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Abstract: In this note we suggest a construction of the Morse-Novikov theory for a class

of non-transversal gradients and generalize to this class the basic results of the classical Morse-

Novikov theory including its non-abelian version.
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1. Introduction. First off, we recall the

notions of the classical transversal Morse theory

(real-valued and circle-valued). Then we proceed to

a new branch: the half-transversal Morse theory and

explain our results; we discuss possible applications

to the Seiberg-Witten equations. The detail will be

given elsewhere.

2. Transversal Morse theory.

2.1. The real-valued Morse theory. In the

classical Morse theory every real-valued Morse

function f : M ! R on a closed manifold M induces

a cellular decomposition of M. Namely, if we choose

a generic gradient v of f then the stable manifolds of

the zeros of v form this cellular decomposition, so

that the number of cells of dimension k equals the

number ]CritkðfÞ of critical points of f of index k.

The cellular chain complex M�ðf; vÞ (the Morse

complex) computes the homology of M. Moreover,

one can construct a natural chain equivalence

M�ðf; vÞ ! ��ðMÞ

where ��ðMÞ is the simplicial chain complex of M.

From this point of view the classical Morse theory

gives just another way of constructing cellular

decompositions of manifolds. This construction

can be refined so as to give the universal Morse

complex ~MM�ðf; vÞ which is freely generated over

Z�1ðMÞ by the critical points of f and computes the

homology of the universal covering ~MM of M. There

is a chain equivalence

~MM�ðf; vÞ �!
�

��ð ~MMÞð1Þ

which is a simple homotopy equivalence (that is, its

torsion vanishes in the group Wh ð�1ðMÞÞ).
Remark 2.1. The description above is ac-

tually very schematic; we have omitted several

technical details; see [15, Chapter 6].

2.2. The Novikov homology. The case of

Morse functions f : M ! S1 is quite different, and

the schema above can not be applied directly. The

stable manifolds of the critical points in general do

not form a cellular decomposition of M; the closure

of a stable manifold is not necessarily compact, and

can be everywhere dense in M. The appropriate

generalization of the Morse theory to this case was

constructed by S. P. Novikov about 1980. In this

theory one associates to each Morse map f : M !
S1 and a transversal f-gradient v the Novikov

complex N �ðf; vÞ, which is freely generated over

ZððtÞÞ by the set of critical points of f , and we have

a canonical chain equivalence

� : N �ðf; vÞ �!
�

ZððtÞÞ �
Z½t;t�1�

��ð �MMÞð2Þ

where �MM is the infinite cyclic covering induced by f

from the covering R! S1.

2.3. The twisted Novikov homology. Sim-

ilarly to the case of real-valued Morse functions one

can also construct a universal Novikov complex (see

[8,12]). The base ring of this complex is a rather

complicated algebraic object, namely a special

completion of the group ring of the fundamental

group, and is very difficult to work with, although it

has obvious theoretical advantages. In [5], we have

introduced a twisted version of the Novikov homol-

ogy, which is simpler to compute, and is sufficient

for many purposes. Let G denote the fundamental

group of M, and let � : G! GLðn;ZÞ be a right

representation of G (that is, �ðabÞ ¼ �ðbÞ�ðaÞ for
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every a; b 2 G). The twisted Novikov complex

N �ðf; v; �Þ is a free chain complex over b�� ¼ ZððtÞÞ
which has n � ]CritkðfÞ generators in the degree k

and we have a canonical chain equivalence

�� : N �ðf; v; �Þ �!
� b��n�

���
��ð ~MMÞð3Þ

where the tensor product in the right hand side

refers to the structure of a right ZG-module on b��n

defined by the representation

��� ¼ �� � : G! GLðn; b��Þ:
Here � is the homotopy class of f in ½M;S1� �
HomðG;ZÞ which is considered as the following

composition of group homomorphisms:

G! Z ¼ ðZ½Z�Þ� ¼ ðZ½t; t�1�Þ� 	 b��� ¼ GLð1; b��Þ:
2.4. Closed orbits of the gradient flow. The

gradient flow of the circle-valued Morse function

can have closed orbits (contrarily to the case of real-

valued Morse functions). It turns out that the

Lefschetz zeta function counting these orbits can be

expressed in terms of invariants of the simple

homotopy type of the Novikov complex. This was

discovered in the work of M. Hutchings and Y. J.

Lee [6]. To explain our results let us first recall the

notion of torsion.

Definition 2.2.

(a) For an acyclic based chain complex C� overb�� ¼ ZððtÞÞ one defines an element

�ðC�Þ 2 Z½½t�� ¼ �KK1ðb��Þ=ft
1g
(the torsion of C�). For the chain complex

C� ¼ f0 C1  �
�

C2  0g
where both C1, C2 are isomorphic to b�� and the

homomorphism � is the multiplication by a

unit � of the ring Z½½t�� we have �ðC�Þ ¼ �.

(b) For a chain equivalence � : C� ! D� of two

based chain complexes over b�� one defines the

torsion �ð�Þ as the torsion of the chain cone

Cone�ð�Þ.
We have the following result [13,14] concerning

the torsion of the canonical chain equivalence from

Subsection 2.2 (valid for generic gradients v of the

circle-valued function f : M ! S1):

�ð�Þ ¼
Y

PrClð�vÞ
1� �ð�Þtnð�Þ

� ��	ð�Þ
2 Z½½t��:ð4Þ

The right hand side is known as the Lefschetz zeta

function of ð�vÞ and denoted by 
ð�vÞ; here the

product is over the set PrClð�vÞ of all prime closed

orbits � of ð�vÞ, and �ð�Þ; 	ð�Þ ¼ 
1; nð�Þ 2 Z are

certain dynamical invariants of a closed orbit � (see

[15], Ch. 13 for details). For the case when the chain

complex N �ðf; vÞ �Q is acyclic, this formula is

equivalent to the Hutchings-Lee formula from [6]. If

the Morse function f has no critical points the

formula above is equivalent to the classical Milnor’s

formula [11] relating the torsion of the mapping

torus of a continuous map and the Lefschetz zeta

function of the map.

There is a generalization of the formula (4) to

the case of the twisted Novikov homology. This is

the first main result of this note:

Theorem 2.3. Let f : M ! S1 be a Morse-

Novikov map on a closed manifold M, and v a

transversal f-gradient. Then

�ð��Þ ¼
Y

PrClð�vÞ
det 1� �ð�Þ���ð½��Þð Þ�	ð�Þ 2 Z½½t��:ð5Þ

Here �ð��Þ is the torsion of the canonical chain

equivalence (3). The right hand side of this formula

is known as the twisted zeta function of the flow; we

will denote it by 
ð�v;�Þ. It was introduced in the

work of B. Jiang and S. Wang [7], where the authors

studied the twisted invariants of maps of manifolds.

Any such map gives rise to a circle-valued Morse

function without critical points on the mapping

torus of the map, so that the formula above can be

considered as a generalization of their result.

3. Seiberg-Witten invariants and sym-

metric flows. Let M be a closed oriented 3-

manifold. The Meng-Taubes theory [10] implies

that if b1ðMÞ > 0, then the Seiberg-Witten invari-

ant of M is essentially the Milnor-Turaev torsion of

M. M. Hutchings and Y. J. Lee developed another

approach to the Meng-Taubes theorem, which is

based on the Morse-Novikov theory. To explain

briefly their idea, recall that the Seiberg-Witten

theory associates to every SpinC- structure � an

integer SW ð�Þ, which is defined via counting of

solutions of the Seiberg-Witten equations (see [16]).

The Meng-Taubes theorem implies

X
�

SW ð�Þth�;�i ¼ �ð �MM�Þð6Þ

where � is a non-zero element of H1ðM;ZÞ, �MM� is the

infinite cyclic covering corresponding to this coho-

mology class, and h�; �i stands for 1
2
hc1ðdet�Þ �

�;Mi.
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The Hutchings-Lee theorem says that

�ðN �ðf; vÞÞ � 
ð�vÞ ¼ �ð �MM�Þð7Þ

where N �ðf; vÞ is the Novikov complex correspond-

ing to any Morse function f : M ! S1 in the

homotopy class � and an f-gradient v. An alter-

native proof of the equality

�ðN �ðf; vÞÞ � 
ð�vÞ ¼
X
�

SW ð�Þth�;�ið8Þ

would imply the Meng-Taubes theorem. This pro-

ject was realized in the paper [9], where T. Mark

gives the proof of (8) along the lines of the

TQFT for Seiberg-Witten equations developed by

S. Donaldson (see [1]).

For the proof T. Mark introduces a new class

of gradients of circle-valued Morse functions: the

symmetric gradients. Let f : W ! ½�1; 1� be a

Morse function on a 3-dimensional cobordism

between @0W and @1W , and v be an f-gradient.

The pair ðf; vÞ is called symmetric if f does not have

critical points of indices 0 and 3, all the critical

points of a given index i lie on the same critical level

ai, and there is an involution I : W !W such that

Ið@1W Þ ¼ @0W; I � f ¼ �f; I�ðvÞ ¼ �v:

(This definition is equivalent to T. Mark’s one

although differs slightly from it.) Observe that such

gradients are necessarily non-transversal. A pair

ðf; vÞ where f : M ! S1 and v is an f-gradient is

called symmetric if there is a regular value � of f

such that cutting M along the regular surface

f�1ð�Þ gives a symmetric Morse pair on the result-

ing cobordism W . If the descending discs of critical

points of f of index 2 are transversal to the

ascending discs of critical points of index 1, then

the usual Morse-Novikov procedure of counting the

flow lines joining the critical points determines a

homomorphism

N 2 �!
d N 1

where N i is the free module over ZððtÞÞ generated
by the critical points of f of index i. T. Mark proves

the following theorem:

detðdÞ � 
ð�vÞ ¼ �ð �MM�Þ:ð9Þ

4. Half-transversal Morse theory. The

results of Section 2 rely heavily on the trans-

versality condition for the gradient flow. Section 3

suggests that the analogs of these results can still

hold for some classes of non-transversal gradients,

like the symmetric ones. This is indeed the case; in

this and the following sections we will announce the

basic results of the Morse theory for the half-

transversal gradients.

We will consider only 3-dimensional manifolds

here, although the theory can be extended to

manifolds of any dimension. For a Morse function

f : W ! ½a; b� on a 3-dimensional cobordism and an

f-gradient v let ð�vÞ denote the gradient descent

map from the upper boundary to the lower boun-

dary. If there are no critical points of indices 0 and 3

this map is defined on an open and dense subset of

@1W and maps it diffeomorphically to an open and

dense subset of @0W .

Definition 4.1. Let f : W ! ½a; b� be a

Morse function on a 3-dimensional cobordism W .

We say that ðf; vÞ is a smooth descent Morse pair if

(a) f does not have critical points of indices 0 or 3.

(b) We have Crit2ðfÞ ¼ fq1; . . . ; qkg, Crit1ðfÞ ¼
fp1; . . . ; pkg; with fðpiÞ > fðqjÞ for every i, j,

and there are two flow lines joining pi and qi for

every i.

(c) The map ð�vÞ can be extended to a diffeo-

morphism of @1W onto @0W .

Observe that if v is a transversal gradient, and

the set of critical points is non-empty, the map

ð�vÞ can never be extended to a diffeomorphism

@1W ! @0W .

Definition 4.2. Let f : M ! S1 be a Morse

function on a closed 3-dimensional manifold M, and

v be an f-gradient. We say that v is half-transversal

if

(a) There is a regular value � of f such that

cutting M along the regular level surface

f�1ð�Þ we obtain a smooth descent Morse pair

on the corresponding cobordism.

(b) All stable and unstable manifolds of dimension

2 of v are transversal to each other.

We shall also say that ðf; vÞ is a half-transversal
Morse pair. Observe that in the half-transversal

case there is a well-defined monodromy map

H : f�1ð�Þ �!� f�1ð�Þ;
derived from the gradient descent ð�vÞ . This

simplifies the computations for the half-transversal

case as compared with the transversal one.

One can define the Novikov complex for the

half-transversal gradients. There are only two non-

zero terms, namely N 1 and N 2 and the boundary

8 H. GODA and A. V. PAJITNOV [Vol. 85(A),



operator from N 2 to N 1 is defined by the usual

counting procedure of flow lines (which works here

since the stable manifolds of the critical points of

index 2 are transversal to the unstable manifolds of

the critical points of index 1). The computational

advantage of the half-transversal case over the

transversal one, is that both the Novikov complex

and the Lefschetz zeta function are computable in

terms of the monodromy diffeomorphism H. We

proved the next theorem in [4].

Theorem 4.3 [4]. Let M be a 3-dimensional

closed manifold, and ðf; vÞ be a half-transversal

Morse pair on M. Then there is a chain homotopy

equivalence

� : N �ðf; vÞ �!
�

ZððtÞÞ �
Z½t;t�1�

��ð �MMÞð10Þ

such that its torsion equals the zeta function of the

gradient flow:

�ð�Þ ¼
Y

PrClð�vÞ
1� �ð�Þtnð�Þ

� ��	ð�Þ
2 Z½½t��:ð11Þ

The proof proceeds by a direct construction of

a cellular decomposition of the infinite cyclic cover-

ing of the manifold in question. Observe that T.

Mark’s approximation methods used in the proof of

(9) are not sufficient here.

Our method allows also to generalize the

results to the twisted case. This is the second main

result of the present paper: the twisted Novikov

complex for half-transversal gradients is chain

equivalent to the chain complex computing the

twisted Novikov homology, and the torsion of the

chain equivalence.

Theorem 4.4. In the assumptions of the

theorem 4.3, let � be a right representation �1ðMÞ !
GLðn;ZÞ. Then there is a chain equivalence

�� : N �ðf; v; �Þ �!
� b��n�

���
��ð ~MMÞð12Þ

such that its torsion equals the zeta function of the

gradient flow:

�ð��Þ ¼
Y

PrClð�vÞ
det 1� �ð�Þ���ð½��Þð Þ�	ð�Þ 2 Z½½t��:ð13Þ

5. Complements of knots. The corre-

sponding analogs of the theorems of the previous

sections hold also for the manifolds with boundary.

One of the most interesting cases here is the case of

complements of knots. For a knot K in the 3-sphere

let M ¼ S3 n IntNðKÞ be the complement to the

open tubular neighborhood of the knot. Let f :

M ! S1 be a Morse function such that its restric-

tion to the boundary of NðKÞ is the fibration

corresponding to the trivialization of the normal

bundle to K. In this case the torsion of the infinite

cyclic covering is easily computed from the

Alexander polynomial of the knot; we have the

following formula:

�ðN �Þ � 
ð�vÞ ¼
AðtÞ
1� t

;

where AðtÞ is the Alexander polynomial of the knot,

and 
ð�vÞ is the zeta function of the flow ð�vÞ.
It is difficult to compute the Novikov complex

and the zeta function for gradient flows, and in the

transversal case there are not much examples

available. In the half-transversal case the compu-

tation becomes possible using some techniques of

Heegaard splittings of 3-manifolds [2,3]. For the

twisted knots K2n�1 we have a half-transversal

Morse pair ðf; vÞ which satisfies:


ð�vÞ ¼ ð1� tÞ3; �ðN �Þ ¼
�nþ ð2n� 1Þt� nt2

ð1� tÞ4
:

3K Pretzel knot type (5,5,5)

Fig. 2

Fig. 1
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Similarly, for the pretzel knot of type ð5; 5; 5Þ there
exists a half-transversal pair ðf; vÞ with


ð�vÞ ¼ ð1� tÞ5; �ðN �Þ ¼
19� 37tþ 19t2

ð1� tÞ6
:

See [4] for the detail. We are computing the twisted

invariants for these knots (in preparation).

6. Concluding remarks: relations with

the Seiberg-Witten invariants. The work of

T. Mark was motivated by the relation of the circle-

valued Morse theory with the Seiberg-Witten

invariants of 3-manifolds and the Meng-Taubes

theorem [10].

Our results provide in particular the twisted

version of (7) and indicate therefore that there

should be a twisted version of the formula (6). We

hope that further study of the twisted dynamical

zeta functions of gradient flows will contribute to

the realization of this project.
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