infinite sequences of
elements of 4. We use variables x, y, z, ... to denote elements of A, variables
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s, t, u, ...torepresent elements of 4 <, and variables a, f3, . . . to denote the members
of A®. The empty sequence is denoted by ( ), while st denotes the concatenation
of two elements s, t of 4 <“. Finally, ifa € A” and n € w, then « [ nis the restriction of
a to n, thatis, o [ n = ((0), (1), ..., a(n — 1)) e A"

1.1. Iterating the Existential and the Universal
Quantifier Infinitely Often

1.1.1. The most natural infinite strings of quantifiers are obtained by iterating the
existential quantifier or the universal quantifier—or, alternatively, the existential
and the universal quantifier. If R = 4“ is a non-empty set of infinite sequences from
A, then three infinite strings that result in this way are:

1 (3xo 3x; Ix, - - )R(xg, Xy, X2, .. .),
(2) (VXO Vxl vxZ o ')R(xO’ X1y X2,y ')9
(3) (3xo Vyo Ix; Vy; Ix, ¥y, -+ )R(X0, Yo, X1, V1> X25 Y25+ )

The first two strings, (1) and (2), respectively express existential and universal
quantification over the set A® of infinite sequences from A. In order to interpret the
infinite string given in (3), we associate it with the following two-person game
G(3V, R) of perfect information:

A round of the game G(3V, R) is played by players I and II
alternatively choosing elements from A4:

| | Xo X4 X,

Hl Yo Y1 V2

Player 1 wins the above round if (xo, Yo, X15 V1> X2, V2,.--) ER,
otherwise Player 11 wins the round.

We say that Player 1 wins the game G(3V, R) if I has a systematic way to win
every round of the game. Similarly, we say that Player I1 wins the game G(3V, R) if
II has a systematic way to win every round of the game. Finally, we put

(3xo Vyo 3x1 Vyy x5 ¥y, - - )R(Xo, Yos X15 V1s X25 V25 -+ -)
iff Player I wins the game G(3V, R).

In general, if Q = (Qy, Q,, Q5, ..., Q;,...) is an arbitrary infinite string such

that each Q; is the existential or the universal quantifier, then the interpretation of
the statement

4 (Qox0Q1x10Q,%5 -+ Qix; - IR(Xg, X1, Xg5 oo vy Xj5 o0 2)
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is entirely analogous to the preceding one for (3). More specifically, we associate
with Q and R a two-person infinite game G(Q, R) in a round of which, for each
i=0,1,2,...,an element x; in 4 is picked by Player I if Q, = 3 and by Player II
if Q; = V. At the end of the round, Player I wins the round if the infinite sequence
(%0, X1, X3, - -, X;, .. .) is an element of R. Otherwise, Player II wins the round. We
say that Player I wins the game G(Q, R) if I has a systematic way to win every round
of it. Similarly, we say that Player 11 wins the game G(Q, R) if II has a systematic
way to win every round of it. As before, we put

(Qox0Qyx1Q2%5 -+ QX+ IR(Xg, X 15 X5 vvs Xgy -+ 2)
iffil  Player I wins the game G(Q, R).

1.1.2 Remark. Often the infinite strings given in (1), (2), (3), and (4) are not applied
to arbitrary relations R < A®, but rather to relations which are either open or

closed.
A relation R = A® is open, if it can be written as the infinitary disjunction of
finitary relations; that is, if there are relations R, = A", n € w, such that

R(xg, Xyy s Xpo gy Xpo oo ) <> \/ Ry(Xgs X5y Xpmyp).

new

Similarly, we say that a relation R = A“ is closed if it can be written as the
infinitary conjunction of finitary relations; that is, if there are relations R, < A", for
each n € w, such that

R(-xO’ Xy oovs Xp—15 Xpy -+ ')<:> /\ Rn(XO’ X5y xn—l)'

new

This terminology is justified by the fact that a relation R is open (or closed) if it is
an open set (or, respectively, a closed set) in the product topology on 4“, where A is
equipped with the discrete topology.

If the infinite strings in (1), (2), and (3) are applied to relations on A“ which are
open or closed, they can then be identified with certain monotone quantifiers on
the set 4= of finite sequences from 4. In order to make this idea precise, we
introduce the following notions, which will be also used in Section 4 of this
chapter.

1.1.3 Definitions. A monotone quantifier Q on a set A is a collection Q of subsets of 4
such that:

(1) Q is non-trivial; thatis, J & Q & Z(A4);
(ii) Q has the monotonicity property, that is, if X e Q and X < Y, then Y € Q.

Interchangeably, we write

OxR(x) iff ReQ iff {xeA:R(x)}€Q.
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The dual of a monotone quantifier Q is the collection é, where
XeQ iff (4-X)¢0.
It is quite clear that é is also a monotone quantifier and that (é)u = Q.
Under these definitions, the existential quantifier 3 on A is identified with the
collection of non-empty subsets of 4, and we write
Ii={X<cA: X # J},
while the universal quantifier ¥ on A is the singleton given by
V= {A4}.
We obviously have that
3=V and V=1

By iterating the existential and the universal quantifier on A infinitely often, we
obtain the following interesting quantifiers on the set 4 = of finite sequences from
A:

(5) The Suslin quantifier ¥
S = {X S AP (Vxg Vxy Vxy o)\ ((X0s X145 X2, - -1 x,,_l)eX)}.
(6) The classical quantifier o/

A = {X S A% (Ixg Ix; Ix, -+ 9) /\((xo,xl,xz, ...,x,,_l)eX)}.

Here it is obvious that .o is the dual of the Suslin quantifier.

@) The open game quantifier G,

4 = {X S AT (Ixg Yyo Ix; Vy,--)

\/ ((xO’ Yos X1, V15 -+ o5 Xp—15 yn—l)e X)}
®) The closed game quantifier %

G — {X < A~:(Vxo 3y Vxy Iy, -+ 9)

/\ ((XO’ y09 xl’ yl’ cees Xp—1, yn—-l)eX)}'
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It will follow from results in Section 1.2 that the closed game quantifier is the
dual of the open game quantifier.

1.1.4 Remark. The Suslin quantifier ., the classical quantifier ., and the two-
game quantifiers can capture properties which are not, in general, expressible using
the infinitary logic L,,,,, or even the logic L, . The following examples indicate the
expressive power of these quantifiers.

(i) The notion of well-foundedness can be expressed using the Suslin quantifier
&. Indeed, if R is a binary relation on a set A, then

R is well-founded iff  (Vxq Vx; Vx5 ) \/ (T1(X,+ 1 RX,)).

It is well known, of course, that this property is not expressible in the infinitary
logic L, ,,-

(ii) If A is a structure which possesses a first-order definable coding machinery
of finite sequences, then the Suslin quantifier and the classical quantifier .« can be
identified with monotone quantifiers on the universe A of the structure 2. For
example, this is the case with the structure N = (w, +, - > of natural numbers. On
this structure, the Suslin quantifier and the classical quantifier &/ can capture
second-order statements. This follows from the fact that on N every I1; relation
R(Z) can be written in the form

R(E)©(on vxl vx2 o ) (\/ l//(<x0’ Xseees xn—1>9 Z))a

where y is a first-order formula and {x,, x4, ..., X,_ ;> is an element of w coding
the sequence (xg, X1, ..., Xy_1)-

The above is a rather special property of the structure N of natural numbers. At
the other extreme, if R = {0® v w, w, +, -, Ap), where Ap(x, n) = a(n), is the
structure of real numbers, then the Suslin quantifier and the classical quantifier .o/
coincide respectively with the universal and the existential quantifier on the reals.
This is a consequence of the fact that we can code infinitely many reals by a real in a
first-order definable way.

(iif) The open game and the closed game quantifier have, in general, higher
expressive power than the Suslin and the classical quantifier .o7. If a structure A
possesses a first-order coding machinery of finite sequences, then the relation of
satisfaction “U = ¢ 7, where ¢ is a sentence of the first-order logic of the vocabulary
of A, can be shown to be expressible in terms of the open game or the closed game
quantifier, while this relation is not first-order definable on such structures. In
particular, on the structure R of the real numbers the game quantifiers properly
transcend the Suslin and the classical .«/ quantifier.

The connections between local definability theory and game quantification will
be investigated in Section 4 of this chapter.

(iv) Consider a vocabulary 7 consisting of two binary relation symbols <, <,
and the equality symbol =. Using the infinite string (Vx, 3y, Vx; 3y, ---) and
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countable disjunctions and conjunctions, we can write a statement @(u, v, <, <)
expressing that:

“ <, and <, are well-orderings

and

u is in the field of <, v is in the field of <,
and

the order type |u|; of u in <, is less than or equal to the order type
vl of vin <,.”

The crucial property |u|; < |v|, is then expressed as follows:

(Vxo Jyo Vx; 3y, )[(/\ (x, <1 “)‘_’/\ (O <2 ’/))

‘A /\ (xm <1 Xn < Vm <2yn) A /\ (-xm =XV = yn)]'

m,n m,n

The proof that this statement works can be obtained by induction on |u/;.
Fromtheabove,iteasilyfollowsthat using theinfinite string(Vx, 3y, Vx; 3y; -+ +)

and countable disjunctions and conjunctions, we can write a statement /(<)

asserting that

“ < is a well-ordering of order type y + 7y for some ordinal y”.

Malitz [1966] has shown, however, that this statement is not expressible by any
formula of the infinitary logic L. Thus, game quantification can give rise to
infinitary logics which are different from the usual infinitary logics L,.;. These new
infinitary logics will be introduced and studied in Section 3 of this chapter, while in
Section 2 we will pursue the relationship between game quantification and global
definability theory.

1.2. Winning Strategies and Winning Quasistrategies

Assume that Q = (Qo, Q,, Q,, ..., Q;,...) is an infinite string such that for each
i=0,1,2,... Q; is the existential or the universal quantifier on a set 4. In the
preceding section the interpretation of the statement

(Qox0Q1x1Q2%5 -+ - Q:ix; -+ )R(Xg, X1, Xz, Xi5 )

was given in a rather informal way, since we defined the concept “Player I wins the
game G(Q, R)” by saying simply that “Player I has a systematic way to win every
round of the game G(Q, R).” This definition is intuitive, but not very precise. We will
now give precise definitions of these concepts in a set-theoretic framework. It
actually turns out that we can give at least two interpretations for infinite strings of
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quantifiers which are equivalent in the presence of the full axiom of choice, but
which may nevertheless be different if only weaker choice principles are available.
For the sake of clarity, we give the definitions and then state the results only for the
infinite string (3, V, 3, ¥,...,3, V,...). However, these notions will generalize to
arbitrary strings @ = (Qo, 01, @5, ..., Q:, ...) with only notational changes in the
definitions or the proofs.

1.2.1. Let R < A“ be a relation on the set of infinite sequences from A, and let
G(3V, R) be the two-person infinite game associated with the statement

)] (3x0 Vyo 3x1 Vy, 3x5 Vy, - )R(Xg, Yo, X1, V1s X2, Y2y - 2)

A strategy o for Player 1 inthe game G(3V, R) is a function o U,,Ew A*" > Afrom
the set of finite sequences of even length into A.

Intuitively, a strategy ¢ for I provides him with a next move. We say that I
follows the strategy o in a round (xq, Yo, X1, V1> X2, V2, - - .) of the game G(3V, R) if
xo =0(( ) and x, = 0((Xg, Vo> X15> Vis-+-sXn—1-Vu—1)), for all n =1,2,3,....
We call ¢ a winning strategy for 1 in the game G(3V, R) if I wins every round of the
game in which he follows a.

In an analogous way, we define a strategy t for Player 11 in G(3V, R) to be a
functiont: | J,e,, A*"*' = A.Player1lfollowstinaround(xo, yo, X1, Y1 X2, Va5 ---)
of the game if y, = ((Xg, Vo> X1> Vi -+ s Xn—1> Yu—1> Xp)) foralln =0,1,2,... . We
say that t is a winning strategy for Il in G(3V, R) if Il wins every round of the game in
which he follows 7.

Using the above notions, we rigorously interpret the statement given in (9)
as follows:

(10) (3xo Vyo 3x;y Vy; 3x; Vx5 - )R(X0, Yo, X1, V1s X2, Va2 - --)
iff Player I has a winning strategy for the game G(3V, R).

In practice, when we prove theorems about infinite strings of quantifiers, we
must often use the axiom of choice to exhibit a winning strategy for one of the players
in the game associated with the infinite string. There are situations, however, in
which one is working in a set theory where the full axiom of choice is not available.
In such cases, we can still prove the results about the infinite strings of quantifiers by
reformulating the interpretation of the infinite string given in (9). The idea here is to
replace the notion of a strategy by that of a quasistrategy, a quasistrategy being
essentially a multiple-valued strategy that provides the player with a non-empty
set of possible next moves instead of a single move.

A quasistrategy X for Player 1 in the game G(3V, R) is a set © = A~ of finite
sequences from A such that:

(i) there is some x, € A for which (x,) € Z;
(i) if (Xg, Yos X1s V1s - -+ s Xn—15 Yu—1) € Z, then there is some x € A for which
(xo’ Yos X1 Vs e oo Xn—15 Vn—1> X)EZ;
(i) if (Xg, Vo> X1s Vis -+ +» Xu— 15> Yn—1- X) € Z, then for every y e 4

(x09 ,VO’xlﬁ yl’ "-9xn—19 yn—l’x> Y)EE
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Player 1 follows the quasistrategy < in a round (Xo, Vo, X1, Y1, X2, V2, ---) Of
G(3V, R) if every initial segment of the round is in X. Furthermore, we say that X is a
winning quasistrategy for 1 in the game G(3V, R) if I wins every round of the game in
which he follows Z.

We define also the notions of quasistrategy for 11 and winning quasistrategy for
I in the game G(3V, R) in an analogous dual way.

We can now interpret the statement in (9) in an alternative way as follows:

(11) (3xo Vyo 3x; Vy; 3%, Yy, - )R(x0, Yo, X15 Vis X25 V25 -+ 2)
iff Player I has a winning quasistrategy in the game G(3V, R).

It is quite obvious that if Player I has a winning strategy in the game G(3V, R),
then I also has a winning quasistrategy in this game. If, in addition, the set A can be
well-ordered, then every winning quasistrategy for I in G(3V, R) gives rise to a
winning strategy for I in this game. We therefore see that, in the presence of the
axiom of choice, the two interpretations given by (10) and (11) of the statement in
(9) are equivalent. This equivalence, however, depends on the axiom of choice in an
essential way.

If we interpret the infinite string (3x, Vy, 3x, Yy, Ix, Vy, --+) via quasistra-
tegies, then most theorems about this string can be proved using the axiom of
dependent choices. A weaker principle than the full axiom of choice, the axiom of
dependent choices states that, for every non-empty set B and for every binary
relation P < B x B on B,

(Vxe B)@ye B)P(x, y)= (3f: o - BY(¥Yn)P(f(n), f(n + 1)).

Observe that we used the axiom of dependent choices implicitly, when we
asserted in Section 1.1.4 that the Suslin quantifier can express the notion of well-
foundedness. Indeed, this axiom is precisely the choice principle needed to show
that a relation is well-founded if and only if it has no infinite descending chains.

We will now investigate some simple properties of strategies and quasistrategies,
beginning with

1.2.2 Lemma. Let R = A® be a relation on the set of infinite sequences from A. Then,

(i) Itisnot possible that both Players 1 and 11 have winning strategies in the game
G(3VY, R).

(i) (Assuming the axiom of dependent choices). It is not possible that both
Players I and 11 have winning quasistrategies in the game G(3V, R).

Proof. Part (i) is obvious and requires no choice principles. To prove part (ii) we
will assume, towards a contradiction, that Player I has a winning quasistrategy < in
G(3VY, R) and that II also has a winning quasistrategy T in this same game. Using
dependent choices, we can then produce a round (x,, ¥, X1, ¥1, X2, V3, - - .) of the
game G(3V, R) every initial segment of which is in both ¥ and T. But then the round
(X0, Yo» X1s ¥1» X2, V2, ...) is in both R and —1R. This is a contradiction. [
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If R € A“ is a relation on the set of infinite sequences from A, and if G(3V, R)
is the game associated with the statement

©) (3xo Vyo 3x; Vyy 3x; Vys -+ IR(Xo, Yoo X1, Y1z X25 Vs -+ )
then G(V3, —1R) is the game associated with the statement
(12) (VX0 Jyo Vxq 3y, Vxa 3y, -+4) TTR(Xg, Vor X1s Vis X2s Voo v )

It is clear from the definitions that a winning strategy (respectively, quasistra-
tegy) for II in the game G(3V, R) is a winning strategy (respectively quasistrategy)
for I in the game G(V3, 71 R). We therefore have the following

1.2.3 Lemma. Let R = A® be arelation on the set of infinite sequences from A. Then,

(i) Player 11 has a winning strategy (respectively quasistrategy) in G(3V, R) if
and only if Player 1 has a winning strategy (respectively quasistrategy) in
G(V3, TR).

(ii) Player 1 has a winning strategy (respectively quasistrategy) in G(3V, R) if
and only if Player 11 has a winning strategy (respectively quasistrategy) in
G(V3,R). [

Assume now that R < A® is a relation such that Player I or Player II has a
winning strategy (respectively a winning quasistrategy) in the game G(3V, R).
Combining this with Lemmas 1.2.2 and 1.2.3, we obtain the equivalence:

(13) T1(3xg Vyo 3x; Vyy - OR(Xg, Yor X1 Vis -+ -)
<> (Vxo 3o Vx; Iy; --+) TIR(Xo, Yo, X15 Y1+ - ),

where the interpretation of the statements given in (9) and (12) is via winning
strategies as in (10) (respectively via winning quasistrategies as in (11)).

We say that the game G(3V, R) is determined if Player I or Player II has a
winning strategy in this game. We also say that G(3V, R) is weakly determined if
Player I or Player II has a winning quasistrategy in the game. The preceding facts
show that if the game G(3V, R) is determined or weakly determined, then to negate
the statement given in (9), we can push the negation through the infinite string
(3xo Vyo Ix; Vy, - - ) and apply it to the relation R. Although this manipulation is
always true for finite strings and all relations R, it is not true for infinite strings and
arbitrary relations R < A®. Indeed using the axiom of choice, Gale and Stewart
[1953] showed that there is a relation R < 2 such that the game G(3V, R) is not
determined. It turns out, however, that if the relation R is open or closed, then the
associated game G(3V, R) is determined.

1.2.4 Theorem (Gale-Stewart [1953]). Let R < A® be a relation on the set of
infinite sequences from A which is either open or closed. Then,
(i) (Assuming the axiom of choice). Player I or Player 11 has a winning strategy
in the game G(3V, R);
(ii) Player 1 or Player 11 has a winning quasistrategy in the game G(3V, R).
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Proof. The first part of the theorem follows from the second by well-ordering the set
A. Moreover, in view of Lemma 1.2.3, it is enough to establish the result for the case
of a closed relation R = A®. Therefore, assume that there are finitary relations
R, < A™*2 foreachn = 0,1, 2,..., such that

R(XO’ Yo X1, Vis o v o5 Xps Vs + - )<:> /\ Rn(xO’ Yos X1, Vis oo o5 Xy yn)

new

We will show that Player I or Player II has a winning quasistrategy in the game
G(3V, R). The winning quasistrategy will be obtained by using an inductive analysis
for the set of “winning positions” for Player I in the open game G(V3, —1R). More
precisely, consider the following monotone operator ¢(u, S), where u ranges over
the elements of 4= and S over the subsets of 4<*:

o(u, S) < (u has even length) & (if U= Xg> Yor---»Xns Vu)s

then \/ T IR,(Xo, Vo, - -+ s X ym)) v (Vx 3y) @ (x, y) € S).

m<n

By induction on the ordinals define a sequence {¢°}, of subsets of 4=, where

ue @’ < o, &),
ue @<, | om,

n<g

and let * = | ) ¢° Intuitively, the set ¢ consists of all “winning positions” for
Player I in the game G(V3, —1R), since (using the axiom of dependent choices) we
can show that

(14) (xO’yO""axn’yn)e(pOo

¢>(VX,,+1 EIyn+1 Vx,,+2 3ynﬁ—Z ) ) \/ —'Rm(xo, Yos o5 Xms ym)

mew

In completing the proof of the theorem, we will not use the above equivalence,
but have included it in order to make the role of ¢ transparent.

We claim now that if the empty sequence ( ) is not in ¢*, then Player I has a
winning quasistrategy in the game G(3V, R), while if ( ) € ¢®, then Player II has a
winning quasistrategy in G(3V, R). Indeed, if ( ) ¢ ¢, then it can be easily verified
that the set

Y = {ue A=°: (u has even length and u ¢ ¢>)
v (u has odd length and (Vy)(u"(y) ¢ )}
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is a winning quasistrategy for I in G(3V, R). On the other hand, if ( ) € ¢*, then for
ue @®, we first put |u|, = least ordinal ¢ such that u € ¢%, and then let
T ={ueA~:foreveryve A if v = (Xg, Yo, - Xi» Vi» Xi+ 1» Vi+1)

is an initial segment of u of even length, then v e p®
and

,(XO? Yos o5 Xy yi)lq) =0 or
[(X05 Yos -+ s Xi Y lo

> |(-x05 Yoo+ Xis Vis Xi+ 15 Vit 1)|(p}'
It is now quite easy to show that T is a winning quasistrategy for Il in G(3V, R). [

Combining the Gale-Stewart theorem with Lemmas 1.2.2 and 1.2.3 we have the
following:

1.2.5 Corollary. Let R = A® be a relation which is open or closed. Then,

(1) (Assuming the axiom of choice). Player 1 does not have a winning strategy in
G(@3V, R) if and only if Player 11 has a winning strategy in G(3V, R).

(i1) (Assuming the axiom of dependent choices). Player 1 does not have a winning
quasistrategy in G(3V, R) if and only if Player 11 has a winning quasistrategy
in GAY,R). 0O

The above corollary allows us to push the negation through the infinite string
Thus, if R < A“ is open or closed, then

(13) T1(3xo Vyo 3x1 Vyy -+ )R(Xg, Yo, X1, V15 - --)
<> (Vxo Jyo Vx1 Ayy - ++) TIR(Xg, Yo, X1, Y15 - - )
]

1.2.6 Corollary. The closed game quantifier G is the dual of the open game quantifier
9. 0

As was mentioned in the introduction to this section, all the preceding results
extend to arbitrary infinite strings. In general, if @ = (Qo, Qy,..., Q;,...) is an
infinite string such that for each i = 0, 1, 2, ... Q, is the existential or the universal
quantifier on A, then the dual string QV is defined by

—_— 1% v

0% =1(Q0,91>--+>Qi>-- ).
If a relation R = A® is open or closed, then we have the equivalence
(15) T(Qox0 Q1 Xy -+ Qix; - IR(Xgs Xy, -5 X5 -2 2)

v v v
< (Qox0Q1Xy -+ QiX; ) TIR(Xg, Xy, -+ 5 X5 - - )
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Proof of the above equivalence requires the full axiom of choice if the interpretation
is via winning strategies and the axiom of dependent choices if the interpretation is
via winning quasistrategies.

1.2.7. In view of the preceding results for the open and the closed games, it is
natural to ask whether or not there are other relations R = A® for which the game
G(3V, R) is determined. We say that the game G(3V, R) is Borel if the relation R is a
Borel set in the product topology on 4A°, where A4 discrete. Martin [1975] proved
that in ZFC every Borel game is determined. His proof actually established that in
ZF + axiom of dependent choices (DC) every Borel game is weakly determined;
that is, that, one of the two players has a winning quasistrategy in such a game. The
question of determinacy for games G(3V, R), where R has higher complexity, is
independent of ZF and leads into strong set-theoretic hypotheses.

1.2.8 Remarks. We have two reasons in mind for making explicit the distinction
between winning quasistrategies and winning strategies. The first, is that it is often
important to know the weakest possible metatheory in which we can formulate and
prove results about infinite strings of quantifiers. This will be useful, in Section 3 of
this chapter; for there we discuss the set-theoretic definability of the infinitary logics
built by using the game quantifiers. The second reason is the connection between
game quantification and descriptive set theory, a connection which will be briefly
pursued in Section 4. Much of the current research in descriptive set theory is
carried in ZF together with the axiom of dependent choices (DC) and the hypothesis
that certain infinite games are weakly determined.

From now on, we will distinguish explicitly between strategies and quasistra-
tegies in only a very few cases. Instead, we will use the statement “ Player I wins the
game G(3V, R)” for both interpretations, i.e., depending on the context or on the
metatheory available, this means that Player I has a winning strategy or a winning
quasistrategy in the game G(3V, R).

1.2.9. We should point out that finite strings of quantifiers at the beginning can
always be absorbed inside an infinite string. More precisely, for any relation R = A,
we have the equivalence

(16) (Qox0)(Q1x1) - (QuX) {(Qnt 1 X0+ 1) (Qns 2Xn+2) *+ )
R(XO’ Xisevos Xps Xpy15 Xpt 25 - )

< (Q0x0Q1%1++ QuXy Qs 1Xns1 - IR(X0,s X1y vy Xy Xy g5 -+ ),

where Q; =3 orQ;, =V, foreachi=0,1,2,....

In general, if the relation R is arbitrary, the proof of the above equivalence
requires the axiom of choice, even though the interpretation may be via winning
quasistrategies. However, in the case where R is open or closed, no choice principles
are required in the proof, since there are canonical quasistrategies for such games.

We end this section with two simple propositions. These will provide a first
insight into the relationship between game quantification and second-order logic.
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If R = A=?is a relation on the set of finite sequences from A, then R gives rise
to an open relation \/ R and a closed relation /\ R on the set A of infinite sequences
from A, where

\/ R = {a € A®: there is some n € w such that (« [ n) e R}

and

/\R = {o€A°: (o« I n)eR for all n € w}.

1.2.10 Proposition. Let R = A= be a relation on the set of finite sequences from A.
Then,

(Vxo Jyo Vxq Jyy -+ -V, Ay, -+ 2) /\ R(Xo, Yos X1 Vis+ v Xus V)

iff (3T)(T is a winning quasistrategy for 1 in G(V3, /\ R) and
T < R). '

Proof. The result follows immediately from the observation that if T is a winning
quasistrategy for Player Iin G(v3, /\ R), then, using dependent choices, we see that
any sequence u = (X, Vo, - - - » Xp» ¥n) in T can be extended to a round (xg, yg, - - -,
Xus V> Xnt 15 Ynt 15 - - -) Of G(V3, /\ R) in which I follows T. [

The closed game quantifier can be expressed using second-order existential

quantification. This is the content of the next proposition, a result that we will use
repeatedly in the sequel.

1.2.11 Proposition. Let R = A= be a relation on the set of finite sequences from A.
Then,

(VXO ElyO Vxl E‘yl o 'vxn 3yn ’ ) /\ R(x07 Yos X15 Vis e o+ s Xp> yn)

iff @r, EITZ---EI”.I",,M){/\(T,,QAZ”&Tl <R

& (Vxo 3yo) (X0, yo) € T})
&(on VyO T vxn—l Vyn-—l)[(xo’ Yoseees Xn=15 yn—l)e T;a
= (R(xg» Yos-++sXn—15 Va—1)

& (Vxn Hyn)(T;l-H(xO’ Yos-+s Xn—15 Yn—1> Xn>» yn))]}

Proof. In view of Proposition 1.2.10, it is enough to consider a winning quasistrategy
T for 1 in the game G(V3, /\ R) and to put

7:1 = {(xo, Yoseers Xn—1> yn—l)EAzn: (x05 Yos+-s Xn—15 yn—l)e T} D
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2. Projective Classes and the
Approximations of the Game Formulas

In this section we will study the interactions between game quantification and
global definability theory. The first basic result to be presented here is Svenonius’
theorem which establishes that on countable structures the relations definable by
the closed game quantifier coincide with the X} relations. Following this theorem,
we will show that the game quantifier formulas can be approximated by formulas
of the infinitary logic L,,,,,. These two results make it possible to analyze certain
second-order statements, such as £} and I1} formulas, by the use of methods and
techniques from the model theory of L,, ,,. As an illustration of these ideas, we will
here outline a proof of Vaught’s covering theorem. The section will end with
applications of the approximations of the game formulas to descriptive set theory
and to the model theory of L,, , and admissible fragments.

2.1. Game Quantification and Projective Classes

Throughout this section we will be working with vocabularies which contain only
relation and constant symbols. If 7 is such a vocabulary, then L[] is the set of all
first-order formulas of vocabulary 7. As usual, L, , is the infinitary logic which
allows for countable disjunctions and conjunctions, while L,, ,[7] is the set of all
formulas of L,,,, of vocabulary 7. If the vocabulary is either fixed or understood
from the context, then we will often write L, and L, instead of L,,[7] and
Lo,o[7].

In what follows countable means of cardinality less than or equal to w; that is,
the cardinality is either finite or denumerably infinite. Moreover, we write HF for
the set of hereditarily finite sets and HC for the set of hereditarily countable sets, so
that

w10

HF = {x:|Tce(x)| < o} and HC = {x:|Te(x)| < w,}.

All the vocabularies to be considered here are countable. If 7 is such a countable
vocabulary, then we can identify the formulas of L,, ,,[ 7] with set-theoretic objects,
so that if g is in L,, ,[7], then Tc({¢}) = HC. In particular, we have that

Lyo[t] = Ly,,[tT] " HF and L, [t] = L,,,[t] » HC.
If A is an admissible set (possibly with urelements) and t € A, then
L]l =Ly [t]1n A
denotes the admissible fragment of L [t] associated with A, where L., is the

infinitary logic which allows for arbitrary disjunctions and conjunctions, but
which only allows for finite strings of quantifiers.
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2.1.1 Definitions. Let 7 be a countable vocabulary containing only relation and
constant symbols.

(i) We say that a second-order formula ¢ is PC,[1] (or simply PC,) if it is of the
form

IR A\ Y(R),

new

where RisacountablesetofrelationsymbolsR = (R}, R,, ...)notinthe vocabulary
7 and where, for each n € w, we have that y(R) is a formula of L, [7'], with 7" =
tUR

(i) We say that a second-order formula ¢ is £{ over L, ,[7], and we write ¢
is Z{(L,,,,[]) or simply Z{(L,,,) if it is of the form

IRY(R),

where R is a countable set of relation symbols not in 7 and y(R) is a formula of
L, ,[t], witht =t UR.

(iii) If 4 is an admissible set and t € A, then we say that a formula ¢ is ! over
L[], and we write ¢ is Z1(L 4[t]) or simply (L ,), in case ¢ is of the form

IRY(R),

where R is a countable set of relation symbols not in t such that R € 4 and Y/(R) is a
formula of the admissible fragment L [t'], witht = 1 U R.

We now introduce the notions of a closed game formula and an open game formula,
which are obtained by applying the closed and the open game quantifier to formulas

of the first-order logic L,,,.

2.1.2 Definitions. Let v be a vocabulary which is countable and contains only

relation and constant symbols.
(i) We say that @(Z) is a closed game formula if it is of the form

(1) (Vxo 3y YVxq yy--) /\ ©u(Z, X0, Vo5 -+ s Xn—15 Vu—1)5

n<w

where ¢, is a formula of L[] in the displayed free variables, for each n € w.
(ii) We say that ®(z) is an open game formula if it is of the form

(2) (HxO vyO axl vyl o ) \/ Q’n(i X0s Vo5 Xn—15 yn—l)a

n<w

where ¢, is a formula of L[] in the displayed free variables, for each n € .

The Gale-Stewart theorem (1.2.4) implies that the negation of a closed game
formula is always logically equivalent to an open game formula, and vice-versa. It
actually turns out that there is a strong connection between PC, formulas and
closed game formulas. However, in order to analyze £i(L,,,,,) formulas we must
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consider the following generalization of the game formulas, a generalization
introduced by Vaught [1973b].
(iii) A closed Vaught formula ®(Z2) is one of the form

3) (on Advo \V/ Vxy Ay /- )

ioel joel irel jrel

/\ (pinO“'inAljn’ '(Z, Xgs Voo -vs Xne1s Vue 1)’
n<ao
where I is a countable set and, for each (iy, jo. .., in_1.jn—1) € I*", we have that

@iodo in-tin=1(Z x 0 Yoo, Xpo1, Vao1) is @ formula of L, ,[7] in the displayed
free variables.

(iv) An open Vaught formula ®(Z) is one of the form

@) (3x0 \/ Yo A 36\ Vs A\ - )

ioel Jjoel iyel Jiel

\/ (piojo-v-i,,- ljn—l(Z, xO’ Yos---s X,,__ 1 yn— l)a
n<w
where I is a countable set and each @' /0 "~ tin-1(Z x . Vo, ..., X,_1, Yuoy) iS @
formula of L, ,[7] in the displayed free variables.
To simplify the already cumbersome notation, we will henceforth write

i, j for the sequence (ig,jos -« in1rju_y) i0 I*"

and

X,y for the sequence of variables (xq, Yo, ---s Xy 1> Vu=1)

so that

¢©"%z,X,y) denotes the formula
(piojominﬂj"; 1(2’ xOv yO’ R ] X,,_ 1 yn— 1)'

(v) We say that ®(Z) is a game formula if it is either an open or a closed game
formula. Similarly, a Vaught formula is one which is either an open or a closed
Vaught formula.

(vi) If®(Z)iseithera game formula or a Vaught formula and if 4 is an admissible
set, then we say that ®(Z) is in A4 just in case the family of formulas {¢"(z, X, ):
(i,)) e I*", n < w} is an element of A.

2.1.3. If A is a structure of vocabulary t, then the interpretation of a Vaught
formula on U is via a two-person infinite game in a round of which Player I and
Player II take turns and each chooses an element from the universe 4 of the
structure A and an index from the set I. The definition of a winning strategy and a
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winning quasistrategy in this game is analogous to that given in Section 1.2. The
Gale-Stewart theorem extends to Vaught formulas by essentially the same proof, so
that the negation of a closed Vaught formula is logically equivalent to an open
Vaught formula, and vice-versa.

In general, game formulas cannot capture statements expressible by formulas of
the weak second-order logic L.. On the other hand, the infinitary logic L,,,,, is
stronger than Ly, so that if we hope to study X{(L,, ) formulas using some
infinitary logic, then we must consider a logic which is at least as strong as L.;.
These comments provide a first justification for introducing the Vaught formulas.
We should also point out here that if I = w and U = {A4,...> is a structure of
vocabulary t such that w = A4 and U possesses a first-order coding machinery of
finite sequences, then the open and the closed Vaught formulas have no more
expressive power than the formulas obtained by applying the open and the closed
game quantifier to formulas of L, ,. Of course, over such structures the weak
second-order logic L, is subsumed by the first-order logic L,,,,.

We now proceed to investigate the connections between PC, and 2i(L,,,,)
formulas on the one hand and closed game and Vaught formulas on the other. All
the results refer to a fixed vocabulary t which is countable and contains only
relation and constant symbols.

2.1.4 Proposition. (i) Any closed game formula is logically equivalent to a PC,
Sformula.
(il) Any closed Vaught formula ®(Z) is logically equivalent to a £{(L,,,,) formula.
Moreover, if A is an admissible set and ®(2) is in A, then ®(Z) is logically
equivalent to a (L ,) formula.

Proof. The first part of this proposition follows immediately from Proposition 1.2.11.
On the other hand, the extension of this proposition to closed Vaught formulas
gives easily the second part. [I

Svenonius [1965] established a partial converse to Proposition 2.1.4. More
specifically, he showed that over countable models the closed game formulas have
the same expressive power as the PC, formulas. Vaught [1973b] obtained a
generalization of this result by introducing the class of formulas which here we
call closed Vaught formulas and by showing that over countable structures they
are equivalent to the £i(L,,,) formulas. Before presenting these results, we will
introduce the following notation:

=’ @ means that the sentence ¢ is true in all countable structures.
Notice that if ¢ is a sentence of L, ,[7], then
= o if Eo,

because the Skolem-Lowenheim theorem holds for the infinitary logic L, .
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2.1.5 Theorem. (i) (Svenonius [1965]). For any PC, formula 3R )\,<,, V., R),
there is a sequence of quantifier-free formulas ¢,(Z, X, 3) of L[] such that if
®(Z) is the closed game formula (Vxo 3y Vx; 3y; -+ +) N\a@u(Z, X, 7), then

(@) = IR A\ Y,z R) - 0(2);

n<w

(b) &' &) — IR A\ ¥,(Z, R); and hence

n<w

(©) E'®(Z) < IR A\ Y,(Z R).

n<w

Moreover, the quantifier-free formulas ¢,(Z, X, y) can be obtained recursively
from n, R and the sequence {{s,(Z, R)}.

(ii) (Vaught [1973b]). For any Z{(L,,,) formula IRY(Z, R), there is a closed
Vaught formula ®(Z) which does not contain symbols from R and such that
(a) = 3RY(z, R) - ©(2);

(b) =’ ®(z) —» IRY(Z, R); and hence

(c) B ®(Z) < 3IRY(Z, R).

Moreover, the formulas {¢"%(z, X, y): (i,J) € I*", n < w}, which determine
®(Z), can be chosen to be in L[] and to depend on IRY(Z, R) and w in a
primitive recursive way. In particular, if A is an admissible set, w € A and
3RY(z, R)is Z1(L ), then the closed Vaught formula ®(Z) can be chosen in A.

Sketch of Proof. In what follows we merely outline a proof of part (i) and give a hint
of the proof of part (ii) of the theorem.

If we add new constant symbols, it will suffice to prove the result for a PC,
sentence 3R /\ <, Y(R), where y,(R) is a sentence of L[t U R], for each ne€ .
Moreover, using the Skolem normal form, we may assume without loss of generality
that the PC, sentence 3R A, -, ¥,(R) is actually of the form

3R/\ (Vxy - “Vx, )3yy - 3)’1,.)Xn(x1’ ey Xps Vi oo o Vi R),

n<w

where y,(x;, ..., X4, V1, - - -, ¥,» R) is a quantifier-free formula of L,,,[t U R], for
each ne .

To make the game-theoretic argument involved transparent, we will also
assume that we have only one quantifier-free formula y(x, y, R) in the variables
x and y, so that the original PC, sentence is

IR(Vx)A)x(x, y, R).

It is easy to show that for any quantifier-free formula 0(w, R) in L[t U R]
one can find, recursively from 6, a quantifier-free formula 6*(w) in L[] such that

= 3RO(W, R)  0*(w).
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Using the above fact, we let ¢,(xq, Vo, - - - » Xn, Vu) be a quantifier free formula
of L,,[t] which is logically equivalent to

IR N\ 1(Xms Yms> R)

m<n

and then consider the closed game sentence ®:

(VXO EI.VO Vxl 3yl o )/\ (P,,(xo, Vo> X15 V15 oo -5 X5 yn)

We claim that this closed game sentence has the required properties, namely

(@) = IAR(Vx)(3y)x(x, y, R) > ®; and
(b) ='® « IR(VXx)(3y)x(x, y, R).

It is clear that if 2 is a structure of vocabulary 7 such that

A = IR(Yx)(AV)x(x, ¥, R),

then the set

X={ue A= if (xg, Vos---»> Xns Yn) S U, then
(Q[, Em’ xn’ yll) |= X(x’ y’ R)}

is a winning quasistrategy for Player I in the game associated with ®.

Assume now that 2 is a countable structure such that U = ®. Consider a
round of the game associated with ® in which Player II enumerates the universe 4
of A and Player I answers using his winning quasistrategy; that is, the round looks
like:

with 4 = {a,, a,, a,, .. .}.
Since I follows his winning quasistrategy in this round, we have that

A= IR A\ 1(ap, by, R), forall new.

m<n

Let a,,, b,, for m < w, be new constant symbols not in 7 and consider the set of
quantifier-free sentences T, where

T = Diagram(2) U {x(a,,, b, R): m < w}.
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T is finitely satisfiable; and, hence, by the compactness theorem it has a model.
Since each sentence x(a,,, b,,, R) is quantifier-free, this implies that there is a set R*
of relations on A4 such that

A, R* = (a,,, b,, R) foreach m < w.

However, the sequence {a,, a;, a,, ...} exhausts the universe A of the structure 2,
and therefore we have

A, R¥ = (Vx)3y)y(x, v, R).

The main-argument remains the same in the general case where we have
infinitely many quantifier-free formulas y,(xy, ..., X;, V1, ...,y R) for n < w.
There are only minor combinatorial complications which can be handled by
enumerating the tuples X, y of variables in such a way that the variables occurring
at stage m of the enumeration have indices < m. This completes the proof of the
first part of the theorem.

In order to establish part (ii) of our result we show first that a Z{(L,,,,[7])
formula W(Z) is equivalent to a PC, formula W'(Z) over an expanded vocabulary 7’
which contains T and subsumes weak second-order logic. By applying part (i) of the
above, we can find a closed game formula ®'(Z) over t’ which is logically equivalent
to ¥'(2) on countable structures. The closed game formula @'(Z) over 7’ can, in
turn, be translated to a closed Vaught formula ®(z) over 7. In such a translation the
propositional part of the Vaught formula is used to capture the expanded
vocabulary.

We should point out that Harnik [1974] and Makkai [1977a] gave direct
proofs of part (ii) by associating an appropriate countable admissible fragment with
the Z{(L,,,,[7]) formula W(Z). The proof is analogous to the one we gave for part (i)
with the model existence theorem for fragments used in place of the compactness
theorem. [

2.2. The Approximations of the Game and the
Vaught Formulas

In Section 1 we pointed out that game formulas can be used to capture statements
which are not expressible in L. We will see here however that the Vaught
formulas in general and the game formulas in particular can be approximated by
formulas of L_,. This result combined with Theorem 2.1.5 (the theorems of
Svenonius and of Vaught) makes it possible to analyze £}(L,,,) and IT{(L,,,.,)
formulas via L, ,, formulas.

2.2.1 Definition (Vaught [1973a]). Assume that ®(Z) is a closed Vaught formula of
the form

(vxo Adve\/ ¥s Ay \/ - ) A GIG %, 7).

igel Jjoel i1el Jrel
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Then, for any n < w, any (i,7) = (ig, o, - -+ » in—1>Jjn—1) € I*", and any ordinal
a, by induction on « simultaneously define a formula

6;’](2’ -)_Ca .)_/') = 5201.0'”1."_”.”_1(2’ x07 yOa ceey xn—l’ yn— 1)

as follows:
(1) 58”0.“,'"“”"_1(2’ X05 Y055 Xpn—1, yn—l) iS

/\ (pinO"'im—ljm—l(Z’ X05 V055 Xm—1> Ym— 1);

m<n
(2) 6;0_{:01"'1'"—11'"—1(2, X05 Y055 Xp-1, yn—l) iS

VX,, /\ 3yn \/ 6;01'0"'1'"]”(2, xO’ yO’ R} xn’ yn)a

inel Jnel
3) 0uiz, %,y is 64z X, y), ifaisa limit ordinal.
B<a

We write §,(Z) for the formula 6 '(Z), where ( ) is the empty sequence, and we
call 6,(2) the a-th approximation of ®(z). For each ordinal a, we let p(z) be the
formula

“) A\ [(on/\Vyo/\-~-Vx,,_1 A Yot N\ )

n<w ioel joel in-1€l Jn-1€l
(5i, ](2, -)?a P) - 5;‘-{1(29 i, y))jl'

2.2.2. It is clear that for each ordinal o and each (i, J) € I*", where n < w, the
formulas 6% %(Z) and p,(Z) are formulas of L. Moreover, if & < w, then they are
actually formulas of L, ,,.

It is also quite easy to verify that the formulas 6%7(Z) can be defined by a -
recursion as a function of the Vaught formula ®(Z), the sequence i, j and the ordinal
o. Consequently, if A is an admissible set having ordinal o(4) and if the Vaught
formula ®(z) is in A, then for every ordinal o < 0(A4), the formulas J,(z) and p,(2)
are elements of A.

2.2.3. If ®(Z) is a closed game formula, then the approximations of ®(Z) are defined
in an analogous way, although they are actually of a simpler form. More specifically,
if ®(2) is the closed game formula

(VXO ElyO vxl EIyl )/\(P,,(Z, Xos Yos--+sXn—1> yn—l)7

n<m
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then

(5) 58(27xO’yO"--’xn—l’Yn—l) iS /\(pm(Z’XO’YOs"~’xm—1:Ym—1)’
m<n

(6) 5;+1(2’x05y0’---axn—la))n—l) iS vxnayn5:+l(2’x0’y0’""xmyn)9

(7) 5;(Zax07y0’"'3xn—1’yn—1) iS /\5;(2’x07y0a"-,xn—layn—1)
B<a

for o limit.

We write §,(2) for the formula 62(Z) and call it the a-th approximation of the
closed game formula ®(Z).
Also, we put p,(z) for the formula

(8) /\ [(VXO vyO e Vxn—l Vyn—1)(53(5, X0s Y05+ 5 Xn-1> yn—l)

n<w

- 5:4—1(2’ X0s Y055 Xn—15 yn—l))]'

If ®(2) is an open Vaught formula (or an open game formula), then we define the
approximations

e7%(2, X, §) (respectively, e;(Z, X, 7))
of ®(Z) in a dual way, so that if
8%z, X, ) (respectively, 0%z, X, 3))

are the approximations of the closed Vaught formula (or the closed game formula)
which is logically equivalent to "1®(Z), then
e2J(z, X, y) is logically equivalent to —16%7(z, X, )
(respectively, £/(zZ, X, y) is logically equivalent to —187(Z, X, )).
2.2.4 Example. Let < be a binary relation symbol in the vocabulary t and let ®

be the open game sentence which asserts that < is well-founded; that is to say, ® is
the sentence

(Vxg Vxq Vx5 - )(\/ X,y < xn—Z))'

new

Below we compute the approximations ¢, of ® and find their meaning:
(1) if m < o, then ¢, = &2 is the sentence

(Vxo Vx, "'me—l)(\/ (x-y < xk—z))-

k<m
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(ii) e, = €2 is the sentence

\/ &) = \/ [(on Vxy - ~‘me—1)(\/ -y < xk—l))]'

m<w m<wo k<m

Notice that ¢, asserts that, for some m < o, there is no descending chain with m
elements in <. Therefore, ¢, states that < is a well-founded relation of finite rank.

(iii) e, ,; = €2, , is the sentence
on( \/ Vx; Vx; - --me_1<\/ (- < xk_z))).
m<o k<m

This sentence asserts that, for every element x in the field of <, the set of
predecessors of x has finite rank. Therefore, ¢,, . ; is equivalent to the assertion that
< is a well-founded relation withrank < w < w + 1.

The pattern revealed in (i), (ii), and (iii) holds in general. Indeed, by induction
on o, we can show that for any ordinal

&, asserts that “ < is a well-founded relation of rank less than a”.

It follows, therefore, that if 2 is a structure of cardinality < k, then

A = (Vxo VX, Vx2-~)(\/—|(x,,_1<x,,_2)> iff A= \/ e,

n<w a<k*t

Later on we will show that the above equivalence holds for arbitrary open games
or for open Vaught formulas. Before developing the general theory of the ap-
proximations, we will present the main properties of the finite approximations of
game formulas on saturated structures. Consequently, we now consider

2.2.5 Theorem. Let ©(Z) be the closed game formula

(VxO EIyO Vxl EIyl o )/\ q)n(za X0s Yos -+ Xn—15 yn—l)»

n<w

and let W be a structure of vocabulary t.
(1) If Wis w-saturated, then

A= vz<q>(2) - A\ 5m(2));

m<ow

(ii) If W is recursively saturated and the sequence {@,(Z, X, y): n < w} is recur-
sive, then again

A= vz(cb(z) A 5,,,(2)).

m<w
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Proof. We outline the argument for part (ii) since that part is the effective version of
part (i).

Let A be a recursively saturated structure and assume that the sequence
{07, X, y): n < w} is recursive. It is clear from the definition of the finite ap-
proximations that for any structure A

A= VZ(D(Z) - §,(2)) forall m < w.
Thus, it remains to show that, under the above hypotheses,

A = vz( A 6.(2) JcD(Z)).

m<aw

The main idea comes from the proof of the Gale—Stewart theorem in Section 1.
More specifically, asin Theorem 1.2.4, we consider the monotone operator @(z, u, S),
where

@(z, u, S) < (ue A=“ and u has even length)

& (ifu=(xg, Yos-+»Xn—1> Yne1)s

then (\/ VO, X0, Yoo » Xk—15 Vk—1)

k<n

v 3@x YY) ((E, u"(x, y)) € S)).

Let ¢@* be the stages of the inductive definition generated by ¢. That is,

0° = {(zu): o u &)}, and ¢* = {(E, u): (p(é, u, | (p”)}.

p<a

From this, it is easy to show that, for any m < w and any n < w, we have

(1) (Ea X0s Vo5 -vos Xn—15 yn—l)e(pm lﬁ (2, X0s Vo5 -5 Xn—15 yn—1)¢5;‘

Since the sequence {¢,(Z, X, ): n < w} is recursive, we can view @(zZ, u, S) as a
X, monotone inductive definition on HYPg,. But 2 is recursively saturated and so
o(HYPy) = w. Therefore, by Gandy’s theorem, (see Barwise [1975]) the inductive
definition must close off at  steps, so that we then have

@ p* = |J o™

m<w

Assume now that 9, Z = /\,,<,, ,(2). Then z ¢ o™ for all m < w by the equi-
valence given in (1). Hence, z ¢ ¢ by (2). The proof of the Gale-Stewart theorem
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implies then that Player I has a winning quasistrategy in the closed game G(V3,
Nn<w @,)- Hence, U, z = ®(z). 0

2.2.6. In many respects, the idea behind the approximations has its origins in
classical descriptive set theory and the approximations of the operator </ (see, for
example, Kuratowski [1966]). The finite approximations of closed game formulas
were introduced by Keisler [1965c], who established, among other results, the
first part of Theorem 2.2.5. Moschovakis [1969, 1971, 1974a] developed the
theory of positive elementary inductive definability on arbitrary structures A which
possess a first-order coding machinery of finite sequences. He obtained the basic
connection between inductive definability and game quantification; and, in essence,
discovered the properties of the approximations ¢, of closed game formulas.
However, Moschovakis’ results were of a local nature, since they dealt with an
arbitrary but fixed structure. In the abstracts Chang—Moschovakis [1968], Chang
[1968a], and the paper by Chang [1971b], the approximations of the game
formulas are used implicitly in the study of global definability. The approximations
of the Vaught formulas were introduced by Vaught [1973b] who established their
main properties and used them in the study of £i(L,,,,) and IT{(L,,,,) formulas.

2.2.7 Theorem (Vaught [1973b]). Let ®(2) be a closed Vaught formula of the form

(on Ao\ Vs Adys V- ) A 0G5 7).

ioel Jjoel ijel jrel

Then, we have

(1) for any ordinals o, p with oo > f and for any i, J,
F 8,2 %, 9) = 057z X, ));
(i1) for any ordinal o,

E ®(2) = 0,(2) and 1= (6.(2) A p,(2)) = D(2);

(iii) for any structure W of cardinality <k,

a<k*

1 A= vz( \/ 542));

2) A= VZ[@(E) - A 51(2)}

a<k*t

&) A= VZ[CD(Z)H \ (pu2) A 51(2))];

a<k?
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(iv) Moreover,if M is an admissible set, o(M) > w, ®(Z) isin M and W e M, then
W = Vzp,)(2)

and hence

AL vz(w(Z)«» A 5,(2)).

x<o(M)

Hint of Proof. Part (i) is proven by induction on the ordinal «. Part (ii) follows easily
from the definitions of the formulas 6, and p,. For example, if 2 is a structure such
that U, Z = 0,(2) A p,(Z), then the set

X = {ME(A X I)<“’:(Vv)((v = (XO’iOsyO»jO’""xn—l7in—17yn~1’jn—l)
&(U S u))—»‘ZI,Z, X0sY0s++s Xn—15 Yn-1 = 5§j)}

is a winning quasistrategy for Player I in the game associated with ®(z). Hence,
A Z = O(2).

The proof of parts (iii) and (iv) requires the inductive analysis of the dual open
game and is similar to the proof of Theorem 2.2.5. In (iii), a cardinality argument
shows that the corresponding monotone operator closes off at some ordinala < x ™.
In (iv) this is proved using Gandy’s theorem or directly using a boundedness
argument. []

The following result is an immediate consequence of Theorem 2.2.7 in which we
take k = w in part (iii). It has interesting applications in descriptive set theory.

2.2.8 Corollary. Let ®(Z) be a closed Vaught formula. Then

(i) =" (v2) <®(5)<—> A\ 5a(f))

a<wi

(i) =" (V2) ((D(f) =V (02) A Pa(f))) 0

a<wi

Theorem 2.2.7 is the main result on the approximations of the closed Vaught
and the closed game formulas. We can, of course, formulate and prove an analogous
“dual” result on the approximations of the open Vaught and the open game
formulas.

Burgess [1977] introduced a notion of approximations for formulas of abstract
logics and showed that if (L*, = *) is an absolute logic, then the formulas of L* can
be approximated by formulas of L ,. His proof makes use of Theorem 2.2.7, since
he shows first that any formula of L* can be approximated by formulas involving
game quantification and arbitrary disjunctions and conjunctions. More about
these results can be found in Chapter XVII of this volume.
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In what follows we will combine the Svenonius-Vaught result which is given in
Theorem 2.1.5 with the results on approximations in order to study properties of
the £{(L,,,,,) and the IT}(L,,,,,) formulas. We begin by proving a strong version of
the interpolation theorem for L, .

2.2.9 Theorem. Let ®, ¥ be (L) sentences and let 8L', where m < w, be the
finite approximations of the closed game sentence W* which is equivalent to ¥ on
countable structures.

If = ® — Y, then there is some m <  such that = ® — 6",

Proof. In order to derive a contradiction, we assume that = ® — 1P, but for all
m < o, the sentence ® A 8} has a model. Consider then the closed game sentence
®* which is equivalent to ® on countable structures and let &, where n < o, be its
finite approximations. Since = @ - ®*, = ®* —» A\ ., 67 and = 6, — &y, for
m > m', the set

T = {5 A nm< w

is finitely satisfiable. Let 2 be a countable, recursively saturated model of T. Then
A= (Nn<o 0) A (/\m<w O )- But by Theorem 2.2.5, we have

AU 0*— A and AE=YT*o A6

so that A = ®@* A W*. However, since W is countable, A = (O — ©*) A (¥ « P*)
and hence

A= ® A V. But this is a condiction of the hypothesis that
Ed- VY. [

The next result was established by Vaught [1973b] and has turned out to have
many interesting consequences.

2.2.10 Vaught’s Covering Theorem. Let ®, ¥ be Ti(L,,,) sentences and let 6, ,
for o an ordinal, be the approximations of the closed Vaught sentence Y* which is

equivalent to W on countable structures.

() If = ® > 1Y, then there is an ordinal § < w, such that = ® — 165 .
(ii) Moreover, if A is a countable admissible set, ® and ¥ are £{(L ,) and = ® —
1Y, then there is some ordinal B < o(A) such that = ® — =10} .

Proof. Here we give the proof for the case where ® and ¥ are £{(L,,,,,) sentences and,
at the same time, point out the modifications that are needed if ® and ¥ are
Zi(Ly).

Let ® and ¥ be £{(L,,,,,) sentences such that = ® — 7'V and let ®* and ¥* be
the closed Vaught sentences which are respectively equivalent to ® and ¥ on



392 X. Game Quantification

countable structures. The key idea is that if =¥ holds, then we can use the inductive
analysis of the open Vaught formula which is equivalent to —1'¥* in order to extract
a Z£{(L,,,) sentence which pins down ordinals. But then the undefinability of well-
orderin L, ,, implies that all ordinals pinned down in this way are bounded by some
ordinal 8 < w,. From this, it will follow that = ® — —15;". We now provide some
of the technical details there are necessary to make this idea precise.

The closed Vaught sentence W* is of the form

(on /\ yo \/ Vx, /\ Iy, \/ e ) /\ '//i'](xo» Yosevos Xnets Yn-1)s

ioel joel ijel Jjrel n<w

where I is a countable set and the /" /(X, y) are formulas of L, . It is easy to see that
if 5¥™%7 are the approximations of W* for o an ordinal and (i, j) € I?", then

(1) 52‘*’i‘j(x05y07~-'7xn—1’yn—l) Iff

/\ (vx" /\ ayn \/ )6$*J.imjvj“(x0’ yO’ BN Xn’ yn)

B<a inel  jnel

A /\ lpik.]k(xo’ Yosees Xk—1> yk—l)'

k<n

Itis clear from the above equivalence that the approximations of ¥* would have
the same meaning if, instead by induction on the ordinals, they were defined by
induction on the rank of an arbitrary well-ordering <. We will now consider new
relation symbols <, P"7 for (i, J) € I*", n < w, and a new constant symbol c.

We claim that in the expanded vocabulary ' = t U {<, ¢} U {P"7: (i, ]) e I*",
n < w} we can find a sentence y of L, ,[ 7] which asserts that < is a linear ordering
and that the relations P/ satisfy the equivalence given in (1) above along <. More
precisely, we let y be the conjunction of the following sentences of L,, ,[7]:

(i) “ < 1is a linear ordering with greatest element ¢”;
(ii) P c);
(iii) the universal closure of the formula,

i, Ji
P J(u» Xo0> Vo> s Xp—15 yn—l)

H(VU < u)(Vx,,/\ay,,\/ )Pi‘in’j.j"(v’ X05 Y055 Xn>» yn)

inel jnel

A /\ l/jikvjk(-x09 Yos-+vs Xk—15 yk—l)’

k<n

for i,))eI*", ne w.

It follows from the preceding comments that if a structure 2 is a model of y and
u is an element of <™ of rank o, then for any i, j, we have

{6 9): P2, %, )} = {(%,9): W5 5 = 807},
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We will show now that the sentence (1'W*) A yx pins down ordinals. Indeed, we
claim that:

@) if A is a structure of vocabulary 7’ such that A = (1W*) A y,
then < is a well-ordering of its field.

Otherwise, let A = (1W*) A yandlete > v, >%v, >¥... >¥%p, >y, >¥...
be an infinite descending chain in the field of <™. Since U = ¥, we can use then the
conjucts given in (ii) and (iii) of y and the infinite descending chain above to define
a winning quasistrategy for Player I in the game associated with ¥*. Hence we
have that 2 = W*. But this is a contradiction.

In order to complete the proof of the theorem, we observe that since = ® — —1'\¥
and =¥ « ¥* we must have that = ® - —W*. It thus follows from (2) above
that we have

3) if A is a structure of vocabulary 7’ such that A = @ A y,
then <¥ is a well-ordering of its field.

The undefinability of well-order in L, ., now implies that there is an ordinal
B < w;suchthatif A = ® A y,then <®hasrank less than . As a consequence, the
sentence ® A 8} has no model and therefore = ® — —15;".

If ® and ¥ are $1(L ), where A is a countable admissible set, then the result can
be proved by an entirely analogous argument using the effective versions of
Theorems 2.1.5 and 2.2.7, and the theorem for pinning down ordinals in admissible
fragments (for the latter result, see Barwise [1975] or Chapter VIII of this volume).
Notice also that if 4 = HF, then the result was proved in Theorem 2.2.9. [

Although Vaught’s covering theorem is a generalization of Theorem 2.2.9, its
proof appears to be quite different from the one given for Theorem 2.2.9. Therefore,
it is natural to ask if Vaught’s covering theorem can be proved by combining
compactness results with recursive saturation. Harnik [1974] gave such a proof (his
proof can be found also in Makkai [1977a]) using the Barwise compactness
theorem for a countable admissible fragment 4 and the existence of X ,-saturated
models. For the definition and related results about X ,-saturation, the reader
should also see Section 7, Chapter VIII of this volume.

2.3. Some Applications of Game Quantification

The results in Sections 2.1 and 2.2 have many interesting applications to the
model theory of L, , and admissible fragments L. It actually turns out that we
can derive the main theorems about compactness, abstract completeness, and
interpolationin L, ,, or in L , from the Svenonius—Vaught theorem, the approxima-
tions and the covering theorem. Since these results are well known and are discussed
in Chapter VIII of the present volume, we will here restrict ourselves to merely
listing some of the applications and making occasional brief comments on the

proofs.
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2.3.1 Applications of the Svenonius—Vaught Theorem. Vaught [1973b] obtained a
proof of the Barwise compactness theorem using tools from the theory of game
quantification. His argument consists of the following two independent parts:

(i) Let A be an arbitrary admissible set such that w € 4 and consider the class of
bounded open game formulas. These are game formulas for which the associated
game is bounded for Player II in the sense that his next move must belong to the
union of the moves played thus far. More precisely, a bounded open game formula
®(z) is of the form

[(3xo)(Vyo €2z U x0)(Ix)(Vy1 €2 U X U Yo U Xy) -]
\/ QD”(Z, XO’ yO’ cees Xp—15 yn—l)’

where each ¢"(z, Xg, Vg, - -+» Xn_1> Vu—1) I8 @ A, formula.

Vaught [1973b] showed that every admissible set A with w € A reflects bounded
open game formulas. That is, if ®(z) is such a formula and A4, z = ®(z), then there is
a transitive set w such that zew e 4 and {(w, €), z = ®(2).

(ii) The proof of the Svenonius-Vaught theorem (2.1.5) can be easily adapted
to show that if A is in addition countable, then every strict-I1] formula is equivalent
on A to a bounded open game formula. It then follows from part (i) that if 4 is a
countable admissible set with w € A, then A satisfies strict IT}-reflection, and hence
4 is X,-compact.

2.3.2 Applications of the Approximations. (i) Every Z{(L,,,,,) class of countable
models is the intersection of X, L, ,-elementary classes.
(i) Every Z3(L,,,) class of countable models is the union of X, L, ,-cle-
mentary classes.

These two results are rather direct consequences of Corollary 2.2.8. The first
result, in turn, implies that every analytic set of reals is the intersection of | Borel
sets. On the other hand, the second result yields Scott’s isomorphism theorem for
countable structures, since if U is countable, then the collection {B: B ~ A} is a
Z1(L,,,) class of countable models.

Other applications of the approximation theorem given in Section 2.2.7
include:

(iii) The Reduction Principle for I1j(L,,,,) Classes of Countable Models. This
principle asserts that if #, # are two Ii(L,,,,) classes of countable
models, then we can find two other I1{(L,,,,,) classes A"}, A", such that
Ao, =HuAHand A A = .

(iv) The Abstract Completeness Theorem. This result states that if 4 is a
countable admissible set, then the set of valid sentences in L, is X, on A4
uniformly.

2.3.3 Applications of the Covering Theorem. In this discussion, we will examine:

(i) The interpolation theorem for L,,,, and countable admissible fragments.
(i) The undefinability of well-order in L,,,, and the theorem on pinning down
ordinals in countable admissible fragments.
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The interpolation theorem follows immediately from the covering theorem.
Actually, in addition we obtain some information about the interpolant. For the
undefinability of well-order, we will assume that (<) is a £}(L,,,,,) sentence such
thatif A = (<), then <¥is a well-ordering. Then = ¢(<) = 1(3xo Ix; *+*) An<o
(xn+1 < X,), hence there is an ordinal § < w, such that = ¢(<) — 716, where §,
are the approximations of (3xo 3x; ---) Nu<o (X441 < X,). It follows now im-
mediately from Sections 2.2.3 and 2.2.4 that 10 asserts that the rank of < is less
than g.

The proof of the covering theorem we gave here makes use of the undefinability
of well-order. However, Harnik’s [1974] proof of this result does not depend on it,
so that we can first prove the covering theorem and then establish the undefinability
of well-order. This is, for example, the approach taken by Makkai [1977a].

Further applications of this material can be found in Makkai [1973b, 1974b],
Vaught [1974], Harnik [1976] and Harnik—Makkai [1976].

2.4. On the Connection with Invariant
Descriptive Set Theory

We have here tried to develop the theory of game quantification in a more or less
self-contained way by using methods from the model theory of L, , and admissible
fragments.

At this point we should mention that there is also a very interesting connection
between game quantification and invariant descriptive set theory. It is part of the
general interaction between infinitary logic and descriptive set theory, which arises
by identifying countable structures with elements of a product of topological spaces
of the form 2", w®", or w". If ¢ is a sentence of some infinitary logic, then the
collection of all countable models of ¢ can be viewed as a subset of such a product
which is invariant under a certain action of the group w! of the permutations on w,
or under a natural equivalence relation. Topological methods and results from
invariant descriptive set theory can then be used to derive theorems of infinitary
logic. In particular, some of the results we have presented here can be studied by
these methods. This direction has been pursued with much success by Vaught
[1974], Burgess—Miller [1975], Miller [1978] and others.

3. Model Theory for Game Logics

The aim of this section is to present an overview of the model theory for the infinitary
logics L and L, associated with game quantification. The main result is that
the logics L g and L, are absolute in the sense of Barwise [1972a]. Many model-
theoretic properties of L and L, then follow from this result and from the fact
that both of these logics can express the notion of well-foundedness.
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3.1. The Infinitary Logics L g and Ly
We will begin our discussion with

3.1.1 Definition. The infinitary logic (L,g, =1, ) is determined by the class
L[] of L g-formulas of vocabulary t and the relation of satisfaction =, _
between sentences of L[] and structures of vocabulary t. If 7 is a vocabulary,
then L[] is the smallest class which:

(i) contains all atomic formulas over the vocabulary t;

(ii) is closed under negation —;

(i) is closed under single existential 3 and single universal V quantification;

(iv) if ®isa set of formulas of L ;[ t] with only finitely many free variables in @,
then the conjunction /\ ® and the disjunction \/ ® are also formulas of
LooG[T] N

V) 1f {@u(Z, Xgs Vos+-+s Xne1> Yn—1): 1 < @} are formulas of L g[7] in the
displayed free variables, then the expressions

(Vxo 3yo Vxy Jy;-+9) /\ OulZ, X05 Y0r -+ s Xne 15 Yu—1)

n<w

and

(3xo Vyo Ix; Yy, --) \/ Ou(Z, X05 Yo+ > Xu— 15 Yu-1)

n<w

are also formulas of L [7] with Z as free variables.

The relation of satisfaction “W =, __y” between sentences of L,g[t] and
structures of vocabulary 7 is defined inductively, using the game theoretic interpreta-
tion from Section 1 for the clause given in (v). It is understood that if the full axiom
of choice is available in the metatheory, then the interpretation is via winning
strategies. If one is working only with the axiom of dependent choices, then the
interpretation of the clause in (v) is given using winning quasistrategies.

If 7 is a vocabulary and HC is the set of hereditarily countable sets, then we put
L,,6lt] = Lyg[t] » HC.

Notice that the open game and closed game formulas that we considered in
Section 2 are actually elements of L,, g[7].

3.1.2 Definition. The infinitary logic (L, = _,) is defined as follows:

If 7 is a vocabulary, then the collection L ;[ 7] is the smallest class of formulas
which satisfies the closure properties (i), (ii), (iii), and (iv) in the previous definition
and in addition is such that:

(v') if I is a non-empty set and for every ne w and every (i, J) € I*" ¢"(z, x,,
Yos+-+»Xu—1, Yn—1) is a formula of L, [7] in the displayed free variables,



3. Model Theory for Game Logics 397

then the expressions

(on AoV Vx, Ay V- )

ioel Joel iyel Jrel

/\ (pi.](z, X0s Vo5 s Xn—15 y’l—l)

n<w

and

<3x0 \/ Yo A 36, \/ Vo A - )

igel joel irel jrel

V0" Ko Tore v Xa e Yae)

n<w

are also formulas of L, [t] with Z as free variables.

The relation of satisfaction “W =, ¢~ between sentences of L, ,[7] and
structures of vocabulary 7 is defined inductively, again associating a game with the
formulas in (v').

We put

Lwlv[?] = Lyy[t] n HC

and observe that the open Vaught and closed Vaught formulas of Section 2 are
elements of L, ,[7].

It is not hard to verify that the logic L,y is stronger than the logic L,, . Indeed,
L,,y—and, of course, L_,—can express infinitary connectives which cannot be
captured by L, ; (nor by L for that matter).

Vaught [1974] pointed out that the weak second-order version of L,, ;, coin-
cideswith L, ,,so that L,, , is invariant under passage to weak second-order logic,
while L,, ¢ is not. However, as we have mentioned before, over countable models
possessing a first-order coding machinery of finite sequences, the infinitary logics
L, and L, , have the same expressive power.

3.1.3. We now recall the definition of an absolute logic from Chapter XVII, a
definition which was originally given in Barwise [1972a].

Let T be a set theory at least as strong as the admissible set theory KP and let
(L, =) be an abstract logic. We say that the logic (L, =) is absolute relative to T if:

(i) The relation “¢ is a sentence of L[t]” is a ] predicate of ¢ and the
vocabulary 7; and

(ii) if ¢ is a sentence of L[t] and A is a structure of vocabulary 7, then the
predicate “A =, ¢~ is a A predicate of U, ¢ and .

A logic (L, =) is strictly absolute if it is absolute relative to the admissible set
theory KP.
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One of the main results of Barwise [ 1972a] (see also Chapter XVII of the present
volume) asserts that if (L, =) is a strictly absolute logic, then L < L. However,
we showed in Section 1.1.4 that there is a formula of L,,,; which asserts that:

“ < is a well-ordering of order type y + y for some ordinal y.”

Since the above statement is not expressible in L we obtain the following

3.1.4 Theorem. The infinitary logics L, 6. Le,v> Ly, Loy are not strictly absolute.
0

It is now natural to ask whether or not the game logics are absolute relative to
some true set theory. The answer to this question is provided by the following result
of Barwise [1972a].

3.1.5 Theorem. The infinitary logics L, G, L, v, Loc and Ly are all absolute
relative to the theory KP + X,-separation + Axiom of Dependent Choices.

Sketch of Proof. Once more the main idea comes from the inductive analysis of the
open games, which was given in the proof of the Gale-Stewart theorem. An
inspection of the proof given there reveals, first of all, that the Gale-Stewart
theorem is itself provable in KP + X,-separation + axiom of dependent choices.
To establish that satisfaction is absolute for, say, the infinitary logic L,, ¢, we define
by induction on the construction of the L, [ 7]-formulasa Z, predicate P(z, U, , i)
such that if A is a structure of vocabulary t, then

P(r, Wy, i) if (=0&UAEY) Vv (i=1&UAKEY).
This automatically takes care of the negations, while for the crucial clause

given in (v) of Definition 3.1.1 we use the Gale-Stewart theorem and X, -separation.
More precisely, if i is the sentence

(Vxo 3y Vxy Jyy - -9) /\ VX0 Yoo+ vs Xne15 Yue1)s

then
P(z, U, , 0) < Player I has a winning quasistrategy in G<VEI, A lp,,)
=()¢o",
and

P(t, U, y, 1) <> Player I has a winning quasistrategy in G(BV, \/ —u//,,>

n<w

«<()eo”,
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where ¢ is the smallest fixed point of the monotone operator ¢(u, S) associated
with the open game G(3V, \/,<,, ~1¥,), just as in the proof of the Gale-Stewart
theorem given in Section 1.2.4. [

3.2. Model-theoretic Properties of the
Logics L and Ly,

The following model-theoretic properties of the infinitary logic L, follow from its
absoluteness and the results in Chapter XVII of this volume.

3.2.1 Theorem. (i) The logic L, has the downward Skolem—Lowenheim property
to . That is, if a sentence ¢ of L[] has a model, then it has a countable
model.

(ii) The logic L, has the Karp property. That is to say, if W, B are structures
of vocabulary t which satisfy the same sentences of L[], then they satisfy
the same sentences of L y[t]. 0

Barwise [1972a] showed that these properties are shared by any abstract logic
which is absolute. Moreover, Barwise [1972a] and Burgess [1977] established
certain negative results about logics which are absolute and unbounded. That is,
the collection of well-founded structures is a PC class. Since the infinitary logics
L,,6>La,v, Ly and L, can all express the notion of well-foundedness, we have

3.2.2 Theorem. (i) (Failure of the Abstract Completeness Theorem). The set of valid
sentences of the infinitary logic L,, ¢ is a complete I1, set on HC. The same is
true for the validities of the infinitary logic L,, y .
(ii) The infinitary logics L, and L, do not satisfy: the Craig interpolation
theorem, the A-interpolation theorem, the Beth definability theorem, and the
weak Beth definability theorem. (]

The reader is referred to Chapter II for the definitions of these notions and to
Chapter XVII for the proof of the above theorem.

3.2.3. The approximation theory for Vaught formulas, which was developed in
Section 2, can be easily extended to arbitrary formulas of L, , the main result being
that with any sentence ¥ of L, we can associate sentences 8? of L,,, for « an
ordinal, such that

l=|ﬁ<—>/\5¥.

Green [1979] used these approximations to introduce consistency properties for
Ly and obtained a model existence theorem for game logics. As we mentioned in
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Corollary 2.2.8, Burgess [1977] extended the approximation theory to any absolute
logic. Finally, Harnik [1976], using the approximations and model theoretic
forcing, established certain strong preservation theorems for L, which partially
compensate for the failure of interpolation.

We conclude this section by pointing out that certain sublogics and extensions
of the game logics L and L, have also been studied. For example, Ellentuck
[1975], Burgess [1978b] and Green [1978] have investigated the Suslin logics
which can be described intuitively as the propositional part of Ly, since they allow
for infinite alternations of the connectives /\ and \/, but not of the quantifiers V and
3. Burgess [1977] introduced the Borel-game logic L . 5, an extension of L . In this
logic, the infinite strings of quantifiers and connectives are applied not only to
matrices which are open or closed, but also to matrices which can be coded by a
Borel set. Of course, it takes Martin’s [1975] theorem on Borel determinacy to
show that negations can be pushed inside. The Borel-game logic is absolute relative
to ZF + axiom of dependent choices.

4. Game Quantification and Local
Definability Theory

This section contains the connections between game quantification, generalized
recursion theory, and descriptive set theory. The first basic result asserts that on
structures with a first-order coding machinery, the (positive elementary) inductive
relations coincide with the ones that are explicitly definable using the open game
quantifier. This result is due to Moschovakis [1972] and constitutes an absolute
version of Svenonius’ theorem (see Theorem 2.1.5). Aczel [1975] generalized this
result and showed that the Q-inductive relations on a structure can be characterized
using infinite strings (Qx, 0x,0Qx, - - -), where Q is an arbitrary monotone quantifier.
To present these theorems, we introduce infinite strings (Qx,0x,0x, ---) and
interpret them via two-person infinite games. We will pursue the study of the Q-
inductive relations and state their characterizations in terms of functional recursion,
representability in stronger logics, and admissible sets with quantifiers. We will also
briefly indicate some of the tools of inductive definability which are used to derive
local versions of the global results given in Section 2. That done, we will discuss the
connections with non-monotone inductive definitions and the recursion-theoretic
difference between the open game and the closed game quantifier. The chapter will
end with some results and comments concerning the interactions of game quantifica-
tion with descriptive set theory.

Because of the limitations of space, most of the results in this section will be
given without proofs. However, we have included the definitions of the basic notions
as well as all the relevant references to the literature.
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4.1. Iterating a Monotone Quantifier Infinitely Often

4.1.1. Assume that Q is a monotone quantifier on a set 4; that is, suppose that Q is
a non-empty, proper subset of #(A) which is closed under supersets. In order to
iterate the quantifier Q infinitely often, we must give meaning to the string

(Qx00x,0x; -+ ).

The following interpretation is due to Aczel [1975] and is motivated by the observa-
tion that, since Q has the monotonicity property,

OxP(x) iff (3X €Q)(Vxe X)P(x),
so that intuitively we should have the equivalence
(QxOQlexZ o ~)I{(X:O, X1y X2, - )
iff 3X,eQ)(Vxoe Xo)3X,€Q)Vx,€X,) - R(xg, Xy,...).

This suggests associating with Q as well as with a relation R < A® the following
two-person infinite game G(Q, R) of perfect information:

A round of the game G(Q, R) is played by Players-I and II who make alternate
moves in such a way that I picks a set X; € Q and II responds by picking an element
x€X;,i=01,2,...

1|X0 X, X, - (X;eQalliel)

0| x x  x- (veXpalliel)

Player I wins the above round if (x,, X;, X,, . ..) € R; otherwise, Player II wins
We say that Player 1 wins the game G(Q, R) if I has a systematic way to win every
round of the game. This can be made precise by requiring that Player I have a
winning strategy for G(Q, R); that is, that there be a function ¢: { J,<, (Q x A)"
— Q with the property that (x,, X;, X,,...)€ R for any round (X, xq, Xy, X,
X,,x,,...) of G(Q, R) in which X, = o(( )) and X;,, = 6(X,, Xg, ..., X;, X)),
for every i € w. Similarly, we say that Player II wins the game G(Q, R) if II has a
winning strategy :  J,<,, (Q x A)" x Q = A with which he can win every round
of G(Q, R). Finally, we put

(onQx1ng < IR(xg, X1, X3, . -)
ifft Player I wins the game G(Q, R).

The following proposition is a simple, but useful tool in manipulating infinite
strings of quantifiers. Its proof follows easily from the definitions and the axiom of

choice.
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4.1.2 Proposition. Let Q be amonotone quantifieron Aand let R = A®. Then we have,

QX{QXOQXIQXZ o '}R(X, X0 X1, X2 -« )
iff  (0x0x,0x,0x, - IR(x, xq, X1, Xp,...). U

The next theorem provides the basic connection between winning strategies for
Player I in the game G(Q, R) and winning strategies for Player II in the dual game

G(é, —1R) associated with the statement
(éxoéxléxz ) T R(xg, Xy, X3, - . .), Where of course TR = A” — R.

4.1.3 Theorem. Let Q be a monotone quantifier on a set A and let R = A®. Then the
following are equivalent:
(1) (@x00x,10x5 - )R(xg, X1, X5, ...); that is to say, Player 1 wins the game
G(Q, R)
(i1) Player 11 wins the game G(é, —IR).

Proof. Let o be a winning strategy for Player I in the game G(Q, R). We will in-
formally describe a winning strategy for Player II in the dual game G(é, —1R). The
argument uses the axiom of choice and the fact that if X € Q and Yeé, then
X N'Y # &. Assume then that Player I starts a round of G(é, —1R) by playing a
set Yoeé. If X, = 6(( )), then X,€Q, and hence X, N Y, # J. Now,

Player II answers Player I in G(é, —1R) by picking an element

IfI plays Y, € é, then II responds by playing some element x, of the non-empty
set X; N Yy, where X, = a(X, xo) € Q. If Player II continues in this way, then at
the end of time he has produced a round (Y,, x,, Y;, X4, .. .) of the game G(é, —1R)
for which there is a round (X, x¢, X, X;, - ..) of G(Q, R) played according to the
winning strategy o for Player I in that game, hence (x,, x;,...)€R.

As to the other direction, we will assume that Player II wins the game G(é, —IR).
We will indicate how to define a winning strategy for I in the game G(Q, R). The
idea is similar to the one presented earlier; namely, I plays in such a way that he
forces his opponent to produce a sequence (x,, X;, X,, . . .) which corresponds to

moves of IT in G(é, T1R) played according to his winning strategy. More precisely,
I starts by playing the set

X, = {x: there is a round of G(é, —iR) of the form (Y, x, ...)
in which Player II follows his winning strategy}.
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Notice that X, € Q, since otherwise its complement (4 — X,) e é and it is thus

a legitimate move for I in G(é, —1R). But then the winning strategy of II in this
game produces an element of X, N (4 — X,). This is a contradiction.
Suppose now that Player II responds with an element x, € X,. Then there is a

round of G(é, —1R) of the form (Y;, x,, . . .) in which II follows his winning strategy.
The next move of I in G(Q, R) is the set

X, = {x: there is a round of G(é, —1R) of the form (Y, x4, Y, x,...)
in which Player II follows his winning strategy}.

It is easy to see that X', € Q. Moreover, if I responds with an element x; € X, then

there is a round of G(é, 71R) of the form (Y, x4, Y;, X3, ...) in which II plays
according to his winning strategy. In this way, at the end of time the two players in
G(Q, R) have produced a sequence (X, x¢, X, X1, X5, X3, ...)such that thereisa
round (Y, Xo, Y1, Xy, Y5, X5,...) Of G(é, —1R) in which II follows his winning
strategy. 0

The proof of the Gale-Stewart theorem (1.2.4) can be easily modified to
yield the determinacy of open or closed games associated with the infinite string
(0x00x,0x, - - ). Thus, if Q is a monotone quantifier and R is a relation which is
either open or closed, then Player I or Player II wins the game G(Q, R). By combin-
ing this fact with Theorem 4.1.3 we immediately obtain the following

4.1.4 Corollary. Let Q be a monotone quantifier on A and let R < A® be a relation
which is either open or closed. Then

Player 1 does not win G(Q, R) iff Player I wins G(é, —1R)

and hence

T1(Qx00x,0x;5 - - )R(xg, X1, X5, ...) <>

(0% 0x;0x, - ) 71 R(xg, X1, X3, ..). O

4.1.5. Thus far we have considered infinite strings obtained by iterating only one
monotone quantifier infinitely often. We might also consider a sequence Q =
{0,} .. Of arbitrary monotone quantifiers Q,,, n € ®, on a set A and the correspond-
ing infinite string (QgxqQ:X; - - Q,x,--). If R € A is a collection of infinite
sequences from A, then the statement

(QOxOQ1xl o ann o ')R(XO’ Xy ooy Xpy oo )
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is interpreted via a game G(Q, R) which is suggested by the intuitive equivalence

(Q0x0Q1x1'”ann"')R(xO’x1>""xn5"') iff
(3X0€Q0)(Vxo€ X)X, € Q1) (VX € X))
- (3X,eQ)(Vx, € X,) - R(Xg, X1y - - vy Xp)-

The preceding results extend naturally to such arbitrary strings with only minor
modifications in the definitions and the proofs. In particular, if R < A® is either
open or closed, then we can push the negation inside, so that we have

ﬁ(Qoonlxl tet an,,' . ‘)R(XO, xl, ceey x,,, .. )
4i’(QOXOlel T ann o ) _1R(X0, XgsenonsXps - )

We should point out here that for the infinite string (Vx, 3y, Vx; 3y, ---), the
interpretation of the statement (Vxo 3y, Vx; 3y, - )R(xg, Vo, X1, V1, ---) given
above is equivalent to the one given in Section 1 of this chapter. Notice, however,
that a strategy for I in the sense of this section essentially coincides with a quasi-
strategy for I in the sense of Section 1, rather than with a strategy. This is because we
haveidentified the existential quantifier 3on A withthecollection{X < A: X # JJ}.

4.1.6. The infinite string (Qx,Qx,Qx,---) can be viewed as defining a new
monotone quantifier Q* on the set A® of infinite sequences from A. More specifically,
the quantifier Q* on A® is the collection

0* = {X = A°: (QxQx,0x; - - )X (X0, X1, X3, .. )}

If the infinite string (Qx,Qx,0x, - - -) is applied to relations R on A which are
open or closed, then it gives rise to two monotone quantifiers Q¥ and Q" on the
set A= of finite sequences from A.

The quantifier Q¥ on A= is the collection
QV = {X = A<m: (QXOQlex2 o ) \/ X(XO’ Xisenes xn-—l)}’

while the quantifier Q* on A= is defined by

QA = {X c A= (QXOQlexZ "‘)/\X(anxp "'9xn—1)}'

The quantifiers Qv and Q* can be expressed using the quantifier Q* on A and
infinitary connectives. Indeed, if R = 4= is a relation on the set of finite sequences
from A, then we first introduce the relations \/ R and /\ R on the set of infinite
sequences, where

\/R= {aeA“’:\/R(a [‘n)} and A\R= {aeA“’:/\R(a l‘n)}.



4. Game Quantification and Local Definability Theory 405

It is now clear that

Q" sR(s) <> Player I wins G(Q, \/ R) <> Q*a \/ R(x)
and

Q" sR(s) < Player I wins G(Q, /\ R) <> Q*a /\ R(x).

Since the quantifiers Q¥ and Q * give rise to games which are open or closed, we
can use Corollary 4.1.4 to find their dual quantifiers.

4.1.7 Corollary. Let Q be a monotone quantifier on A. Then:
(i) the dual of the quantifier Q" is the quantifier QA that is, (Q¥)° = Q*;
(ii) the dual of the quantifier Q" is the quantifier Q" ; that is (Q*)” = Q¥. 0

4.1.8. The Suslin and the classical ./ quantifier are special cases of the quantifiers
QY and Q". Indeed, it is obvious that V" is the Suslin quantifier on the set 4=,
while 3* is the classical quantifier ./ on A~“. Notice also that V" and 3 are
respectively the universal and the existential quantifier on the set 4~® of finite
sequences from A.

We now consider the quantifiers 3V and V3 on the set 4> = A x A, where

IV = {X < A%: (3x Vy)((x, y) € X)}
and
Vi = {X < A%: (Vx 3y)((x, y) € X)}.

Of course, the quantifier V3 is the dual of 3V. Moreover,

(3v)" is the open game quantifier 4 on 4<¢,
and

(V3)" is the closed game quantifier G on A<°.

Observe that here we have tacitly identified the sequence ((xo, Yo), (X1, V1),
(X3, ¥2),...) in (4 x A)® with the sequence (x,, Vo, X1, V1, X2, V2, --.) in A%,

If Q is a monotone quantifier on A, then the next quantifier Q* of Q is the
quantifier

0" = (003",

where Qé IV = {X c A*: (Qxéy 3z Yw)((x, y, z, w) € X)}. Therefore,if R = A=,
then we have

0*SR(s) < (Qxo Oyo 3z Ywo0x, 0y, 32, Yw, -+

\/R(XO’ Yos205Wos -+ Xp—1> yn—l’zn—lawn—l)'
n
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It follows from the above that the dual quantifier of Q% = (Qé 3v)" is the
quantifier (0Q ¥3)*. Notice that the open game quantifier % is the next quantifier of
(3V). As we will see in the sequel, the next quantifier plays an important role in the
theory of inductive definability.

4.2. Game Quantification and Positive Elementary
Induction in a Quantifier

4.2.1. LetA = {A,Ry,...,R,, ¢y, ..., ¢,y beastructure and let Q be a monotone
quantifier on the universe 4 of the structure. The first-order logic #¥(Q) of the
structure U has both first-order variables x, y, z, ... and second-order variables

S, T, U, ..., but the quantifiers v, 3, Q, é range only over the first-order variables.
The “boldface” first-order logic L¥(Q) of the structure A is obtained from £*(Q)
by adding to the vocabulary a new constant symbol a for each element a € 4. If we
do not consider an additional quantifier Q, then we have the logics #* and £
respectively.

If (x4, ..., X,, S) is a formula of £¥(Q) in which S is a n-ary relation symbol
with only positive occurrences, then ¢(x, S) gives rise to a transfinite sequence
{I5} ¢cora Of n-ary relations on A, where

I, = {)_CEA"Z (p(i, U (p")}.
n<g¢

1, = Ulg

¢eOrd

We put

and call I,, the set inductively defined by ¢. It is easy to see that

xel,= (X, 1,)
and
I, = () {S: (¥X)(@(X, S) = X € S)},
so that I, is the smallest fixed point of ¢.
If R is an m-ary relation on A4, we say that R is Q-(positive) inductive in case there

is a formula (i, 7, S) of £¥(Q) with S occurring positively and a finite sequence @
of elements of 4 such that

R(y)«=(a, y)el,.
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We say that a relation R < A™ is Q-(positive) hyperelementary if both R and
A™ — R are Q-inductive relations. We write

IND(2, Q) = the collection of all Q-(positive) inductive relations on 2,
and

HYP(2, Q) = the collection of all Q-(positive) hyperelementary
relations on .

If we do not consider an additional quantifier Q on 4, then we have the notions
of the (positive) inductive and the (positive) hyperelementary relations on . In
this case we put :

IND(2) = all (positive) inductive relations on 2,
and

HYP() = all (positive) hyperelementary relations on 2.

The theory of the inductive and the hyperelementary relations has been
developed in the monograph Moschovakis [1974a]. Here we will purposely restrict
ourselves to stating the results which are directly related to game quantification.

4.2.2. Henceforth, we will confine our attention to structures possessing a first-
order coding machinery of finite sequences. Wesay thatastructure A = (4, R,, ...,
R,, ¢y, ..., ¢y is acceptable if w, <, are first-order on A and there is a total, one-
to-one coding function ¢ »:A4<® — A such that the relation seq and the functions
Ih and q are first-order on 2, where

seq(x) <> there are x;, X, . .., X, such that x = {x, X5, ..., X,);
h(x) = 0, %f = seq(x)
n, ifseq(x)and x = {(xy, X5, ..., X,;

and

5o ifx =dx, x5, ....x,pand 1 <i<mn,
0, otherwise.

X

q(x, i) = (x); = {

Typical examples of acceptable structures are the structure of arithmetic
N = (w, +,-), the rationals Q = {(Q, +,-), the structure of analysis R =
(o U w® . +,-, Ap> (where Ap(a, n) = a(n), with a € o® and ne w), and the
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structures V; = (V,, &), for each ordinal A > w, where V is the collection of sets
of rank less than A.

Many of the results in this section are true under a much weaker hypothesis,
namely that the structure 2 under consideration has an inductive pairing function.
Such a function is, of course, a total, one-to-one function { >: 4 x A - A withan
inductive graph. Examples of such structures include the structures A = (4, <>
and L, = (L,, <) for any infinite ordinal A, all models of Peano arithmetic, and
any structure of the form A = (A4, €) where 4 is a transitive set closed under pairs.

Every acceptable structure has the property that the weak second-order logic
. on A can be subsumed by the first-order logic ¥ of the structure A.

If we want to avoid the assumption of acceptability, then we must consider a
larger class of inductive definitions, namely the inductive* and the Q-inductive*
relations of Barwise [1975, 1978b], or pass from an arbitrary structure A =
{A,Ry,...,R,,cy,..., ¢ to the expanded structure A* = (4 U A"V, 4,
o, Ry, ...,R,, <,, Ap, cy, ..., iy, Where Ap((ay, . .., a,), i) = a;.

If A is an acceptable structure and T is a quantifier on the set 4= of finite
sequences from A, then T can be identified with a quantifier on A4, which we also
denote by T and which is defined as follows:

T={X<SA: {(xp,....x) €A~ {xy,...,x,0€X} €T},

with { >: A=“ > A a fixed coding function as in the definition of acceptability.

In particular, the quantifiers 0¥, 0", 0* and (Q*)¥ can all be viewed, and
indeed will so be viewed from here on, as quantifiers on the universe A of the
structure . Thus, for example, the open game quantifier on 4 = is identified with
the quantifier

¢ = {X c A: (axo VyO 3-xl Vyl o ')\/(<x0’ Yos-es Xn—15 yn—l> GX)}
on A, while the closed game quantifier % on A< becomes the quantifier

G = {X < A: (¥xo 3yo ¥, Iy -+9)

/\(<X0, Yo» '-"Xn—l’yn—1>EX)}

on A. For the remainder of this section, if 2 is an acceptable structure, then
{ >1A™° > A will always denote a total, one-to-one function such that the as-
sociated coding and decoding relations and functions seq, Ih, q are first-order on 2.

The next theorem provides the basic connection between inductive definability
and game quantification. We credit this result to Moschovakis [1974a], [1972] for
the inductive relations and to Aczel [1975] for the Q-inductive relations.
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4.2.3 Theorem. Let A = (A, R,,...,R,,cy,...,¢c,> be an acceptable structure
and let Q be a monotone quantifier on A. Then,

(i) a relation R on A is Q-(positive) inductive if and only if there is a formula
©(u, Z) of the “boldface” logic L*(Q) of the structure A such that
R(2) < Qtup(u, 2); that is,

R(2) < (Quy Ow, 3x, Vyo Qv, 0w, 3x, Yy, ---)

\/(p(<009 W07 XO’ yO& ceey Un—l» wn—la Xn—l’ Yn—1>, 2)1
n

(ii) in particular, a relation R on A is (positive) inductive if and only if there is a
formula ¢ of the “boldface” logic £* of the structure U such that

R(Z) < Gup(u, z) <
(3xo Vyo Ix, Vy; -+ )\/ P({X05 Yo+ +sXn—15 Yn-1 Z)-

Hint of Proof. The inductive analysis of open games given in the proof of the Gale—
Stewart theorem (1.2.4) can be used to show that if (R(Z) < Q*u¢p(u, 2)), then the
relation R is Q-inductive. For the other direction, one has to show first that if
Y(Z, S)is a formula of £¥(Q) in which S occurs positively, then there is a quantifier-

Using the equivalence above and the coding machinery on ¥, it is not hard to
verify that the smallest fixed point I, of the formula y/(z, S) is explicitly definable by
the next quantifier Q* applied to a formula ¢(u, z) of £%(Q). 0

4.2.4. The above identification of the inductive relations with the ones definable by
open game formulas is an absolute version of Svenonius’ theorem (2.1.5), and has
many applications in either direction. In particular, results from inductive defin-
ability have implications for game quantification and vice-versa. For example, we
can use the proof of Theorem 4.2.3 to discover the main properties of the approxima-
tions of the open game formulas. Indeed, if ®(Z) is an open game formula and ¢(Z, S)
is a positive in S formula of £* such that A = (V2)(D(Z) <> I,(2)), then the ap-
proximations &5 of ® are equivalent on 2 to the stages I3 of ¢. In the other direction,
Moschovakis [1974a] used Theorem 4.2.3 to show the existence of universal
inductive relations on acceptable structures. As a consequence, on every acceptable
structure there are inductive relations which are not hyperelementary. Moreover,
on such structures the relation of satisfaction “ = ¢”, where ¢ is a sentence of
2Y is hyperelementary; but it is not, of course, first-order.

The tools of inductive definability can be used to obtain local versions of such
global results as Vaught’s covering theorem (See Section 2.2.10), the separation and
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reduction principles and others. One of the main tools is the stage comparison
theorem of Moschovakis [1974a] which asserts, intuitively, that we can compare
the stages of an inductive definition in an inductive way. Its consequences include
the following theorem, a theorem which is true for an arbitrary structure 2.

4.2.5 Theorem. Let A = (A, R,,...,R,,cy, ..., ¢y be a structure and let Q be a
monotone quantifier on A. Then the classIND(, Q) of the Q-inductive relations has
the pre-well-ordering property. That is, if P = A" is a Q-inductive relation, then there
is a map o: P52, where A some ordinal, such that the relations <* and <¥* are
Q-inductive, where

X<;y=(XeP)&(y¢P v a(X) < a()))

and
X<¥*y<=(xeP)&(F¢P v o(x)<a(y). 0O

If P is a Q-inductive relation and ¢: P-"> 1 is a map such that the relations
<¥and <} are Q-inductive, then we say that ¢ is a Q-inductive norm on P. The
existence of Q-inductive norms easily implies the reduction principle for the Q-
inductive relations and the separation principle for the complements of the
Q-inductive relations.

With any structure 2 we associate the ordinal k¥, where

k™ = sup{rank(<): < is a hyperelementary pre-well-ordering on A}.

If Q is a monotone quantifier on the universe A of the structure 2, then we consider
also the ordinal

kM9 = sup{rank(<):
< is a Q-hyperelementary pre-well-ordering on A4}.

The stage comparison theorem also yields the following useful boundedness
principle.

4.2.6 Theorem. Let W = (A, R,,...,R,, ¢y, ..., c,y be a structure and let Q be a
monotone quantifier on A. Assume further that P is a Q-inductive relation and

onto, . . .
o: P = Ais a Q-inductive norm. Then

(i) A < k%@
(il) for each & < A the set P* = {x € P: o(X) < &} is Q-hyperelementary;
(ili) P is Q-hyperelementary if and only if A < k™9, [

The above result can be thought of as a local version of the approximation
theorem (2.2.7) and the undefinability of well-order. Actually, Moschovakis
[1974a] showed that it implies a covering theorem for the Q-inductive relations on
any structure.
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4.2.7 ThetCovering Theorem. Let P be a Q-inductive relation on a structure A and
let 6: P> ) be a Q-inductive norm. If R is the complement of a Q-inductive relation
and R < P, then there is an ordinal ¢ < k¥ such that

Rc P = {xeP:0(X) < &}

In particular, R is contained in a Q-hyperelementary subset of P. [I

In order to gain more insight into the relations definable by the game quantifiers
on an acceptable structure, we next state various characterizations of the Q-
inductive relations in terms of Spector classes, functional recursion, representability
in stronger logics, and, finally, admissible sets with quantifiers.

4.2.8. Let I" be a class of relations on 4 and let Q be a monotone quantifier on A4.
We say that I is closed under Q if, whenever a relation P = A"*! is in T, then the
relation R = A" is also in I, where R(x) <> (Qy)P(y, X).

The class I" has the pre-well-ordering property if, for each relation P in T, there is
a mapping ¢: P> A, where 1 an ordinal, such that the relations <* and <#* are
inT.

Assume that A = <A, R,,...,R,, ¢y, ..., ¢,y is an acceptable structure and I
is a collection of relations on 4. We call I' a Spector class on W if:

(i) T contains all first-order relations on 4 with parameters from 4 and is
closed under u, N, V, 3;
(ii) T has the pre-well-ordering property; and
(iii) I' is A-parametrized. That is to say, for each n e w, there is a (n + 1)-ary
relation U" in I with the property that a relation R = A"isin I" if and only
if there is some a € 4 such that R = {xe A": (a, X) e U"}.

It actually turns out that the collections IND(2) and IND(, Q) of the inductive
and the Q-inductive relations are both Spector classes. The notion of a Spector class
was introduced by Moschovakis [1974a] and provides a framework for developing
abstract recursion theory. The following is a theorem of Moschovakis [1974a] and
Aczel [1975]. On the one hand, it summarizes the main closure and structural
properties of the inductive and the Q-inductive relations while, on the other, it yields
a minimality characterization for these classes of relations.

4.2.9 Theorem. Let A = {A,R,, ..., R,, cy, ..., ¢,y beanacceptable structure and
let Q be a monotone quantifier on A.

(i) The collection IND(, Q) of the Q-inductive relations on A is the smallest

Spector class on W closed under Q and é
(ii) In particular, the collection IND() of the inductive relations on A is the
smallest Spector class on U.
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We state one further result about Spector classes, a result which shows that
these classes possess interesting closure properties and are related to game quant-
ification.

4.2.10 Theorem. Let U be an acceptable structure, Q a monotone quantifier on A and
I" a Spector class on W. Then

(1) Tis closed under the quantifier Q if and only if T is closed under the quantifier
QY. In particular,

(i1) I is closed under Q and é if and only if T is closed under the next quantifier
Q.

(iii) Every Spector class is closed under the open game quantifier 4. [l

4.2.11. Let A4 be a set such that w = A4 and let 2%, be the collection of all k-ary
partial functions from A to w. A functional on Ais a partial mapping

O:A' x PFH, X - X P, — 0,

which is monotone. That is, if (X, g, ...,g,,) = wand g, S hy, ..., g S h,,, then
O, hy, ..., h,) = w.

If ® = (®,,...,®d,) is a finite sequence of functionals on the universe of a
structure 2, then we can define the notion of a recursive in ® m-ary partial function
from A to . This is done by first associating with ® the smallest class of functionals
having certain closure properties and containing ®, and then iterating the operative
functionals in that class. The detailed definitions of functional recursion can be
found in Kechris—Moschovakis [1977].

A relation P on A is semi-recursive in @ if it is the domain of a recursive in ®
partial function. We say that P is recursive in @ if its characteristic function yp is
recursive in ®. We put

ENV[®] = the collection of all semirecursive in ® relations

and
SEC[®] = the collection of all recursive in ® relations.

These classes of relations are called, respectively, the envelope of ® and the section
of ©.

Any monotone quantifier Q on A gives rise to a functional F§ which embodies
existential quantification with respect to Q and é This functional is defined by

0, if(@x)(p(x) = 0),
Fi(p) =11 if(@x)(p(x)] # 0),

1, otherwise,
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where p varies over the partial functions from 4 to . Here | abbreviates “isdefined ”,
while 1 stands for “is undefined”. If Q is the existential quantifier 3, then we write
E* for F so that

0, if @x)(p(x) = 0),
E*(p) =1 L if (V0)(p(x)] # 0),
1, otherwise.

It is not hard to show that positive elementary induction in the quantifier Q
coincides with recursion in the functionals E#, Fg .

4.2.12 Theorem. Let U be an acceptable structure and Q a monotone quantifier on A,
then,

(i) A relation is Q-inductive if and only if it is semirecursive in E* , F} and hence
IND(2, Q) = ENV[E* FJ].

(ii) A relation is Q-hyperelementary if and only if it is recursive in E*, ¥} and
hence

HYP(2, Q) = SEC[E*, Fj].
In particular, we have

IND() = ENV[E*] and HYP() = SEC[E*]. [

4.2.13. Assume that A =<4, Ry,...,R,,cy,..., ¢,y is a structure and T is a
system of axioms and rules of inference in a logic .# which has a constant a for each
element a € A. We say that a relation P on A is weakly representable in T if there is a
formula ¢ of # such that

P(al,'-',an)QT"(P(ala""an)'

We say that P is strongly representable in T if both P and —1P are weakly
representable. Aczel [1970, 1977] characterized the inductive and the Q-inductive
relations on an acceptable structure in terms of representability in certain systems.
If A is a given structure, then the infinitary system T *(A) consists of the following
axioms and rules of inference:

(i) All standard first-order axioms and rules of inference for the “boldface”
first-order logic ¥,
(ii) All atomic and negated atomic sentences of £¥ which are true in 2.
(iii) A-rule: From ¢(a) for all a € A, infer (Vx)p(x).
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If Q is a monotone quantifier on A, then the infinitary system T®(, Q) has, in
addition to (i), (ii), and (iii), the following rules:

(iv) Q-rule: From ¢(a) for all a € X, with X € Q, infer (Qx)p(x).
W) é-rule: From ¢(a) for all ae X, with X € é, infer (éx)q)(x).

Notice that the V-rule is the same as the 4-rule, while the 3-rule is an axiom of
first-order logic, namely from ¢(a), for some q, infer Ix¢(x).

4.2.14 Theorem. Let U be an acceptable structure and Q a monotone quantifier on A.

(i) A relation P on A is weakly representable in T®(U, Q) if and only if it is
Q-inductive.

(i1) A relation P on A is strongly representable in T*(U, Q) if and only if it is
Q-hyperelementary.

In particular, the inductive relations are exactly the weakly representable ones in

T*(N) and the hyperelementary relations are the strongly representable ones in
T@). 0O

Notice that if 9 is a countable, acceptable structure, then Svenonius theorem
(2.1.5), when combined with Theorems 4.2.3 and 4.2.14, yields a completeness result
about the infinitary system T °(2), namely that if a formula (X, ..., X,) of ¥
is universally valid, then T®() -~ (X, ..., X,). This completeness theorem also
has a direct proof which uses the omitting types theorem. In this case, Theorems
4.2.3 and 4.2.14 can be used to give an alternative proof of Svenonius’ theorem.
On the structure of arithmetic N = {w, +, - these results become the classical
representability characterization of the I1} relations in w-logic.

Finally, we mention the characterizations of the Q-inductive relations in terms
of admissible sets with quantifiers. For simplicity, we restrict our attention to
acceptable structures of the form U = {A,e [ A4, R,,...,R,, ¢y, ..., ¢,y Where A
is a transitive set.

If A and M are transitive sets, 4 € M, and Q is a quantifier on A, then we can
define what it means for M to be a Q*, é#-admissible set. The crucial additional

. e .
axioms are the schemata of Q and Q-collection, where

Q-collection: (Qx € A)(3y)p - (3w)(Qx € A)(Ty e w)o,
é—collection: (éx e A)Jy)p » (E!w)(éx e A)(3y e w)o,

with ¢ a Ay(Q, é) formula. The detailed definitions are given in Moschovakis
[1974a] and Barwise [1978b], while the next theorem comes from Barwise-
Gandy-Moschovakis [1971] and Moschovakis [1974a].

4.2.15 Theorem. Let A =<A,e A, R,,...,R,,¢cq,...,c,y be an acceptable
structure such that A is a transitive set and let Q be a quantifier on A. Put

A*(Q) = (V{M:UeM and M is a Q*, Q*-admissible set}.
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Then N*(Q) is a Q7 é#-admissible set, o(N*(Q)) = k¥ and moreover, for any
relation P on A

(i) P is Q-inductive if and only if P is Z,(Q, é) on A*(Q)
(ii) P is Q-hyperelementary if and only if Pe A*(Q). 0

At this point, we will collect all the characterizations of the Q-inductive relations
into one result which we now present

4.2.16 Theorem. Let U be an acceptable structure and Q a monotone quantifier on A.
If P = A" is a relation on A, then the following are equivalent:

(i) P is explicitly definable by the next quantifier Q* ; that is, there is a formula
o(u, 2) of £¥Q) such that (YZ)(P(2) <> Q" uq(u, 2)).

(i1) P is Q-inductive.

(iii) P is in the smallest Spector class on U closed under Q and é

(iv) P is semi-recursive in E*, Fj.

(v) P is weakly representable in T*(, Q).

(vi) Pis X,(Q, é) on the smallest Q*, é#-admissible set having W as element,
provided that the universe A of the structure W is transitive and € [ A is
among the relations of A. [

The local results given above suggest certain generalizations of the global
results in Section 2. The approximation theory extends to formulas involving the
next quantifier; that is to say, it extends to expressions of the form Q *up(u, z) and
(@) uep(u, z), where Q is an arbitrary monotone quantifier. However, in general,
Svenonius’ theorem does not hold for an arbitrary quantifier Q—in fact, it is
actually false if Q is the open game quantifier 4. An interesting problem is to find
natural monotone quantifiers Q for which Theorem 2.1.5 goes through. This,
of course, is equivalent to the completeness theorem for the infinitary system
T=(¥, Q).

4.3. Non-monotone Induction and Recursion in the
Game Quantifiers

4.3.1. A second-order relation on a set A is a relation ¢(x,, ..., x,, S) with argu-
ments elements x,, ..., x, of 4 and subsets S of a cartesian product A™ for some
m < o. If p(x,, ..., x,,S) is a second-order relation on 4 and S = A", then we
iterate ¢ and, by induction on the ordinals, define a sequence of n-ary relations
{¢°}: on A, where

xecpic(ie U (p”) v (p(ic, U (p").

n<¢g n<g



416 X. Game Quantification
We put
o* =) ¢°
4

and call ¢* the set inductively defined by .

Notice that if ¢ is a monotone relation, then (x € ¢* < (X, U,,q @"). This was
indeed the case for the second-order relations determined by positive formulas in
Section 4.1. Here we consider second-order relations which in general are non-
monotone.

If A is a structure and & is a collection of second-order relations on A4, then we
call a (first-order) relation P on A & -(non-monotone) inductive in case there is a
second-order relation ¢(ii, b, S) in # and a sequence a of elements of A such that

P(y) = (a, y) e p™.

Let A be an acceptable structure, let 4 be the open game quantifier on 4
Y = {X < A:(3xq Vyo Ix; Yy, --9)

\/(<x09 Yoseers Xn-15 yn—1> GX)},

and let P(X, S) be a second-order relation on A. We say that P(X, S) is 4, on W if
there is a formula ¢(u, X, S) of #¥ such that

P(X, S) < %up(u, x, S).
We write

%, = the collection of all ¥, second-order relations on 2.

Theorem 4.2.3 has a relativized second-order version which shows that the ¢,
relations are exactly the second-order (positive) inductive relations on 2. We will
state now a characterization of the 4,-(non-monotone) inductive relations on 2.
To do this, however, we need some notions from admissible set theory.

Let M and N be two admissible sets such that M = N. We say that M is N-
stableif M isa X, -elementary submodel of N, i.e. if for every X, formula (x4, .. ., x,)
and every a,, ..., a,e M

<M’€>': (p(alv"'van)<:><N’€> = (P(al""’an)'

We say that an admissible set M is 4 -reflecting if, for any formula ¢(u, z) of set
theory and any sequence a = (a, - . ., a,) of parameters from M, we have

(M, €> = %up(u, a)=> there is some admissible set we M
such that {(w, €) = Gup(u, a).
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Observe that by Svenonius’ theorem (2.1.5) we have that a countable admissible
set is ¢, -reflecting if and only if it is IT]-reflecting.

4.3.2 Theorem. An admissible set M is 4,-reflecting if and only if M is M " stable,
where M* is the smallest admissible set having M as element. [

This result is credited to Richter—Aczel [1974] for countable admissible sets.
Richter-Aczel [1974] and Moschovakis [1974b] characterized the non-monotone
inductions in the open game quantifier using %,-reflecting admissible sets.

4.3.3 Theorem. Let A =<{A4,e[A,R,,...,R,,cy,...,c,y be an acceptable
structure such that A is a transitive set. A relation P on A is %,-(non-monotone)
inductive if and only if P is X, on the smallest admissible set which is 4 -reflecting and
contains W as an element. 11

This theorem is an absolute version of the following:

4.3.4 Corollary. Let I} be the class of T1} second-order relations on the structure of
arithmetic N = {w, +, ->. Then a relation P on w is I1}-(non-monotone) inductive
if and only if P is £, on the smallest T1}-reflecting admissible set. [

We next examine the non-monotone inductions in the closed game quantifier

G = {X < A: (Vxg yo Vxy Ay, -+ 0)

/\(<x0’ Yos oo Xp—15 yn—1> EX)}

on an acceptable structure 2.

We say that a second-order relation P(X, S) is g . on A if there is a formula
o(u, x, S) of ¥ such that

P(%, S) <> Guo(u, X, S).
We put
% . = all g ; second-order relations on 2.

Harrington—-Moschovakis [1974] obtained the following characterization of the

. . . . . Y
non-monotone inductive relations in the quantifier 4.

4.3.5 Theorem. Let A be an acceptable structure. Then a relation P on A is % 1-
(non-monotone) inductive if and only if it is 9-(positive) inductive, and hence

4,-IND = IND(2L, %) = ENV[E*, FZ]. [
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4.3.6 Corollary. Let A ={A4,e A, Ry,...,R,,c1,..., ¢,y be an acceptable
structure such that A is a transitive set. A relation P on A is 4 1-inductive if and only if

P is X, on the smallest 4%, G* admissible set with U as an element. [

4.3.7. In the light of the preceding theorems, it is natural to ask how do the classes

%,-IND and 4 +-IND compare. The main theorem of Aanderaa [1974] and the
pre-well-ordering property for the second-order (positive) inductive relations
(which is the relativized version of Theorem 4.2.5) immediately imply that

4,-IND g 4,-IND.

. . . . A . . .
In other words, every ¢,-inductive relation is 4, -inductive, but the converse is

not true. Moreover, the closure ordinals of the g -inductive relations is much
bigger than the closure ordinal of the ,-inductive relations.

These results show that inductive definability provides ways to distinguish
between the open game quantifier and the closed game quantifier. Such distinctions
usually do not occur in model theory where a quantifier and its dual are treated on
an equal basis, and the properties of the dual are obtained from the ones of the
quantifier by involution.

Notice that the functionals F and FZ do not differentiate the open game
quantifier from the closed game quantifier, since it is easy to see that on any
acceptable structure

ENV[E* FZ?] = IND(Y, %) = ENV[E*, F%].

The recursion-theoretic difference between the quantifiers 4 and G is captured
by the functional Fj, which was introduced by Kolaitis [1980] and which, in

general, distinguishes the quantifier Q from its dual é The functional F} is defined
by
0, if (@x)(p(x) = 0)

. if pis total & (0x)(p(x) | # 0),
1, otherwise

[

Fo(p) =

where p varies over the partial functions from A4 to w.

4.3.8 Theorem. Let W = {A,R,,...,R,,cy,...,c,y be an acceptable structure.
Then

ENV[E*,F;] ¢ ENV[E?, FZ].
Moreover

ENV[E*, F,] < %,-IND ¢ 4,-IND = ENV[E* F]. 0
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4.4. Game Quantification and Descriptive Set Theory

4.4.1. As mentioned in Section 4.1.6, the infinite string (3x, Yy, 3x, Vy, - - ) gives
rise to a monotone quantifier (3V)* on the set A% of infinite sequences from A,
where

@AV)* = {X < A”: (3xq Vyo 3x; Yy, -- )X (X05 Vo, X1, V15 - - )}-

If A = w, then the quantifier (3¥)* is usually denoted by D! or simply by D and
is called the game quantifier on w®, while if A = R = ®®, then (3V)* is the game
quantifier O? on the set R® of infinite sequences of reals. The properties of the
quantifier O have been studied in depth by descriptive set theorists. We refer the
reader to the book Moschovakis [1980] for a systematic treatment of D and its uses
in definability theory. Here we will restrict ourselves to stating a sample of the
results on the game quantifiersD and O?, results which are related to topics covered
earlier in this chapter.

Assume that I is a collection of relations on integers and reals; that is,if Pe T,
then P is a relation of the form P(x,, ..., X,, d1, ..., &,), Where x;e wfor 1 <i <n
and a;e w® for 1 < j < m. If we quantify every relation in I" by D, we then obtain
the class

OT = {DaP(X, o, B): P(X1, ..., Xp, % By, - - - Bu) is a relation in T'}.

In a similar way, we can define the class DT for a collection I of relations on
integers, reals and infinite sequences of reals.

Some of the deeper results in descriptive set theory depend on transfer theorems
which, in effect, assert that, under certain assumptions, properties of a class I' transfer
to the class OI or to the class DTI". In proving such transfer theorems, we usually
need certain determinacy theorems or hypotheses about the class I'.

We say that a relation P on A® is determined if Player I or Player 11 wins the
game G(3V, P) associated with P. Of course, for such relations P we have that

1(3x Yyo 3% Yy - )P(X05 Yo, X1 Vis -+ -)
<=>(on 3yO V'xl EIyl . ) ﬁI:’('XO’ y07 xla yl’ . ')'

We say that determinacy holds for a class T of relations on A®, and we write
Det(I), if every relation in I' is determined.

Martin [1975] established that every Borel set of reals is determined, or
equivalently Det(A}). This is an optimal result in ZFC, since it is well known that
Det(Z!) is not provable in ZFC. Much of the current research in descriptive set
theory is carried on under the assumption that certain definable sets of reals are
determined. The hypothesis of projective determinacy (PD) asserts that every
projective set of reals is determined. The projective sets are the subsets of the reals
which are definable by first-order formulas with parameters over the structure
R = <{w® U w, w, +, -, Ap) of analysis. They are further classified as £} or I1} sets
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depending on the number of alternations of quantifiers in the defining formula
starting respectively with an existential or a universal quantifier. If no parameters
are allowed, then we have the “lightface” classes of X} and I} sets of reals.

We next state a transfer theorem for the pre-well-ordering property, a result that
is due to Moschovakis, and then discuss some of its applications in descriptive set
theory.

4.4.2 Theorem. Let I be a class of relations on integers and reals which contains all
recursive relations and is closed under finite unions, finite intersections, and sub-
stitutions by recursive functions. If " has the pre-well-ordering property and Det(T")
holds, then the class DT also has the pre-well-ordering property. [

In order to give concrete applications of this transfer theorem, we first need the
following definition. We say that a relation P(x,, ..., x,, &, ..., &,) Oon integers
and reals is T if there is a recursive relation R such that

P(X, dqy ..., 0y)
¢>(311)(\V112) o (?lk)R()_C’ ll» R lk’ &l(lk)’ crto am(lk))7

where all the quantifiers vary over the integers, and if « € w® and k € w, then a(k) =
a(0), ...,k — 1)>.

It is quite easy to verify that for each k > 1 the class of all X relations is closed
under finite unions, finite intersections, recursive substitutions, and has the pre-
well-ordering property. Martin’s Borel determinacy and the transfer theorem of
this section (4.4.2) now immediately imply the following:

4.4.3 Corollary. The class DX has the pre-well-ordering property, where k > 1.
Moreover, each DX is a Spector class. [

The classical normal form for the IT} relations on the integers and Theorem 2.1.5,
in effect, state that

039 = 1L

Solovay has obtained the characterization of the class DX in terms of non-
monotone inductive definitions and this we present in

4.4.4 Theorem. Let N = {w, +, - be the structure of arithmetic and let £{ be the
collection of all £} second-order relations on w. Then a relation P of integers and reals
in DX if and only if it is £}-(non-monotone) inductive; that is to say,

039 = Z}-IND. [

In another direction, we first notice that

1 —_ v
Dl—12n+1 - z"2n+2
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foranyn = 0, 1,2, .... Moreover, using the hypothesis of projective determinacy
(PD), it is easy to see that

D%, = 3,4

foranyn=1,2,....

The computations given above when combined with the transfer theorem (4.4.2)
give the next result, a result which was first proved directly by Martin and Mos-
chovakis.

4.4.5 Theorem. Assuming projective determinacy (PD), the classes I13,,, and
2}.+2 have the pre-well-ordering property for all n = 0, 1,2,.... In fact, 13,
and 3, , are Spector classes for alln = 0,1,2,.... [

This result is part of the periodicity picture for the projective sets, assuming
projective determinacy. For more on the periodicity phenomena as well as on
transfer theorems involving much stronger properties, we again refer the reader to
Moschovakis [1980].

Recently work has been done on the game quantifier O on the set R® of
infinite sequences of reals. This includes transfer theorems of the type we have
described here as well as a very useful characterization of the £2 in L(R) sets of reals.

The inner model L(R) is the smallest model of ZF which contains the structure
R =<w® U o, w, +, -, Ap) of analysis and all the ordinals as elements. If P is a
relation on integers and reals, we say that P is 7 in L(R) if there is a formula
@(X, @, X) of the first-order language £® of the structure R such that

P(x, a) < (in L(R) we have that R = (3X)o(X, a, X))

where, of course, the existential quantifier (3X) ranges over subsets of reals.

In the terminology of Sections 1 and 2 of this chapter, the 2 in L(R) sets of reals
are exactly the sets of reals definable in the sense of L(R) by X; second-order
formulas of the structure R of analysis.

We will end this chapter with a theorem of Martin and Steel. This result can be
found in Martin-Moschovakis—Steel [1982].

4.4.6 Theorem. A relation P on integers and reals is =3 in L(R) if and only if it is
D?[1}; that is to say, if and only if there is a T1! relation S such that

P(f’ &)©(3B0 V?o aﬁl VVl o )S()_C-, o, <B0a Vo> .Bl’ V15 .- >),
where the quantifiers in the infinite string range over the reals. [

The above result provides a representation of the £2 in L(R) sets of reals in
terms of the game quantifier D2 applied to a very simple matrix. This representa-
tion, together with appropriate transfer theorems and determinacy hypotheses,
makes it possible to obtain important structural properties for the class 2 in L(R).
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