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A NEW APPROACH TO THE
KREIN-MILMAN THEOREM

J. MARTINEZ MAURICA AND C. PEREZ GARCIA

In this paper we give a new definition of extreme points for which
we get a generalization of the Krein-Milman theorem within the general
context of locally convex spaces over valued fields.

Some generalizations of the theorem of Krein-Milman were developed
in the seventies in order to include other types of topological vector spaces
apart from the usual ones (e.g. Kalton's papers within the context of
locally p-convex spaces). However, A. F. Monna says in 1974 that no way
is known to attack problems such as the Krein-Milman theorem in
ultrametric analysis (i.e. when the real or complex field is substituted for
another valued field).

In order to give a theorem of Krein-Milman which includes the case
of locally /̂ -convex spaces (p e (0,1]) and the ultrametric case, we
propose a new definition of extreme points. The latter definition agrees
with the usual one in case the ground field is R or C and it allows us to
give a non-archimedean Krein-Milman theorem.

We are going to consider vector spaces E over any complete non-triv-
ially valued field K. For K = R, C, and p e (0,1] we say that A c E is
p-convex if λ̂ 4 4- μA c A for all λ, μ > 0 such that λp + μp = 1. For a
non-archimedean valued field K two different kinds of convex sets will be
considered: A c E is said to be M-convex (convex a la Monna) if
λA + μA 4- vA c A for all λ, μ, v e K such that |λ|, |μ|, \v\ < 1 and
λ 4- μ + v = 1; and for a e E, the set A c E is said to be ^-convex if A is
M-convex and a e A, More details over these kinds of convex sets we will
use in the sequel are in [3] (for ^-convex sets) and [5] (for the non-archi-
medean case).

In the sequel we will use the term "convex" to indicate any of the
different kinds of convex sets; also EC(A) stands for the corresponding
convex hull of A.

1. Semiconvexity. Extreme points. The following definition is very
close to the weak-convexity of Monna ([5] p. 28).
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DEFINITION 1. Let E be a vector space over a valued field K. A subset

A of E is said to be semiconvex if λ^4 4- (1 — λ)A c A for every λ of K

satisfying |λI < 1.

Notice that if K = R, C every semiconvex set is 1-convex and if K is

non-archimedean every M-convex set and every α-convex set are semicon-

vex.

DEFINITION 2. Let £ be a vector space over a valued field K and A a

subset of E. A non-empty part S of A is said to be an extreme set of A if

the following properties are verified:

(i) S is semiconvex.

(ii) If xl9...9xn G A and Ec{xl9...9xn} Π S Φ 0 , then there exists

an index / e { l , . . . , w ) such that JC, e S,

It is easy to verify that if A is convex, then the property (ii) is

equivalent to A — S is convex.

DEFINITION 3. Let E be a vector space over K and 4̂ a subset of is. A

point x G i is said to be an extreme point of A if it belongs to some

minimal element of

EA = { S c A \S is an extreme set of A}.

Next, we prove that if K = R, C this definition gives the same

extreme points as the usual ones for every /^-convex compact set A of a

separated locally 77-convex space. For that, we denote by Ep(A) the set of

/^-extreme points of A according to the definition of Kalton [4]. (Notice

that this definition is slightly different from the corresponding definition

of Jarchow [3], however they agree for closed/^-convex sets). Also Fp(A)

indicates the set of extreme points of A corresponding to our Definition 3

for/7-convex sets.

THEOREM 1. Let E be a Hausdorff locally p-convex space over K = R, C

and let p e (0,1]. If A is a non-empty compact p-conυex set of E, then:

(1) Every minimal element of EΛ consists of one point.

(2) Fp(A) = Ep(A).

Proof. (1) Let S be a minimal element of EA and suppose x9 y are

different points of S. As S is semiconvex and closed, λ S + ( l — λ)S c. S

for every λ e K such that |λ| < 1. Consequently 2y — x e S; and also for

n = 1,2... zn = (n + l)j> — nx e S. So the sequence (zn) c S verifies

lim(zn/n) = y — x Φ 0 and S is not bounded.
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(2) This follows from (1) and the fact that x e Ep(A) if and only if

A — {x} is/7-convex (see [2] p. 96 for/? = 1 and [4] for any/?).

2. Non-Archimedean extreme points. Throughout the rest of the

paper, E will indicate a topological vector space over a field K, endowed

with a non-trivial non-archimedean valuation. We are going to restrict

ourselves to the case of K local (i.e. locally compact) (otherwise there do

not exist any compact convex set with more than one point [5] p. 40).

Theorems in this section are proved for 0-convex sets; however with

minor changes they remain true for the other kinds of convexities over E.

THEOREM 2. Let E be a topological vector space over K and assume that

E/ separates points of E. Then, every convex and compact subset A of E has

extreme points.

Before proving the theorem we need the following lemma:

LEMMA 1. Let E be a topological vector space over K and let A, B be

convex sets in E with B c A. If the interior of B in A is non-empty, then B is

clopen in A.

Proof. Take x0 e B such that B is a neighborhood of JC0 in A. Now, if

x e B, then B = B — JC0 + x; hence B is a neighborhood of x in A and B

is open in A. Also, if y e A — B, then B Π (y -f B) = 0 and conse-

quently A — B is open in A.

Proof (of Theorem 2). Let A be with more than one point and define

CEA = { 5 ' c ^ l | 5 ' i s a closed extreme set of A).

CEA is non-empty and a standard application of Zorn's lemma shows that

CEA has some minimal element.

Let So be one such minimal element. First we prove that So Φ A.

For that, c h o o s e / G Ef such that f(A) is not reduced to be a single

point and define

lGAl |/(5)|= sup \f(x)\)

It is easy to verify that Sf e CEA and that SfΦ A. Then, So Φ A.

Let S e EA such that S a So. Applying Lemma 1 to A and A — S9 we

deduce that S is closed in E. Thus So = S and So is a minimal element of

COROLLARY 1. Under the assumptions of the Theorem 2, every closed

extreme subset of A contains extreme points of A.
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If A c E we will denote by Ext(^4) the set of extreme points of A. In

the following theorem we use the terminology of [1].

THEOREM 3 (Non-archimedean Krein-Milman theorem). Let E be a

Hausdorff locally convex space over K. If A is a non-empty convex compact

set ofE, then A = Ec(Ext(A)).

Proof. For xQ e A — Ec(Έxt(A)), let H be a closed hyperplane which

separates x 0 and Ec(Ext(A))9 and let/(x) = a an equation of H (/ e E').

As Sj G C ^ (see the preceding theorem), we can choose x e Ext(^4) Π Sy.

Also, isc.(Ext(^)) is in one side of H9 so \f(y)\ < \a\ for every y e

Ec(Ext(A)). It follows that \f(a)\ < \f(x)\ < \a\ for every a e A.
Thus, A and 2sc(Ext(>4)) are in the same side of H and, therefore,

x0 <£ A.

The main difference between the real or complex case and the

non-archimedean case is contained in the following theorem.

THEOREM 4. Let E be a Hausdorff topological vector space over K and

let A be a convex set in E with more than one point. Then, every extreme set

of A cannot be reduced to a single point.

Proof. Suppose A to be absorbing (otherwise replace E by the linear

hull of A).

First suppose that the interior of A is non-empty (i.e. A is clopen). If

S is an extreme set of A with only one point, then A — S is an open

convex set in A. Thus (Lemma 1) A — S is clopen in A and, consequently,

S is open.

Now assume A to be bounded and let τp be the topology on E defined

by the Minkowski's functional of A. If T is the original topology in E we

have T < τp and the interior of A with respect to τp is non-empty. Now

apply the first result of this proof.

Finally, let A be any set in the hypotheses of the theorem. If S = {x}

is an extreme set of A, take y ^ A — {0} such that x e {λy\ |λ| < 1} =

Ay. Therefore, S ought to be an extreme set of the bounded convex set A .

3. An expression of the extreme points. First we are going to

consider the case of 0-convex compact sets. Such a subset A of a

Hausdorff topological vector space E can be expressed in the following

way:

(1)
ieί

k l <



A NEW APPROACH TO THE KREIN-MILMAN THEOREM 421

where (et)i&f is a topologically independent family of elements of A. The
expression of each element of A as a sum ΊLiGiXιei is unique, and the
convergence of the sums is in the sense of the Cauchy's filter ([1] p. 152).
If x = ΣiGίxiei we put (x, e) = x, .

We denote Exto(j4) the set of the extreme points of A for the
O-convexity. Also, pA denotes the Minkowski's functional of A in the
linear hull of A.

THEOREM 5. Let E be a Hausdorff topological vector space over K and
let A be a Q-convex compact set of E. If (£,•),•€=/ is a family of points of A
satisfying (1), then the following properties for a point x & A are equivalent:

(i) x e Έxlo(Λ).

(φsup^Kx,^)!- 1.
(ϋi) There exists i0 e I such that \{x, eio)\ — 1.

Proof. For /' e /, consider

Di is a 0-extreme set of ΛL Now we wish to prove that Dέ is minimal.
Otherwise, consider T to be a proper subset of Di which is a 0-extreme set
of A. Take x e Z), — Γ and define 7 e 4̂ in the way (>>, ey> = Xj for/ # 1
and (y9 et) = 0. Obviously y & A — T, and being 4̂ — T 0-convex, then
(JC, e>) ~\x -y) = e^A- T. Pick t e T and define z e A - T in the
way (2, ey) = ίy for j Φ i and (z, e, ) = 0. Finally, we have t = (ί, β^e,-
-f z which contradicts the assumption that ̂ 4 — T is 0-convex. This proves
(iii) => (i).

The equivalence (ii) <=> (iii) is obvious because the valuation over K is
discrete.

For the equivalence (ii) <=> (iv), it is straightforward to verify that for
a point x e v4,^(x) = suρ/e/|<x, e, >|.

For (i) => (ii), consider anx & A such that sup ί e / |(x, ^ ) | < 1. Choose
μ Gi K with |μ| > 1 such that μx e A. If *S is a proper 0-extreme set of ̂ 4
which contains x, then μx e 5. Also, 0 == λ/zx + (1 - λ)x e S (with
λ = — l/(μ — 1)) which contradicts that A — S is 0-convex. Hence, x £

REMARKS. (1) The latter theorem holds for a compact α-convex set A.
In fact, under the conditions of the Theorem 5, the following properties
are equivalent: (i) x e Extα(A) (ii) sup / e / |(x — α, eέ)\ = 1 (iii) There
exists /0 G / such that |(x — α, e, ) | = 1 (iv) pA-α(x - α) = 1 where
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Exta(A) indicates the set of ^-extreme points of A and (e7)/<Ξ/ satisfies (1)
for the 0-convex set A — a.

(2) However, if we consider M-convex sets, the result we get is trivial.
If we put ExtM(A) to indicate the set of M-extreme points of an
M-convex set A, and with the assumptions on E of Theorem 5 we have:

COROLLARY 2. ΈxtM(A) = A.

Proof. It follows from the fact that {x ^ A\ \(x — a, e,.)| = 1} is a
minimal element of EA (for this convexity) for all a e A, i e /.

(3) Our Theorem 5 is quite similar to the Theorem 2 of Kalton's paper
[4], which establishes that every point of a compact /̂ -convex (0 < p < 1)
subset A of a Hausdorff topological vector space E can be expressed in
the way x = Σanxn with an > 0, Σaζ = 1 and (xn) being a sequence of
distinct /^-extreme points of A.
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