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Abstract: A brighter light has freshly been shed upon the second moment of the Prime
Geodesic Theorem. We work with such moments in the two and three dimensional hyperbolic
spaces. Letting E�ðXÞ be the error term arising from counting prime geodesics associated to
� ¼ PSL2ðZ½i�Þ, the bound E�ðXÞ � X3=2þ� is proved in a square mean sense. Our second
moment bound is the pure counterpart of the work of Balog et al. for � ¼ PSL2ðZÞ, and the main
innovation entails the delicate analysis of sums of Kloosterman sums. We also infer pointwise
bounds from the standpoint of the second moment. Finally, we announce the pointwise bound
E�ðXÞ � X67=42þ� for � ¼ PSL2ðZ½i�Þ by an application of the Weyl-type subconvexity.

Key words: Prime Geodesic Theorem; L-functions; subconvexity; spectral summation
formulæ; Kloosterman sums; exponential sums.

1. Introduction. The purpose of this article
is to elucidate applications of the second moment of
the Prime Geodesic Theorem. For a brief introduc-
tion in two dimensions, we denote ��ðP Þ ¼
logNðP0Þ if P is a power of an underlying primitive
hyperbolic element P0 2 � with � � PSL2ðRÞ a
cofinite Fuchsian group, and ��ðP Þ ¼ 0 otherwise.
We then define the Chebyshev-like counting func-
tion

��ðXÞ ¼
X

NðP Þ6X
��ðP Þ;

where NðP Þ stands for the norm of P . As one of
the early triumphs of his celebrated trace formula,
Selberg [21] proved for a general cofinite � that

��ðXÞ ¼
X

1=2<sj61

Xsj

sj
þ E�ðXÞ;

where the full main term arises from the small
eigenvalues �j ¼ sjð1� sjÞ ¼ 1=4þ t2j < 1=4 of the
hyperbolic Laplacian acting on L2ð�nHÞ with H the
upper half-plane. The error E�ðXÞ is the principal
subject in this article. It is well-known that
E�ðXÞ � X3=4 for a cofinite �. Given the analogue
of the Riemann hypothesis for Selberg zeta func-
tions except for a finite number of the exceptional
zeros, one may expect E�ðXÞ � X1=2þ� at least
when � ¼ PSL2ðZÞ (cf. [9, p.139], [11,12]). This
remains an outstanding open problem owing to
the abundance of eigenvalues.

Nonetheless, when � is arithmetic, one can
improve upon the exponent 3/4. We record the
classical achievement for � ¼ PSL2ðZÞ due to
Iwaniec [9] with the exponent 35=48þ � by an
application of the Kuznetsov formula. The constant
35/48 was subsequently lowered to 7/10 by Luo–
Sarnak [14], 71/102 by Cai [7], and 25/36 by
Soundararajan–Young [22]. Quite recently, the
innovative rederivation of the exponent 25/36 has
been produced by Balkanova–Frolenkov [2,3] as the
outcome of the effective use of Zagier’s L-functions.
Their exponent is the finest amongst many con-
sequences to date. Actually, it has been understood
that the exponent can further be reduced in a
square mean sense. The set-up we are interested in
is as follows: We consider the second moment of
E�ðXÞ that refers to

1

�

Z Vþ�

V

jE�ðXÞj2dXð1:1Þ

for some V and 1� � 6 V . We shall generalize
the recent work of Cherubini–Guerreiro [8] to
the following shape involving the parameters V
and �.

Theorem 1.1. Let � ¼ PSL2ðZÞ, and let
1� � 6 V . For any � > 0 we then have

1

�

Z Vþ�

V

jE�ðXÞj2dX � V 5=4þ� V

�

� �1=2

:

This bound is slightly weaker than that of
Balog et al. [5] at the very least when V ¼ �. The
reason for this fact will be explained later concep-
tually. The author thanks G. Cherubini for pointing

doi: 10.3792/pjaa.96.002
#2020 The Japan Academy

2010 Mathematics Subject Classification. Primary 11M36;
Secondary 11F72, 11L05, 11M26.

No. 1] Proc. Japan Acad., 96, Ser. A (2020) 7

http://dx.doi.org/10.3792/pjaa.96.002


out that Cherubini–Guerreiro indeed obtained the
same result after their work [8]. The pointwise
exponent 2/3 is known to be deduced from the
Lindelöf hypothesis for Dirichlet L-functions of real
primitive characters.

Analogously, one can consider the Prime Geo-
desic Theorem for the Picard manifold M ¼
PSL2ðOÞnH3 with O ¼ Z½i� and H3 ¼� SL2ðCÞ=
SU2ðCÞ. For a general setting, let � � PSL2ðCÞ be
a cofinite Kleinian group, and let ��ðXÞ be the
analogous counting function associated to �, which
counts hyperbolic and loxodromic conjugacy classes
of �. In our situation, the small eigenvalues �j ¼
sjð2� sjÞ < 1 provide a finite number of terms that
form the full main term of ��ðXÞ, namely

E�ðXÞ ¼ ��ðXÞ �
X

1<sj62

Xsj

sj
:

In a major breakthrough, for cofinite Kleinian
groups Sarnak [20] essentially established that
E�ðXÞ � X5=3þ�. For � ¼ PSL2ðOÞ, Balkanova
et al. [1] recently proved, by imitating the argument
of Luo–Sarnak [14], that the exponent 13=8þ � is
admissible. Balog et al. [4] confirmed that E�ðXÞ �
X3=2þ4�=7þ�, where � signifies a subconvex exponent
for Dirichlet L-functions Lð1=2; �DÞ with �DðnÞ ¼
ðn=DÞ the Kronecker symbol for the quadratic
extension of QðiÞ. For later discussions, we mention
the hybrid subconvex bound

Lð1=2þ it; �DÞ � ð1þ jtjÞANðDÞ�þ�:ð1:2Þ
The convexity bound renders � ¼ 1=4, and we
tackle the subconvexity problem to make � smaller.
Wu [24] succeeded in showing the subconvex
exponent � ¼ 1=4� ð1� 2�Þ=16 of Burgess quality
over general number fields, where � is the sharpest
result known hitherto towards the Ramanujan–
Petersson conjecture. Nelson [19] recently estab-
lished (in his tour de force argument) general
Motohashi-type spectral reciprocity, followed by
the Weyl-type subconvex exponent � ¼ 1=6 (that
marks the limit of current technology). His result
in tandem with the estimate of Balog et al. [4] leads
to E�ðXÞ � X67=42þ�. The original Motohashi for-
mula [17] asserts that the fourth moment of the
Riemann zeta function has a beautiful expansion as
a spectral sum of third powers of central L-values of
automorphic forms for SL2ðZÞ. We will ponder over
the spectral reciprocity (in different contexts) for
some families of L-functions in the forthcoming
article, in order to derive subconvex bounds for
them. Turning our eyes to E�ðXÞ, Koyama

[13, Theorem 1.1] derived the exponent 11=7þ �
under the mean-Lindelöf hypothesis for symmetric
square L-functions attached to Hecke–Maaß cusp
forms on �nH3.

Theorem 1.2 (Kaneko [10]). Let � ¼
PSL2ðOÞ, and let � be the subconvex exponent
defined by (4.3). For 1� � 6 V , we then have

1

�

Z Vþ�

V

jE�ðXÞj2dXð1:3Þ

�� V
2ð7þ4�Þ

5þ2� þ� V

�

� � 4
5þ2�

þ V 3ðlogV Þ2:

As a corollary, Theorem 1.2 enunciates (upon
taking � ¼ 1=2 established in [1]) that the bound
E�ðXÞ � X3=2þ� is valid on average:

Corollary 1.3. Suppose the hypotheses in
Theorem 1.2. For any � > 0, then we have

1

�

Z Vþ�

V

jE�ðXÞj2dX �� ��2=3V 11=3þ�:

The average bound on E�ðXÞ corresponding to
the estimate for the second moment is better than
the best pointwise bound currently known. Our
approach to prove Theorem 1.2 entails the delicate
analysis of the Kuznetsov formula, and is the pure
counterpart of the recent work of Balog et al. [5]
on the modular surface. We wish that the second
term in the right hand side of (1.3) would not arise.
At present, if we reduce the exponent �, namely if
� < 1=2, then the second term in (1.3) ends up
dominating the first one. Theorem 1.2 has possibil-
ity for reaching a rather better bound if V 3ðlogV Þ2
does not appear (this second term is neglected if
� 6 V ð3þ2�Þ=4). Recently for a general cofinite group
�, Balkanova et al. [1, Theorem 1.2] gave the
average bound E�ðXÞ � X8=5þ�. Their analysis
rests on the Selberg trace formula for a suitably
chosen test function, whereas we will utilize the
Kuznetsov formula instead. Using a mean-to-max
argument, they [1, Remark 1.4] also ascertained
that a second moment bound of the type
� V �þ���	 in short intervals gives rise to E�ðXÞ �
X�þ� with � ¼ ð� þ 	Þ=ð2þ 	Þ. Thus, Corollary 1.3
leads to E�ðXÞ � X13=8þ�. Adapting separately the
first and second terms in (1.3) to V �þ���	 conduces
to E�ðXÞ � Xð11þ4�Þ=ð7þ2�Þþ�. If we assume � ¼ 0,
this bound agrees with [13, Theorem 1.1]. Nonethe-
less, we announce without a proof that the above
unconditional exponent 13/8 can further be super-
seded by the stronger pointwise bound:

Theorem 1.4. Let � ¼ PSL2ðOÞ. Suppose
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that the subconvex bound (1.2) holds for some A > 0
and a real number � > 0. For X � 1, we have

E�ðXÞ � X3=2þ$=2þ�; $ ¼
24�� 1þ 2�ð1þ 8�Þ

23þ 10�
:

This is a priori the sheer counterpart of the
theorem of Soundararajan–Young [22, Theorem
1.1], and the generalization of [4, Corollaries 1.4
and 1.5]. The method of proof of Theorem 1.4
is inspired by the recent works of Nelson [19] and
Balog et al. [4]. We will employ the Weyl-type
subconvexity for quadratic Dirichlet L-functions
over QðiÞ. Substituting � ¼ 1=6 and � ¼ 1=2, Theo-
rem 1.4 renders the state-of-the-art (unconditional)
pointwise bound on E�ðXÞ, and quantitatively
surpasses the quality of the result of Balog et al.
[4, Corollary 1.2] with the exponent 13=8� ð177�ffiffiffiffiffiffiffiffiffiffiffiffiffi

31049
p

Þ=32 � 1:60023. Their inventive idea is un-
derpinned by the connection with the Gauß circle
problem and a zero density theorem for Dirichlet
L-functions Lðs; �DÞ (which is in fact the three
dimensional analogue of the work of Bykovski�� [6]).
In passing, Theorem 1.4 improves upon the condi-
tional exponent 
 ¼ 11=7 � 1:57143 (under the
assumption � ¼ 0) due to Koyama [13].

2. Pointwise bounds in two dimensions.
In this section, let � ¼ PSL2ðZÞ. For X > 1, we
define the spectral exponential sum SðT ;XÞ :¼P

tj6T
Xitj . There are advantages of introducing

this function whereby one may pass between
bounds on both second moments of E�ðXÞ and
SðT;XÞ in short intervals via the explicit formu-
la [9]. Nevertheless, one cannot simply bound
SðT;XÞ by summing up the terms with absolute
values to break the barrier SðT ;XÞ � T 2. We
henceforth use the abbreviation X 4 Y ()def

X ��

Y ðNV Þ� for some N > 1 and free variables X and
Y . By arguing similarly to [8] one sees that
Theorem 1.1 follows from

1

�

Z Vþ�

V

jSðT;XÞj2dX 4 ��1=2T 2V 3=4:ð2:1Þ

We can actually prove a sophisticated version of
this estimate with the exact classification by means
of the size of T (see [5, Section 3]). One reduces the
evaluation of the inequality (2.1) to that of a
smoothened variant. Since the strategy for show-
ing (2.1) is quite the same as in [8], we omit the
detailed analysis. However, we have not yet found
a proper generalization of [5, Theorem 1] due to
technical difficulties on the estimation of some
oscillatory integral. In passing, Theorem 1.1 only

focuses on the full modular group � ¼ PSL2ðZÞ. For
a cofinite �, one can mimic the argument in [8]
again, inferring 1

�

R Vþ�
V jE�ðXÞj2dX � V 2��2=3 to

get back to the pointwise exponent 3=4þ �. The
following claim generally connects second moment
bounds with pointwise bounds.

Lemma 2.1. Let � be a cofinite Fuchsian
group and 1� � 6 V . Suppose that we have the
second moment bound of the shape
1
�

R Vþ�
V jE�ðXÞj2dX � V ���	 for some �; 	 > 0.

Then we have E�ðXÞ � X�þ� with � ¼ �=ð2þ 	Þ.
This is the incarnation of the statement

in [1, Remark 1.4]. The proof of Lemma 2.1 is
back-of-the-envelope, and uses a mean-to-max ar-
gument along with reductio ad absurdum. The
author thanks D. Chatzakos and G. Cherubini for
letting him know the precise mechanism of that
argument and a different proof of Lemma 2.1.
Therefore Theorem 1.1 says E�ðXÞ � X7=10þ� by
substituting � ¼ 7=4 and 	 ¼ 1=2, that coincides
with the classical result of Luo–Sarnak [14]. There
should exist an approach to further ameliorate this
pointwise exponent 7/10 from the standpoint of
the second moment. On an average point of view,
we believe that the 2k-th moment of E�ðXÞ is
effective to deduce the conjectural exponent 1/2 in
some sense. However this process demands a non-
trivial bound on the spectral higher moment of
Rankin–Selberg L-functions. This is still open at
present. To this topic we will return elsewhere.

3. Set-up in three dimensions. In the rest
of this article, we consider SðT;XÞ associated with
the spectrum for � ¼ PSL2ðOÞ. In this case, its
barrier is replaced with SðT ;XÞ � T 3 by the Weyl
law. We denote the complete set of cusp forms by
fujðvÞ : j ¼ 1; 2; 3; . . . g attached to the eigenvalues
�j ¼ 1þ t2j with the sign convention tj > 0. We shall
assume the uj’s to be chosen so that they are
simultaneous eigenfunctions of the ring of Hecke
operators and L2-normalized. The Fourier expan-
sion of ujðvÞ reads

ujðvÞ ¼
X
n2O	

�jðnÞyKitjð2�jnjyÞeðhn; ziÞ;ð3:1Þ

where hw; zi is the standard inner product in R2 ¼�
C and eðxÞ ¼ expð2�ixÞ. The Fourier coefficients
�jðnÞ are proportional to the Hecke eigenvalues
�jðnÞ, i.e.

�jðnÞ ¼ �jð1Þ�jðnÞ; n 2 O	:ð3:2Þ

For a Hecke–Maaß cusp form uj displayed in (3.1)
we introduce the Rankin–Selberg convolution
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Lðs; uj 
 ujÞ :¼
X
n2O	

j�jðnÞj2

NðnÞs
:

We then define the symmetric square L-function

Lðs; sym2ujÞ ¼
X
n2O	

cjðnÞ
NðnÞs

¼

Kð2sÞ

KðsÞ

X
n2O	

j�jðnÞj2

NðnÞs
;

where cjðnÞ ¼
P

‘2k¼n �jðk2Þ. Given the convention

�jðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh �tj

tj

s
vjðnÞ with vjðnÞ ¼ vjð1Þ�jðnÞ;

it is important to recast Lðs; sym2ujÞ as

Lðs; sym2ujÞ ¼

Kð2sÞ

KðsÞ

Lðs; uj 
 ujÞ
tj

sinh �tj
jvjð1Þj�2:

We now introduce the harmonic weights

�j :¼ jvjð1Þj2 ¼
j�jð1Þj2tj
sinh �tj

¼
16�

Lð1; sym2ujÞ
:

Now, Gaussian Kloosterman sums are defined
as follows: Letting m;n; c 2 O with c 6¼ 0,

Sðm;n; cÞ :¼
X

a2ðO=ðcÞÞ�
eðhm; a=ciÞeðhn; a	=ciÞ;

where aa	 � 1 (mod cÞ. Weil’s bound for the
Kloosterman sums was derived in [17, (3.5)]:
jSðm;n; cÞj 6 NðcÞ1=2jðm;n; cÞjdðcÞ, where dðcÞ sig-
nifies the number of divisors of c. The Kuznetsov
formula for PSL2ðOÞnH3 was first announced in the
seminal work of Motohashi [15,16]. It is embodied in

Theorem 3.1. Let hðrÞ be even, holomorphic
in j=ðrÞj < 1=2þ � for an arbitrary fixed � > 0, and
suppose that hðtÞ � ð1þ jtjÞ�3�� in that strip. For
m;n 2 O	 we then have Dþ C ¼ U þ S, where

D ¼
X
j>1

�jðnÞ�jðmÞ
sinh �tj

tjhðtjÞ;

C ¼ 2�

Z 1
�1

�itðnÞ�itðmÞ
jmnjitj
Kð1þ itÞj2

hðtÞdt;

U ¼ ��2ð
m;n þ 
m;�nÞ
Z 1
�1

t2hðtÞdt;

S ¼
X
c2O	

Sðm;n; cÞ
NðcÞ  

2�
ffiffiffiffiffiffiffiffi
mn
p

c

 !
:

Here 
m;n is the Kronecker delta, and

 ðzÞ ¼
Z 1
�1

it2

sinh�t
hðtÞJ itðzÞdt;

J �ðzÞ ¼ ðjzj=2Þ2�J	� ðzÞJ	� ðzÞ;
where J	� ðzÞ ¼ J�ðzÞðz=2Þ�� with J� being the J-Bes-
sel function of order �.

4. Second moment. In order to gain a
good estimate for (1.1) in three dimensions, our
method relies heavily on the Kuznetsov formula
and the spectral second moment bound for Rankin–
Selberg L-functions. Our work is motivated by
recent results on the second moment as in [5,8].

With the Kuznetsov formula in mind, for
X;T > 2 so that 2� :¼ logX þ i=T , we deal with

’ðzÞ :¼
sinh �

�
z expðiz cosh�Þ;

whose Bessel–Kuznetsov transform satisfies

’̂ðtÞ :¼
�i

2 sinh�t

Z 1
0

ðJ2itðxÞ � J�2itðxÞÞ’ðxÞ
dx

x

¼
sinhð�þ 2i�Þt

sinh �t
¼ Xite�t=T þOðe��tÞ:

It should be stressed that the spectral weights ’̂ðtjÞ
depend solely on the parameters X;T . One sees that
D in Theorem 3.1 turns out to beX

j

’̂ðtjÞjvjðnÞj2 ¼
X
j

�j’̂ðtjÞj�jðnÞj2

thanks to (3.2). This is sometimes called the
spectral-arithmetic average. A routine calculation
yields that the contribution of C and U is bounded
by T 2. This way, our goal is reduced to analyzing
the second moment of a sum of Kloosterman sums.
To this end, we provide several auxiliary lemmas
(without proofs). For notational convenience, we
assume that n 2 O satisfies NðnÞ � N, which means
N 6 NðnÞ 6 2N for N > 1, and that T ;X; V and �
are real numbers satisfying 1� � 6 V 6 X 6 V þ
� and 1� T 6 V 1=2. Throughout this article, we
further assume that N � ðTXÞA for some fixed
A > 0. We wish to establish the following:

Theorem 4.1. We have

1

�

Z Vþ�

V

jSnð Þj2dX 4 ��1NV 2 þ T 3;ð4:1Þ

where

Snð Þ ¼
X
c2O	

Sðn; n; cÞ
NðcÞ

 
2�n

c

� �
:

A vehicle to establish Theorem 4.1 is as
follows: we first need to cleverly remove some
initial part of Snð Þ, and then we can naturally
replace  with a simpler function ~ . We next
undertake representing ~ in terms of the K-Bessel
function of order zero, from which we infer that
Snð Þ is replaceable with a certain finite sum of
Kloosterman sums weighted by the K-Bessel func-
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tion with an acceptable error term. Having
reduced the estimation of the second moment of
Snð Þ to that of the finite sum, we encounter an
oscillatory integral involving the K-Bessel function
of order zero. This integral can be easily evaluated
by bounding in absolute value, and by integration
by parts. Notice that we can circumvent any
stationary phase analysis. We summarize the
above procedure in the following (see [10] for
details):

Lemma 4.2. Let

~ ðzÞ ¼
Z 1
�1

it2’̂ðtÞ
sinh�t

z

2

��� ���2it�ð1þ itÞ�2dt:

We then have Snð Þ ¼ S[nð ~ Þ þOðN1=2þ�T 1þ�Þ,
where S[nð ~ Þ signifies the weighted sum of Gaussian
Kloosterman sums, more precisely

S[nð ~ Þ ¼
X

NðcÞ>4�2NðnÞ

Sðn; n; cÞ
NðcÞ

~ 
2�n

c

� �
:

Lemma 4.3. Let N > 1 and n 2 O. We then
have S[nð ~ Þ ¼ S]nðK0Þ þOððNXÞ1=2þ�Þ with S]nðK0Þ
being a finite sum counted with Gaussian
Kloosterman sums, namely

S]nðK0Þ ¼ 2iM2NðnÞX

�
X

C1<NðcÞ6C2

Sðn; n; cÞ
NðcÞ2

K0
2�X1=2Mjnj

jcj

 !
;

where M ¼ expð�ið�=2� 1=2T ÞÞ, C1 ¼
NðnÞV ðT logT Þ�2 and C2 ¼ NðnÞV .

Lemma 4.4. For z1; z2 > 0 with V �1=2
6

zj � 1 ðj ¼ 1; 2Þ one has

1

�

Z Vþ�

V

K0ðX1=2Mz1ÞK0ðX1=2Mz2ÞdX

� ðz1z2Þ�1=2 minðV �1=2;��1jz1 � z2j�1Þ:
Lemma 4.4 tells us that the weight function

K0ðX1=2MjzjÞ carries some oscillation in X, when
integrating over X 2 ½V ; V þ��. After squaring
out the c-sum in the integrand in the left hand
side of (4.1), we split the resulting double sum into
the diagonal and off-diagonal parts. Estimating
these separately along with Lemma 4.4, Hardy–
Littlewood–Pólya inequality, and Weil’s bound on
Sðn; n; cÞ, we finish the proof of Theorem 4.1.

Remark 4.5. From a simple consideration,
one could deduce S]nðK0Þ 4 ðNTXÞ1=2, whence we
find that Snð Þ 4 ðNTXÞ1=2. By appealing to this
and choosing N and T suitably, the bound
E�ðXÞ � Xð11þ4�Þ=ð7þ2�Þþ� will follow readily (cf.
Theorem 4.7).

To conclude the proof of Theorem 1.2, let
h : ð0;1Þ ! R be a smooth compactly supported
function with holomorphic Mellin transform ~h :
C! C. We choose h such that it is supported in
some dyadic window ½

ffiffiffiffiffi
N
p

;
ffiffiffiffiffiffiffi
2N
p

� for N > 1, whose
derivatives satisfy jhð‘Þð�Þj � N�‘=2 for ‘ ¼ 0; 1;
2; . . . , and whose mean value is

R1
�1 hð�Þ�d� ¼ N.

Integrating by parts ‘-times, we find that
~hðsÞ ��;‘ N

�=2ð1þ jsjÞ�‘, the implied constant de-
pending continuously on � for s ¼ �þ it. Follow-
ing [5,14], we then derive for some explicitly given
constant c,X

j

Xitje�tj=T ¼
1

cN

X
n2O	

hðjnjÞSnð Þð4:2Þ

�
1

cN

Z
ð1=2Þ

~hð2sÞM1ðsÞ
ds

�i
þOðT 2Þ

where the error emerges from the terms C and U
in the Kuznetsov formula (Theorem 3.1), and we
put

M1ðsÞ ¼
X
j

tj

sinh�tj
’̂ðtjÞLðs; uj 
 ujÞ:

The square mean integral of the first term in the
right hand side of (4.2) is bounded in Theorem 4.1.
As for the second term, we argue analogously to [5];
specifically we exploit the spectral second moment
bound on symmetric square L-functions due to
Balkanova et al. [1]. After our smoothing, we state
the second moment of SðT;XÞ.

Corollary 4.6. For any � > 0 we have

1

�

Z Vþ�

V

jSðT;XÞj2dX �� ��1T 5=2þ�V 3=2þ�:

In view of the explicit formula of Nakasuji [18],
bounding the second moment of E�ðXÞ is concerned
with that of SðT ;XÞ. Hence we have completed
the proof of Corollary 1.3. A finer second moment
bound on E�ðXÞ has been established by the
author [10].

Denote by � the extra exponent of T for the
following mean value of Rankin–Selberg L-func-
tions: X

tj�T

tj

sinh�tj
jLðw; uj 
 ujÞj � jwjAT 3þ�þ�;ð4:3Þ

where <ðwÞ ¼ 1=2. The convexity bound in the
spectral aspect is OðT 4þ�Þ, while the mean-Lindelöf
says � ¼ 0. The best result so far established is � ¼
1=2 ([1, Corollary 3.4]), to which we have already
alluded. Refining the argument of Koyama [13], we
have
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Theorem 4.7. For � defined in (4.3) we have

SðT;XÞ �� T
ð7þ2�Þ=4þ�X1=4þ� þ T 2;

E�ðXÞ �� X
ð11þ4�Þ=ð7þ2�Þþ�:

Finally, it is worth mentioning that the spec-
tral large sieve inequality (still conjectural) would
lead to the mean-Lindelöf hypothesis. As was
faithfully explained in [23, Remark 2.4], the large
sieve constant of Watt falls distinctly short of being
best possible.

Conjecture 4.8. Let � ¼ PSL2ðOÞ. For T;
N � 1 and a ¼ fang a sequence of complex num-
bers with ‘2 norm kaNk ¼

P
NðnÞ�N janj

2, we have

X
tj6T

X
NðnÞ�N

anvjðnÞ

������
������
2

�� ðN þ T 3ÞðNT Þ�kaNk:
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