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Abstract:

Pour-El & Richards [3] discussed an ad hoc computability structure in an effec-

tively separable Hilbert space taking as an effective generating set a slightly modified one from the
original orthonormal basis. We show that an application of the Poincaré-Wigner orthogonalizing
procedure to Pour-El & Richards’ modified system gives an orthonormal effective generating set

which yields a third computability structure.
Key words:

Pour-El and Richards dis-
cussed an ad hoc computability structure in an effec-
tively separable Hilbert space X (over the complex
number field) with a computability structure S, i.e.,
(X, S) ([3], Chapter 4, §§5, 6). Recall that a com-
putability structure is the set of all the computable
sequences and that computable sequences in X are
specified by a set of three axioms ([3], Chapter 2,
§1). Effective separability of X means that X ad-
mits a computable sequence, say &£, called effective
generating set, whose linear combinations are dense
in X. Thus, when a countable basis is designated

1. Introduction.

as a computable sequence, a computability structure
is determined (Effective Densnity Lemma. [3], p. 86).
In fact, Pour-El & Richards actually worked out the
case of X = L?[0,1], taking the standard complete
orthonormal basis { e2™™% m = 0,4+1,42,...} asan
effectively generating set, which determines the stan-
dard computability structure of L?[0,1]. Since their
crucial arguments were done in the space £2, we may
replace L?[0, 1] by a separable Hilbert space X and
{e2™m=} by any of its complete orthonormal bases
& ={en;n=0,1,2,...}, and may then consider £
as the standard basis of X and the computability
structure S generated by it as the standard one.
Following [3] faithfully, we then have another
computability structure, an ad hoc computability
structure 7 in X, effectively generated by a sequence
F = {f, ey, e9,...} with f € X, non-computable
with respect to S. To specify f, Pour-El and
Richards took a recursive function a : N — N which
enumerates a recursively enumerable non-recursive
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set A in a one-to-one manner, supposing 0 € A. Then
they let

(1) an =274 p>1,
and
(oo}
(2) 72:1—2053, v >0,
n=1
whence finally
(oo}
(3) f:fyeo—i—z O €.

n=1

Notice that \/2/_3 < v < 1 and 7 is not computable
since the convergence (2) is not effective (cf. [3],
pp. 16-17). Thus, f is not computable in (X, S).
They subsequently applied the Gramm-Schmidt or-
thogonalization procedure to the system F to get an
orthonormal basis {u,; n =0,1,2,...} of X.

Although their observations occupied only a
part of the proof of the Eigenvector Theorem, they
thus showed existence of a unitary operator U : X —
X, which maps S onto 7. However, they wondered
how this operator U could be grasped more explic-
itly ([3], pp. 139-141). Actually, it is evident that
the image &y of £ by any unitary operator V in X
defines a computability structure Sy in X. If £ is an
orthonormal basis, then so is £y. Thus, by means of
Fourier coefficients, the question, as mentioned ear-
lier, is reduced to a discussion of unitary matrices
acting in the space ¢? of square summable series. It
is certainly interesting to obtain detailed knowledge
about such matrices.

The purpose of the present note is to apply the
Poincaré -Wigner orthogonalization procedure to the
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above F, which results producing an explit unitary
matrix (See §3 below). It turns out that the or-
thonormal basis thus obtained defines a third com-
putability structure in X which coincides neither
with the standard one S nor with the structure 7°
of Pour-El & Richards mentioned above (See §4).

2. The Poincaré-Wigner procedure. It
is well-known that given an orthonormal basis £ =
{en; n=0,1,2,...} of a Hilbert space X, a unitary
isomorphism ®¢ from X to the Hilbert space ¢2 of
square summable sequences of complex numbers is
determined by the Fourier expansion

P Xoxa=(6,&,8E,...) P
gn:(x,en), n:0,1,2,...,

(4)

where (, ) denotes the scalar product of the Hilbert
space X. The unitarity is nothing but the Parseval
relation

(5) (X,X) = Z |§n|2
n=0

The sequence F is not orthonormal, but serves
as a basis of the space X (For Riesz bases and the
related materials, see, e.g., Daubechies [1]).

Lemma 2.1. The sequence F is a Riesz basis
in the Hilbert space X. In other words, F determines
a linear isomorphism Rz from X onto the Hilbert
space (2.

Proof. First observe that any x € X is uniquely
expressed as

LS
(6) X:n0f+z77nen

n=1

the right-hand side converging in X. In fact, in terms
of the system {e,},

(1) movy = &o,
Note then

Ny + M =8, n=12,....

00 00
(8) (X,X) = |770|2+Z an(77077_n+77_077n)+z |77n|2

n=1 n=1

since (f,f) = 1. Since

> . 1- ’72 2 - 2
>~ (107 + o) | < nol* +€ > [l
n=1 € n=1

for any € > 0, we see

LS LS
©  AY P <x)<BY |ml
n=0 n=0
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for some A > 0 and B > 0. In fact, taking e =1 —
(1/2)72, we have

1—~2 1
A:min{l— 2 ,1—e}=§72

€

while by taking e =1

1— 2
B:max{l—l— 7,1-‘,—6}:2.
€

Thus, (6) and (9) determine a linear isomorphism

(10) R]::X = y= (770)771)772)"')
from X to the Hilbert space £2 of square summable
sequences. ]

Now we rewrite the computability structure 7°
in the following way (cf. [3], p. 135).

Proposition 2.1. Let Sy be the standard
computability structure of the Hilbert space ¢2. Then
the linear isomorphism Ry maps the computability
structure T of X onto Ss.

Remark 2.1.
sion ®¢, we have the linear isomorphism

By means of the Fourier expan-

R=Rrd;': -~

In fact, write the Fourier expansion

o o
(I)g (Z cnen> = Z Cn €(n)-
n=0 n=0

Here each e(;) € ¢? has only one non-vanishing com-
ponent, the (j+1)-st, which is 1. Then ®g(f) =
Yew) + Dopey Qnew) but Rr(f) = eq) and
Rr(e,) = ey for n > 1. R is given by an infinite
square matrix

1
(11) R=1I1—--P,
ol

where I is the identity matrix in the space ¢2 and
¥y—1 0 0

oq 0 O

aa 0 0 O

&7

Note that the operator Py is nilpotent since the ma-
trix equation

(13) P4 (1—9)Py=0
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is valid. The inverse of R is then a slightly simpler
matrix

(14) R I1=I+P

because of (7). The operator R in fact induces an ad
hoc computability structure 73 in the space ¢2 from
the standard computability structure Sy in £2 in the
sense T = R™H(Ss).

The following is an ¢? version of Proposition 2.1.

Proposition 2.2. Consider the sequence
{xm)}, given by )y = 3020 ankew)- {Tm)} is a
computable sequence in T3 if and only if the following
conditions hold:

a. the sequences {%ano} and {any — %Y& ano}
are computable;

b. Z:i1 |ank — % an0|2 converge effectively in
n and k.

Proof. Recall that {e(,)} is an effective gen-
erating set of S3. Thus, just write down the com-
putability criterion of the sequence {R(z(,))} in Sz
(see [3], p. 136, Lemma 1). Ul

Now recall (8). By (10), the right-hand side of
(8) is a positive definite quadratic form of y € ¢2

(x,%) = (v, Gy).

Here G : /2 — {2 is a self-adjoint operator given by

(15)

G = (R R

with Q* : X — /2 being the adjoint of a linear
operator Q : ¢> — X. We obviously have G =
(R=1)* R~L. Therefore, G is represented as an infi-
nite square matrix G =1 + Py + Py + Pi P.

Lemma 2.2. Let T'g be an infinte square ma-

triz:
Fo=P;+FPo+Fy P
0 (5] (%)
(5] 0 0
(16) az 0
ap 0

Then we have
1 1
(17) G =1TI+T,, G_I:I—7—2F0+7—2F3.
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Proof. Note
1—+2 0 0
0 Oé% a1 o0
FQ o 0 o(X1 Oé% Qo3
o=
To compute G~1, observe
(18) Ig=(1-7"To
by a simple computation. O
Remark 2.2. We also have
(Py— P})?*+T% =0,
and

(Po— Py)TG =13 (Po— Fy)
=(1—7%) (P —Fy).

Note G~! is a bounded, positive definite self-
adjoint operator. Hence, we may talk of its square
root G~1'/2 which we will compute shortly (See §3).

Now the Poincaré-Wigner orthogonalization
procedure reads as follows:

Proposition 2.3. Let ey = Rr(f) and e, =
Rr(en), n=1,2,.... Let

(19)  v; =Rz (G Y?¢;)), §=0,1,2,....

Then the system V = {v;; j = 0,1,2,...} is an
orthonormal basis.

Proof. Recall that each e(;) has only one non-
vanishing component 1 at the j + 1-st place. Let
7,k=0,1,2,.... Then

(Vi Vi) = (R (G2 e(y), RGP ewy))
= (G712, GG eqry).
Here the third term is due to (15). But
(GT2e), GG ew) = (), eqn)

=k
o G#R
Completeness is obvious

Thus, V is orthonormal.
from Lemma 2.1. O

3. The inverse square root G~'/2, Recall
the following formula.

Lemma 3.1. Let H be a bounded self-adjoint
positive definite linear operator in a Hilbert space.

Then its inverse square root H—'/? is given by
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(20) HY2=Z \/E(tl—l—H)_th. / %dtzﬁi —_—,
7 Jo 0o (2+2t4+12) 8y(1+v) V1+y

Proof. Here we sketch its derivation using the
spectral decomposition of H:

b
H:/ sdE(s), 0<a<b,
a

with the spectral projection operators {E(s)}. Then
the right-hand side of (20) turns out

b ) +oo \/f - b 1
/a ;/O 7@—}—5)2 dtdE(S)— . %dE(S)

which is nothing but the left-hand side of (20). Note
(20) is actually valid for general non-negative closed
linear operators (See Komatsu [2]). Ul

Now we compute the inverse square root G~1/2.

Lemma 3.2. We have

(21) G2 =T+ p1To+ BT,
where
11 2
br=—5-y/—,
29V 1+~

1 1 1 2 1
Bo = = — — .
21 —vyV 1479y 1—7

Proof. We apply the formula (20) to the oper-
ator G. Note

1 1
tI+G)™ ' = I-— r
O = g - a2 o

1
FQ
IS RS R
whence
_ 1 2(t+1)
tI+G)* = I-— r
IO =y ~@Erar e

1 1
L rE
1 1
L—2t2+2t 492

+

+ 2 r?
(2 +2t+42)2f 7
for ¢ > 0. Note

“+o00
/ idt:ﬁ
0

(t+1)2 2’

/+OO Vi T
0 242t +42 2

)

2
1+~

/*‘”(H—Mdt_ﬁl [_2
o (424422 8y \1+4

Hence, computing the right-hand side of (20) for H =
G, we get (21). Ol

Corollary 3.1.
by the formula

GY?*=1—p1yTo+ (b1 + B2) 3.

Proof. Employ (17) and (18). Ol

To get some idea about the system V = {v;}
(Proposition 2.3), we state the following.

Proposition 3.1. Let v = R_IG_I/Q(e(j)),
7=0,1,2,.... We have

The square root G'/? is given

1
V(o) = T35, e@) + A1y (0,a1,02,...)

and

V(n) = €(n) + a1y e0) + an (B + B2) (0, a1, s, . ..)

for n > 1. The system {v@,); n = 0,1,2,...} is
complete and orthonormal in the Hilbert space ¢2.

Remark 3.1. ;v and (1 + (2 are not com-
putable. To see this, note that v is expressible as
algebraic functions either of ;v from

3 1 2 . 1 1
=——y/——, le, v= -1,
=79\ 14 7T (B2

or of 1 + B2 from

1 [1+
514—52:1_72( 27—1>;

i.e., v now is a somewhat involved algebraic func-
tion of By + B2. Thus, if B17y or (1 4+ (B2 were com-
putable, then so would be ~, contradicting its non-
computability. Similarly, 51 and (2 are shown to be
not computable.

Here is another interpretation of Lemma 3.2 and
Proposition 3.1.

R-IG~/2 is a unitary op-
erator from the Hilbert space (> itself.
R-IG/2 is explicitly given as

% (Py—Pi )+ (B + o) T2,

Proposition 3.2.
onto

1
RG22 =T+
2V 1+

Proof. Obvious from the meaning. Note also
that
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GVPR=T- 2 /2 (PP )+ (B + )T
2V 1+4 0 0 0
by an explicit computation. |

4. The computability structure gener-
ated by V. Let Sy be the computability structure
in X effectively generated by the orthonormal basis
V. Let {x,,} be a sequence in X, given by

[eS)
Xm = E Cmk Vi -
k=0

The sequence {x,,} is computable with respect to
Sy if and only if

(i) the double sequence {cn;} is computable;

(ii) the series Y- |cmk|? converges effectively in k

and m.

(See [3], p. 136).

In passing, we have the following observation.

Lemma 4.1. Let ¢y be a computable dou-
ble sequence as in the above. Then the sequence
{30 | @n Cmn} is computable.

Proof. We show that {Zﬁzl Oy, Cmp } effec-
tively converges in m and k as k — oo. We have a
recursive function e(m, N) such that > <, |emn|? <
272N for k > e(m, N). Then -

S | < \/Z |an|2\/z eomnl?

n>k n>k n>k
< Z |Cmn|2 < 2_N
n>k
for k > e(m, N). 1

We show that the computability structure Sy is
different from the structures S and 7.

Proposition 4.1. f is not computable in the
structure Sy. Thus, T and Sy are different.

Proof. Note f =37, ¢, vy, where

on = (£,vn) = (e0), G"/* e(n))

1
— , n=20
- 281y
—an b1y + (b1 + B2)al, n>1

by virtue of Poposition 2.3 and Corollary 3.1. Ol
Proposition 4.2. The computability struc-
ture Sy in X is different from the standard com-
putability structure S.
Proof. Let us check how this computability cri-
terion is related to the standard computability struc-
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ture S of X. To do so, we export the question to
the space ¢2 and compare computability structures
respectively induced by {v(;)} and by {e(;)}. Thus,
the above criterion ensures that the sequence {x ()},
given by

(oo}
T(m) = Z Cmk V(k),
k=0

(23)

is computable with respect to the structure corre-
sponding to {v(;)}. Rewriting (23) in terms of {e(;},
we have

o0
T(m) = Z Cmn €(n)
n=0

where ¢mo = —1/(2617) ¢mo+ 517 D pey Ok Cmi and
Cmn = Cmn + Q1Y Cmo + Oén(ﬁl + ﬁQ) Zl?;l AkCmk
for n > 1. Thus, by virtue of Lemma 4.1 and Re-
mark 3.1, é,,0 is not computable unless ¢,,0 = 0 and
Sore i agcme = 0. When ¢ = 0, émp, n > 1,
are not computable unless Z:i1 ag Cmr = 0. This
shows that the sequence {z(,)} & Sz at least when
> rey Qg Cmi # 0 (for some m). ]

Remark 4.1. In a similar manner, it can be
shown that {z(,)} & 7o when > 7 | o Cpi # O for
some m while ¢,,g = 0 for all n (See Proposition 2.2.
See also Stability Lemma, [3], p.79).

5. The Pour-El & Richards’ operator T.
Pour-El and Richards originally considered the fol-
lowing self-adjoint opertor T' defined by

(24) Teg=0, Te,=2""e,, n>1.

Its matrix representation in ¢2 in the basis {e(,)} is
given by

To obtain the matrix representation in the basis
{v(n)}, we have to compute

T=R'G 20 TO;'G'/?R.
Let p =32, 2"a2. Then T = (t;;) (i,j =
0,1,2,...) is given by
1

1+7p

|~

too =

to; = tio = P17y (% + (61 + 52)/)) oy,
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i>1, and, fori,j > 1,
tij = tji
1 1
= (A +52){§ +or T (B + ﬁQ)/J} ;o

1
where §;; is Kronecker’s delta. Thus, none of the
components are computable.

However, any eigenvector corresponding to the
eigenvalue 0 is a multiple of v(g). Recall v(g) is com-
putable in the computability structure Sy.

Remark 5.1. p is computable. In fact,

e 2

« _ _
YoM <2
n=N
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for any positive integer N.
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