110. A Note on Γ -Rings

By Bhavanari SATYANARAYANA Department of Mathematics, Nagarjuna University (Communicated by Shokichi IyanaGa, M. J. A., Oct. 12, 1983)

Introduction. Throughout the paper, M stands for a Γ -ring, as defined by Barnes [1]. We shall utilize the standard notations and definitions in Barnes [1] and Hsu [2]. In [2] Hsu has introduced the notion of g-prime ideals in Γ -rings and proved that for any ideal Aof the Γ -ring M, the radical $r_q(A)$ of A (that is, the set of all elements x of M such that every g-system containing x contains an element of A) is the intersection of all g-prime ideals containing A. In this paper we introduce the notion of g-halfprime ideals in Γ -rings and prove that an ideal A of the Γ -ring M is g-halfprime if and only if $A = r_q(A)$.

Preliminary definitions. If a is an element of the Γ -ring M, then $\langle a \rangle$ denotes the principal ideal generated by a. If S is a subset of M, we call S an *sp*-system if $S=\emptyset$ or $a \in S$ implies $\langle a \rangle^2 \cap S \neq \emptyset$. A nonempty subset S of M is called a *g*-sp-system if S contains an sp-system S' such that $g(x) \cap S' \neq \emptyset$ for every element x of S, where S' is called a *kernel* of S. An ideal I of M is said to be *g*-halfprime if $C(I)=M \setminus I$ is a *g*-sp-system.

Example. Consider Z, the ring of integers, as a Γ -ring with $\Gamma = Z$. Let p, q be two distinct prime numbers. Define $g(a) = \langle \{a, pq\} \rangle$. Now $g(pq) = \langle pq \rangle$ and hence $C(\langle pq \rangle)$ is g-sp-system with kernel $C(\langle pq \rangle)$, which is not a g-system.

Suppose K is a subset of M and satisfies the condition: For each $a \in K$, there exists an sp-system $S \subseteq K$ such that $g(a) \cap S \neq \emptyset$. Then consider the set X, which is the union of all sp-systems which are contained in K. One can easily verify that K is a g-sp-system with kernel X. Hence a subset K of M is a g-sp-system if and only if K satisfies the condition: For each $a \in K$, there exists an sp-system $S \subseteq K$, such that $g(a) \cap S \neq \emptyset$.

Main Theorem. Before proving our main theorem, we prove the following

Lemma. If S is an sp-system and $x \in S$, then there exists an m-system X (Def. 3.2. in [2]) such that $x \in X$ and $X \subseteq S$.

Poof. Let S be an sp-system and x an element of S. Then there exists an element $x_1 \in \langle x \rangle^2 \cap S$. Again since S is an sp-system, there exists $x_2 \in \langle x_1 \rangle^2 \cap S$. If we continue this process, we get a sequence $\{x_i\}$ of elements in S with $x_0 = x$ and $x_{i+1} \in \langle x_i \rangle^2 \cap S$ for $i \ge 0$. Now x_i

 $e \langle x_{i-1} \rangle^2$, $\langle x_{i-1} \rangle^2 \subseteq \langle x_{i-1} \rangle$ for each *i*, so that $\langle x_0 \rangle \supseteq \langle x_1 \rangle \supseteq \langle x_2 \rangle \supseteq \langle x_3 \rangle$ $\supseteq \cdots$. It is easy to verify that $x_j \in \langle x_i \rangle \langle x_j \rangle \cap X$ for $i \leq j$. Hence $X = \{x_0, x_1, x_2, \cdots\}$ is an *m*-system such that $x = x_0 \in X$ and $X \subseteq S$. Hence the lemma.

Theorem. Let M be a Γ -ring and A be an ideal of M. Then A is g-halfprime if and only if $A = r_g(A)$.

Proof. Suppose A is g-halfprime. Clearly $A \subseteq r_o(A)$. To show $r_o(A) \subseteq A$, let $a \in rg(A)$. Suppose $a \notin A$. Since C(A) is a g-sp-system there exists an element x and an sp-system K such that $x \in g(a)$, $x \in K$ and $K \subseteq C(A)$. Now by above Lemma, there exists an m-system K^* such that $x \in K^*$ and $K^* \subseteq K$. Write $Q = \{y \in C(A) \mid g(y) \cap K^* \neq \emptyset\}$. Clearly $K^* \subseteq Q \subseteq C(A)$, $a \in Q$ and Q is a g-system with kernel K^* . By Zorn's Lemma (applied to the class of all ideals I, such that $I \cap Q = \emptyset$, $I \supseteq A$), there exists an ideal P maximal with respect to the properties $P \cap Q = \emptyset$ and $P \supseteq A$. By the proof of Theorem 3.8. in [2], if follows that P is g-prime. Since $a \notin P$ and P is g-prime containing A, Theorem 3.8. in [2] shows that $a \notin r_o(A)$.

Conversely, suppose that $A = r_q(A)$. To show that A is g-halfprime we have to show that C(A) is a g-sp-system. If r(A) is the intersection of all prime ideals containing A, then C(r(A)) is an spsystem. Now we show that C(A) is a g-sp-system with kernel C(r(A)). To show this let $x \in C(A)$. Now $x \notin A = r_q(A)$ and so there is a g-system Y such that $x \in Y$ and $Y \cap A = \emptyset$. Let X be any kernel of Y. Then since $x \in Y$ and X is a kernel of Y there exists an element $z \in g(x) \cap X$. Now $z \in X$, X is an m-system and $X \cap A = \emptyset$. By Theorem 7 of [1], $z \notin r(A)$. $z \notin r(A)$ and $z \in g(x)$ imply $g(x) \cap C(r(A)) \neq \emptyset$. Hence the theorem.

By the property (2) in Theorem 4.3 [2], we have

Corollary. Intersection of any collection of g-prime ideals is a g-halfprime ideal.

Acknowledgements. I am very grateful to my Research Director Dr. Y. V. Reddy for his valuable guidance. I gratefully acknowledge financial support from the Council of Scientific and Industrial Research, New Delhi. I thank the referee for his valuable comments.

References

- [1] W. E. Barnes: On the Γ -rings of Nobusawa. Pacific J. Math., 18, 411-422 (1966).
- [2] D. F. Hsu: On prime ideals and primary decompositions in Γ -rings. Math. Japonicae, **21**, 455-460 (1976).