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Lecture notes prepared with the assistance of Andrew Hassell,
based on lectures given by the author at the

Australian National University in October and November, 2001.

The first two lectures are devoted to describing the basic concepts
of scattering theory in a very compressed way. A detailed presentation
of the abstract part can be found in [33] and numerous applications in
[30] and [36]. The last two lectures are based on the recent research of
the author.

1. Introduction to Scattering theory. Trace class
method

1. Let us, first, indicate the place of scattering theory amongst
other mathematical theories. This is very simple: it is a subset of
perturbation theory. The ideology of perturbation theory is as follows.
Let H0 and H = H0+V be self-adjoint operators on a Hilbert space H,
and let V be, in some sense, small compared to H0. Then it is expected
that the spectral properties of H are close to those of H0. Typically, H0

is simpler than H, and in many cases we know its spectral family E0(·)
explicitly. The task of perturbation theory is to deduce information
about the spectral properties of H = H0 + V from those of H0. We
shall always consider the case of self-adjoint operators on a Hilbert
space H.

The spectrum of a self-adjoint operator has two components: dis-
crete (i.e., eigenvalues) and continuous. Hence, perturbation theory
has two parts: perturbation theory for the discrete spectrum, and for
the continuous spectrum. Eigenvalues of H0 can generically be shifted
under arbitrary small perturbations, but the formulas for these shifts
are basically the same as in the finite dimensional case, dimH < ∞,
which is linear algebra. On the contrary, the continuous spectrum is
much more stable.
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Example. Let

(1.1) H0 = −∆, H = −∆ + v(x), v(x) = v(x), v ∈ L∞(Rd),

be self-adjoint operators on the Hilbert space H = L2(Rd). Denote by
Φ the Fourier transform. Then

(1.2) H0 = Φ∗|ξ|2Φ,
so that the spectrum of H0 is the same as that of the multiplication
operator |ξ|2. Moreover, we know all functions of the operator H0 and,
in particular, its spectral family explicitly. In the case considered V
is multiplication by the function v. Thus, each of the operators H0

and V is very simple. However, it is not quite so simple to understand
their sum, the Schrödinger operator H = H0 + V . Nevertheless, it is
easy to deduce from the Weyl theorem that, if v(x) → 0 as |x| → ∞,
then the essential spectrum of H is the same as that of H0 and hence
it coincides with [0,∞).

Scattering theory requires classification of the spectrum in terms of
the theory of measure. Each measure may be decomposed into three
parts: an absolutely continuous part, a singular continuous part, and a
pure point part. The same classification is valid for the spectral mea-
sure E(·) of a self-adjoint operator H. Thus, there is a decomposition
of the Hilbert space H = Hac ⊕Hsc ⊕Hpp into the orthogonal sum of
invariant subspaces of the operator H; the operator restricted to Hac,
Hsc or Hpp shall be denoted Hac, Hsc or Hpp, respectively. The pure
point part corresponds to eigenvalues. The singular continuous part
is typically absent. Actually, a part of scattering theory is devoted to
proving this for various operators of interest, but in these lectures we
study only the absolutely continuous part Hac of H. The same objects
for the operator H0 will be labelled by the index ‘0’. We denote P0 the
orthogonal projection onto the absolutely continuous subspace Hac

0 of
H0.

The starting point of scattering theory is that the absolutely con-
tinuous part of self-adjoint operator is stable under fairly general per-
turbations. However assumptions on perturbations are much more re-
strictive than those required for stability of the essential spectrum. So
scattering theory can be defined as perturbation theory for the abso-
lutely continuous spectrum. Of course, it is too much to expect that
Hac = Hac

0 . However, we can hope for a unitary equivalence:

Hac = UHac
0 U

∗, U : Hac
0 → Hac onto.

The first task of scattering theory is to show this unitary equivalence.
We now ask: how does one find such a unitary equivalence U? This is
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related (although the relationship is not at all obvious) to the second
task of scattering theory, namely, the large time behaviour of solutions

u(t) = e−iHtf

of the time-dependent equation

i
∂u

∂t
= Hu, u(0) = f ∈ H.

If f is an eigenvector, Hf = λf , then u(t) = e−iλtf , so the time
behaviour is evident. By contrast, if f ∈ Hac, one cannot, in gen-
eral, calculate u(t) explicitly, but scattering theory allows us to find
its asymptotics as t → ±∞. In the perturbation theory setting, it is
natural to understand the asymptotics of u in terms of solutions of
the unperturbed equation, iut = H0u. It turns out that, under rather
general assumptions, for all f ∈ Hac, there are f±0 ∈ Hac

0 such that

u(t) ∼ u±0 (t), t→ ±∞, where u±0 (t) = e−iH0tf±0 ,

or, to put it differently,

(1.3) lim
t→±∞

∥∥e−iHtf − e−iH0tf±0
∥∥ = 0.

Hence f±0 and f are related by the equality

f = lim
t→±∞

eiHte−iH0tf±0 ,

which justifies the following fundamental definition given by C. Møller
[23] and made precise by K. Friedrichs [8].

Definition 1.1. The limit

W± = W±(H,H0) = s- lim
t→±∞

eiHte−iH0tP0,

if it exists, is called the wave operator.

It follows that f = W±f
±
0 . The wave operator has the properties

(i) W± is isometric on Hac
0 .

(ii) W±H0 = HW± (the intertwining property).
In particular, Hac

0 is unitarily equivalent, via W±, to the restriction
H|ran W± of H on the range ranW± of the wave operator W± and hence
ranW± ⊂ Hac.

Definition 1.2. If ranW± = Hac, then W± is said to be complete.

It is a simple result that W±(H,H0) is complete if and only if the
‘inverse’ wave operator W±(H0, H) exists. Thus, if W± exists and is
complete (at least for one of the signs), Hac

0 andHac are unitarily equiv-
alent. It should be emphasized that scattering theory is interested only
in the canonical unitary equivalence provided by the wave operators.
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Another important object of scattering theory

(1.4) S = W ∗
+W−

is called the scattering operator. It commutes with H0, SH0 = H0S,
which follows directly from property (ii) of the wave operators. More-
over, it is unitary on Hac

0 if both W± are complete. In the spectral
representation of the operator H0, the operator S acts as multiplication
by the operator-valued function S(λ) known as the scattering matrix
(see the next lecture, for more details).

An important generalization of Definition 1.1 is due to Kato [19].

Definition 1.3. Let J be a bounded operator. Then the modified wave
operator W±(H,H0, J) is defined by

(1.5) W±(H,H0, J) = s- lim
t→±∞

eiHtJe−iH0tP0,

when this limit exists.

Modified wave operators still enjoy the intertwining property

W±(H,H0, J)H0 = HW±(H,H0, J),

but of course their isometricity on Hac
0 can be lost.

2. We have seen that the wave operators give non-trivial spectral
information about H. Thus, it is an important problem to find condi-
tions guaranteeing the existence of wave operators. There are two quite
different methods: the trace class method, and the smooth method (see
the next lecture). The trace class method is the principal method of
abstract scattering theory. For applications to differential operators,
both methods are important.

The fundamental theorem for the trace class method is the Kato-
Rosenblum theorem [15, 31, 16]. Recall that a compact operator T on
H is in the class Sp, p > 0, if

||T ||pp =
∑(

λj(T
∗T )
)p/2

<∞.

In particular, S1 is called the trace class and S2 is called the Hilbert-
Schmidt class.

Theorem 1.4. If the difference V = H−H0 belongs to the trace class,
then the wave operators W±(H,H0) exist.

This is a beautiful theorem. It has a number of advantages, includ-
ing:

(i) Since the conditions are symmetric with respect to the opera-
tors H0 and H, the wave operators W±(H0, H) also exist and hence
W±(H,H0) are complete.
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(ii) The formulation is simple, but all proofs of it are rather compli-
cated.

(iii) It relates very different sorts of mathematical objects: operator
ideals, and scattering theory.

(iv) It is effective, since it is usually easy to determine whether V is
trace class.

(v) It is sharp, in the sense that if H0 and p > 1 are given, there is
a V ∈ Sp such that the spectrum of H0 + V is purely point.

However, Theorem 1.4 has a disadvantage: it is useless in applica-
tions to differential operators. Indeed, for example, for the pair (1.1)
V is a multiplication operator which cannot be even compact (unless
identically zero), and therefore Theorem 1.4 does not work. Neverthe-
less, it is still useful if one is only interested in the unitary equivalence
of Hac and H0 = Hac

0 . In fact, it is sufficient to show that the operators
(H + c)−1 and (H0 + c)−1 are unitarily equivalent for some c > 0 or,
according to Theorem 1.4, that their difference is trace class.

Actually, this condition is sufficient for the existence (and complete-
ness) of the wave operators. More generally, the following result is
true.

Theorem 1.5. Suppose that

(H − z)−n − (H0 − z)−n ∈ S1

for some n = 1, 2, . . . and all z with Im z 6= 0. Then the wave operators
W±(H,H0) exist and are complete.

Theorem 1.5 was proved in [3] for n = 1 and in [17] for arbitrary n.
For semibounded operators, Theorem 1.5 follows from the Invariance
Principle, due to Birman [1].

Theorem 1.6. Suppose that ϕ(H) − ϕ(H0) ∈ S1 for a real function
ϕ such that its derivative ϕ′ is absolutely continuous and ϕ′(λ) > 0.
Then the wave operators W±(H,H0) exist and

W±(H,H0) = W±(ϕ(H), ϕ(H0)).

The operators W±(H,H0) should be replaced here by W∓(H,H0) if ϕ′

is negative.

3. A typical result of trace class theory in applications to differential
operators is the following

Theorem 1.7. Let H0 = −∆ + v0(x) and H = −∆ + v0(x) + v(x) on
L2(Rd). Assume that v0 = v̄0 is bounded and v = v̄ satisfies

(1.6) |v(x)| ≤ C〈x〉−ρ, 〈x〉 = (1 + |x|2)1/2,
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for some ρ > d. Then the wave operators W±(H,H0) exist and are
complete.

For simplicity we shall give the proof only for d = 1, 2 or 3. We
proceed from Theorem 1.5 for n = 1. Choose c > 0 large enough so
that H0 + c and H + c are invertible. Then

(H + c)−1 − (H0 + c)−1 = −(H + c)−1V (H0 + c)−1.

Denote temporarily H00 = −∆. Since the operators

(H + c)−1(H00 + c) = Id−(H + c)−1(V0 + V )

and, similarly, (H00+c)(H0+c)−1 are bounded, it suffices to check that
(1.7)

(H00+c)
−1V(H00+c)

−1 =
(
(H00+c)

−1|V |1/2
)

sgn v
(
|V |1/2(H00+c)

−1
)
∈S1.

Note that Φ(H00 + c)−1|V |1/2 is an integral operator with kernel

(2π)−d/2e−ix·ξ(|ξ|2 + c)−1|v(x)|1/2,

which is evidently in L2(R2d). Thus, the operators (H00 + c)−1|V |1/2

and its adjoint |V |1/2(H00 + c)−1 are Hilbert-Schmidt and hence (1.7)
holds.

Using Theorem 1.5 for n > d/2 − 1, it is easy (see [4], for details)
to extend this result to an arbitrary d. On the contrary, the condition
ρ > d in (1.6) cannot be improved in the trace-class framework.

4. Theorem 1.4 admits the following generalization (see [26]) to the
wave operators (1.5).

Theorem 1.8. Suppose that V = HJ − JH0 ∈ S1. Then the wave
operators W±(H,H0; J) exist.

This result due to Pearson allows to simplify considerably the original
proof of Theorem 1.4 and of its different generalizations. Although
still rather sophisticated, the proof of Theorem 1.8 relies only on the
following elementary lemma of Rosenblum.

Lemma 1.9. For a self-adjoint operator H, consider the set R ⊂ Hac

of elements f such that

r2
H(f) := ess-sup d(E(λ)f, f)/dλ <∞.

If G is a Hilbert-Schmidt operator, then for any f ∈ R∫ ∞

−∞
||G exp(−iHt)f ||2dt ≤ 2πr2

H(f)||G||22.

Moreover, the set R is dense in Hac.
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The wave operators were defined in terms of exponentials, e−itH .
There is also a ‘stationary’ approach, in which the exponentials are
replaced by the resolvents R(z) = (H − z)−1, z = λ± iε, and the limit
t → ±∞ is replaced by the limit ε → 0. In the trace class framework
a consistent stationary approach was developed in the paper [2]. From
analytical point of view it relies on the following result on boundary
values of resolvents which is interesting in its own sake.

Proposition 1.10. Let H be a self-adjoint operator and let G1, G2 be
arbitrary Hilbert-Schmidt operators. Then the operator-function G1R(λ+
iε)G2 has limits as ε → 0 (and G1R(z)G2 has angular boundary val-
ues as z → λ ± i0) in the Hilbert-Schmidt class for almost all λ ∈ R.
Moreover, the operator-function G1E(λ)G2 is differentiable in the trace
norm for almost all λ ∈ R.

In particular, Proposition 1.10 allows one to obtain a stationary proof
of the Pearson theorem (see the book [33]).

2. Smooth method. Short range scattering theory

1. The smooth method relies on a certain regularity of the per-
turbation in the spectral representation of the operator H0. There are
different ways to understand regularity. For example, in the Friedrichs-
Faddeev model [7] H0 acts as multiplication by independent variable
in the space H = L2(Λ; N) where Λ is an interval and N is an aux-
iliary Hilbert space. The perturbation V is an integral operator with
sufficiently smooth kernel.

Another possibility is to use the concept of H-smoothness introduced
by T. Kato in [18].

Definition 2.1. Let G be an H-bounded operator; that is, suppose
that G(H + i)−1 is bounded. Then we say that G is H-smooth if there
is a C <∞ such that

(2.1)

∫ ∞

−∞
‖Ge−iHtf‖2dt ≤ C2‖f‖2

for all f ∈ H or, equivalently,

(2.2) sup
Im z 6=0

‖G
(
R(z)−R(z)

)
G∗‖ ≤ 2πC2.

In applications the assumption of H-smoothness of an operator G
imposes too stringent conditions on the operator H. In particular, the
operator H is necessarily absolutely continuous if kernel of G is trivial.
This excludes eigenvalues and other singular points in the spectrum
of H, for example, the bottom of the continuous spectrum for the
Schrödinger operator with decaying potential or edges of bands if the
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spectrum has the band structure. However it is often suffices to verify
H-smoothness of the operators GE(Xn) where the union of intervals
Xn exhausts R up to a set of the Lebesgue measure zero. In this case
we say that G is locally H-smooth.

We have the following

Theorem 2.2. Let H − H0 = G∗G0, where G0 is locally H0-smooth
and G is locally H-smooth. Then the wave operators W±(H,H0) exist
and are complete.

This is a very useful theorem, yet the proof is totally elementary. To
make it even simpler, we forget about the word ‘locally’ and assume
that G0 is H0-smooth and G is H-smooth. We write

lim
t→±∞

(
eiHte−iH0tf0, f

)
=
(
f0, f

)
+ lim

t→±∞
i

∫ t

0

(
G0e

−iH0sf0, Ge
−iHsf

)
ds.

Since the left and right hand sides of the last inner product are L2(R),
the limit on the right hand side exists. This shows existence of the
weak limit. To show the strong limit, we estimate using (2.1)

∣∣(eiHte−iH0tf0, f
)
−
(
eiHt′e−iH0t′f0, f

)∣∣ =
∣∣ t∫
t′

(
G0e

−iH0sf0, Ge
−iHsf

)
ds
∣∣

≤ C‖f‖
(∫ t

t′
‖G0e

−iH0sf0‖2 ds
)1/2

.

Taking the sup over f with ‖f‖ = 1, we obtain

‖eiHte−iH0tf0 − eiHt′e−iH0t′f0‖ ≤ C
(∫ t

t′
‖G0e

−iH0sf0‖2 ds
)1/2

which goes to zero as t′, t tend to infinity.
Of course Theorem 2.2 is not effective since the verification of H0 -

and especially of H-smoothness may be a difficult problem. In the
following assertion the hypothesis only concerns the free resolvent,
R0(z) = (H0 − z)−1.

Theorem 2.3. Suppose V can be written in the form V = G∗ΩG,
where Ω is a bounded operator and GR0(z)G

∗ is compact for Im z 6= 0,
and is norm-continuous up to the real axis except possibly at a finite
number of points λk, k = 1, . . . , N . Then W±(H,H0) exist and are
complete.

We give only a brief sketch of its proof. Set

Xn = (−n, n) \
N⋃

k=1

(λk − n−1, λk + n−1).
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Since ‖GR0(λ± iε)G∗‖ is uniformly bounded for λ ∈ Xn, the operator
GE0(Xn) is H0-smooth (cf. the definition (2.2)).

To show a similar result for the operator-function GR(z)G∗, we use
the resolvent identity

(2.3) R(z) = R0(z)−R0(z)V R(z),

whence

(2.4) GR(z)G∗ =
(

Id +GR0(z)G
∗Ω
)−1

GR0(z)G
∗, Im z 6= 0.

It easily follows from self-adjointness of the operator H that the homo-
geneous equation

(2.5) f +GR0(z)G
∗Ωf = 0

has only the trivial solution f = 0 for Im z 6= 0. Since the operator
GR0(z)G

∗ is compact, this implies that the inverse operator in (2.4)
exists. By virtue of equation (2.4), the operator-function GR(z)G∗ is
continuous up to the real axis except the points λk and the set N of λ
such that the equation (2.5) has a non-trivial solution for z = λ + i0
or z = λ − i0. The set N is obviously closed. Moreover, it has the
Lebesgue measure zero by the analytical Fredholm alternative. This
implies that the pair G, H also satisfies the conditions of Theorem 2.2.
It remains to use this theorem.

2. Let us return to the Schrödinger operator H = −∆+v. Potentials
v satisfying (1.6) with ρ > 1 are said to be short range. Below in this
lecture we make this assumption. Let us apply Theorem 2.3 to the pair
H0 = −∆, H. Put r = ρ/2 and G = 〈x〉−r. One can verify (cf. the
proof of Theorem 1.7) that GR0(z)G

∗ is compact for Im z 6= 0 (and
arbitrary r > 0). Next we consider the spectral family E0(λ) which
according to (1.2) satisfies

(2.6) d(E0(λ)f, f)/dλ = ||Γ0(λ)f ||2,

where

(2.7) (Γ0(λ)f)(ω) = 2−1/2λ(d−2)/4f̂(
√
λω)

and f̂ = Φf is the Fourier transform of a function f from, say, the
Schwartz class. Thus, up to a numerical factor, Γ0(λ)f is the re-

striction of f̂ to the sphere of radius
√
λ. Remark further that if

f ∈ 〈x〉−rL2(Rd), then f̂ belongs to the Sobolev space Hr(Rd). Since
r > 1/2, it follows from the Sobolev trace theorem that the operator

Γ0(λ)〈x〉−r : L2(Rd) → L2(Sd−1)
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is bounded and depends (in the operator norm) Hölder continuously
on λ > 0. Therefore according to (2.6) the operator-function GE0(λ)G
is differentiable and its derivative is also Hölder continuous. Now we
use the representation

(R0(z)Gf,Gf) =

∫ ∞

0

(λ− z)−1d(E0(λ)Gf,Gf),

which, by the Privalov theorem, implies that the operator-function
GR0(z)G is continuous in the closed complex plane cut along [0,∞)
except, possibly, the point z = 0. Applying Theorem 2.3, we now
obtain

Theorem 2.4. Let v be short range. Then the wave operators W±(H,H0)
for the pair (1.1) exist and are complete.

Theorem 2.4 implies that for every f ∈ Hac, there is f±0 such that
relation (1.3) holds. Using the well-known expression for kernel of the
integral operator e−itH0 (in the x-representation), we find that

(2.8) (e−itHf)(x) ∼ ei|x|2/4t(2it)−d/2f̂±0 (x/2t).

Here ‘∼’ means that the difference of the left and right hand sides tends
to zero in L2(Rd) as t → ±∞. Thus, the solution ‘lives’ in the region
|x| ∼ |t| of (x, t) space.

As a by-product of our considerations we obtain that the operator-
function GR(z)G is continuous up to real axis, except a closed set
of measure zero. More detailed analysis shows that this set consists of
eigenvalues of the operator H (and possibly the point zero), so that the
singular continuous spectrum of H is empty. Finally, we note that, by
the Kato theorem, the operator H does not have positive eigenvalues.
This gives the following assertion known as the limiting absorption
principle.

Theorem 2.5. Let v be short range and r > 1/2. Then the operator-
function 〈x〉−rR(z)〈x〉−r is norm-continuous in the closed complex plane
cut along [0,∞) except negative eigenvalues of the operator H and, pos-
sibly, the point z = 0.

3. Let us compare Theorems 1.7 and 2.4. If v0 = 0, then Theorem 2.4
is stronger because, in assumption (1.6), it requires that ρ > 1 whereas
Theorem 1.7 requires that ρ > d. Theorem 2.4 can be extended to
some other cases, for example to periodic and long-range v0. In the
first case the spectral family E0(·) can be constructed rather explicitly.
In the second case the limiting absorption principle can be also verified
(see the next lecture). However, contrary to Theorem 1.7, the method
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of proof of Theorem 2.4 gives nothing for arbitrary v0 ∈ L∞. Therefore
the following question naturally arises.

Problem. Let H0 = −∆ + v0(x) and H = −∆ + v0(x) + v(x) where
v satisfies estimate (1.6) for ρ > 1. Do the wave operators W±(H,H0)
exist for an arbitrary v0 ∈ L∞?

This problem is of course related to unification of trace class and
smooth approaches. The following theorem does this to some extent:

Theorem 2.6. Assume that V is of the form V = G∗ΩG, where Ω is
a bounded operator, GR0(z)G

∗ ∈ Sp for some p < ∞, and GR0(z)G
∗

has angular boundary values in Sp for almost every λ ∈ R. Then
W±(H,H0) exist and are complete.

Note that, given Proposition 1.10, Theorem 2.6 provides an inde-
pendent proof of Theorem 1.4. On the other hand, it resembles The-
orem 2.3 of the smooth approach. However it gives nothing for the
solution of the problem formulated above. Most probably, the answer
to the formulated question is negative, which can be considered as a
strong evidence that a real unification of trace class and smooth ap-
proaches does not exist.

4. The stationary method is intimately related to eigenfunction ex-
pansions of the operators H0 and H. Let us discuss this relation on the
example of the Schrödinger operator H with a short range potential.
For the operator H0 = −∆, the construction of eigenfunctions is obvi-

ous. Actually, if ψ0(x, ω, λ) = ei
√

λω·x, then −∆ψ0 = λψ0. This collec-
tion of eigenfunctions is ‘complete’, so eigenfunctions are parametrized
by ω ∈ Sd−1 (for fixed λ > 0). By the intertwining property, the wave
operators W±(H,H0) diagonalize H and hence

HW±Φ∗ = W±Φ∗|ξ|2.

Thus, at least formally, eigenfunctions of H, that is, solutions of the
equation

(2.9) −∆ψ + vψ = λψ,

can be constructed by one of the equalities ψ+(ω, λ) = W+ψ0(ω, λ) or
ψ−(ω, λ) = W−ψ0(ω, λ).

It turns out that this definition can be given a precise sense, and one
can construct solutions of the Schrödinger equation with asymptotics
ψ0(x, ω, λ) at infinity.
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Theorem 2.7. Assume (1.6) is valid for some ρ > d. For every λ > 0
and ω ∈ Sd−1 there is a solution ψ of (2.9) such that
(2.10)

ψ(x, ω, λ) = ei
√

λω·x + a(x̂, ω, λ)
ei
√

λ|x|

|x|(d−1)/2
+ o(|x|−(d−1)/2), x̂ = x/|x|,

where a is a continuous function on Sd−1 × Sd−1.

We interpret the term ei
√

λω·x as an incoming plane wave and the

term |x|−(d−1)/2ei
√

λ|x| as an outgoing spherical wave. The coefficient
a(x̂, ω, λ) is called the scattering amplitude for the incident direction
ω and the direction of observation x̂. Note that a solution of the
Schrödinger equation is determined uniquely by the condition that,
asymptotically, it is a sum of a plane and the outgoing spherical waves.

Under assumption (1.6) where ρ > (d + 1)/2, eigenfunctions of the
operator H may be constructed by means of the following formula:

(2.11) ψ(ω, λ) = ψ0(ω, λ)−R(λ+ i0)V ψ0(ω, λ),

or, equivalently, as solutions of the Lippman-Schwinger equation

ψ(ω, λ) = ψ0(ω, λ) +R0(λ+ i0)V ψ(ω, λ).

We note that, strictly speaking, the second term in the right hand side
of (2.11) is defined by the equality
(2.12)

R(λ+ i0)V ψ0(ω, λ) = R(λ+ i0)〈x〉−1/2−ε
(
V 〈x〉(d+1)/2+2ε

)(ψ0(ω, λ)

〈x〉d/2+ε

)
,

where ε > 0 is sufficiently small. Here 〈x〉−d/2−εψ0(λ, ω) ∈ L2(Rd)
and the operator V 〈x〉(d+1)/2+2ε is bounded. Therefore, by the limiting
absorption principle (Theorem 2.5), the function (2.12) belongs to the
space 〈x〉1/2+εL2(Rd) for any ε > 0. The asymptotics (2.10) is still true
for arbitrary ρ > (d + 1)/2 if the remainder e(x) = o(|x|−(d−1)/2) is
understood in the following averaged sense:

e(x) = oav(|x|−(d−1)/2) ⇐⇒ lim
R→∞

1

R

∫
|x|≤R

|e(x)|2dx = 0.

In this case the scattering amplitude a(x̂, ω, λ) belongs to the space
L2(Sd−1) in the variable x̂ uniformly in ω ∈ Sd−1.

It is often convenient to write ψ in terms of the parameter ξ =
√
λω ∈

Rd, instead of (ω, λ). Thus, we set

ψ−(x, ξ) = ψ(x, ω, λ), ψ+(x, ξ) = ψ−(x,−ξ).
The Schwartz kernels of the wave operators are intimately related to
eigenfunctions. In fact, if we define ‘distorted Fourier transforms’ Φ±
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by

(Φ±f)(ξ) = (2π)−d/2

∫
Rd

ψ±(x, ξ)f(x)dx,

so that Φ±H = |ξ|2Φ±, then we have

(2.13) W± = Φ∗
±Φ0,

where Φ0 = Φ is the classical Fourier transform. Notice that the right
hand side is defined purely in terms of time-independent quantities.
This can be taken to be the definition of the wave operators in the
stationary approach to scattering theory. Historically, it was the first
approach to the study of wave operators suggested by Povzner in [27,
28] and developed further in [10]. Under optimal assumption ρ > 1 in
(1.6) Theorem 2.4 was obtained in [21].

It follows from (2.13) that the scattering operator

(2.14) S = W ∗
+W− = Φ∗

0Φ+Φ∗
−Φ0.

Let H0 be realized (via the Fourier transform) as multiplication by λ in
the space L2(R+;L2(Sd−1)). Since S commutes with H0 and is unitary,
it acts in this representation as multiplication by the operator-function
(scattering matrix) S(λ) : L2(Sd−1) → L2(Sd−1) which is also unitary
for all λ > 0. It can be deduced from (2.14) that

(2.15) (S(λ)f)(ω) = f(ω) + γc(λ)

∫
Sd−1

a(ω, ω′, λ)f(ω′)dω′,

where a is the scattering amplitude defined by (2.10) and

γ = eπi(d−3)/4, c(λ) = i(2π)−(d−1)/2λ(d−1)/4.

If assumption (1.6) is satisfied for ρ > 1 only, then the scattering
matrix satisfies the relation

(2.16) S(λ) = Id−2πiΓ0(λ)
(
V − V R(λ+ i0)V

)
Γ∗0(λ),

which generalizes (2.15). Here Γ0(λ) is the operator (2.7). Since
〈x〉−rV 〈x〉−r is a bounded operator for r = ρ/2 > 1/2, we see that
(2.16) is correctly defined. It follows from formula (2.16) that the op-
erator S(λ) − Id is compact. Thus, the spectrum of S(λ) (which lies
on the unit circle by unitarity) is discrete, and may accumulate only
at the point 1. Moreover, if

(2.17)
∣∣∂αv(x)

∣∣ ≤ Cα〈x〉−ρ−|α|

for all multi-indices α (and ρ > 1), then the kernel k(ω, ω′) of the
operator S(λ)− Id is smooth for ω 6= ω′ and |k(ω, ω′)| ≤ C|ω−ω′|−d+ρ.
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For ρ ∈ (1, (d + 1)/2], construction of eigenfunctions, which behave
asymptotically as plane waves, becomes a difficult problem. In partic-
ular, formula (2.11) makes no sense in this case. One can do some-
thing, but the construction of [32] is rather complicated and requires
the condition (2.17). On the contrary, for arbitrary ρ > 1 we can con-
struct solutions which formally correspond to averaging of ψ(x, ω, λ)
over ω ∈ Sd−1. To illustrate this idea, let us first consider the free case
v = 0. Then, for any b ∈ C∞(Sd−1), the function

u(x) =

∫
Sd−1

ei
√

λω·xb(ω)dω

satisfies −∆u = λu and, by the stationary phase arguments, it has
asymptotics

u(x) = c(λ)−1|x|−(d−1)/2
(
γ̄b(x̂)ei

√
λ|x|−γb(−x̂)e−i

√
λ|x|
)

+o(|x|−(d−1)/2).

In the general case one can also construct solutions of the Schrödinger
equation (2.9) with the asymptotics of incoming and outgoing spherical
waves.

Theorem 2.8. Assume (1.6) is valid for some ρ > 1. Let u be a
solution of the Schrödinger equation (2.9) satisfying∫

|x|≤R

|u(x)|2 dx ≤ CR, for all R ≥ 1.

Then there are b± ∈ L2(Sd−1) such that
(2.18)

u(x) = |x|−(d−1)/2
(
γ̄b+(x̂)ei

√
λ|x| − γb−(−x̂)e−i

√
λ|x|
)

+ oav(|x|−(d−1)/2).

Functions b± are related by the scattering matrix : b+ = S(λ)b−. Con-
versely, for all b+ ∈ L2(Sd−1) (or b− ∈ L2(Sd−1)), there is a unique
function b− ∈ L2(Sd−1) (or b+ ∈ L2(Sd−1)), and a unique solution u of
(2.9) satisfying (2.18).

3. Long range scattering theory

There are different and, to a large extent, independent methods in
long range scattering (see [36]). Here we shall give a brief presentation
of the approach of the paper [34] which relies on the theory of smooth
perturbations.

1. The condition (1.6) with ρ > 1 is optimal even for the existence of
wave operators for the pair H0 = −∆, H = −∆ + v(x). For example,
the wave operators do not exist if v(x) = v0〈x〉−1, v0 6= 0. Never-
theless the asymptotic behaviour of the function exp(−iHt)f for large
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|t| remains sufficiently close to the free evolution exp(−iH0t)f0 if the
condition (2.17) is satisfied for |α| ≤ α0 with α0 big enough. Potentials
obeying this condition for some ρ ∈ (0, 1] are called long-range.

There are several possible descriptions of exp(−iHt)f as t → ±∞.
One of them is a modification of the free evolution which, in its turn,
can be done either in momentum or in coordinate representations. Here
we discuss the coordinate modification. Motivated by (2.8), we set

(3.1) (U0(t)f)(x) = exp(iΞ(x, t))(2it)−d/2f̂(x/(2t)),

where the choice of the phase function Ξ depends on v. Then the wave
operators are defined by the equality

(3.2) W± = s- lim
t→±∞

eiHtU0(t).

To be more precise, these limits exist if the function Ξ(x, t) is a (per-
haps, approximate) solution of the eikonal equation

∂Ξ/∂t+ |∇Ξ|2 + v = 0.

For example, if ρ > 1/2, we can neglect here the nonlinear term |∇Ξ|2
and set

(3.3) Ξ(x, t) = (4t)−1|x|2 − t

∫ 1

0

v(sx)ds.

In the general case one obtains an approximate solution of the eikonal
equation by the method of successive approximations. With the phase
Ξ(x, t) constructed in such a way, for an arbitrary f̂ ∈ C∞

0 (Rd \ {0}),
the function U0(t)f is an approximate solution of the time-dependent
Schrödinger equation in the sense that∣∣∣∫ ±∞

1

||(i∂/∂t−H)U0(t)f ||dt
∣∣∣ <∞.

This condition implies that the vector-function ∂eiHtU0(t)f/∂t ∈ L1(R)
and hence the limit (3.2) exists. The modified wave operators have all
the properties of usual wave operators. They are isometric, W±H0 =
HW± and ranW± ⊂ Hac. As in the short-range case, the wave operator
is said to be complete if ranW± = Hac. Only the completeness of W±
is a non-trivial mathematical problem. As we shall see below, it has a
positive solution which implies that for every f ∈ Hac, there is f±0 such
that (cf. (2.8))

(3.4) (e−itHf)(x) ∼ eiΞ(x,t)(2it)−d/2f̂±0 (x/2t).

Thus, in the short and long range cases, the large time asymptotics
of solutions of the time-dependent Schrödinger equation differ only by
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the phase factor. In particular, in both cases they live in the region
|x| ∼ |t| of (x, t) space.

2. For the proof of completeness of wave operators, we need some
analytical results which we discuss now. Note first of all that the
limiting absorption principle, Theorem 2.5, remains true if assumption
(2.17) is satisfied for some ρ > 0 and |α| ≤ 1. However perturbative
arguments of the previous lecture do not work for long range potentials.
The simplest proof (see the original paper [24] or the book [6]) of the
limiting absorption principle relies in this case on the Mourre estimate:

(3.5) iE(I)[H,A]E(I) ≥ cE(I), A = −i
d∑

j=1

(∂jxj + xj∂j), c > 0,

where I is a sufficiently small interval about a given λ > 0. This is
not too hard to prove for long-range two body potentials (but is much
harder for multiparticle operators). To be more precise, the Mourre
estimate implies that the operator-function 〈x〉−rR(z)〈x〉−r is norm-
continuous up to positive half-axis, except for a discrete set of eigen-
values of the operator H. In particular, the operator 〈x〉−r is locally
H-smooth which is sufficient for scattering theory. Moreover, indepen-
dent arguments (see, e.g., [30]) show that the Schrödinger operator H
does not have positive eigenvalues.

Unfortunately, the operator 〈x〉−1/2 is not (locally) H-smooth even
in the case v = 0. However, there is a substitute:

Theorem 3.1. Let assumption (2.17) be satisfied for some ρ > 0 and
|α| ≤ 1. Set

(∇⊥
j u)(x) = (∂ju)(x)− |x|−2((∇u)(x) · x)xj, j = 1, . . . , d.

Then the operators 〈x〉−1/2∇⊥
j E(Λ) are H-smooth for any compact Λ ⊂

(0,∞).

The proof is based on the equality

2|x|−1

d∑
j=1

|∇⊥
j u|2 = ([H, ∂r]u, u) + (v1u, u), v1(x) = O(|x|−1−ρ),

which is obtained by direct calculation. Since 〈x〉−(1+ρ)/2E(Λ) is H-
smooth, we only have to consider the term [H, ∂r]. For this we note
that

i

∫ t

0

(
[H, ∂r]e

−isHf, e−isHf
)
ds = (∂re

−itHf, e−itHf)− (∂rf, f).
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For f ∈ ranE(Λ), the right hand side is bounded by C(Λ)‖f‖2, so this
shows H-smoothness of the operators 〈x〉−1/2∇⊥

j E(Λ).
Note that the commutator method used for the proof of Theorem 3.1

goes back to Putnam [29] and Kato [20].

3. Our proof of completeness relies on consideration of wave opera-
tors (1.5) with a specially chosen operator J . Let us look for J in the
form of a pseudodifferential operator

(3.6) (Jf)(x) = (2π)−d/2

∫
Rd

eix·ξp(x, ξ)f̂(ξ)dξ.

We shall work in the class of symbols Sm
ρ,δ consisting of functions

p(x, ξ) ∈ C∞(Rd × Rd) satisfying the estimates∣∣∂α
x∂

β
ξ p(x, ξ)

∣∣ ≤ Cα,β〈x〉m−ρ|α|+δ|β|

for all multi-indices α and β. In addition, we shall assume that p van-
ishes for |ξ| ≥ R, for some R. The number m is called the order of the
symbol, and of the corresponding pseudodifferential operator. Com-
pared to the usual calculus, here the roles of x and ξ are interchanged:
we require some decay estimates as |x| → ∞, rather than as |ξ| → ∞
in the usual situation. We shall assume that 0 ≤ δ < 1/2 < ρ ≤ 1. The
symbol p(x, ξ) of the operator J belongs to the class S0

ρ,δ. We recall

that operators of order zero are bounded on L2(Rd).

Since

deiHtJe−iH0t/dt = ieiHt
(
HJ − JH0)e

−iH0t,

it is desirable to find such J that the effective perturbation HJ − JH0

be short-range (a pseudodifferential operator of order −1−ε for ε > 0).
This means that ψ(x, ξ) = eix·ξp(x, ξ) is an approximate eigenfunction
of the operator H, with eigenvalue |ξ|2, for each ξ. Let us look for ψ
in the form ψ(x, ξ) = eiφ(x,ξ). Then

(−∆ + v(x)− |ξ|2)ψ = (|∇φ|2 + v(x)− |ξ|2 − i∆φ)ψ,

which leads to the eikonal equation

|∇φ|2 + v(x) = |ξ|2.

Suppose that

(3.7) φ(x, ξ) = x · ξ + Φ(x, ξ),

where

(3.8) ∂α
x∂

β
ξ Φ(x, ξ) = O(|x|1−ρ−|α|).
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Then

(3.9) |∇φ|2 + v(x)− |ξ|2 = 2ξ · ∇Φ + |∇Φ|2 + v(x)

and neglecting the nonlinear term we obtain the equation

(3.10) 2ξ · ∇xΦ + v(x) = 0.

We need its two solutions given by the equalities

(3.11) Φ±(x, ξ) = ±1

2

∫ ∞

0

(
v(x± tξ)− v(±tξ)

)
dt.

Clearly, these functions Φ± satisfy assumption (3.8) but only off a conic
neighbourhood of x = ∓ξ.

Thus, two problems arise. The first is that, to obtain in (3.6) a
symbol p± from the class S0

ρ,δ, we need to remove by a cut-off function

ζ±(x, ξ) a small conic neighbourhood of the set x̂ = ∓ξ̂. Thus, we
are obliged to consider the wave operators for two different operators
J±. This idea appeared in [11] and will be realized below. The second
problem is that the term |∇Φ|2 neglected in (3.9) is ‘short range’ only
for ρ > 1/2. Of course, it is easy to solve the eikonal equation by
iterations, considering at each step a linear equation of type (3.10),
and to obtain a ‘short range’ error for arbitrary ρ > 0. However, even
after the cut-off by the function ζ±(x, ξ), we obtain the symbol p± from
the class S0

ρ,1−ρ, which is bad if ρ ≤ 1/2. To overcome this difficulty,
we need to take into account the oscillating nature of p± (see [35]).

4. Below we suppose that ρ > 1/2. Let σ± ∈ C∞ be such that
σ±(θ) = 1 near ±1 and σ±(θ) = 0 near ∓1. We construct J± by the
formula (3.6) where

(3.12) p±(x, ξ) = eiΦ±(x,ξ)ζ±(x, ξ)

and the cut-off function ζ±(x, ξ) essentially coincides with σ±(〈x̂, ξ̂〉).
We deliberately ignore here some technical details which can be found
in [34]. For example, strictly speaking, additional cut-offs of low and
high energies by a function of |ξ|2 and of a neighbourhood of x = 0
by a function of x should be added to ζ±(x, ξ). Then the operators
J± so constructed are pseudodifferential operators of order 0 and type
(ρ, δ = 1− ρ).

Note that Theorem 2.2 extends automatically to the wave operators
(1.5). Thus, we are looking for a factorization

HJ± − J±H0 = G∗ΩG,

where G is locally H0- and H-smooth and the operator Ω is bounded.
Let us recall that the operator 〈x〉−r is H-smooth, for any r > 1/2.
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Since zeroth order pseudodifferential operators are bounded on L2(Rd),
a factorization as above would have been true if HJ−JH0 were of order
−1− ε for some ε > 0.

However, the pseudodifferential operator HJ± − J±H0 has symbol
decaying only as |x|−1; this is from one derivative of −∆ hitting eix·ξ

and one hitting ζ±. Notice that the symbol of the ‘bad’ term equals

−2ieiΦ±(x,ξ)〈ξ,∇xσ±(〈x̂, ξ̂〉)〉.

It only decays as |x|−1 but is supported outside a conic neighbourhood

of the set where x̂ = ξ̂ or x̂ = −ξ̂. Therefore,

HJ−JH0 =
d∑

j=1

(〈x〉−1/2∇⊥
j )∗Ωj(〈x〉−1/2∇⊥

j )+〈x〉−rΩ0〈x〉−r, r > 1/2,

where Ωj, j = 0, 1, . . . , d, are order zero pseudodifferential operators.
Using Theorem 3.1 for the first d terms, and the limiting absorption
principle for the last one, we obtain

Proposition 3.2. Each of the wave operators W±(H,H0, Jτ ) and
W±(H0, H, J

∗
τ ) exists for τ = ‘+’ and τ = ‘−’.

The next step is to verify

Proposition 3.3. The operators W±(H,H0; J±) are isometric and the
operators W±(H,H0; J∓) vanish.

Indeed, it suffices to check that

(3.13) s- lim
t→±∞

(J∗±J± − I)e−iH0t = 0

and

(3.14) s- lim
t→±∞

J∗∓J∓e
−iH0t = 0.

According to (3.12), up to a compact term, J∗∓J∓ equals the pseudo-
differential operator Q∓ with symbol ζ2

∓(x, ξ). If t → ±∞, then the
stationary point ξ = x/(2t) of the integral

(3.15) (Q∓e
−iH0tf)(x) = (2π)−d/2

∫
Rd

ei〈ξ,x〉−i|ξ|2tζ2
∓(x, ξ)f̂(ξ)dξ

does not belong to the support of the function ζ2
∓(x, ξ). Therefore sup-

posing that f ∈ S(Rd) and integrating by parts, we estimate integral
(3.15) by CN(1+ |x|+ |t|)−N for an arbitrary N . This proves (3.14). To
check (3.13), we apply the same arguments to the PDO with symbol
ζ2
±(x, ξ)− 1.
Now it is easy to prove the asymptotic completeness.
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Theorem 3.4. Suppose that condition (2.17) is fulfilled for ρ > 1/2
and all α. Then the wave operators W±(H,H0; J±) exist, are isometric
and complete.

Since W±(H0, H; J∗∓) = W ∗
±(H,H0; J∓), it follows from Proposi-

tion 3.3 that W±(H0, H; J∗∓) = 0. This implies that

(3.16) lim
t→±∞

||J∗∓e−iHtf || = 0, f ∈ Hac.

Let us choose the functions σ± in such a way that σ2
+(θ) + σ2

−(θ) = 1.
Then

J+J
∗
+ + J−J

∗
− = Id +K

for a compact operator K and hence

||J∗+e−iHtf ||2 + ||J∗−e−iHtf ||2 = ||f ||2 + o(1)

as |t| → ∞. Now it follows from (3.16) that

lim
t→±∞

||J∗±e−iHtf || = ||f ||.

This is equivalent to isometricity of the wave operators

W±(H0, H; J∗±) = W ∗
±(H,H0; J±),

so that W±(H,H0; J±) are complete.

We emphasize that Theorem 3.4 and, essentially, its proof remain
valid for an arbitrary ρ > 0.

Now it easy to justify the asymptotics (3.4). By existence and com-
pleteness of the wave operator W±(H,H0, J±), we have

lim
t→±∞

‖e−itHf − J±e
−itH0f±0 ‖ = 0, f±0 = W±(H0, H, J

∗
±)f.

The critical point ξ(x, t) of the integral
(3.17)

(J±e
−itH0f±0 )(x) = (2π)−d/2

∫
Rd

eix·ξeiΦ±(x,ξ)ζ±(x, ξ)e−it|ξ|2 f̂±0 (ξ) dξ

is defined by the equation

2tξ(x, t) = x+∇ξΦ±(x, ξ(x, t)), ±t > 0,

so that ξ(x, t) = x/(2t) + O(|t|−ρ). Applying stationary phase to the
integral (3.17), we obtain formula (3.4) with function

Ξ(x, t) = |x|2/(4t) + Φ±(x, x/(2t)),

which equals (3.3).

5. In the long range case the scattering operator S is defined again
by formula (1.4) where W± = W±(H,H0, J±). Thus, again S is unitary
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and commutes with H0, so defines a family of scattering matrices S(λ)
which are unitary operators on L2(Sd−1) for λ > 0.

However the structure of the spectrum of the scattering matrix in
the short and long range cases are completely different. Typically, in
the long range case the spectrum of S(λ) covers the unit circle. The
nature of this spectrum is in general not known, except in the radially
symmetric case (that is, when the potential v is a function only of
|x|). In that case, the scattering matrix commutes with the Laplacian
on Sd−1, so it breaks up into the orthogonal sum of finite dimensional
operators. Hence the spectrum is dense pure point in this case.

The kernel s(ω, ω′, λ) of S(λ) is still smooth away from the diagonal,
but near the diagonal it, typically, has the form (for ρ < 1)

(3.18) s(ω, ω′, λ) ∼ c(ω, λ)|ω − ω′|−(d−1)(1+ρ−1)/2eiθ(ω,ω′,λ),

where θ(ω, ω′, λ) is asymptotically homogeneous of order 1 − ρ−1 as
ω − ω′ → 0.

In the long range case practically nothing is known about eigen-
functions, which behave asymptotically as plane waves. Moreover, as
shows the explicit formula (see, e.g., [22]) for the Coulomb potential
v(x) = v0|x|−1, in this case the separation of the asymptotics of eigen-
functions into the sum of plane and spherical waves loses, to a large
extent, its sense. On the contrary, Theorem 2.8 extends [9] to arbitrary
long range potentials.

4. The scattering matrix. High energy and smoothness
asymptotics

This section relies on the paper [37].

1. Let us begin with the short range case, (1.6) with ρ > 1. Then
there is a stationary representation (2.16) of the scattering matrix.
Using the Sobolev trace theorem and the dilation transformation x 7→
λ−1/2x, we can show (see [36], for details) that, for any r > 1/2, the
operator (2.7) satisfies the estimate

‖Γ0(λ)〈x〉−r‖ ≤ C(r)λ−1/4.

Similarly, one can control the dependence on λ in the limiting absorp-
tion principle, which yields

‖〈x〉−rR(λ+ i0)〈x〉−r‖ ≤ C(r)λ−1/2.

The representation (2.16) allows us to study by a simple iterative
procedure the behaviour of the scattering matrix S(λ) in the two as-
ymptotic regimes of interest, namely for high energies and in smooth-
ness of its kernel. In fact these two regimes are closely related. Namely,
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we use the resolvent identity (2.3) and substitute its right hand side in
place of the resolvent R(λ+ i0) in (2.16). This gives us a series known
as the Born approximation:

S(λ) = Id−2πi
N∑

n=0

(−1)nΓ0(λ)V
(
R0(λ+ i0)V

)n

Γ∗0(λ) + σN(λ).

The error term, σN(λ) is O(λ−(N−2)/2) in operator norm, and in ad-
dition gets smoother and smoother in the sense that σN(λ) ∈ Sα(N),
where αN → 0 as N →∞.

However, the Born approximation has several drawbacks. First, it
is actually quite complicated, involving multiple oscillating integrals of
higher and higher dimensions as n increases. Second, it does not apply
to long range potentials, or to magnetic, even short range, potentials.
Here we discuss another, much simpler, form of approximation which
applies to all these situations but requires assumptions of the type
(2.17).

2. To give an idea of the approach, suppose first for simplicity that
v ∈ C∞

0 (Rd) (though the argument can be applied to a wider class
of potentials). Let the solution of the Schrödinger equation (2.9) be
defined by formula (2.11). By (2.16), the integral kernel k(ω, ω′, λ) of
the operator S(λ)− Id may be written as

(4.1) k(ω, ω′, λ) = −iπ(2π)−dλ(d−2)/2

∫
Rd

e−i
√

λx·ωv(x)ψ(x, ω′, λ) dx.

Since this is an integral over a compact region, to analyze the asymp-
totics of k(ω, ω′, λ) as λ→∞, it suffices to construct the asymptotics
of ψ(x, ω, λ) for bounded x as λ→∞.

This can be done by the following well known procedure [5]. As-
suming for a moment only (2.17) for ρ > 1, one seeks ψ(x, ω, λ) in the
form
(4.2)

ψ(x, ξ) = eix·ξb(x, ξ), b(x, ξ) =
N∑

n=0

(2i|ξ|)−nbn(x, ξ̂), b0 = 1, ξ =
√
λω.

Plugging (4.2) into the Schrödinger equation (2.9), and equating powers
of |ξ|, we obtain equations

(4.3) ξ̂ · ∇xbn+1 = −∆bn + vbn.

The remainder term

rN(x, ξ) = e−ix·ξ(−∆ + v(x)− |ξ|2)ψ(x, ξ)
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is then given by

rN(x, ξ) = (2i|ξ|)−N
(
−∆bN(x, ξ̂) + v(x)bN(x, ξ̂)

)
.

Equations (4.3) can be explicitly solved:

bn+1(x, ξ̂) =

∫ 0

−∞

(
−∆bn(x+ tξ̂, ξ̂) + v(x+ tξ̂)bn(x+ tξ̂, ξ̂)

)
dt.

It is easy to see that

(4.4)

∣∣∂α
x∂

β
ξ bn(x, ξ̂)

∣∣ ≤ Cα,β〈x〉−(ρ−1)n−|α||ξ|−|β|,∣∣∂α
x∂

β
ξ rN(x, ξ)

∣∣ ≤ Cα,β〈x〉−1−(ρ−1)(N+1)−|α||ξ|−N−|β|,

except on arbitrary conic neighbourhoods of the bad direction x̂ = ξ̂.
If v is compactly supported, then the estimates in x are inessential,

so it follows from (4.1) and (4.2) that

k(ω, ω′, λ) = −iπ(2π)−dλ
d−2
2

N∑
n=0

(2i
√
λ)−n

∫
Rd

ei
√

λx·(ω′−ω)v(x)bn(x, ω′) dx

+O(λ(d−3)/2−N/2).

Since N is arbitrary, this gives the asymptotic expansion of the scat-
tering amplitude as λ → ∞. We note that k ∈ C∞(Sd−1 × Sd−1)
in the variables ω and ω′, so the smoothness asymptotics in the case
v ∈ C∞

0 (Rd) is trivial.

3. Finally, we give a universal formula which applies in both the long
range and magnetic cases. We shall need two approximate solutions
ψ± of the Schrödinger equation(

i∇+ a(x)
)2
ψ± + v(x)ψ± = |ξ|2ψ±.

We suppose that a vector (or magnetic) potential a(x) as well as scalar
potential v(x) satisfy the condition (2.17) for some ρ > 0. Let us look
for ψ± in the form

(4.5) ψ±(x, ξ) = eiφ±(x,ξ)b±(x, ξ),

where φ = φ± is defined by formula (3.7) and Φ = Φ± satisfies (3.8).
Plugging (4.5) into the Schrödinger equation, we obtain the eikonal
equation for φ:

(4.6) |∇xφ|2 − 2a(x) · ∇xφ+ v0(x) = |ξ|2, v0(x) = |a(x)|2 + v(x).

If ρ > 1 and a = 0, then one can set Φ = 0. In this case ψ−(x, ξ) =

ψ(x, ξ) and ψ+(x, ξ) = ψ(x,−ξ) where the function ψ(x, ξ) was con-
structed in the previous subsection. However, even if a is short range
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(but does not vanish), then, for the study of the limit λ → ∞, one
cannot avoid the eikonal equation.

Once again, the equation (4.6) for function φ = φ± defined by for-
mula (3.7) where Φ = Φ± can be solved by successive approximations:

Φ(x, ξ) =

N0∑
n=0

(2|ξ|)−nφn(x, ξ̂).

Here

ξ̂ · ∇φ0 + ξ̂ · a = 0,

ξ̂ · ∇φ1 + |∇φ0|2 − 2a · ∇φ0 + v0 = 0

ξ̂ · ∇φn+1 +
n∑

m=0

∇φm · ∇φn−m − 2a · ∇φn = 0, n ≥ 1.

So at every step we have an equation

ξ̂ · ∇xφ(x, ξ̂) + f(x, ξ̂) = 0,

with, possibly a long range function f . This equation can be solved by
one of the two formulas (cf. (3.10), (3.11))

(4.7) φ±(x, ξ) = ±
∫ ∞

0

(
f(x± tξ̂, ξ̂)− f(±tξ̂, ξ̂)

)
dt.

Using both signs ‘+’ and ‘−’, we obtain functions φ± satisfying (4.6)
up to a term q±(x, ξ) such that∣∣∂α

x∂
β
ξ q±(x, ξ)

∣∣ ≤ Cα,β〈x〉−N0ρ−|α||ξ|−N0−|β|

for all (x, ξ) excluding an arbitrary conic neighbourhood of the direction

x̂ = ξ̂ for the minus sign, or x̂ = −ξ̂ for the plus sign. One chooses and
fixes N0 such that N0ρ > 1.

Then for b± one has the transport equation
(4.8)
−2iξ ·∇b±+2i(a−∇Φ±) ·∇b±−∆b±+(−i∆Φ±+ idiv a+q±)b± = 0.

As before, one looks for b± = b
(N)
± in the form (4.2) which gives stan-

dard equations

ξ̂ · ∇xb
(±)
n+1(x, ξ̂) = f (±)

n (x, ξ̂),

where f
(±)
n are determined by functions b

(±)
1 , . . . , b

(±)
n . These equations

are solved by formula (4.7) (but the term f
(±)
n (±tξ̂) can be dropped).

Then the functions b
(±)
n and the remainder r

(±)
N in the transport equa-

tion satisfy estimates of the type (4.4) for some ρ > 1. As N → ∞,
we obtain a function (4.5) satisfying the Schrödinger equation with an
arbitrary given accuracy both in the variables x and ξ.
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Now we can give an approximate formula for the scattering ampli-
tude. Remark that away from the diagonal, it is not hard to show
that the kernel s(ω, ω′, λ) of the scattering matrix S(λ) is smooth and
O(λ−∞), so the main point is to understand the kernel when ω and ω′

are close to some given point ω0. Let ω0 ∈ Sd−1 be arbitrary, let Πω0

be the plane orthogonal to ω0 and x = zω0 + y, y ∈ Πω0 . Set
(4.9)

s0(ω, ω
′, λ) = ∓πiλ(d−2)/2(2π)−d

∫
Πω0

(
ψ+(y,

√
λω)∂zψ−(y,

√
λω′)

−∂zψ+(y,
√
λω)ψ−(y,

√
λω′)− 2i(a(y) · ω0)ψ+(y,

√
λω)ψ−(y,

√
λω′)

)
dy.

Here s0 = s
(N)
0 depends on N , since the construction above depends

on a choice of N . On the contrary, it does not depend on N0 which
is fixed. Let Ω± = Ω±(ω0, δ) ⊂ Sd−1 be determined by the condition
±ω · ω0 > δ > 0 and Ω = Ω+ ∪ Ω−. Then we have

Theorem 4.1. For all integer p, there is an N = N(p) such that

s̃
(N)
0 (ω, ω′, λ) := s(ω, ω′, λ)− s

(N)
0 (ω, ω′, λ) ∈ Cp(Ω× Ω)

and ∥∥s̃(N)
0 (·, ·, λ)

∥∥
Cp ≤ Cλ−p.

We make some brief comments on the proof of this theorem. Note
that the representation formula (2.16) holds in the general short range
case, when both electric and magnetic potentials are present. However
it is useless for the proof of Theorem 4.1 even for purely electric short
range potentials.

As in the previous lecture, one considers instead modified wave op-
erators W±(H,H0, J±), where

(J±f)(x) = (2π)−d/2

∫
Rd

ψ±(x, ξ)ζ±(x, ξ)f̂(ξ) dξ

and the functions ψ±(x, ξ) are defined by formula (4.5). Compared to
the previous lecture, there are two important differences in the con-
struction of the operators J±. First, we cannot neglect high energies
and therefore have to control the dependence on ξ in all estimates.
Second, for the proof of the existence and completeness of the wave
operators, it was sufficient to take b± = 1 in (4.5). On the contrary,

now b± = b
(N)
± is an approximate solution of the transport equation
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(4.8) depending on the parameter N , which allows us to obtain an ar-

bitrary good approximation ψ± = ψ
(N)
± to solutions of the Schrödinger

equation.
Writing T± for the effective perturbation,

T± = HJ± − J±H0,

we have (see [12, 34, 36])

S(λ) = S0(λ) + S1(λ),

where

(4.10)
S0(λ) = −2πiΓ0(λ)J∗+T−Γ∗0(λ),

S1(λ) = 2πiΓ0(λ)T ∗+R(λ+ i0)T−Γ∗0(λ).

Note that T± is a pseudodifferential operator of order −1, so that pre-
cise meaning of (4.10) needs to be explained. The special reason why
S0 is correctly defined is that the amplitude of the pseudodifferential
operator J∗+T− is zero in a neighbourhood of the set where x̂ is close

to ξ̂ or −ξ̂ or, to put it differently, in a neighbourhood of the conormal
bundle to every sphere |ξ| =

√
λ.

The term S1(λ) turns out to be negligible for large N .

Theorem 4.2. For all integer p, there is an N = N(p) such that

s
(N)
1 (ω, ω′, λ) ∈ Cp(Sd−1 × Sd−1),

and ∥∥s(N)
1 (·, ·, λ)

∥∥
Cp ≤ Cλ−p.

The proof relies on propagation estimates (see [25, 14, 13]) following
from the Mourre estimate (3.5). We give an example of such an esti-
mate. Let again A be the generator of dilations. Then for all integers
p ∥∥〈x〉pEA(R−)R(λ+ i0)EA(R+)〈x〉p

∥∥ = O(λ−1).

Thus, the interesting part of the scattering matrix is contained in
the term S0(λ) of (4.10). It is very explicit representation, but has a
drawback because it depends on the cutoffs ζ±. So one has to transform
the expression for S0(λ) to the invariant expression (4.9), which does
not contain the cutoffs ζ±. This is the least obvious part of the proof
of Theorem 4.1.

Finally, we note that formula (3.18) for the diagonal singularity of
the scattering amplitude can be obtained applying the stationary phase
method to integral (4.9).
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