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67. Interior Regularity of Weak Solutions of the Time.
Dependent Navier.Stokes Equation

By Takehiko OHYAMA
Department of Physics, University of Tokyo

(Comm. by K. KUNUGI, M.J.A., May 19, 1960)

1. Introduction. It is an interesting problem of mathematical
physics whether the time-dependent Navier-Stokes equation has a
solution or not. To solve this problem, several authors proposed
various weak solutions. In particular, E. Hopf" proved the existence,
but not the uniqueness, of a weak solution which is global in time,
whereas Kiselev and Ladyzenskaia showed the local existence and
uniqueness of a weak solution of a different type. In this note we
show that the latter is actually a regular solution at least in the
interior of the domain if the external force is smooth. We first sketch
their result. The equation to be solved is

u/t--zlu+(u,)u----p+f, div u--0 in DE,
ult:o=a, ulo=0 (D is the boundary of D).

Notations. A vector function belongs to C if its components are

of class C7 (i.e. infinitely differentiable with compact support). K(D)
is a real Hilbert space obtained from (D)--{flfeCT(D), div f--0}
by completion with the Dirichlet norm. H.(D) is a real Hilbert space
consisting of all twice strongly differentiable vector functions with the

(f f fnorm ] uxdx--, Ux,dx--- udx L(D) is a real Hil-

bert space of square integrable vector functions with the norm

=(u, fu dx)
Assumptions. 1. D is a bounded domain in the three dimensional

Euclidean space E. 2. The initial value a belongs to H.(D)K(D).
3. The external force f and its time derivative 3f/3t belong to
L2(D >( (0, 1)).

Conclusion. There exists a positive constant T such that in the
domain /2=D X (0, T) a generalized solution u(t)=u(x, t) exists uniquely

with the following properties. 1. u(t)zK(D) for each t (0t<T);
2. u, Vu, 3u/3t, 3’u/3tLZ([2); 3. u(t), ,u(t), 3u(t)/3teL(D) for each t
(0<t< T) and their L norms are bounded in t; 4. u(t)--->a (strongly
in L(D)as t0); 5. For any sufficiently smooth solenoidal vector

1) E. Hopf: Math. Nachrichten, 4, 213-231 (1950-1951).
2) A. A. Kiselev and O. A. Ladyzenskaia: Izv. Akad. Nauk SSSR, Seriya Mat.,

21, 655-680 (1957).
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function (x, t) with compact support in 9, the weak equation

holds, where (f,)-ff()e()&.
his generalized solution will hereafter be called K-L solution.
Our object is to rove the
Theorem2 he K-L solution is regular (twice eontinuously dif-

ferentiable in and once continuously differentiable in t) in any sub-
domain of D where the external foree f(, t) is Hlder continuous in
(, t.

o rove the theorem we deduee integral representations for (, t)
and g(, t) in the next section, and study the roerties of the integral

oerators involved in 8. With these aids we rove the theorem in

Remark 1. he same result holds for the K-L solution in the
gwo-dimensional saee.

Remark 2. We have not been able to rove the regularity of
Hour’s weak solution.

he author wishes to express his cordial thanks to Professor .
Kato for his continual guidance throughout this study.

2. Integral representations. In this section we derive integral
representations of and g. Setting f’=f--(g) and taking =rot
rot=--A+grad div (Cr(9)) in (1), we have

(rotrot,,f’)dt.

0 Av--OWe denote by *(, t; , r) a fundamental solution of A+
with its singularity at the oint (, t)=(, r). he explicit form of

* is

*(, t; , )- ,4[_i(_t),
exp -4(_t) av, <,

0
That * is a fundamental solution is evident *tom the fae ha

-e*(, t; , )-((-t-’ ex ii =*(’ t; e, )

is a fundamental solution of the adjoint heat equation. By the way,
we have symbolieally
( (+o/ot)*(, t; , )=-(+o/ot)*(, t; , )=(-, t-).

Next we fix a truneating funetion (, t; , r)=(--, t--r) such

3) Then there exists a continuous function p(x, t) with continuous space derivatives,
and together with this p, u(x, t) is a genuine solution of the N-S eq. in the said sub-
domain (see Hopfl)).
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that ri(x, ) is an even C-function, equal to one if xl</2 and 151</2,
and equal to zero if either 11>3 or I$1>. We take

(x, t)-- (q*i)(x, t; $, r)Z(, r)d dr,

as a testing vector function in (2), where 9- {(x, t)](x, t) e 9, dist ((x, t),
89)}, i.e. 9 is obtained by taking off the boundary strip of width
from 9. By virtue of (3) we have

(A+O/Ot)A(x, t)=z(x, t)-- B*(x, t; ,r)Z(, r)d drz(x, t)--B*z(x,t),
D

T* T.-- *-and setting T* (), ,--T --Z*+3O*/3x3x,
(rot rot (x, t))-- L--d(*)(x, t; , r)3, +axax, (*)(x, t; $, r)

X Z(, r)d dr

=(( dr+-- ;C,(x, t; r)
D D

X +(, r)d dr

where B*, C are CT-functions vanishing identically near x=$,
and C-C. Inserting these relations into (2), we get

J u) t-

Carrying out the ehange of the order of integration, which is justified
readily in virtue of the integrability of f’=f--(ug)u and sC7(9),
we have

( g (Z, --B)gt-- (Z, (T +C)f’)dt,

where

(6) t)--fJ(Tv)(x,rr
t; , v)f’($, r)d$T,f’(x, dr,

.D

and T-- (Ts) is obtained by interchanging (x, t) and ($, r) in T* (T).
B, C are obtained from B*, C* in a similar way. Since z is arbitrary
in (5), we arrive at an integral representation

(7) u(x,t)--Tf’(x,t)+Bu(x,t)+Cf’(x,t), for (x,t)[2.
We next derive an integral representation for 3u/3x, m-l, 2, 3.

To this end we replace Z by 3Z/3x in (4), and proceed as above,
obtaining

(8) u (x, t)-Sf’(x, t)+Eu(x, t)+Ff’(x, t), for (x,

where S$ is an integral operator with the kernel 3Ts/3x], namely

f (x, t))- .]-:---ri(x, t; $, r)f($, r)d$ dr,
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and E, F are integral operators with kernels E(x, t; , r), F(x, t; , r)
which belong to C7 vanishing near x-S, t--r. As a result we obtain

Lemma 1o For K-L solution u(x, t) we have the integral repre-
sentations (7) and (8).

:o Properties of the integral operators. We now introduce the
space L(D) with the ordinary L norm which we denote by

Lemma 2. Let f---- Tg, h--Sg in .(2 D (0, T).
1) Let g(t)=g(x, t) belong to L(D) for each t (O<t<T) with its L
norm bounded. Then for each t (0<t< T) and for any fixed r such
that r-q---2/3, f(t)=f(x,t) belongs to L(D) and its L norm is
bounded in t. For each t (O<t<T) and for any fixed s such that
s- q- -- 1/3, h(t) h(x, t) belongs to L(D) and its L norm is bounded
in t.
2) Let g(x, t) be bounded in /2. Then f(x, t) and h(x, t) are Hhlder
continuous in /2 with respect to (x,t).
3) Let g(x, t) be Hhlder continuous in 9 with respect to (x, t). Then
f(x, t) is twice differentiable with respect to x and once differentiable
with respect to t in/2, and these derivatives are continuous in (x, t).

The proof of this lemma is straightforward but cumbersome, so
we omit it.

4. Proof of Theorem. Without loss of generality we can assume
that the external force f(x, t) is Hhlder continuous in 9. Otherwise
we need only to replace/2 by a suitable subset of it. Our proof depends
on iterative use of Lemma 2. We first show that u and gu are
bounded in 2. By virtue of section 1, conclusion 3 and the assump-
tion on f(x,t), we see that Ilu(t)ll_M, I](ug)u(t)i]<_M, and ]f(x,t)]<_M.
Therefore, the second and third terms of the second members of (7)
and (8) are bounded in 9. By a lemma of Sobolev type we know
that ]I u(t) ll-c]l gu(t) ]I_M. Hence (ug)uL(D) with q---1/2+1/6
or q=3/2. Thus f’=f--(ug)ueL/(D), and its norm is bounded in t.
Then the application of Lemma 2, 1) to (7) yields the result that
ueL(D) (l_<r< ). From this information we see that (ug)ueL-(D),
hence f’ e L-(D). A second application of Lemma 2, 1) to (7) gives
that u e L(D.) if r- 1/2--2/3 1/6. Hence u is bounded in D
and its bound is bounded in t. Thus we can say that u is bounded
in tg. This result ensures that (ug)ueL(D) and its norm is bounded
in t (2<t<T--2). By a third application of Lemma 2, 1) to (8),
[/u e L-(D) and its norm is bounded in t (3< t<: T--3). Hence
(ug)ueL-(D) and its norm is bounded in t. Again we apply Lemma
2, 1) to (8), and see that/7u is bounded in D and its bound is bounded
in t. Thus we arrive at the conclusion that u and gu are bounded
in
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Next we apply Lemma 2, 2) to (7) and (8), and we see that u and
/u are HSlder continuous in 2, noticing this time that the second
and third terms of the second members in (7) and (8) are in
Finally applying Lemma 2, 3), we see that u is twice continuously
differentiable in , and once continuously differentiable in $ in the
domain /26. This completes the proof.


