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5. Compact Complex Manifolds Containing
“Global” Spherical Shells

By Masahide KATO
Rikkyo University, Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1977)

0. Introduction. Fix an integer n>2. Fore, 0<e<1, we put
S,={zeC": 1—e<||2||<1+e},
B,={zecC":||z||<1+¢}, and

I={zeC: |2 =1},
where ||2]|=(207-1 12,/ 2=(2,).

Let X be a compact complex manifold of dimension n. An open
subset N of X is called a spherical shell if N is biholomorphic to S, for
some e.

Definition 1. A spherical shell N in X is said to be global if X—N
is connected. Otherwise, N is said to be local.

It is clear that, if N is local, then X—N has two connected com-
ponents. Any complex manifolds contain local spherical shells. But
global spherical shells can be contained in only special types of mani-
folds.

Before stating the main results, we recall the definition of Hopf
manifolds.

Definition 2. A compact complex manifold of dimension n (>2)
is called a Hopf manifold if its universal covering manifold is biholo-
morphic to C"—{0}. A Hopf manifold is said to be primary if its
fundamental group is infinite cyclic.

1. Main results. Theorem 1. Suppose that a compact complex
manifold X of dimension n (>2) contains a global spherical shell. Then
we can construct a complex analytic family =: X—T={te C:|t|<1} of
small deformations of X such that

(i) X=z"Y0),

(i) X,=zn"'(t) (t+£0) is biholomorphic to a compact complex mani-
fold which is a modification of a primary Hopf manifold at finitely
many points.

Corollary 1. The fundamental group of X is infinite cyclic. In
particular, X is non-Kdhler.

We note that X itself is not always a modification of a Hopf mani-
fold. In fact, if n=2, all compact complex surfaces constructed by M.
Inoue in [2] and [3], which are of Class VII, with positive second Betti
numbers, contain global spherical shells, but none of them is a modi-
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fication of a Hopf surface. Consequently, by Theorem 1, we have

Theorem 2. All compact complex surfaces constructed by Inoue
in [2] and [3] are deformations of modifications of primary Hopf
surfaces.

2. All compact complex manifolds of dimension 7 containing
global spherical shells are constructed as follows. (Here we shall make
only a rough explanation.) Let B be the open unit ball in C"and ¢: B,
— B a modification of B at finitely many points. Remove a small closed
ball B, from B,, where B, is the interior of B,. Then the compact
complex manifold X is obtained by identifying the two boundaries of
B,—B,, where B,=B,UZ.

This identification induces a biholomorphic mapping {: B—B,CB,.
We denote by A the maximal compact analytic subset in B,. If {oo(A4)
NA=0, then X is a modification of a primary Hopf manifold. If
Loa(A) N A0, then, by a slight translation of B, in B,, we can make
the set {o0(A) lie outside of A. In other words, X can be deformed to
a modification of a primary Hopf manifold.

By this method, we can determine all small deformations of the
surface constructed in [2].

3. Griffiths ([1], p. 40) considered the following

Problem. Let M be a compact Kdhler manifold of dimension #.
Then is it true that any holomorphic mapping ¢: S,—M extends mero-
morphically to B,?

He gave a partial answer to this problem and also gave a counter
example in the case where M is non-Kdihler. Namely he considered a
primary Hopf manifold M and a restriction ¢ to S, (CC"—{0}) of the
covering projection C*—{0}—>M. Note that in this case ¢ is biholo-
morphic near 3. Concerning this problem, we obtain

Corollary 2. Let M be a compact complex manifold of dimension
n (>2) and ¢: S,—~M a holomorphic mapping which is biholomorphic
near 3. Suppose that ¢ can not be extended meromorphically to the
whole of B,. Then M is a deformation of a compact complex manifold
which s a modification of a primary Hopf manifold at finitely many
points.

Details of the results will appear in the Proceedings of the Inter-
national Symposium on Algebraic Geometry, Kyoto, Jan., 1977.
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