466 [Vol. 36,

112. On Paracompactness of Topological Spaces

By Sitiro HANAI and Akihiro OKUYAMA Osaka University of Liberal Arts and Education (Comm. by K. Kunugi, M.J.A., Oct. 12, 1960)

K. Morita [5] proved that a topological space having the weak topology with respect to a closed covering is paracompact and normal if and only if each element of the closed covering is paracompact and normal.

In this note we shall investigate the paracompactness of a topological space X by the open covering of X.

Theorem 1. Let $\{G_{\alpha} \mid \alpha \in \Omega\}$ be a locally finite open covering of a topological space X. Then X is paracompact*) if and only if each \overline{G}_{α} is paracompact.

Proof. Let $\mathfrak{U}=\{U_{\beta}\,|\,\beta\in\Lambda\}$ be an arbitrary open covering of X. Since each \overline{G}_{α} is paracompact, for each α we have a locally finite open covering $\{V_{\tau} \frown \overline{G}_{\alpha}\,|\,\gamma\in\Gamma\}$ of \overline{G}_{α} which is a refinement of $\{U_{\beta} \frown \overline{G}_{\alpha}\,|\,\beta\in\Lambda\}$ and each V_{τ} is an open set of X. By the closedness of \overline{G}_{α} , $\{V_{\tau} \frown \overline{G}_{\alpha}\,|\,\gamma\in\Gamma\}$ is locally finite in X and, so $\{V_{\tau} \frown G_{\alpha}\,|\,\gamma\in\Gamma\}$ is a locally finite collection of open sets (in X). By the hypothesis of the locally finiteness of $\{G_{\alpha}\,|\,\alpha\in\Omega\}$ $\{V_{\tau} \frown G_{\alpha}\,|\,\gamma\in\Gamma,\,\alpha\in\Omega\}$ is a locally finite open covering of X which is a refinement of \mathbb{U} . This completes the proof.

Theorem 2. Let $\mathbb{1} = \{G_{\alpha} \mid \alpha \in \Omega\}$ be a star-finite open covering of a regular T_1 space X. If each G_{α} is paracompact as a subspace of X and each $Fr(G_{\alpha})$ has the Lindelöf property, then X is paracompact.

Theorem 3. Let $\mathfrak{U}=\{G_{\alpha} \mid \alpha \in \Omega\}$ be a locally finite open covering of a regular T_1 space X. If each G_{α} is paracompact and each $\operatorname{Fr}(G_{\alpha})$ is compact, then X is paracompact.

Proceeding the proof of the above theorems, we prove the following lemmas.

Lemma 1. Let $\{G_i, G_2\}$ be an open covering of a regular T_i space X such that $G_i(i=1,2)$ are paracompact as subspaces of X. In order that X is paracompact it is necessary and sufficient that there are mutually disjoint open sets $H_i(i=1,2)$ of X such that $H_i \subset G_j(i \neq j; i, j=1,2)$ and $H_i \supset \operatorname{Fr}(G_i)$ (i=1,2).

Proof. Necessity. By [2] X is normal. Since $Fr(G_i)$ (i=1,2) are closed in X and are mutually disjoint, there exist open sets $H_i(i=1,2)$ satisfying the above conditions.

^{*)} Topological space X is said to be paracompact if each open covering of X has a locally finite open covering as a refinement.

Sufficiency. Let $H_i(i=1,2)$ be open sets satisfying the above conditions. To prove that X is paracompact, let $\mathfrak{U}=\{U_\alpha\mid\alpha\in\Omega\}$ be an arbitrary open covering of X. Since $\operatorname{Fr}(G_1)$ is closed in G_2 and so is paracompact, there is a locally finite open covering $\{V'_\beta\mid\beta\in\Lambda\}$ of $\operatorname{Fr}(G_1)$ which refines $\{U_\alpha \frown \operatorname{Fr}(G_1)\mid\alpha\in\Omega\}$. By [1] G_2 is collectionwise normal as a subspace of X, there is a collection of open sets $\{V_\beta\mid\beta\in\Lambda\}$ of X such that it is locally finite in G_2 and $\bigvee_{\beta\in\Lambda}\operatorname{Fr}(G_1)$ and for each β $V_\beta\subset H_1$, $V_\beta\subset$ some U_α of $\mathbb U$ and $V_\beta\cap\operatorname{Fr}(G_1)\subset V'_\beta$ (see [3]). Since $H_1\cap H_2=\phi$, $\{V_\beta\mid\beta\in\Lambda\}$ is locally finite collection of open sets of X. Let $V=\bigcup_{\beta\in\Omega}V_\beta$, then it is open in X and $H_1\supset V\supset\operatorname{Fr}(G_1)$. Since G_2 is normal, there are open sets A, B of X such that $V\supset\overline{A}\supset A\supset\overline{B}\supset B\supset\operatorname{Fr}(G_1)$ where bars can show the closures in X by $V\curvearrowright\operatorname{Fr}(G_2)=\phi$.

By the closedness of G_1-A in G_1 it is paracompact, so there exists a locally finite open covering $\{W_r^{(1)'} \mid \gamma \in \Gamma\}$ of G_1-A which refines $\{U_{\alpha} \smallfrown (G_1-A) \mid \alpha \in \varOmega\}$. By the collectionwise normality of G_1 there is a locally finite collection $\{W_r^{(1)} \mid \gamma \in \Gamma\}$ of open sets of X such that for each $\gamma \in \Gamma$ $W_r^{(1)} \smallfrown (G_1-A) \subset W_r^{(1)'}$, $W_r^{(1)} \subset G_1-\bar{B}$ and $W_r^{(1)} \subset$ some U_{α} of \mathbb{N} and $W_r^{(1)} \subset W_r^{(1)} \supset G_1-A$.

By the same way we can have a locally finite collection $\{W_{\delta}^{(2)} | \delta \in \Delta\}$ of open sets of X such that for each $\delta \in \Delta$, $W_{\delta}^{(2)} \subset G_2 - G_1 \smile \overline{B}$ and $W_{\delta}^{(2)} \subset$ some U_{α} of \mathbb{N} and moreover, $G_2 - G_1 \cup A \subset W_{\delta}^{(2)}$.

Now, if we let $\mathfrak{B}=\{V_{\beta},W_{\tau}^{(1)},W_{\delta}^{(2)}\mid\beta\in\Lambda,\gamma\in\Gamma,\delta\in\Delta\}$, then \mathfrak{B} is a locally finite open covering to X which refines \mathfrak{U} . This shows that X is paracompact.

Lemma 2. Let $\{G_1, G_2\}$ be an open covering of a regular T_1 space X. If each $Fr(G_i)$ (i=1,2) has the Lindelöf property, then there exist open sets $H_i(i=1,2)$ such that $H_i \supset Fr(G_i)$ (i=1,2), $H_1 \cap H_2 = \phi$ and $H_i \subset G_j$ $(i \neq j; i, j=1, 2)$.

Proof. Let $F_i = \operatorname{Fr}(G_i)$ (i=1,2). Then F_i are mutually disjoint closed sets in X. Since X is regular and $F_i(i=1,2)$ have the Lindelöf property, there exist open sets $\{U_k^{(i)} \mid k=1,2,\cdots; i=1,2\}$ of X such that $G_j \stackrel{\sim}{\underset{k=1}{\smile}} U_k^{(i)} \supset F_i$ and $F_i \cap \overline{U}_k^{(j)} = \phi$ $(k=1,2,\cdots; i \neq j \text{ and } i,j=1,2)$. If we let $V_n^{(i)} = U_n^{(i)} - \stackrel{\sim}{\smile} \overline{U}_k^{(j)}$ $(i \neq j; i,j=1,2 \text{ and } n=1,2,\cdots)$, then, by induction, for each positive integer n,m we get $V_n^{(i)} \cap V_m^{(j)} = \phi$ $(i \neq j; i,j=1,2)$. Now, if we put $H_i = \stackrel{\sim}{\smile} V_k^{(i)}$ (i=1,2), then from $F_i \cap \overline{U}_k^{(j)} = \phi$ $(i \neq j; i,j=1,2)$ we get $H_i \supset F_i$ (i=1,2) and $H_1 \cap H_2 = \phi$. This completes the proof.

Proof of Theorem 2. When we fix the one element G_{α} of \mathbb{I} , then by the star-finiteness of \mathbb{I} only G_{β_i} ($\alpha \neq \beta_i$; $i=1,\dots,n_{\alpha}$) intersect \overline{G}_{α} .

If we put $H_{\alpha} = \bigcup_{i=1}^{n_{\alpha}} G_{\beta_i} \smile G_{\alpha}$, then H_{α} contains \overline{G}_{α} and is paracompact as a subspace of X by Lemmas 1 and 2. Hence \overline{G}_{α} is paracompact. On the other hand, $\{\overline{G}_{\alpha} \mid \alpha \in \Omega\}$ is a locally finite closed covering of X; that is, if x is an arbitrary point of X, then, since $\mathbb U$ is star-finite, there exists a neighbourhood U(x) of x which intersects only a finite number of the elements of $\mathbb U$. So U(x) intersects only a finite number of the closures of the elements of $\mathbb U$ and this shows that $\{\overline{G}_{\alpha} \mid \alpha \in \Omega\}$ is locally finite. This proves that X is paracompact by Theorem 1 (or [5]).

Proof of Theorem 3. Since $Fr(G_{\alpha})$ is compact, there is an open set H_{α} which is a union of a finite number of elements of \mathbb{I} and contains \overline{G}_{α} . By Lemmas 1 and 2 H_{α} is paracompact as a subspace of X, so \overline{G}_{α} is paracompact. On the other hand, $\{\overline{G}_{\alpha}\}$ is locally finite. By Theorem 1 (or $\lceil 5 \rceil$) we get the paracompactness of X.

We have the following corollary of Theorems 2 and 3:

Corollary. Let $\{G_{\alpha} \mid \alpha \in \Omega\}$ be a star-finite (locally finite) open covering of a regular space X. If each G_{α} is metrizable and each $\operatorname{Fr}(G_{\alpha})$ has the Lindelöf property (compact), then X is metrizable.

Proof. Since metrizable space is paracompact (see [7]), each G_{α} is paracompact. By Theorem 2 (or 3) we have that X is paracompact. Then there is a locally finite closed covering which refines $\{G_{\alpha} \mid \alpha \in \Omega\}$ and, so, by [6] X is metrizable.

Theorem 4. Let $\{G_n \mid n=1, 2, \cdots\}$ is a countable open covering of a regular T_1 space X. If each G_n is paracompact as a subspace of X and each $Fr(G_n)$ is compact, then X is paracompact.

Proof. Let $\mathbb{1}=\{U_\alpha \mid \alpha \in \varOmega\}$ be an arbitrary open covering of X. Since $\operatorname{Fr}(G_n)$ is compact, there is a finite subcollection $\mathbb{1}^{(n)}=\{U_{\alpha n j} \mid j=1, \cdots, i_n\}$ of $\mathbb{1}$ whose sum covers $\operatorname{Fr}(G_n)$. As X is regular and $\operatorname{Fr}(G_n)$ is compact, there are open sets H_n , H'_n of X such that $\operatorname{Fr}(G_n) \subset H_n \subset \overline{H_n} \subset \overline{H'_n} \subset \overline{H'_n} \subset \overline{H'_n} \subset \overline{H'_n}$. Since $G_n - H'_n$ is closed in G_n and G_n is collectionwise normal, there exists a locally finite collection $\mathfrak{P}^{(n)} = \{V_\beta^{(n)} \mid \beta \in \Omega_n\}$ of open sets of G_n such that $\mathfrak{P}^{(n)}$ refines $\{U_\alpha \cap G_n \mid \alpha \in \Omega\}$ and $G_n - H'_n \subset \bigcup_{\beta \in \Omega_n} V_\beta^{(n)} \subset G_n - \overline{H_n}$. For each n, by $\bigcup_{\beta \in \Omega_n} V_\beta^{(n)} \cap \operatorname{Fr}(G_n) = \emptyset$, we see that $\bigcup_{\beta \in \Omega_n} V_\beta^{(n)}$ is locally finite in X. Then it is easily seen that $\bigcup_{n=1}^\infty V_n^{(n)} \subset \bigcup_{n=1}^\infty V_n^{(n)}$ is a σ -locally finite open covering of X which refines \mathbb{T} . This proves that X is paracompact (see [4]).

Remark. A. H. Stone proved in [8] that if a regular space S is the union of a sequence of open metrizable sets S_n $(n=1, 2, \cdots)$, each of which has a compact frontier, then S is metrizable. The above Stone's theorem is deduced as an immediate consequence of Theorem 4.

References

- [1] R. H. Bing: Metrization of topological spaces, Canad. Jour. Math. Soc., 3, 175-186 (1951).
- [2] I. J. Dieudonné: Une généralization des espaces compacts, Jour. Math. Pure et Appliques, 23, 65-76 (1944).
- [3] C. H. Dowker: On a theorem of Hanner, Arkiv. for Math., nr. 15, 307-313 (1952).
- [4] E. Michael: A note on paracompact spaces, Proc. Amer. Math. Soc., 4(2), 831–838 (1953).
- [5] K. Morita: On space having the weak topology with respect to closed coverings.II, Proc. Japan Acad., 30(8), 711-717 (1954).
- [6] J. Nagata: On a necessary and sufficient condition of metrizability, Jour. Inst. Polytech. Osaka Univ., ser. A, 1, 93-100 (1950).
- [7] A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc. 54, II, 977-982 (1948).
- [8] —: Metrizability of unions of spaces, Proc. Amer. Math. Soc., 10, 361-366 (1959).