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A Remark on the Chern Classes of Local
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0. Introduction. For a possibly singular
complex algebraic or analytic variety X there are
(at least) three kinds of Chern classes available.
One is the Chern-Schwartz-MacPherson class [3
and 17], denoted cSt(X). This was first con-
structed by M.-H. Schwartz using radial vector
fields, then its existence as a natural transforma-
tion of functors was conjectured by P. Deligne
and A. Grothendieck and was proved by R. Mac-
Pherson. Another is the Clern-Mather class, de-
noted Ct(X). This is defined via the Nash
blow-up and is, roughly speaking, the Chern
class of the limiting tangent bundle of the smooth
part of X. The relation between these two classes
is another aspect of MacPherson’s theory, which
expresses cS(x) in terms of C(M) and the
extra terms supported on the singular locus. This
theorem is proved by introducing the local Euler
obstruction, which also appears in the
Dubson-Kashiwara index [4 and 12]. The third is
the canonical class or Fulton-Johnson’s Chern class

[7 and 8], denoted CFI(X). This is defined in
terms of the Segre class of X and is relatively
easy to understand when X is a local complete
intersection.

These three classes are identical when the
variety has no singularities, thus the differences
among them are expected to be expressible in
terms of certain invariants of singularities. For a
(strong) local complete intersection X with iso-
lated singularities, in [19] is proved a formula
expressing cSt(X) in terms of CFI(X) and the
Milnor numbers of the singularities. The purpose
of this note is to report an observation that this
formula together with other already known for-
mulas implies an interesting and possibly promis-
ing formula relating Ct(X) and CFY(X) for
such varieties X (see Theorem 3.3 below).
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1. Three Chern classes. In this section we

give a brief review on the above mentioned
Chern classes. First, to define the Chern-Mather
class, let u’X--*X be the Nash blow-up of X
with TX the Nash tangent bundle over . Then
the Chern-Mather class is defined by

c(x) "= ,(c() []),
where c(’) is the usual total Chern cohomolo-
gy class of the vector bundle TX and [X] is the
fundamental class of X.

Using the Chern-Mather class we can define
the Chern-Schwartz-MacPherson class. Let
(X) be the abelian group of constructible func-
tions on X, which is freely generated by the local
Euler obstruction functions Euw’s of reduced,
irreducible subvarieties W’s of X. It is proved in

[17] that there exists a unique natural trans-
formation C," :--* H,( ) satisfying the ex-
tra condition that, if X is smooth then C,(1x)
c(TX) [X], the Poincar6 dual of the total
Chern cohomology class of the tangent bundle
TX. In fact, C, is given by C,(wEuw) "= w
CM(W). Then the Chern-Schwartz-MacPherson
class of X is defined by"

CTM(X) C, (lx).
Since we may write Ix Eux + snsEus for
uniquely determined subvarieties S of the singu-
lar locus of X and integers ns, we have

cS(x) C(X) + nsCt(S).
s

Let X be a local complete intersection in a

complex analytic manifold M. Then the normal
bundle to the smooth part of X can be extended
to a vector bundle Nx over the whole X. More
precisely, let 7x be the ideal sheaf of X in the
structure sheaf OM Of M and ?x OM/57x, then
the vector bundle Nx is identified with the nor-
mal sheaf 3tOmox(X/57x, Ox), which is locally
free in this case. For such X, we have the virtual
tangent bundle TMIx- Nx, whose total Chern
cohomology class is given by c(TMIx- Nx)--
c(TMIx)

Then Fulton-Johnson’s Chern class inc(Nx)
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this case is defined by
CF(X) "= c(TM Ix Nx) [X].

Note that these three "singular" Chern clas-
ses all become c(TM) [X] when the variety
X is non-singular.

2. Milnor numbers and polar multiplicities.
In this section X is assumed to be a complete in-
tersection variety in CN with an isolated sing-
ularity at the origin. We list [10, 11, 14, and 16]
as general references for the Milnor number of
such a singularity. Let n--dim X and suppose
that the germ (X, 0)is given as the zero set
f-l(0) of an analytic map-germ f--(fl,
fN-n)" CN, O)--’ (CN-n, 0). Taking a generic set

CAr
of linear functions fAr-n+,., far on we set
(cf. [5 and 6])
aj := dimC (Oct,o (J(f,. f), f,.. f-)),

j=I,...,N,
where J(f,._ f) is the Jacobian ideal of the
map (f,.. f)" (CN, O)- (Cj, 0). We also set

aN+ :-- dime (Oct,o (f,..., fN)),
which is equal to the multiplicity multo(X) of X
at 0. Then we set

N+l-i

z (X, 0)"= (-- 1)Ar+-i-a,
j=l

i=O,...,n+l.
Thus we have

(i) (i+l)
(2.1) aAr_+l=p (X, 0) +/z (X, 0),

i-O,...,n.
It is known ([10 and 14]) that, for i 1,..., n,
a (X, 0) is equal to the Milnor number of X in-
tersected with .the linear subspace L of CAr (of
codimension n- i + 1) defined by li (fAr-n+,

fAr_i+). In particular, a(n+)(X, 0) o(X),
) 0)the Milnor number of X at 0 and / (X,

multo(X)- 1. Hence, from (2.1), we see that
(0)

p (X, O) 1.
Next we recall the polar multiplicity. For a

generic linear subspace L of CAr of codimension
n- + 1 as above, the polar variety P(X, Li)
of X with respect to L is defined to be the clo-
sure of the critical set of the map l Ix .. Note
thatP(X, Lo) =XandP(X, Ln) 0. For i=
0,..., n- 1, the i-th polar multiplicity rn(X, O)
of X at 0 is defined to be the multiplicity of the
polar variety P(X, L) at the origin 0:

m(X, 0) := multoP(X, L).
Note that m,(X, 0) is independent of the choice
of generic L ([201). In [91 T. Gaffney has proved

that
m(X, O) a_+, i= O n-- 1.

Following [9], we define the n-th polar multiplic-
ity of (X, 0) by

m,(X, 0):= a_,+,
which is also independent of the choice of generic

Ln. We may summarize the above argument as:
Proposition 2.2. For an isolated complete in-

tersection singularity (X, O)of dimension n, we

have
m(X, O) l (X, O) + l

"+ (X, 0), 0,..., n.
It is also shown in [9] that the n-th polar

multiplicity ran(X, 0) is equal to the Jaeobian
Buchsbaum-Rim multiplicity e(X, 0).

3. The Formula. Let again X be an n-
dimensional local complete intersection in a com-
plex analytic manifold M. Following [13], we say
that X is a strong local complete intersection if the
bundle Nx extends to a (C=) vector bundle on a
neighborhood of X in M. This class of varieties
include the following: (1) non-singular varieties,

(2) hypersurfaces, (3) (projective algebraic) com-
plete intersections in the projective space, (4)
varieties defined as the zero set of a regular sec-
tion s of a holomorphic vector bundle on M such
that the ideal sheaf is locally generated by the
components of s. The following is proved in [19]:

Theorem 3.1. For an n-dimensional compact
strong local complete intersection X with isolated

singularities PI,..., Pr in M, the following equality
holds:

cSM(x) CFJ(X) at- (-- 1) n+l k flp,(X),
i=1

where/,(X) denotes the Milnor number ofX at Pi"
The proof uses the "adjunction formula" in

[18], for which the "strongness" is necessary. For
hypersurfaces with arbitrary singularities, P.
Aluffi [2] has obtained a similar formula, which
involves his/-class introduced in [1].

On the other hand, from Proposition 2.2 and
the L-Teissier formula [15]:

n--1

Eux(O) E 1) m(X, 0),
=1

we have the following formula for the local Euler
obstruction ([5, Corollary 2.15], see also [6, 4]),
which was proved by M. Kashiwara [12] for iso-
lated hypersurface singularities:

Theorem 3.2. Let (X, O) (CAr, O) be an

n-dimensional isolated local complete intersection

singMarity. Then
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Eux(O) 1 + (- 1) "-a (x, 0).
Combining these two theorems we have the

following:
Theorem 3.3. Let X be an n-dimensional

compact strong local complete intersection with iso-
lated singularities p,. Pr in a complex analytic

manifold M. Then we have

cM(x) C(X) + (-- 1) "+ m.(X, p)

where mn(X, p) is the n-th polar multiplicity of
(x, p).

Proof By Theorem 3.2 we have
n (n)

1x Eux+ (-- 1) (X,p)I,,
=1

where 1 is the characteristic function of one
point p. Hence applying the transformation C."
(X) H.(X ;Z) of[17] to the above equality,
we get

n (n)Cs(X) =C(X)+ (-) a (x,p).
i=l

Comparing this with the one in Theorem 3.1 and
(n+l)

noting that tp,(X)-- (X, Pi) and mn(X
(n) (n+l)

Pi) (X, pi) +/ (X, pi), we get the for-
mula. [--]

It would be an interesting problem to prove
Theorem 3.3 directly and also to extend it to loc-
al complete intersections with arbitrary singular-
ities.
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