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THE COLLINEATION GROUPS OF DIVISION RING
PLANES II: JORDAN DIVISION RINGS

R. OEHMKE AND R. SANDLER

In this paper the authors continue their study of the col-
lineation groups of division ring planes (The collineation groups
of division ring planes I. Jordan division algebras, J. Heine
and Angew. Math. vol. 216, 1964). Some of the results
obtained for finite dimensional Jordan division algebras are
extended to a special class of infinite dimensional algebras.

As is well-known the study of the collineation group of a
projective plane % coordinatized by an algebra £% can be
reduced to the study of the autotopism group of & or the
group of autotopic collineations of π, S%f(π). The pair {a, b),
a, be&, is defined to be admissible if and only if there
exists an element a in ^iπ) with (1, l)α = (α, b). Modulo
the automorphism group of . ^ , the determination of 3ίf(jt)
is equivalent to the determination of all admissible pairs (α,
b) and coset representatives ^ , 5 6 ^ ( 7 1 ) such that (1, l)φa,b =
(α, b). With either the assumption & algebraic over its center,
or the assumptions characteristic of & not equal to 0 and
the centers of & and &1 (the algebra of all elements of &
algebraic over the center of ^ ) equal, the admissible pairs
(α, b) are determined. Use is made of Kleinfeld's result on
the middle nucleus of Jordan rings (Middle nucleus = center
in a simple Jordan ring, to appear.) We also prove and use
the result that the algebra £f consisting of all right multi-
plications R/ is commutative, where / is in the subalgebra
generated by a and a~ι over the base field.

Let 9ΐ be any nonalternative division ring (i.e., (3ΐ — {0},•) is a

loop), and let τr(3ϊ) be the protective plane coordinatized by ίft. Then,

as is well known, the study of the collineation group of π, G(π), can

be reduced to the study of the autotopism group of 3t, or the group

•of autotopic collineations of π, H(π). If a is a collineation of π, then

aeH(π) if and only if (oo)a = (00), (Q)a = (0), (0, ΰ)a = (0, 0). Now, in

[3], the pair (a, h) was defined to be admissible if and only if there exists

an element aeH(π) with (1, l)a = (a, b), and it was shown that,

modulo the automorphism group of 9ΐ, ^(91), the determination of

H(π) is equivalent to the determination of all admissible pairs (a, b)

and coset representatives φa>b e H(π)\

( 1 ) (1, l)9>..6 = (α, 6) .
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The second part of [3] was concerned with planes coordinatized
by finite dimensional Jordan division algebras, and it was proved that
if 3ΐ is a finite dimensional Jordan division algebra of characteristic
Φ 2, 3, then (α, b) is admissible if and only if a and b are elements
in the center of 3ΐ, and coset representatives of φa,b were obtained
for a, b in the center of 31. In this paper, we shall prove the follow-
ing theorem:

THEOREM A. If id is a Jordan division algebra of characteristic
Φ 2, 3, and if either

(a) 3ΐ is algebraic over its center, Z; or,
(b) 3Ϊ has characteristic Φ 0, and the center of 3ΐ is equal to

the center of 3ΐ'—the algebra of all elements algebraic over Z;
then (α, b) is admissible if and only if a and b are both in Z.

We shall need a recent result of Kleinfeld in the proof of Theorem
A, and quote it here:

THEOREM 1 [2]. If ΪR is a simple Jordan ring of characteristic
Φ 2, the three nuclei of 3ΐ are equal.

This generalizes Theorem 15 of [3] and is useful in that with this
result we need only show that an element, α, is in any one of the
nuclei of 3ΐ in order to prove that a is in the center of 3ΐ.

Our first step will be to prove some results about Jordan division
rings which are analogous to known theorems about finite dimensional
Jordan algebras, and which are necessary tools for this paper. Recall
that the linearized form of the Jordan identity can be written [1],

= RZWRX + RXZRW + RXWRZ

— Rχ(zw) + RzRχR>w + RWRXRZ

where Rx is the linear transformation corresponding to multiplication
in 3ΐ by the element x.

We now prove

THEOREM 2. Let a be an element of a Jordan division algebra,
9ΐ. Then a and or1 generate an associative subalgebra of 3ΐ.

Proof If 5t is finite dimensional over Zf this result is a trivial
consequence of the well known result [1] that any Jordan algebra is
power-associative. For the infinite-dimensional case, it suffices to prove
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< 3) arW = α*-* for all i, k ^ 1.

For i — 1, set # = α&, 2 = w = α in (2), and apply the last two result-
ing transformations to α"1 to obtain

a-1 (Rak+2 + 2RaRakRa) = ar\RaM + RakRaRa + RaRaRak),

or

α~V+2 + 2ak+1 = α-V+ 2 + [(αrV)cφ + α*+1,

which implies ak+1 = [(α~V)α]α = akRa — [(α~V)α]i2α. Since 3ΐ is a
division ring, iϋα is nonsingular, and the last equation implies ak =
{a~λak)a = (α*""1)!?,, = (a^a^Ra, which, in turn, implies ak~λ = α~V.
Thus, (3) is verified for i — 1. For i > 1, set a? = α"1, y — a, z — ak

in (2) and apply the first two resulting transformations to a~~ι\

a~τ(Ra-iRak+i + Rak + RaRak-ι)

= a-'iR.k+iR.-i + J?αfc + Rak-iRa) ,

or,

< 4 ) α- ( ΐ + 1 )α*+ 1 + α~V + [(α-Oeφ*-1

If we assume a~jak = αfe~J" for all fc and all j < i + 1, (4) becomes

which implies a~{i+1)ak+1 = αfc~% which together with the truth of (3)
for i — 1 and all fc, completes the inductive proof of the theorem.

Another result which is analogous to a well-known theorem for
finite-dimensional Jordan algebras [1] is:

THEOREM 3. If "St is a Jordan division algebra over a field %
of characteristic Φ 2, and if a is any element of 9ΐ, then the algebra
@ generated by all Rx, for xe%{a, α"1], is commutative.

Proof. In (2), set x — α""1, w — α, z = a\ and get

{ 5 ) Ra~lRaί+l + RaRai-l + -Bα« —

In [1], it is shown that the Jordan identity implies that Rxi, Rxj
commute for any x, and all i, j ^ 0. Thus, for i ^ 1, (5) can be
simplified to

( 6 ) Ra-iRai+i — Rai+iRa-ι .

Next, let x — a~\ w = a\ z = α in (2), and get
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( 7 ) Ra-2Raί+i + RaiRa-ι + RaRaί-2

= Raί+iRa-2 + Ra~iRat + Rai-2Ra o

If i ^ 2, we can use (6) and the fact that RaRaι-2 ~ Raι-2Ra to simplify
(7) to

( 8 ) Ra-2Rai + l = Rai+lRa-2 .

Thus, for all i ^ 3, j?α* commutes with all elements in @ generated
by J2β-i and iία-2. Since the set of all Rf, fe ^[a~τ], is generated by
i?α-i and i2α-2 [1], we can conclude that for i ^ 3, i?αi is in the center
of ©. Similarly, we can show that for i i> 3, Ra~i is in the center
of @. Next, we substitute in (2), x = z = α2, ̂  = α""4, and, using the
fact that Ra-i is in the center of @, we conclude

( 9 ) Ra2Ra-2 = Ra-2Ra2 .

Finally, substituting x — z — a, w = a~\ and using (9), we can deduce

(10) RaRa-ι -= Ra-iRa .

But from (6), we know that Ra-iRa2 = Ra2Ra-i. Thus, we see that
Ra-i commutes with Ra, Ra2, Ra-i, and Ra~2, and hence that Ra-ι is in
the center of @. Similarly, we can conclude that Ra, Ra2, Ra-2 are
also in the center of @, and thus that @ is commutative.

We now turn to the proof of Theorem A. Recall that in [3] the
admissibility of (α, b) for any nonalternative 5R was seen to be
equivalent with the isomorphism of 3ΐ and a certain isotope of 3ΐ, β5α,6,
obtained by recoordinatizing π with the new coordinate points (<»)' =
(oo), (0)' = (0), (0, 0)' = (0, 0), and (1, 1)' - (α, 6). Now, in [3],
(Sec. 9) the following theorem was proved but not stated explicitly.

THEOREM 4. If 3ΐ is commutative, and if the middle nucleus of
3ΐ is equal to the center of 3ΐ' and if %[Rxi] is commutative for all
xe R, then if @o>6 is commutative, @α>6 can be represented as follows:
@α,δ ~ (9Ϊ, Θ, *), where

(11) x 0 y = x + y ,

and multiplication in @α,δ is given in terms of multiplication in sJt:

(12) (y*x) = [(yR

Also, a'b-'eZ.

Notice that (12) is equivalent to

(13) βu - R-iJt
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Since if &atb is to be isomorphic with 31, @α,6 must be commutative
and using Theorems 1 and 3, we have the validity of Theorem 4 in
our present study. From this point on, then we assume that @α,6 is
of the form given by Theorem 4 and wish to determine under what
conditions on the element a, 31 and @α>6 are isomorphic.

We begin with

THEOREM 5. Let 31 be a Jordan division ring, of characteristic
Φ 2, 3, and let &a,b be as in Theorem 4β Then if @α,6 satisfies the
Jordan identity, ive have

(14) Rai - Ri MT - I) + I] for any i ^ 0 ,

where

(15) T = RaRa-i ,

and

(16) qt = ^ ^ - .

Proof. This theorem for 3ΐ finite dimensional is contained in [3]
(Sec. 10, Lemma 2). The proof for the infinite-dimensional case is
exactly the same, keeping in mind that Theorem 3 must be invoked
to let us permute elements of the form Rai and Ru-j.

Assume now that 9ΐ has characteristic p Φ 0o We shall prove
that Theorem 5, together with the Jordan identity for 9ϊ imply that
a is algebraic over Z if &a,b satisfies the Jordan identity. To see this,
observe first that for any k, (14) implies the equalities

(17) Rakp = Rk

a* = Rw - {RlY ,

since qhp — 0.

Thus, if c — ap, we have

(18) Rck = Rk

c, for all k ^ 0 .

Next, recall [3] that the linearized form of the Jordan identity for
@α>6 can be written

(19) = R{zw)R-χRx + R{ZX)R-1R-1RW + R^R^R^R,

= R^R^RJR-1 + RzR^RsR-'Rn + RVR?R.R?R,

We wish to prove a commutator identity:

THEOREM 6. If @α>5 satisfies the Jordan identity, then
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(20) [Rm9 Rci+i] = (ΐ + 1) [RΛβι, Ra] ,

for i ^ 0, c — av, and for all x e 3t.

Proof In (19), let w = c, « = c*. Then we have

RxRci+i + RCRXC% + RGiRxc

= Rci+iRx + RxciRc + RxcRcί ,

or,

(21) [ΛΛ+i] = [Λ Λ Λ J + [ Λ . Λ ]

Thus (20), for i — 1 is verified. If i > 1, we apply our induction
hypothesis to the right hand side of (21), and write

(22) [RXC,RA = Φ*<.β)β<-i,iy - i[

But by (18), we can write RcRci-i = i^Bί""1 = #* = Rci, so (22) becomes

(23) [β.β,Λc*] ^ *[#.«*,#*] ,

which allows us to write (21) as

(24) [Λ.,^+1] = (i + 1) [Λ.β*,ΛJ ,

and complete the inductive proof of Theorem 6.
Now in (20), if we set i — p — 1, we obtain

(25) [RX,RA = 0, for all xe 3t,

but this is equivalent, in our case, to asserting that c = ap is in the
center of 31. Thus, as promised, we demonstrated that if @α>6 is a
Jordan ring, then ap = c e Z, and a is algebraic over Z.

The completion of the proof of Theorem A is quite simple. If
@α>6 satisfies the Jordan identity, and if a is algebraic over Z, then
ae$V—the algebra of all algebraic elements. Now, let α', a" be any
two elements of 3t', and consider 9t[α, α', α"], the subalgebra of 31'
generated by a, a', a". Since (19) holds for all x, y, z e 9ΐ, it certainly
also holds for all x, y, ze$ί[a, a', α"]. But in [3], it was shown
that if (2) and (19) hold for any commutative algebra, then a is in
the center of that algebra. Thus, a is in the center of 3ϊ[α, α', α"]
for any a', a" e 3ΐ', which completes the proof of Theorem A.

As a final remark, we observe that [3] (Sec. 14), a coset re-
presentative φa>h for Hirf/Hffi) was explicitly determined for every
admissible pair (α, b) for which both a and b were in the center.
Thus, for those algebras satisfying the conditions of Theorem A, all
the coset representatives are actually known, and the collineation group
for such a plane is thus completely determined modulo the auto-
morphism group of the algebra.
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