66. An Example of Elliptic Curve over Q with Rank ≥ 20

By Koh-ichi NAGAO
Shiga Polytechnic College*)
(Communicated by Shokichi IYanAGA, M. J. A., Oct. 12, 1993)

Abstract: We construct an elliptic curve over Q with rank ≥ 20.

Mestre [1] (resp. [2]) constructed elliptic curves over $Q(T)$ with $Q(T)$-rank ≥ 11 (resp. with $Q(T)$-rank ≥ 12). In the families of elliptic curves over Q, which are obtained by specialization of above curves, Mestre [3] found an elliptic curve over Q with Q-rank ≥ 15. In choosing appropriate elliptic curves in these families, author [4] (resp. Tunnel (cf. [5]), resp. Fermiger [5]) found two elliptic curves with Q-rank ≥ 17 (resp. one curve with Q-rank ≥ 18, resp. two curves with Q-rank ≥ 19). In this paper, we show by the same method but using a computational device mentioned later that there is an elliptic curve over Q with Q-rank ≥ 20.
§1. Mestre's construction of elliptic curve over $Q(T)$ with $Q(T)$-rank \geq 11. Let $\alpha_{i} \in Z(i=1,2,3,4,5,6)$, and put $q(X)=\Pi_{i=1}^{6}\left(X-\alpha_{i}\right), p(X)=$ $q(X-T) * q(X+T) \in Q(T)[X]$. Then there are $g(x), r(X) \in Q(T)[X]$ with deg $g=6$, deg $r \leq 5$ such that $p=g^{2}-r$. Then the curve $Y^{2}=$ $r(X)$ contains $12 Q(T)$-rational points P_{1}, \ldots, P_{12} where
$P_{i}=\left(T+\alpha_{i}, g\left(T+\alpha_{i}\right)\right), P_{i+6}=\left(-T+\alpha_{i}, g\left(-T+\alpha_{i}\right)\right),{ }_{1 \leq i \leq 6}$. Let c_{5} be the coefficient of X^{5} of $r(X)$.

In case $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right)=(-17,-16,10,11,14,17)$, we have $c_{5}=0$ and on the elliptic curve $Y^{2}=r(X), P_{1}, \ldots, P_{11}$ are independent $Q(T)$-rational points. (Group structure is given with P_{12} at origin.)

For any 6 -ple of $A=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right) \in Z^{6}$ with $c_{5}=0$, we obtain as above an elliptic curve $\varepsilon_{A}: Y^{2}=r(X)$ over $Q(T)$. For $t \in Q$, we denote with $E_{t}=E_{A, t}$ the elliptic curve over Q obtained from ε_{A} by specialization $T \rightarrow t$.
§2. Construction of our curve. For an elliptic curve E over Q, and a prime number p, we put $a_{p}=a_{p}(E)=p+1-\# E\left(F_{p}\right)$. For a fixed integer N, we put furthermore $S(N)=S(N, E)=\sum\left(-a_{p}+2\right) /(p+1-$ $\left.a_{p}\right)$ and $S^{\prime}(N)=S^{\prime}(N, E)=\left(\sum-a_{p} * \log (p)\right) / N$ where p runs over good primes satisfying $p \leq N$. It is experimentally known (cf. [6]) that high rank curves are found among curves with large $S(N), S^{\prime}(N)$.

Now let $A=(95,71,66,58,13,0)$. Then we have $c_{5}=0$. We search in the family of curves

$$
\left\{E_{t_{1} / t_{2}}\left(=E_{A, t_{1} / t_{2}}\right) \mid 1 \leq t_{1} \leq 3000,1 \leq t_{2} \leq 300, t_{1} t_{2} \text { are co-prime }\right\}
$$

curves satisfying
$S(401) \geq 31.5, S^{\prime}(401) \geq 11, S(1987) \geq 61, S^{\prime}(1987) \geq 16$,

[^0]$S(3001) \geq 71, S^{\prime}(3001) \geq 16, S(4003) \geq 75, S^{\prime}(4003) \geq 16$, $S(5297) \geq 80, S^{\prime}(5297) \geq 17, S(6581) \geq 84$, and $S^{\prime}(6581) \geq 17$, and find $E_{349 / 48}$ and $E_{619 / 195}$, for the latter of which we could show that the Q-rank ≥ 20. Thus we have

Theorem. The Q-rank of $E_{619 / 195}$ is ≥ 20.
In fact $E_{619 / 195}$ is Q-isomorphic to the minimal Weiestrass model $y^{2}+x y=x^{3}-431092980766333677958362095891166 x$
$+5156283555366643659035652799871176909391533088196$
whose conductor is
$2 * 3 * 5 * 7 * 13 * 17 * 19 * 29 * 53 * 1759 * 539449 * 1884347$

* $78324820513 * 388882789386500953248084998144029301891$.

On this curve the following P_{1}, \ldots, P_{20} are independent points.
$P_{1}=[1117677105220842826524 / 37249$, $31530479477185489011505872316434 / 7189057]$
$P_{2}=$ [38095017214360176, 6634638907482675334232862]
$P_{3}=[128263157005359747 / 4$, $39438837388807975937649915 / 8]$
$P_{4}=[173541370721241727764 / 4489$, 2045813113492578321709774985406/300763]
$P_{5}=[114037038978699019879860444 / 2903808769$, $1093029826650184196976652135696199191086 / 156477543135103]$
$P_{6}=[102579683196689625565576980 / 3236130769$, 889405931520755349254783091883555261398/184093771056103]
$P_{7}=$ [520590665688949735068/11881, $10865365165484759274005818215450 / 1295029]$
$P_{8}=[201537570874848579 / 4,84414630327852273660698571 / 8]$
$P_{9}=[8566017671075667672 / 169$, 23408663211165662031648247674 /2197]
$P_{10}=$ [84810811649507676, 24054695979596704444705362]
$P_{11}=[-21830796739843140,2040388505636168283880914]$
$P_{12}=[-2234086367006310516 / 121$, $3476314228926730107073128678 / 1331]$
$P_{13}=[-398890292913112314601476 / 47513449$, 936915725382816974616861962133589434/327510203957]
$P_{14}=[-38850378311984740900 / 5041$, 1013647136758546790991381788254 /357911]
$P_{15}=[410916153652874282067804 / 58874929$, 712483344051989593825064319402912354/451747330217]
$P_{16}=[3030869760973710007623516 / 266375041$, 5708794986061809828924957672204713682/4347507044161]
$P_{17}=[5668123803956059068 / 361$, $10307638984731401904281889030 / 6859]$
$P_{18}=[-5809361085179727432048324 / 267289801$, 9018279752358533631568966242553347738/4369920956549]
$P_{19}=[-256381598399113962133604 / 10169721$,

1315536690951996543879087852628778 / 32431240269]
$P_{20}=[479228870284501996956 / 167281$, 135888316201098799476616096547298/68417929].
By using calculation system PARI, we have that the determinant of the ma$\operatorname{trix}\left(\left\langle P_{i}, P_{j}\right\rangle\right)_{1 \leq i, j \leq 20}$ associated to canonical height is 2975173777358668583558.164104. Since this determinant is non-zero, we see that P_{1}, \ldots, P_{20} are independent points.
3. Computational device. Let $A=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right) \in Z^{6}$ be a 6 -ple with $c_{5}=0$. This having been found, we should search for $t \in Q$ such that $S(N)=S\left(N, E_{A, t}\right)$, and $S^{\prime}(N)=S^{\prime}\left(N, E_{A, t}\right)$ have large values. For this purpose, we have to calculate $\# E_{A, t}\left(F_{p}\right)$. Now, notice that $\# E_{A, t}\left(F_{p}\right)=$ $\# E_{A, s}\left(F_{p}\right)$ for $t, s \in Q, s \equiv t(\bmod p)$. Then, to caluculate $\# E_{A, t}\left(F_{p}\right)$, we have only to calculate it for $t=0,1, \ldots, p-1$ and save the values in the computer. With this device, we could considerably accelerate our computation.
4. Examples of the other high rank curves. The Q-ranks of the three elliptic curves $E_{A, t}$ with the following three values of A, t have been shown to be at least 19 .

1. $A=(34,31,28,27,1,0), t=7582 / 623$
2. $A=(34,31,28,27,1,0), t=6441 / 59$
3. $A=(50,42,37,29,4,0), t=8429 / 52$.

References

[1] J.-F. Mestre: Courbes elliptiques de rang ≥ 11 sur $Q(T)$. C. R. Acad. Sci, Paris, 313, ser. 1, 139-142 (1991).
[2] -: Courbes elliptiques de rang ≥ 12 sur $Q(T)$. ibid., 313, ser. $1,171-174$ (1991).
[3] -: Un exemple de courbes elliptiques sur Q de rang ≥ 15. ibid., $\mathbf{3 1 4}$, ser. 1 , 453-455 (1992).
[4] K. Nagao: Examples of elliptic curves over Q with rank ≥ 17. Proc. Japan Acad., 68 A, 287-289 (1992).
[5] S. Fermiger: Un exemple de courbe elliptique definie sur Q de rang ≥ 19. C. R. Acad Sci, Paris, 315, ser. 1, 719-722 (1992).
[6] J.-F. Mestre: Construction de courbes elliptiques sur Q de rang ≥ 12. ibid., 295, ser. 1, 643-644 (1982).

[^0]: *) 1414 Hurukawa cho Oh-mihachiman shi 523 , Japan.

