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ON THE CHOICE OF COORDINATE FUNCTIONS

R.S. Anderssen

1. INTRODUCTION

Numerically, there are two independent aspects to the problem of
solving (partial) differential and integral equations computationally. On
the one hand, it is necessary to have results concerning the convergence,
stability and accuracy of various classes of methods such as finite
difference methods for initial value problems, finite element methods for
elliptic partial differential equations, shooting methods for two-point
boundary value problems, etc. The general philosophy and expertise of
numérical problem solving is based on such information. On the other hand,
for a specific equation which arises in an application, it is necessary to
distinguish between the various algorithms which can be constructed. For
the particular equation under examination, the aim is not simply to apply
any appropriate algorithm but to use the algorithm best suited to the task
in hand. Thus, the requirements of the latter differ considerably £rom
that of the former.

In fact, the success of any algorithm constructed for a specific
problem will depend heavily on the extent to which its design exploits the
mathematical characteristics of the problem under examination. Some
specific examples are: the use of the boundary integral method to solve
potential problems defined on irregularly shaped regions; the use of the
inversion formulas to solve Abel integral equations; the numerical
stability of modified Gram-Schmidt; Fourier methods on a regular grid;
sparse matrix computations; parallelism in algorithm construction.

In situations where the starting point for the construction of a
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numerical method is an approximation of the form

this exploitation of the structure of the specific equation under
examination can be coupled to the choice of the basis functions ¢§n)(x) ’
j=1,2,...,n . It is this aspect of computational problem solving which
is examined in this paper.

Any examination of the choice of the basis functions divides

naturally into the following two cases:
(n)
j

typifies the situation in the application of the classical

(i) the ¢ , 3=1212,...,n , are independent of n , which
variational methodology using globally defined functions, and of
spectral methods;

(ii) the ¢;n) , J=21,2,...,n , depend on n , which typifies the

situation in the application of finite element methods.

Though there is an obvious overlap between these two situations, we limit

attention to the former. A detailed discussion of the latter can be found

in Arnold et al. [4]. 1In order to distinguish between these two situations,
we shall refer to globally defined basis functions as coordinate functions.

In fact, we limit attention to the following three aspects:

1. The practical appeal of the spectral method, where the coordinate
functions ¢j , 3 =1,2,...,n , correspond to the first n
components of an orthonormal system.

2. The choice of the coordinate functions as the eigenfunctions of a
related but simpler operator than that defining the equation to be
solved.

3. The flexibility of the Petrov-Galerkin strategy.

Much of the discussion will be concerned with densely defined linear

operator equations
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(1.1) Lu=£f, u=ulx) , =xe, L:DI ~RI ,

where () is a bounded region in IRq, and the domain Q(g) and the range
R(L) are both contained in the same Hilbert space H with inner product

1
(u,v) and norm full = (u,u)? .

2. THE PRACTICAL APPEAL OF THE SPECTRAL METHOD

There is no uniform use in the terminology "spectral method". It is
sometimes used to describe theoretical studies of the spectral properties
of operators. It is also used loosely to describe any numerical method
which exploits, in one way or another, the properties of known orthonormal
systems of functions (cf. Peyret and Taylor [23], Chapter 3).

The starting point for many spectral methods is the adoption of

approximations of the form

(2.1) un(x) =

(n)
aj ¢J (x) 12

VR

=1
where the coordinate (basis, trial, shape) functions ¢j(x) s 3= 1,2,0..,0,
are chosen to be the first n elements of an orthonormal system

{¢j}i = {¢j : 3 =1,2,...} . Clearly, the qualifier "spectral" identifies

this particular choice for the coordinate functions. Such methods are

subclassified in terms of the procedure used to determine the unknowns
a®
J

procedure is the n conditions which, in conjunction with (2.1), yield the

, 3=1,2,...,n ; 1i.e. for the linear operator egquation (1.1), the

non-singular matrix equation of order n

(n) (n) (n) (n) (n) (n).,T
Ln a = £ ’ a = [al P8y T eees @) 1
for determining the aén) , 3 =21,2,...,n . A discussion of various types

of spectral methods can be found in Gottlieb and Orszag (1977) and Fletcher

(1984). The problems analysed there are time dependent and therefore the
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approximations (2.1) now take the form

(2.3) u (x,t) =
o j

where the unknown constants a;n) , J=11,2,...,n , of (2.1) have now

(n)
aj (t) ¢] (x) ,

[N/ =}

1
become unknown functions of the time t .
Two examples of popular forms of spectral methods are given by:

EXAMPLE 2.1. Spectral Collocation. When the collocation method is used to

construct approximations of the form (2.1) for the solution of a linear

operator equation (1.1), the Ln and g(n) of (2.2) take the form
Q¢l(xl) e L¢n(xl)
(2.4) T = £ _ (gx),£x.) £(x )T
. e R ceoons eeeel o £ = PeEE)) e n ’

Lo, () eee L (x)

where the xk e, k=1,2,...,n , define n distinct collocation points.
The difficulty with the collocation method, which limits its applicability

and is a trade-off against its simplicity, is guaranteeing the non-

singularity of Ln . In fact, we know (cf. Davis [7]) that the linear

independence of the ¢j(x) , J=1,2,...,n , does not guarantee for

arbitrary xk , k=1,2,...,n , the non-singularity of Ln when either the
q

dimension g of IR® is greater than 1 , or § has a branch if it is an
Rl-curve in ®? with g = 2

Though there are certain advantages associated with choosing the ¢j '
j=1,2,...,n , to be the first n components of an orthonormal system

[ee]
{¢j}l (e.g. the discrete Fourier transform), such a choice does not remove

the above mentioned difficulty. #

EXAMPLE 2.2. The Pseudospectral Method. This is the name given to the
spectral collocation method when it is applied to time dependent problems

in conjunction with the approximation (2.3). In such situations, the
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choice of collocation points must be such as to yield a simple structure
for the system of ordinary differential equations which must be solved for
the aj(t) , 3J=1,2,...,n . For example, if the Chebyshev polynomials
Tj(x) are used, then the collocation points are chosen to be xk = cos(Tk)

for appropriately chosen T so that the fact that Tn(cose) = cosn® can

k
be exploited.

The motivation for the use of spectral methods is two-fold:

(a) The existence of extensive mathematical properties for particular
orthonormal systems, such as the Legendre and Chebyshev polynomials, which
can be exploited in various ways to manipulate the structure of numerical
methods based on the use of orthonormal functions. There is an extensive
literature on this aspect. It ranges from general studies of the utility
of specific orthonormal systems such as Legendre, Chebyshev and Jacobi
polynimials, in the numerical solution of ordinary and partial differential
equations as well as integral equations (cf. Delves and Freeman [8]); to
specific studies of how one special class of orthonormal functions such as
the Chebyshev polynomials can be used to study a variety of problems
numerically by specifically exploiting the essential properties of the
orthonormal functions chosen (cf. Elliott [10] and Horner [15]).

(b) The knowledge that, in the numerical performance of variational
methods, the choice of the coordinate functions ¢j(x) s J=1,2,0..40 ,
appears to play a more crucial role than the n conditions chosen to
define (2.2); and thereby, the heuristic conclusion that in some sense an
orthonormal system must be better than a non-orthonormal.

Though the success of spectral methods for the approximate solution of
a wide class of practical problems (cf. Gottlieb and Orszag [14], Peyret
and Taylor [23], Fletcher [12]) yields verification for this conclusion, it

is well known (cf. Gottlieb and Orszag [14] and Anderssen and Omodei [3])
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that the choice of an orthonormal system does not guarantee unconditionally
that a spectral method will perform well computationally. Limitations on
the utility of taking arbitrary orthonormal systems to construct
approximations of the form (2.1) have been examined in Anderssen [1].

We conclude this section with a more detailed discussion of the points
in (a) above. In particular, our aim is to illustrate why, in some areas
of computational mathematics and physics, spectral methods are viewed with
considerable respect and even reverence. However, the aim is more than
simply showing how spectral methods have been applied. The idea is to
identify the mathematical reasons why the use of orthogonality allows some-
thing special or advantageous to be achieved numerically or pragmatically
for the solution of some practical problem.

In order to emphasize the mathematical aspects, the discussion is

organized to highlight such reasons.

2.1 Diagonalization of Matrices Which Must be Inverted

In most numerical procedures based on approximations of the form (2.1)
or (2.3), it is necessary to invert at least one matrix. If the ¢j(x) A
3 =>l,2,...,n , are chosen so that one of the matrices involved is diagonal,

then the computational process is greatly simplified.

2.1.1 The Rayleigh-Ritz-Galerkin Method for Eigenvalue Problems

Consider the general eigenvalue problem
(2.5) Au = ABu ,

where A and B define time independent linear operators which map a
known Hilbert space H , with inner product (°,°) and norm MUl , into
itself. Using the approximations (2.1), the Rayleigh-Ritz-Galerkin method

replaces (2.5) by the algebraic eigenvalue problem
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I P L

(2.6) A 2 n 2 2 1 n

where the matrices An and Bn take the form

(B9, ,0)) ... (Bd s0)))
% CNTIR RN NN E T T W

Computationally, the solution of this eigenvalue problem is greatly
simplified if the coordinate functions correspond to the orthonormal
eigenfunctions of B . In the more common situation where B =1, the
identity operator, any orthogonal system in H will diagonalize Bn ’
though it is more appropriate computationally to work with its orthonormal
counterpart.

2.1.2 The Numerical Solution of Parabolic and Hyperbolic
Partial Differential Equations

Consider the time dependent partial differential equations which take
the form

= +
%t u Lu+f

where L is a linear time-independent operator and Et denotes a partial
differential operator only involving derivatives with respect to t . If
it is solved using the Ritz-Galerkin method in conjunction with the
approximation (2.1), then the system of ordinary differential equations

which determine the aj(t) are given by

(n) (n) (

2™y = a™ae, a®™ = a (n) (n)
~ n -~ ~ ~ 1

n)
(2.7 A L (B)ra, " (B),.cpa T (BD],

t

where the matrices An and Ln take the form

(¢l,¢l) (cbn,cbl) (L¢1,¢1) (L¢n,¢l)
A= ('qb"l_,'cp;')".'.'."('cb;"fcb;_) oo b= ?i@;fé;f’fff'?i@;fé;i :

Computationally, the problem of integrating (2.7) is greatly simplified if
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A is diagonal, which occurs if the {¢j}i are orthogonal in H , though

it is more appropriate to work with its orthonormal counterpart.

2.2 Decoupling

The complexity of many numerical procedures is a direct consequence of
the cross-~coupling which the n conditions, which define the numerical
process to be solved for the a;n) , 3 =1,2,...,n , forces between the
different terms which define the approximation (2.1). This is implicit in
the above discussion about diagonalization. Different numerical techniques

have been proposed which explicitly exploit the decoupling inherent in an

orthogonal (orthonormal) system.

2.2.1 The Tau Method

Congider the linear operator equation (1.1); i.e.

The tau method of Lanczos [17] is essentially an analytic application of
the backwards error analysis argument. The approximation un is

interpreted as the exact solution of

(2.8) Lu = £ .

If L has a bounded inverse, then the difference £ —-fn yields a
characterization of the quality of the approximation u - Lanczos [17]

proposed that this difference be modelled as

[e0]
(2.9) £ —fn = Z Tk¢n+k(x) ’
k=1
and thereby reduced the problem of estimating £ —fn to the problem of

determining the T parameters in (2.9). For general systems {¢j}j , this

reduces to acomplex problem computationally. If however, the system {¢.}
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is orthonormal in H and its elements satisfy the boundary conditions

associated with L , then it is a simple matter to show that

(2.10) . = (Lu

k .,,n"fr ¢n+k) s k=1,2,.0. o

If the elements of the system {¢j}j do not satisfy the boundary
conditions, it is a simple matter to modify the above argument (cf.

Gottlieb and Orszag [14], Section 2).

2.2.2 Manipulating Non-Linearities
In many applications, the non-linearity which makes the relevant
equations non-linear are only quadratic. For example, the Navier-Stokes

equations and Burger's equation in which the non-linearity takes the form

(2.11) wu u = ul(x,t) , u, = u/9x .

Various procedures are employed which exploit orthogonality in order to
decouple the cross—coupling inherent in the non-linearity. To a certain
extent, the methodology used is problem dependent and complex, because the
problems themselves are complex and the non-linear terms cannot be treated
in isolation from the other terms in the equations being solved. Never-
theless, the essence of the mathematics behind what is being done can be

described. We give two illustrations:

EXAMPLE 2.3. If the Ritz-Galerkin method is applied to the non-linearity

(2.11) using the approximations (2.1), it is necessary to construct a

(n)

matrix Bn with elements bjk defined by

g,

(2.12) L _ 3 6. =L
: jk_i=1i 5 odx’ "kj '

where we have assumed that the functions u = u(x) are contained in H .

The non-linearity manifests itself through the dependence of the
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b;ﬁ) on the ain) , i=1,2,...,n . The manipulation of

coefficients
this non-linearity is reduced to finding an orthonormal system for the

(s
{¢j}l (e.g. the Legendre polynomials) which allows the evaluation of the

inner products in (2.12) to be greatlysimplified. . #

EXAMPLE 2.4. Using either a Petrov-Galerkin or method of integral
relations framework, and after appropriate changes of variable and other
manipulations, the approximation of the non-linearity is reduced to an

examination of integrals of the form
(2.13) f w(v) fk(v) ax , v = v(x) ,

where the resulting coordinate functions fk(v) end up being functions of
some transformed unknown v rather than x . The key step is then to
reverse the roles of v and x with v becoming the independent

variable and x a function of v given by
s
x(v) = I n(t) 4t .

This has proved to be an incredibly successful way of coping with
non-linearities in various situations, since the non-linear aspect is

transferred to a linear. Here, (2.13) becomes
(2.14) Jw(v) fk(v) n(v) dv .
If the unknown n(v) is now approximated by
n
nn(V) = § bj fk(v) ’

the task of manipulating (2.13) is greatly simplified if the fk(v) are
constructed to be orthonormal with respect to the weight function wi(x) .
The implementation of such manipulations is in general gquite difficult;

but has considerable computational advantages when achieved as, for example,
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the discussion of Fleet and Fletcher [11] shows.

Fuller details for specific examples such as the solution of Burger's
equation can be found in Gottlieb and Orszag [14], Orszag [21] and

Fletcher [12].

2.3 Transformation

Each approximation un(x) has two representations: Its physical or
continuous which corresponds to un(x) itself as a function of x ; and
its vector or finite dimensional which corresponds to
g(n) = [a{n),aén),..., én)]T . When the system {¢j}? is orthonormal, the
latter representation is often called the spectral. Thus, any computation
involving the approximation un(x) can be performed using either the
physical or the vector (spectral) representation. The advantages of
computing in one rather than the other can only be exploited if the
transformations from one to the other can be evaluated economically. This

©o
is only possible if the system {¢j}l is orthonormal for then the inverse

of the forward transformation

(2.15) un(xl)

I
YR

. aj ¢j(xl) B 2 =1,2,...,n ,

j=1

is given by

(2.16) ap

J un ¢k(x) ax , k=1,2,00.,n .

Ordinarily, the evaluation of either (2.15) or (2.16) will involve O(nz)
operations. Using fast methods, this can often be reduced to O(n log n)
operations (cf. Orszag [21]). As explained by Orszag [21], and illustrated
convincingly for multidimensional calculations by McCrory and Orszag [18]
the aim is to choose the representation most appropriate for the

computation required.
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2.3.1 Evaluation of Non-Linear Terms
Consider the problem of evaluating the convective term u u, in
Burger's equation (cf. Fletcher [12]). If at time tm it is known that
n (n)
(2.17) u (x,t) = Z a, " ¢.(x)
n m j=1 J.,m 3

then u uX at X = X_,X_,...,X , can be evaluated as
n

172
5 _(n) 2w (%%
(2.18) [u(x,tm) ux(x,tm)]x_X = { z 2" ¢‘(XQ)][ z a? {7;1J ],
o 4= I d j=1 Jm LK ey

for £ =1,2,...,n . This clearly involves O(n2) operations.

Alternatively, u, could be evaluated as

n
%‘-‘-: T b™ g (x) .
x4l dmd

(2.19)

foe]
If the {¢j}l correspond to the Fourier components, the Legendre
polynomials or the Chebyshev polynomials, the recurrence relations which
(n)

b(n) ;, J=1,2,...,n , in terms of the a. ;s J=1,2,...,0 ,

specify the )
P 7 J,m J,m

in O(n) operations are known for a variety of situations which include
. 2 . . . .
Burger's equation. Thus, the O(n”) operations involved with evaluating

uu at x = x reces% , Can be reduced to O(n log n) operations

17%2
through the judicious use of (2.19) and the physical and spectral
representations:
(i) transform (using O(n log n) operations) to the physical
representation
2 ()
U Gyt ) = jzl ay o qu(xQ) , L =1,2,...,n ;

(ii) evaluate (using O0(n) operations)

bgn) from afn)
J,m J.,m

using the recurrence relations;
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(iii) transform (using O(n log n) operations) to the physical
representation
Bﬁn(xg,tm) n
—_—— = X b ¢ (x ) L= 1;2,c00,n ;

ox ]—l J rm J

(iv) evaluate (using O(n) operations)

ot (tl't )

W (XJL't ) =1 (xgllt ) __—a;(—— [

L =1,2,000.,0 ;

(v) transform (using O(n log n) operations) back to the spectral
representation

(n)

l, = J wn(x,tm) ¢2(x) ax .

2.4 Mimicking the Eigenfunction Solution

Again, consider the operator equation (1.1). If L has a discrete

spectrum {Aj}? and its (normalized) eigenfunctions {wj}T are known
and form a basis in H then the solution ug of (1.1) is automatically
given by
o (£,0.)9
(2.20) u, = Z 3 .
£ . AL
j=1 ]

In many ways, the use of the approximations u of (2.1) cah be seen as an
attempt to mimic this eigenfunction representation of the solution ug -
In addition, heuristic énd intuitive considerations lead naturally to the
idea that, even if the wj(x) are not known exactly, every attempt should
be made to choose systems {¢j}T which approximate the {wj}i in some
appropriate way (which will depend on the context of the problem being
solved) .

This point has been discussed for spectral methods by Anderssen [1]

and is motivated from the more general point of view of the numerical

stability of variational methods in the next section of this paper. From a
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practical point of view, it is instrumental in the use of Legendre

polynomials in weather prediction (cf. Fletcher [12], §5.6.1).

3. EIGENFUNCTIONS OF SIMILAR BUT SIMPLER OPERATORS

For a given choice of coordinate functions ¢fn) , J=1,2,...,n , the

associated matrix equation (2.2) is solved computationally for the unknown

vector g(n) defining un in (2.1). BAppealing to the backward error

analysis argument, the computed solution ?(n) is interpreted as the exact

solution of the perturbed system

i

(3.1) (L +An )b ™) = g™ ppe®)
n n’' 2 L L
Under the restriction that
-1
(3.2) r=1I AL Il <1,
n n

a standard argument (cf. Mikhlin [19], §9) shows that

.3 12™ ™ <t an 1™ st g™ s aen

~

It follows automatically that a sufficient condition for the error
(n) (n) . . -1 .

la -7l to remain bounded is that |lLn I remain bounded. If the
spectral norm of L;l is taken, then the boundedness of L;l can be
related to the behaviour of the smallest eigenvalue of the Gram matrix Ln'
This fact was used by Mikhlin [19] as the basis of his definition of
stability.

Because it is developed in terms of constructive concepts which can be

tested, Mikhlin's stability theory for variational methods has the

following appealing structure.

Stability Definition. The numerical process defined by

(3.4) L P T
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is M-stable, if there exist constants p, ¢ and s independent of n
such that for HALnH < s and arbitrary Af(n) the perturbed system (3.1)

is solvable and the following error estimate

(3.5) 12™ ™0 < plar 1+ qiag™
holds.
The connection between (3.4) and (3.5) is obvious.
The Strong Minimality of the {¢j}? in H . The coordinate functions

{¢j}i are said to be strongly minimal in H , if the smallest eigenvalues

A(n)

1 of the positive definite Gram matrices

(63 00) --- <¢n,¢l>}
(3.6) G = |.iceeocccoccccoccocccccal| 4 n=12,...,
n
(@, 00 «ov (@ s0)

are bounded away from zero; i.e.

(3.7) iﬂf xi“) 22, >0 .

A necessary and Sufficient Condition for M-Stability. If L =2 ,
where A is a positive definite operator, a necessary and sufficient
condition for the M-stability of the numerical process (3.4) is that the
coordinate system {¢j}i used to generate (3.4) is strongly minimal in the
energy space EA with inner product [u,v] = (Au,v) and norm
Wl = [u,ul® .

Thus, guaranteeing the M-stability of the numerical process (3.4)

o
reduces to ensuring that the coordinate system {¢j}l is strongly minimal

in EA . There are a number of ways in which this can be done:

~

(a) wuse the orthonormal eigenfunctions of an operator B which is
simpler but similar to A ; (b) scale minimal systems
in EA , which are not strongly minimal, to be strongly minimal. A system

{¢j}T is said to be minimal, if the span of each(and every one)of its
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subsets is a proper subspace of the span of {¢j}? .

In (a) (c£. Mikhlin [19], §3), two self-adjoint and positive
definite operators A and B are said to be similar if 2(@) = D(B) :
i.e. the domains of A and B are identical. Using this definition,
Mikhlin [19] has identified a variety of circumstances which guarantee
strong minimality in EA , and used these results to propose a rational
basis for the choice of the {¢j}? . The orthonormal eigenfunctions of the
more important simpler operatbrs which arise in practical situations are
listed.

Anderssen [1] has discussed how these results can be used to examine
the numerical performance of spectral methods and thereby clarify to what
extent the choice of an arbitrary orthonormal system as the coordinate
system {¢j}§ can be justified numerically. The fact that "any ortho-
normal system which lies in H is strongly minimal in EA if it is also

contained in EA and spans EA " shows that convergent and stable
approximations of the form (2.1) can be constructed using arbitrary ortho-
normal systems in H , when the procedure used to construct the numerical
processes (3.4) corresponds to one of the standard methodologies such as
Ritz~Galerkin, Bubnov-Galerkin or least squares.

However, the need for having an appropriate mathematical framework in
which to formulate such results is more crucial than it might at first
sight appear. It is not simply a matter of choosing an arbitrary ortho-
normal system in E , which a loose interpretation of the above comments
might imply. As the following discussion illustrates, the interrelation-
ships between the different spaces involved impose their own restrictions

on how the orthonormal system in H must be chosen.

If the orthonormal system {¢j}? in H is also a spanning set in H,

then it is also a spanning set in H . It is an automatic consequence of



30

the continuous imbedding of H in H . However, if the orthonormal

system {¢j}T is contained in H, but is only chosen to be a spanning set

~

oo
in H , this does not guarantee that {¢j}l is a spanning set in gA . It

~

is an immediate consequence of the fact that, for sequences in BA , this

convergence in H does not imply their convergence in H, . The

inequality defining the continuous imbedding of EA in H goes the wrong

-~

way.

In order to obtain a strongly minimal system in EA , it is not

S

necessary to start with an orthonormal system in H which lies in gA .

a

vIn fact, any minimal system in E which lies in EA can be used. Now,
the alternative strategy of scaling minimal systems can be used. Dovbysh
[91 has shown that any minimal system in a Hilbert space can be rescaled
to yield a strongly minimal system in that space (cf. Mikhlin [19],

Theorem 2.2). Either scale the minimal system in H to be strongly

minimal, since the resulting system will also be strongly minimal in EA ;

or utilize the fact that the minimal system in H will also be minimal in

H, and therefore scale it in EA to make it strongly minimal.

5 S

The advantages of this scaling from a theoretical point of view have
been outlined above. However, they are based on asymptotic results which
carry little information about the practical consequences of this scaling.
To date such consequences have not been examined in any detail.

Since the scaling éf matrix equations is known to be so mercurial, it
is natural to ask what advantages result in scaling a minimal system to be
strongly minimal. We know from Forsythe and Moler [13] that if two base-
scaled (B-scaled) equivalent systems are used, then applying Gaussian
elimination with the same pivoting sequence to both will yield the same
significands in both solutions. However, if different pivoting sequences

are used, then different significands will result. It is therefore
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assumed that, for the matrix equations which arise from the use of minimal
and strongly minimal systems, different pivoting sequences will result if
Gaussian elimination with either full or partial pivoting is applied; but
this assumption remains to be examined in detail.

Another important aspect of M-stability is that it is based on an
examination of absolute not relative error. It is for this reason that the
concept of strong minimality plays such a major role as a necessary and
sufficient condition in guaranteeing M-stability. In fact, for the
numerical process (3.4) and its backward error analysis counterpart (3.1),

it can be shown (cf. Mikhlin [19], 8§9) that
(3.8) 12 e ™1 < Tt an 1 1™ s it ag ™y aen

with r = "L;l ALn" . The solvability of (3.1) requires that r < 1 . The

"g(n) -b(n) I

key role played by L;l when bounding is immediately

apparent. Even more importantly, (3.8) shows that a sharp estimate of
Hg(n) _p(n)" must be based on the size of HL;l ALnH and HL;l Af(n)ﬂ f

and consequently, the conservative nature of the often used alternative

bound

(3.9) 1™ ™ <t g 1 120w nas ™y o

The use of relative errors when studying the effect of rounding error
has become popular for a number of reasons:

(i) in situations where the size of "g(n)" is not known a priori,
it gives a more realistic assessment of the error than the
absolute.

(ii) the forward error analysis of numerical methods often yields

estimates of the form
AL, I = ¢(n) Sl T,
n n

where c(n) is a constant depending on n and ¢ is the basic

rounding error.
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For such reasons, one often works with the relative error estimate

N a1 nag @™y
(3.10) 2™ - /12" < c@) / (1-1)
= < n [F AN (n)
n E|
with the condition number K(Ln) = HLnH HL;lH . However, because it can be

derived from (3.9) (divide (3.9) by Hg(n)ﬂ and use the inequality
Hf(n)H/HLnH < Hg(n)ﬂ ), (3.10) carries no more information than (3.8). For
this reason, the interpretation of (3.10) cannot be QOne independently of
(3.8) which goes against the point made by Omodei [21] about M-stability.
For example, (3.10) yields the conclusion that the relative error is
bounded if K(Ln) is bounded. However, this condition allows the
possibility that kén) A o at the same rate as Xin) ¥ 0 which is in
conflict with the required boundedness of Hg(n) -p(n)u for which we need
Ain) 2 AO > 0 . Clearly, we require that both the absolute and relative

errors are bounded. The mentioned pathology can occur when the growth of

is dominated by the decay of 1/lla . This however is not
the full picture as the role played by the condition HL;l ALnH <1  has
not been taken’ into account.

A detailed analysis of strong minimality and condition number is not

appropriate here as the above argument illustrates cogently the need to

first guarantee strong minimality when applying variational methods.

4. THE PETROV-GALERKIN FRAMEWORK
We again start with the operator equation formulation (1.1). We

construct the corresponding bilinear representation
(4.1) (Lu,v) = (£,v) , for all v e V ,

which is egquivalent to (1.1) if V defines a dense subset of H such as

@ .

1o
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With respect to appropriately chosen ¢i , 1i=1,2,...,n ,

approximations of the form (2.1) are sought which satisfy

(4.2) (gun,v) = (£,v) , for all v ¢ yn A
exactly with Yn an appropriate finite dimensional subspace of V . 1In
particular, if the Xj ;, J=1,2,...,n , define a basis for yn , then

(4.2) reduces to the following algebraic system which defines the Petrov-
Galerkin method for (4.1), and hence, (1.1)

n
(4.3) (L, ,x.) = (£,%.) o j=1,2,...,n .

i=1 17 J
Thus, (4.3) defines the Petrov-Galerkin counterpart of (2.2) and (3.4).
The Galerkin method corresponds to the quite special situation where the
Xj = ¢j , J=1,2,...,n . The advantage of the Petrov-Galerkin method is
the greater flexibility it gives to the construction of the algebraic
system (4.3). Having made the choice of the ¢j , 3 =1,2,...,n , for one
reason, the choice of the Xj ;, 3 =1,2,...,n , can be exploited for
another. For example, in the Galerkin method, the {¢j}2 can either be
chosen to optimize, with respect to n , the representation used for un
or g(n) . On the other hand, the Petrov-Galerkin framework allows the
{¢j}? to be chosen to optimize the representation used for u leaving
the {Xj}? to be chosen so as to optimize the representation used for
g(n) .

For example, if {¢j}2 were known to yield an efficient
representation for un , then a natural choice for the representation of
g(n) would be {é¢j}2 . The corresponding Petrov-Galerkin method is in
fact the method of least squares which ensures that

min Héun - £ll

n
w espan({¢j}l)
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is attained. However, because we do not know u in advance, it is
difficult to choose the {¢j}2 in relation to some property of u in
advance. Nevertheless, we do know £ . It is a far simpler matter to seek
the {Xj}? which yield an efficient representation for g(n) . It would
then be necessary to decide what a corresponding choice of the {¢j}?
should be.

The obvious choice is ¢j = g_l Xj which is clearly not available
except under special circumstances. When it is the corresponding Petrov-

Galerkin method reduces to a pseudo-analytic method (cf. Anderssen and

de Hoog [2]) for which the approximation u is known the moment the

approximation
n
fn = 2 bf“’ Xa
j=1 J J
to £ has been constructed; namely,
n
w =3 f = 3 ™ ..
j=1 J J

When applicable, pseudo-analytic methods are quite successful for properly
posed problems in application. When the application is improperly posed,
they are invariably unsuccessful as they contain no stabilization which
damps out the enhancement of errors between fn and £ implicit in the
transformation from the Xj to the ¢j .

A less obvious choice is ¢j = 5* Xj . The corresponding Petrov-
Galerkin method is in fact Murray's method which has been examined in some

detail by Petryshyn [22]. In fact, using the properties of Q* , the

algebraic equations (4.3) become

n
* * (n) _ .
(4.4) iil a wi,g wj) a; = (f,wj) ;3 =1,2,0..,n .

There are two levels at which the Petrov-Galerkin methodology is
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manipulated. On the one hand, it is exploited in a fairly explicit and
practical manner to yield for specific applications numerical processes
(3.4) with desired numerical properties. This reduces to working directly
with the numerical properties associated with particular choices of
coordinate functions and centers on the algebraic properties of the
matrices Ln defining the numerical processes (3.4). Some examples are:
spline Petrov-Galerkin methods for the Korteweg-de Vries equation where the
Xj are translates of the ¢j (Schoonbie [24]; subdomain methods
Fletcher [12]); collocation methods such as spectral collocation methods
(Voigt et al. [25]).

On the other hand, error estimates which formalize some of the
observations made above about the flexibility of the Petrov-Galerkin
methodology are derived and then manipulated in both a general and specific
manner depending on the context in which the Petrov-Galerkin method is
being examined. For example, Canuto and Quateroni [6] derive a general
error estimate which displays explicitly the dependence of the error u-u
on the form of the subspaces @n and xn spanned by the ¢j and Xj ’

j = 1,2,...,n‘, respectively. They use this estimate to derive specific
results about the numerical performance of the spectral method.

This error estimate is a generalization of an estimate given in
Babuska and Aziz [5] which limits attention to the situation where the
inner products are evaluated exactly. Under appropriate coercivity
conditions, the Babuska and Aziz estimate for [llu- unm takes the form of

a best approximate estimate

lu-u ll < x { inf Mu-wll} ,
n
wed
n
where |l -l denotes an appropriate energy norm.

The role of the Xj only enters through K . First and foremost, the
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error depends on the choice of @n , and then only on Xn . This fits
naturally the frameworkof the application in that the ¢j , 3 =1,2,...,n ,
determine un while the choice of the Xj , jJ=112,...,n , determines the
algebraic system (3.4) to be solved. Thus, if u 1lies in ¢n , even if a
poor choice is made for Xn , the error is still zero (assuming the under-
lying algebra is done exactly). Thus, the choice of Xn determines the
numerical properties of (3.4) (relative to the choice of @n ). This
confirms intuition.

Clearly, the choice of Xn must not only ensure that (3.4) has
appropriate numerical properties, but also that K is kept small. 1In
achieving the latter, Jenkinson [16] has shown that the size of K depends
crucially on the relationship between @n and Xn .

The Canuto and Quarteroni [6] estimate is most useful as it shows the
effect of not being able to evaluate the inner products exactly. Now the
form of Xn used plays a more dominant role. It confirms the above point
that the choice of Xn is crucial in determining the numerical properties
of the resulting numerical process. In fact, if the approximations used
for (gu,v) and (f,v) are denoted by BN(u,v) and fN(v) , then their

estimate takes the form

l(%u,v) -BN(u,v)l | (£,v) —fN(v)|

l”u-—uNm < inf {Kl(n)mu-wm + Kz(n) sup [ o + Mo
W'e©n . v exn

From the discussion contained in Canuto and Quarteroni [6],as well as

the comments made above, it is clear that the use of such error estimates

can assist greatly in tuning the choice of the ¢j and Xj ;3 =1,2,...,n ,

for specific applications.

1

J

.
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