40. A Note on the Mean Value of the Zeta and L-functions. VII

By Aleksandar IVIĆ*) and Yoichi MOTOHASHI**)

(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1990)

1. Let $E_2(T)$ be the error-term in the asymptotic formula for the fourth power mean of the Riemann zeta-function, so that

(1)
$$\int_{0}^{T} \left| \zeta \left(\frac{1}{2} + it \right) \right|^{4} dt = TP_{4}(\log T) + E_{2}(T)$$

with a certain polynomial P_4 of degree 4. As has been pointed out already in the preceding note [3] of this series, Corollary 2 in it gives an alternative proof of Zavorotnyi's claim [5]:

$$(2) E_2(T) = O(T^{(2/3)+\epsilon})$$

for any fixed $\varepsilon > 0$. In fact this is simply a resultant of combining the corollary with the spectral mean of Hecke series ([4]):

(3)
$$\sum_{s_j \leq x} \alpha_j H_j \left(\frac{1}{2}\right)^4 \ll x^{2+\varepsilon}.$$

Here $\{\lambda_j = \kappa_j^2 + (1/4), \kappa_j > 0\}$ is the discrete spectrum of the non-Euclidean Laplacian on $SL(2, \mathbb{Z})$, and $\alpha_j = |\rho_j(1)|^2 (\cosh \pi \kappa_j)^{-1}$ with the first Fourier coefficient $\rho_j(1)$ of the Maass wave form corresponding to λ_j to which the Hecke series H_i is attached.

Though (2) is the hitherto best result on the upper bound for $E_2(T)$ it is generally believed that $T^{(1/2)+s}$ may be the true order of it. The aim of the present note is to study this problem from the opposite direction. Namely we are going to show that under a hypothesis of the type of nonvanishing theorems for automorphic *L*-functions one may deduce an Ω -result on $E_2(T)$ from [Theorem, 3].

To formulate the hypothesis we denote by $\{\mu_n\}$, arranged in the increasing order, the mutually different members in the set $\{\kappa_i\}$. And we put

$$G_h = \sum_{s_j = \mu_h} \alpha_j H_j \left(\frac{1}{2}\right)^3.$$

Now we set out

Hypothesis A. Not all G_h vanish.

Then we have

Theorem. Under Hypothesis A $E_2(T) = \Omega(T^{1/2})$ holds.

We note that Zavorotnyi's argument [5] does not seem to be able to yield our theorem. Also the theorem should be compared with the Ω -result on the mean square of $|\zeta((1/2)+it)|$ due to Good [1] (for the latest develop-

^{*)} Serbian Academy of Sciences, Beograd, Yugoslavia.

^{**)} Department of Mathematics, College of Science and Technology, Nihon University, Tokyo, Japan.

ments see Hafner and Ivić [2]).

No. 6]

Remark. (i) If $G_h = 0$ for all h then the Lindelöf hypothesis for $\zeta(s)$ would follow. (ii) It is clear that Hypothesis A is a consequence of the following stronger statement:

Hypothesis B. There exists a λ_j of multiplicity one such that $H_j(1/2) \neq 0$.

Probably this may be checked numerically.

2. We shall give an outline of our proof of the theorem; a detailed version is available in a form of manuscript, and will be published elsewhere.

As in [3] we put

$$I_4(T, \Delta) = (\Delta \sqrt{\pi})^{-1} \int_{-\infty}^{\infty} \left| \zeta \left(\frac{1}{2} + i(T+t) \right) \right|^4 e^{-(t/\Delta)^2} dt,$$

and consider the expression

(4)
$$\int_{T}^{2T} I_4(t, \Delta) dt = TQ_4(\log T) + R(T, \Delta),$$

where Q_4 is a polynomial of degree 4. This is suggested by [Corollary 2, 3], so that $R(T, \Delta)$ is supposed to be of the order of T^c with a c < 1 for some suitably chosen Δ . Then we make the initial observation:

Lemma 1. If $R(T, \Delta) = \Omega(g(T))$ for Δ satisfying $T^{\varepsilon} \leq \Delta \leq T^{1-\varepsilon}$ and $\Delta = o(g(T)\log^{-5}T)$ then we have $E_2(T) = \Omega(g(T))$.

This can be proved by truncating, in an obvious manner, the double integral involved in (4) and taking (1) into account.

Next we introduce

$$S(V, \Delta) = \int_{V}^{2V} R(T, \Delta) dT.$$

If Hypothesis A implies $S(V, \Delta) = \Omega(V^{3/2})$ for Δ satisfying $V^{\varepsilon} \leq \Delta \leq V^{(1/2)-\varepsilon}$ then obviously $R(T, \Delta) = \Omega(T^{1/2})$ for Δ satisfying $T^{\varepsilon} \leq \Delta \leq T^{(1/2)-\varepsilon}$, and Lemma 1 ends the proof of the theorem. Thus we are led to the problem of finding a suitable explicit formula for $S(V, \Delta)$ for Δ in the indicated range. The reason that we have integrated $R(T, \Delta)$, instead of treating it directly, is that for $S(V, \Delta)$ we can give such an explicit formula but it seems difficult to do so for $R(T, \Delta)$.

In fact, after a somewhat involved computation we have deduced from [Theorem, 3] and (3) the following:

Lemma 2. Uniformly for $V^{\varepsilon} \leq \Delta \leq V^{(1/4)-\varepsilon}$ we have

$$S(V, \Delta) = 2V^{3/2} \operatorname{Im} \left\{ \sum_{h=1}^{\infty} G_h(F(\mu_h) V^{i\mu_h} + F(-\mu_h) V^{-i\mu_h}) \right\} + O(V^{3/2} (\log V)^{-1}),$$

where

$$F(\mu) = \exp\left(\frac{\pi}{2}\left(\mu + \frac{i}{2}\right)\right) ((\sinh \pi \mu)^{-1} + i) \frac{\Gamma^3((1/2) - i\mu)(2^{(1/2) + i\mu} - 1)(2^{(3/2) + i\mu} - 1)}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(3 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(1 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(1 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)(1 + 2i\mu)(1 + 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1 - 2i\mu)} + \frac{\Gamma^3(1/2) - i\mu}{\Gamma(1$$

We note that $F(\mu) = O(|\mu|^{-5/2})$ as $|\mu|$ tends to infinity; this and (3) imply that the last sum over h is absolutely convergent.

Now, providing Hypothesis A, the desired Ω -result for $S(V, \Delta)$ will be

an easy consequence of the last lemma, once we establish the following general assertion:

Lemma 3. Let $\{a_j\}$ and $\{b_j\}$ be such that $|a_1| > |b_1|$ and $\sum_{j=1}^{\infty} (|a_j| + |b_j|) < \infty$. Also let $\{\omega_j\}$ be a strictly increasing sequence of positive numbers. Then we have, as x tends to infinity,

$$\operatorname{Im}\left\{\sum_{j=1}^{\infty} (a_j x^{i\omega_j} + b_j x^{-i\omega_j})\right\} = \Omega_{\pm}(1).$$

To show this we denote the left side by $\varphi_0(x)$ and define $\varphi_n(x)$ inductively by

$$\varphi_{n+1}(x) = \int_x^{\tau x} \varphi_n(x) \frac{dx}{x},$$

where $\tau = \exp(\pi/\omega_1)$. As is easily seen we have, for any $n \ge 0$,

$$\left|2^{-n}\varphi_{n}(x) - \operatorname{Im}\left\{a_{1}\left(\frac{i}{\omega_{1}}\right)^{n}x^{i\omega_{1}}\right\}\right| \leq |b_{1}|\omega_{1}^{-n} + \sum_{j=2}^{\infty} (|a_{j}| + |b_{j}|)\omega_{j}^{-n}.$$

Taking *n* sufficiently large the right side is less than $|a_1|\omega_1^{-n}$, but the member in the braces can be equal to both $i|a_1|\omega_1^{-n}$ and $-i|a_1|\omega_1^{-n}$ infinitely often. This proves the lemma and thus the theorem.

Remark. Lemma 2 has an obvious counterpart in the theory of prime numbers. That is, in just the same way as the Chebyshev function $\psi(x)$ is related to all complex zeros of $\zeta(s)$ the fourth power moment of $|\zeta((1/2)+it)|$ is related to all eigenvalues of the non-Euclidean Laplacian on SL(2, Z) (or more exactly, all complex zeros of Selberg's zeta-function for SL(2, Z)).

Addendum. After submitting this paper we learned that A. Good (J. Number Theory, 13, 18–65 (1981)) had obtained an Ω -result of the same strength as ours for Hecke *L*-series associated with holomorphic cusp forms under a certain hypothesis of the type of non-vanishing theorems.

References

- A. Good: Ein Ω-Resultat f
 ür das quadratische Mittel der Riemannschen Zetafunktion auf der kritischen Linie. Invent. Math., 41, 233-251 (1977).
- [2] J. L. Hafner and A. Ivić: On the mean-square of the Riemann zeta-function on the critical line. J. Number Theory, 32, 151-191 (1989).
- [3] Y. Motohashi: A note on the mean value of the zeta and L-functions. VI. Proc. Japan Acad., 65A, 273-275 (1989).
- [4] L. A. Takhtajan and A. I. Vinogradov: An estimate of the residuum of Rankin's L-series. Dokl. Akad. Nauk USSR, 267, 30-34 (1982) (in Russian).
- [5] N. I. Zavorotnyi: On the fourth power mean of the zeta-function (preprint) (in Russian).