The gradient maps associated to certain non-homogeneous cones

By Hideyuki Ishi
Department of Mathematical Sciences, Yokohama City University
22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027
(Communicated by Heisuke Hironaka, m. J. a., March 14, 2005)

Abstract

The gradient map associated to a regular open convex cone gives a diffeomorphism from the cone onto its dual cone. If the cone is homogeneous, the inverse of the map is known to be equal to the gradient map associated to the dual cone. However, we show that this is no longer true for a general case by presenting a simple counterexample.

Key words: Regular open convex cone; dual cone; gradient map.

1. Introduction. An open convex cone Ω in a finite-dimensional real vector space V is said to be regular if Ω contains no straight line. This is equivalent to saying that the dual cone $\Omega^{*}:=\{\lambda \in$ $V^{*} ; \lambda(v)>0$ for all $\left.v \in \bar{\Omega} \backslash\{0\}\right\}$ is not empty. The characteristic function $\varphi_{\Omega}: \Omega \rightarrow \mathbf{R}$ of a regular cone Ω is defined by an integral over the dual cone: $\varphi_{\Omega}(v):=\int_{\Omega^{*}} e^{-\lambda(v)} d \lambda(v \in \Omega)$. Vinberg [4, Chapter I, Proposition 7] shows that the gradient map ι_{Ω} : $\Omega \ni v \mapsto-d \log \varphi_{\Omega}(v) \in V^{*}$ gives a diffeomorphism from Ω onto Ω^{*} (see [1] and [3] for generalizations of this map). Since the dual cone of Ω^{*} coincides with Ω under the identification $\left(V^{*}\right)^{*} \equiv V$, the gradient map $\iota_{\Omega^{*}}$ associated to Ω^{*} is a diffeomorphism from Ω^{*} onto Ω. Then it is natural to expect that $\iota_{\Omega^{*}}$ equals the inverse map of ι_{Ω}. Indeed, this is the case if Ω is homogeneous, that is, if the group $\mathrm{GL}(\Omega):=\{g \in \mathrm{GL}(V) ; g \Omega=\Omega\}$ acts on Ω transitively ([4, Chapter I, Proposition 10]). For a general regular cone Ω, it has been an open question whether $\iota_{\Omega^{*}}=\iota_{\Omega}^{-1}([2$, p. 23] $)$. In this article, we shall present a simple counterexample which answers the question in the negative.
2. Preliminaries. For vectors a_{1}, a_{2}, \ldots, $a_{m} \in \mathbf{R}^{N}$, we denote by $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle_{+}$the open convex cone spanned by these vectors:

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle_{+} \\
& :=\left\{\sum_{k=1}^{m} t_{k} a_{k} \in \mathbf{R}^{N} ; t_{1}, t_{2}, \ldots, t_{m}>0\right\} .
\end{aligned}
$$

Put
$v_{1}:=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), v_{2}:=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{3}:=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), v_{4}:=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$,
and consider a cone $\Omega_{1} \subset \mathbf{R}^{3}$ given by

$$
\begin{equation*}
\Omega_{1}:=\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle_{+} \tag{1}
\end{equation*}
$$

Then it is easy to see that
(2)

$$
\begin{aligned}
\Omega_{1} & =\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbf{R}^{3} ; 0<x<z, 0<y<z\right\} \\
& =\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbf{R}^{3} ; \begin{array}{cc}
x>0, & y>0 \\
-x+z>0, & -y+z>0
\end{array}\right\} .
\end{aligned}
$$

To know directly that Ω_{1} is not homogeneous, we note by (1) that the union of the extremal generators ([2, p. 73]) of the closure of Ω_{1} equals $\bigcup_{i=1}^{4}\left\langle v_{i}\right\rangle_{+}$, which is invariant under the action of $\operatorname{GL}\left(\Omega_{1}\right)$. Thus $\mathrm{GL}\left(\Omega_{1}\right)$ preserves also the subset $L:=\left\langle v_{1}, v_{3}\right\rangle_{+} \cap$ $\left\langle v_{2}, v_{4}\right\rangle_{+}$of Ω_{1}. In other words, a point on L cannot be mapped into $\Omega \backslash L$ by any element of $\operatorname{GL}\left(\Omega_{1}\right)$.

Let Ω_{2} be the dual cone of Ω_{1}. We identify the dual space $\left(\mathbf{R}^{3}\right)^{*}$ with \mathbf{R}^{3} by the standard inner product $\langle\cdot, \cdot\rangle$ on \mathbf{R}^{3}. Then (1) and (2) tell us that

$$
\begin{aligned}
\Omega_{2} & =\left\{\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right) \in \mathbf{R}^{3} ; \begin{array}{c}
\zeta>0, \\
\xi+\eta+\zeta>0, \eta+\zeta>0
\end{array}\right\} \\
& =\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\rangle_{+}
\end{aligned}
$$

2000 Mathematics Subject Classification. 52A20 (53A15, 52A15).
where we set

$$
\lambda_{1}:=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \lambda_{2}:=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \lambda_{3}:=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \lambda_{4}:=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) .
$$

Let us calculate the characteristic function φ_{1} of Ω_{1}. For $v \in \Omega_{1}$, we have by definition $\varphi_{1}(v)=$ $\int_{\Omega_{2}} e^{-\langle v, \lambda\rangle} d \lambda$. Since $\Omega_{2}=\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\rangle_{+}$equals the union of the cones $\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}\right\rangle_{+}$and $\left\langle\lambda_{1}, \lambda_{3}, \lambda_{4}\right\rangle_{+}$ up to a set of measure zero, we have

$$
\begin{aligned}
& \varphi_{1}(v) \\
& \quad=\int_{\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}\right\rangle_{+}} e^{-\langle v, \lambda\rangle} d \lambda+\int_{\left\langle\lambda_{1}, \lambda_{3}, \lambda_{4}\right\rangle_{+}} e^{-\langle v, \lambda\rangle} d \lambda .
\end{aligned}
$$

Noting that $\operatorname{det}\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)=1$, we have

$$
\begin{aligned}
& \int_{\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}\right\rangle_{+}} e^{-\langle v, \lambda\rangle} d \lambda \\
& =\int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-\left\langle v, t_{1} \lambda_{1}+t_{2} \lambda_{2}+t_{3} \lambda_{3}\right\rangle} d t_{1} d t_{2} d t_{3} \\
& =\int_{0}^{+\infty} e^{-t_{1}\left\langle v, \lambda_{1}\right\rangle} d t_{1} \cdot \int_{0}^{+\infty} e^{-t_{2}\left\langle v, \lambda_{2}\right\rangle} d t_{2} . \\
& =\frac{\int_{0}^{+\infty} e^{-t_{3}\left\langle v, \lambda_{3}\right\rangle} d t_{3}}{\left\langle v, \lambda_{1}\right\rangle\left\langle v, \lambda_{2}\right\rangle\left\langle v, \lambda_{3}\right\rangle} .
\end{aligned}
$$

Similar calculation leads us to

$$
\int_{\left\langle\lambda_{1}, \lambda_{3}, \lambda_{4}\right\rangle_{+}} e^{-\langle v, \lambda\rangle} d \lambda=\frac{1}{\left\langle v, \lambda_{1}\right\rangle\left\langle v, \lambda_{3}\right\rangle\left\langle v, \lambda_{4}\right\rangle} .
$$

Thus we obtain for ${ }^{t}(x, y, z) \in \Omega_{1}$

$$
\begin{align*}
\varphi_{1}(x, y, z) & =\frac{1}{x y(z-x)}+\frac{1}{x(z-x)(z-y)} \tag{3}\\
& =\frac{z}{x y(z-x)(z-y)}
\end{align*}
$$

In the same way, we calculate the characteristic function φ_{2} of Ω_{2}. For $\lambda=^{t}(\xi, \eta, \zeta) \in \Omega_{2}$, we have

$$
\varphi_{2}(\lambda)=\frac{1}{\left\langle v_{1}, \lambda\right\rangle\left\langle v_{2}, \lambda\right\rangle\left\langle v_{3}, \lambda\right\rangle}+\frac{1}{\left\langle v_{1}, \lambda\right\rangle\left\langle v_{3}, \lambda\right\rangle\left\langle v_{4}, \lambda\right\rangle},
$$

so that

$$
\begin{align*}
& \varphi_{2}(\xi, \eta, \zeta) \\
& =\frac{1}{\zeta(\xi+\zeta)(\xi+\eta+\zeta)}+\frac{1}{\zeta(\eta+\zeta)(\xi+\eta+\zeta)} \tag{4}\\
& =\frac{\xi+\eta+2 \zeta}{\zeta(\xi+\zeta)(\eta+\zeta)(\xi+\eta+\zeta)}
\end{align*}
$$

3. The gradient maps. We denote by ι_{1} the gradient map associated to the cone Ω_{1}. By (3),
we have

$$
\begin{aligned}
& -d \log \varphi_{1} \\
& =d\{\log x+\log y+\log (z-x)+\log (z-y)-\log z\} \\
& =\left(\frac{1}{x}-\frac{1}{z-x}\right) d x+\left(\frac{1}{y}-\frac{1}{z-y}\right) d y \\
& \quad+\left(\frac{1}{z-x}+\frac{1}{z-y}-\frac{1}{z}\right) d z
\end{aligned}
$$

so that we get

$$
\begin{aligned}
& \iota_{1}(x, y, z) \\
& \quad=\left(\frac{1}{x}-\frac{1}{z-x}, \frac{1}{y}-\frac{1}{z-y}, \frac{1}{z-x}+\frac{1}{z-y}-\frac{1}{z}\right) .
\end{aligned}
$$

Let ι_{2} be the gradient map associated to Ω_{2}. By (4), we have

$$
\begin{aligned}
&- d \log \varphi_{2} \\
&= d\{\log \zeta+\log (\xi+\zeta)+\log (\eta+\zeta) \\
&\quad \quad+\log (\xi+\eta+\zeta)-\log (\xi+\eta+2 \zeta)\} \\
&=\left(\frac{1}{\xi+\zeta}+\frac{1}{\xi+\eta+\zeta}-\frac{1}{\xi+\eta+2 \zeta}\right) d \xi \\
&+\left(\frac{1}{\eta+\zeta}+\frac{1}{\xi+\eta+\zeta}-\frac{1}{\xi+\eta+2 \zeta}\right) d \eta \\
&+\left(\frac{1}{\zeta}+\frac{1}{\xi+\zeta}+\frac{1}{\eta+\zeta}+\frac{1}{\xi+\eta+\zeta}\right. \\
&\left.-\frac{2}{\xi+\eta+2 \zeta}\right) d \zeta .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
& \iota_{2}(\xi, \eta, \zeta) \\
&=\left(\frac{1}{\xi+\zeta}+\frac{1}{\xi+\eta+\zeta}-\frac{1}{\xi+\eta+2 \zeta}\right. \\
& \frac{1}{\eta+\zeta}+\frac{1}{\xi+\eta+\zeta}-\frac{1}{\xi+\eta+2 \zeta} \\
&\left.\frac{1}{\zeta}+\frac{1}{\xi+\zeta}+\frac{1}{\eta+\zeta}+\frac{1}{\xi+\eta+\zeta}-\frac{2}{\xi+\eta+2 \zeta}\right)
\end{aligned}
$$

Now we observe that $\iota_{1}(1 / 6,1 / 3,1 / 2)=$ $(3,-3,7)$, and that $\iota_{2}(3,-3,7)=(6 / 35,9 / 28$, $69 / 140) \neq(1 / 6,1 / 3,1 / 2)$. Therefore we obtain

Theorem. The gradient map ι_{2} associated to the dual cone of Ω_{1} is not equal to the inverse of the gradient map ι_{1} associated to Ω_{1}.

This result implies that the gradient map does not necessarily give an isometry between the canonical metrics on a regular cone and its dual cone in the sense of [4, Chapter I, §3].

References

[1] J. Dorfmeister and M. Koecher, Reguläre Kegel, Jahresber. Deutsch. Math.-Verein. 81 (1978/79), no. 3, 109-151.
[2] J. Faraut and A. Korányi, Analysis on symmetric cones, Oxford Univ. Press, New York, 1994.
[3] T. Nomura, Family of Cayley transforms of a homogeneous Siegel domain parametrized by admissible linear forms, Differential Geom. Appl. 18 (2003), no. 1, 55-78.
[4] È. B. Vinberg, The theory of homogeneous convex cones, Trans. Moscow Math. Soc. 12 (1963), 340403.

