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Abstract
We give a simple criterion for slope stability of Fano manifolds X along divisors

or smooth subvarieties. As an application, we show thatX is slope stable along an
ample effective divisorD � X unlessX is isomorphic to a projective space andD
is a hyperplane section. We also give counterexamples to Aubin’s conjecture on the
relation between the anticanonical volume and the existence of a Kähler–Einstein
metric. Finally, we consider the case that dimX D 3; we give a complete answer for
slope (semi)stability along divisors of Fano threefolds.

1. Introduction

Let X be a Fano manifold, that is, a smooth projective variety suchthat the anti-
canonical divisor�KX of X is ample. It has been conjectured that theK -polystability
of (X, �KX) is equivalent to the existence of Kähler–Einstein metrics. However it is
difficult to judge the K -(poly, semi)stability in general. In this article, we consider
slope stability, which was introduced by Ross and Thomas (see [18]), that is weaker
than K -stability but is easy to describe. For example, the case a Fano manifold is not
slope (semi)stable along a smooth curve has been completelyclassified, see [6] and [8].

First, we give a simple criterion for slope stability of Fanomanifolds along div-
isors (or smooth subvarieties).

Proposition 1.1 (see Proposition 3.2 for detail). For a Fano manifold X and a
divisor D � X, X is slope stable(resp. slope semistable) along D if and only if
� (D) > 0 (resp.� 0), where

� (D) D volX(�KX)C (�(D) � 1) volX(KX � �(D)D) �
Z

�(D)

0
volX(�KX � x D) dx

and �(D) is the Seshadri constant of D with respect to�KX.

As an application, we can investigate the case whereD � X is an ample divisor.
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Theorem 1.2 (D Theorem 4.6 (1)). For a Fano manifold X and an ample div-
isor D � X, X is slope stable along D unless X is isomorphic to a projective space
and D is a hyperplane section.

We also construct the Fano manifolds which are not slope semistable along some div-
isors but have “small” anticanonical volumes, which are counterexamples to the following
Conjecture 1.3 (cf. Remark 5.6) on the relation between the anticanonical volume ofX
and the existence of a Kähler–Einstein metric onX.

Conjecture 1.3 (see also Remark 5.6). Let X be a Fano n-fold. If the anticanonical
volumevolX(�KX) is less than((nC 1)2=(2n))n, then X admits Kähler–Einstein metrics.

Counterexample 1.4(D Corollary 5.5). For any n� 4, there exists a Fano n-fold
X such thatvolX(�KX) D 2(3n

� 1) (hence2(3n
� 1)< ((nC 1)2=(2n))n holds if n� 5)

but X does not admit Kähler–Einstein metrics.

Finally, using the classification result [12], we give the complete answer for slope
(semi)stability of Fano threefolds along divisors:

Theorem 1.5 (D Theorem 6.2). Let X be a smooth Fano threefold.
(1) X is slope semistable along any effective divisor but there exists a divisor D� X
such that X is not slope stable along D if and only if X is isomorphic to one of:

P

3, P

1
� P

2, P

P

1
�P

1(O(0, 1)�O(1, 0)),

P

1
� P

1
� P

1, P

1
� Sm (1� m� 7).

(2) There exists a divisor D� X such that X is not slope semistable along D if and
only if X is isomorphic to one of:

Bl line Q
3, Blline P

3, P

P

2(O�O(1)), P

P

2(O�O(2)),

P

1
� F1, P

F1(O�O(eC f )), P

P

1
�P

1(O�O(1, 1)).

Notation and terminology. We always consider over the complex number field
C. A variety means an irreducible and reduced scheme of finite type over SpecC. The
theory of extremal contraction, we refer the readers to [9].For a projective varietyX,
let Eff(X) (resp. Nef(X)) be the effective (resp. nef) cone which is defined as the cone
in N1(X) spanned by the classes of effective (resp. nef) divisors onX. For a complete
variety X, the Picard number ofX is denoted by�X. For a smooth projective variety
X, let NE(X) be the cone in N1(X) spanned by effective 1-cycles onX, and NE(X)
the closure of NE(X) in N1(X). For a smooth projective varietyX and aKX-negative
extremal rayR� NE(X), we define thelength l(R) of R by

l (R) WD min{(�KX � C) j C is a rational curve with [C] 2 R},



SLOPE STABILITY OF FANO MANIFOLDS 73

and we definea minimal rational curve of Rsuch that a rational curveC � X with
[C] 2 R and (�KX � C) D l (R).

For an algebraic varietyX and a closed subschemeY � X, denotes corresponding
ideal sheafIY �OX , and BlYW BlY(X)! X or BlIYW BlIY (X)! X denotes the blowing
up of X along Y.

For algebraic varietiesX1, : : : , Xk, we write the projectionp1,:::,t W X1� � � � � Xk!

X1 � � � � � Xt .
We say X is a Fano manifold if X is a smooth projective variety whose anti-

canonical divisor�KX is ample. We note that ifX is a Fano manifold, then there
is the canonical embedding Pic(X) ,! N1(X). For a Fano manifoldX, let the Fano
index of X be

max{r 2 Z
>0 j �KX � r L for some Cartier divisorL}.

For a completen-dimensional varietyX and a nef Cartier divisor (or a nef invertible
sheaf)D on X, the volumeof D (denotes volX(D)) means the self intersection number
(Dn) of D.

The symbolQn denotes a smooth hyperquadric inPnC1. The symbolF1 denotes
the Hirzebruch surface having the (�1)-curve e � F1, and let f � F1 be a fiber of
P

1-bundleF1! P

1. The symbolSm (1�m� 7) denotes a (smooth) del Pezzo surface
S (Fano 2-fold) such that the anticanonical volume volS(�KS) is equal tom.

2. Slope stabilities of polarized varieties

We recall slope stability of polarized varieties, which hasbeen introduced by Ross
and Thomas. See [18] in detail.

DEFINITION 2.1. Let (X, L) be a polarized variety of dimX D n, let Z � X be
a closed subscheme, let� W OX ! X be the blowing up ofX along Z and let E � OX
be the Cartier divisor defined byO

OX(�E) D ��1IZ �O OX .
• Let �(IZ I (X, L)) be theSeshadri constant of Z with respect to L(we often write
�(Z, X) or �(Z) instead of�(IZI (X, L)) for simplicity), which is defined as follows:

�(IZ I (X, L)) WD max{c 2 R
>0 j �

�L � cE is nef on OX}.

• For k, xk 2 N with k� 0, we can write

�( OX, � �(kL) � xkE) D a0(x)kn
C a1(x)kn�1

C � � � C an(x),

whereai (x) 2Q[x]. Let �c(IZ ,L) be theslope of Z with respect to L and c2 (0,�(Z)]
(we often write�c(Z) instead of�c(IZ , L) for simplicity), which is defined as follows:

�c(IZ , L) WD

R c
0 (a1(x)C a00(x)=2) dx

R c
0 a0(x) dx

.
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We also definethe slope of X with respect to Las

�(X) D �(X, L) WD
a1

a0
,

whereai 2 Q are defined by�(X, r L ) D a0r n
C a1r n�1

C � � � C an.

DEFINITION 2.2 (slope (semi)stability). Let (X, L) (we often omit the polariza-
tion L) and Z � X be as above.

(X, L) is slope stable(resp.slope semistable) along Z if:
• slope semistability:
�c(Z) � �(X) for all c 2 (0, �(Z)],
• slope stability:
�c(Z) < �(X) for all c 2 (0, �(Z)), and also forc D �(Z) if �(Z) 2 Q and global
sections ofLk


 I
k�(Z)
Z saturates fork� 0.

For a polarized variety (X, L) and a coherent ideal sheafI � OX with
OBlI (X)(�E) WD BlI

�1I � OBlI (X), global sections of L
 I saturatesif Bl I
�L(�E)

is spanned by global sections ofL 
 I. This condition is weaker than the condition
such thatL 
 I is globally generated.

REMARK 2.3. If X is a Fano manifold, then we omit the polarization (X,�KX).
More precisely,slope stability of X along a closed subscheme Z� X is nothing but
slope stability of (X, �KX) along a closed subschemeZ � X.

The following is a fundamental result.

Theorem 2.4 ([5], [18]). Let (X, L) be a polarized manifold. If(X, L) admits a
Kähler metric with constant scalar curvature, then (X, L) is slope semistable along any
closed subscheme Z� X.

In particular, for a Fano manifold X, if X admits a Kähler–Einstein metric then
X is slope semistable along any closed subscheme Z� X.

3. Slope stability of Fano manifolds along smooth subvarieties or divisors

In this section, we fix the notation.

NOTATION 3.1. We set thatX is a Fanon-fold and Z � X is a smooth sub-
variety of codimensionr � 2 or an effective divisor (not necessary smooth). IfZ is
an effective divisor onX, we setr WD 1. We set� WD BlZ W OX ! X. Let E � OX be
the divisor which satisfiesO

OX(�E) ' �

�1IZ (i.e., if r � 2 then E is the exceptional
divisor of � , and if r D 1 then� is the identity morphism andE D Z).
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Under the notation, we consider slope stability ofX along Z � X. We can
show that

a0(x) D
1

n!
vol

OX(� �(�KX) � x E),

a1(x) D
1

2 � (n� 1)!
(�K

OX � (�
�(�KX) � x E)n�1),

�(X) D
n

2

by the weak Riemann–Roch formula (cf. [8]). Thus for 0< c � �(Z), we have

�c(Z) < �(X)

,

Z c

0
(r � x)(E � (� �(�KX) � x E)n�1) dx > 0

, r volX(�KX)C (c� r ) vol
OX(� �(�KX) � cE)

�

Z c

0
vol

OX(� �(�KX) � x E) dx > 0.

We set

�c(Z) WD r volX(�KX)C (c� r ) vol
OX(� �(�KX) � cE)

�

Z c

0
vol

OX(� �(�KX) � x E) dx.

Since� �(�KX) � cE is ample for any 0< c < �(Z), we have

d

dc
(�c(Z))

D n(r � c)(E � (� �(�KX) � cE)n�1)

�

> 0 (if 0 < c < min{r, �(Z)}),
< 0 (if r < c < �(Z) (if �(Z) > r )).

Assume thatX is not slope stable alongZ. Then �c(Z) � 0 for some 0< c � �(Z).
Hence �(Z) > r and �c(Z) � �

�(Z)(Z) by the above argument. In particular,OX is a

Fano manifold and hence Nef(OX) is a rational polyhedral cone spanned by semiample
divisors (in particular,�(Z) 2 Q

>0 holds). Therefore we have the following result.

Proposition 3.2. Let X be a Fano n-fold and Z� X be a divisor or a smooth
subvariety of codimension r� 1 (if Z is a divisor, then we set rD 1). Then X is slope
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stable (resp. slope semistable) along Z if and only if� (Z) > 0 (resp.� 0), where

� (Z) WD �
�(Z)(Z)

D r volX(�KX)C (�(Z) � r ) vol
OX(� �(�KX) � �(Z)E)

�

Z

�(Z)

0
vol

OX(� �(�KX) � x E) dx

D n
Z

�(Z)

0
(r � x)(E � (� �(�KX) � x E)n�1) dx.

REMARK 3.3. For a Fanon-fold X and Z � X a divisor or a smooth subvariety,
the definition of slope stability ofX along Z is equivalent to the definition in [8] and
[6] by the above argument.

REMARK 3.4. If X is not slope stable alongZ, then�(Z)> r holds by the above
argument. This result has been already known in [17, §8] (seealso [8, Lemma 2.10]).
In fact, Yuji Odaka pointed out to the author that ifX is not slope stable (resp. not
slope semistable) alongZ then �(Z) � r (nC1)=n (resp.�(Z) > r (nC1)=n) holds. See
[16, Proposition 4.4] for detail.

Now, we show that slope stability of Fano manifolds along smooth subvarieties can
reduce to slope stability of Fano manifolds along divisors.

Proposition 3.5. Let X be a Fano n-fold and let Z� X be a smooth subvariety
of codimension r� 2. Let � WD BlZ W OX! X and let E� OX be the exceptional divisor
of � . If X is not slope stable along Z, then OX itself is a Fano n-fold andOX is not
slope semistable along E.

Proof. We have already seen thatOX is a Fano manifold. We note that

r < �(Z, X) D �(E, OX)C r � 1.

Hence we have

1

n
� (E) D

Z

�(E, OX)

0
(1� x)(E � (�K

OX � x E)n�1) dx

D

Z

�(Z,X)�(r�1)

0
(1� x)(E � (� �(�KX)C (1� r � x)E)n�1) dx

D

Z

�(Z,X)

r�1
(r � x)(E � (� �(�KX) � x E)n�1) dx

D

1

n
� (Z) �

Z r�1

0
(r � x)(E � (� �(�KX) � x E)n�1) dx

< 0,
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since� �(�KX) � x E is ample for any 0< x < r � 1 (< �(Z, X)).

4. First properties

4.1. Convexity of the volume function. In this section, we consider slope stabil-
ity of Fano manifolds in terms of the convexity of the volume function vol

OX(� �(�KX)�
x E) (under Notation 3.1).

Proposition 4.1. We fixNotation 3.1.
(1) If N _

Z=X (the dual of the normal bundle) is nef and�(Z) � 2r holds, then X is not
slope stable along Z.
(2) Furthermore, X is not slope semistable along Z if we assume the assumption in (1)
and one of the following holds: r � 2, �(Z) > 2r or N _

Z=X is ample.

(3) If r D 1, Z2 is a nonzero effective cycle and�(Z) � 2 holds, then X is slope stable
along Z.

We note that a vector bundleE on a projective varietyY is nef (resp.ample) if
the corresponding tautological line bundleO

PY(E)(1) on PY(E) is nef (resp. ample).

Proof of Propostion 4.1. We can assume�(Z)> r by Remark 3.4. We write� WD
�(Z) for simplicity. We define f (x) WD vol

OX(� �(�KX) � x E). Then we can write

� (Z) D r f (0)C (� � r ) f (�) �
Z

�

0
f (x) dx.

We note that

d f

dx
(x) D �n(E � (� �(�KX) � x E)n�1) < 0 (for any 0< x < �),

d2 f

dx2
(x) D n(n� 1)(E2

� (� �(�KX) � x E)n�2).

We recall thatO
OX(�E)jE ' O

PY(E)(1). Hence f (x) is a convex upward (resp. strictly
convex upward) and strictly monotone decreasing function over an interval (0,�) if
N _

Z=X is nef (resp. ample). Then (1) and (2) follows immediately. The proof of (3) is
same as those of (1) and (2).

4.2. Product cases. We consider the case that a Fano manifoldX can be de-
composed into the productX D X1 � X2. It is easy to show that bothX1 and X2

are Fano manifolds, the vector space N1(X) is naturally decomposed into N1(X) D
N1(X1)�N1(X2) and the cones can be written as Eff(X)D Eff(X1)CEff(X2), Nef(X)D
Nef(X1)CNef(X2) under the decomposition, respectively. We setni WD dimXi (i D 1,2).
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Proposition 4.2. Let D1 � X1 be a divisor on X1. Then slope stability(resp. slope
semistability) of X1 along D1 is equivalent to slope stability(resp. slope semistability)
of X along p�1 D1.

Proof. Let �1 WD �(D1, X1). Then we know that�1 D �(p�1 D1, X). By the defin-
ition of � (p�1 D1), we have

� (p�1 D1) D volX(�KX)C (�1 � 1) volX(�KX � �1 p�1 D1)

�

Z

�1

0
volX(�KX � xp�1 D1) dx

D

�

n1C n2

n1

�

� volX2(�KX2)

�

volX1(�KX1)C (�1 � 1) volX1(�KX1 � �1D1)

�

Z

�1

0
volX1(�KX1 � x D1) dx

�

D

�

n1C n2

n1

�

volX2(�KX2) � � (D1).

Therefore the signs of� (D1) and � (p�1 D1) are same.

Proposition 4.3. Let Di � Xi be divisors on Xi for i D 1, 2. If Xi is slope
semistable along Di for any iD 1, 2, then X is slope stable along DWD p�1 D1C p�2 D2.

Proof. Let �i WD �(Di , Xi ) for i D 1, 2 and let� WD �(D, X). We can show that
� D min{�1, �2}. We can assume� > 1 by Remark 3.4. We note that

d

dx
(volXi (�KXi � x Di )) D �ni (Di � (�KXi � x Di )

ni�1) < 0 (0< x < �)

for any i D 1, 2. By the definition of� (D), we have

� (D) D
Z 1

0
(volX(�KX) � volX(�KX � x D)) dx

�

Z

�

1
(volX(�KX � x D) � volX(�KX � �D)) dx

D

�

n1C n2

n1

��

Z 1

0
(volX1(�KX1) volX2(�KX2)

� volX1(�KX1 � x D1) volX2(�KX2 � x D2)) dx

�

Z

�

1
(volX1(�KX1 � x D1) volX2(�KX2 � x D2)

� volX1(�KX1 � �D1) volX2(�KX2 � �D2)) dx

�
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D

�

n1C n2

n1

��

Z 1

0
(volX1(�KX1) � volX1(�KX1 � x D1)) volX2(�KX2) dx

C

Z 1

0
volX1(�KX1 � x D1)(volX2(�KX2) � volX2(�KX2 � x D2)) dx

�

Z

�

1
(volX1(�KX1 � x D1) � volX1(�KX1 � �D1))

� volX2(�KX2 � x D2) dx

�

Z

�

1
volX1(�KX1 � �D1)

� (volX2(�KX2 � x D2) � volX2(�KX2 � �D2)) dx

�

>

�

n1C n2

n1

��

Z 1

0
(volX1(�KX1) � volX1(�KX1 � x D1)) volX2(�KX2 � D2) dx

C

Z 1

0
volX1(�KX1 � D1)(volX2(�KX2) � volX2(�KX2 � x D2)) dx

�

Z

�

1
(volX1(�KX1 � x D1) � volX1(�KX1 � �D1))

� volX2(�KX2 � D2) dx

�

Z

�

1
volX1(�KX1 � D1)

� (volX2(�KX2 � x D2) � volX2(�KX2 � �D2)) dx

�

D

�

n1C n2

n1

�

{volX1(�KX1 � D1) � �
�

(D2)C volX2(�KX2 � D2) � �
�

(D1)}

�

�

n1C n2

n1

�

{volX1(�KX1 � D1) � � (D2)C volX2(�KX2 � D2) � � (D1)} � 0.

ThereforeX is slope stable alongD.

As a consequence of Propositions 4.2 and 4.3, we have the following result.

Corollary 4.4. Let X be a Fano manifold which is the product of Fano manifolds
X D

Qm
iD1 Xi . Then X is slope stable(resp. slope semistable) along any divisor if and

only if Xi is slope stable(resp. slope semistable) along any divisor for any1� i � m.

4.3. Length of extremal rays. We show that if a Fano manifoldX is not slope
stable along a divisor, then there exists an extremal ray of the length� 2.
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Proposition 4.5. Let X be a Fano manifold and D� X be a divisor. Assume X is
not slope stable along D. Then for any irreducible curve C� X, we have(�KX �C) >
(D � C). In particular, there exists an extremal ray R� NE(X) such that l(R) � 2.

Proof. We have�(D) > 1 by Remark 3.4. Hence we have

(D � C) � (�KX=�(D) � C) < (�KX � C).

SinceD is an effective divisor, there exists an extremal rayR� NE(X) with a minimal
rational curve [C] 2 R such that (D � C) > 0. Therefore we have (�KX � C) � 2 since
(�KX � C) > (D � C) holds.

4.4. Slope stability of Fano manifolds along nef divisors.

Theorem 4.6. Let X be a Fano n-fold and D� X be a divisor.
(1) If D is an ample divisor, then X is slope stable along D unless X is isomorphic
to a projective space and D is a hyperplane section.
(2) If D is a nef divisor and(Di

� (�KX � �(D)D)n�i ) D 0 for any 1� i � �(D) � 1
(resp. 1� i < �(D) � 1), then X is slope stable(resp. slope semistable) along D.

Proof. First, we consider the case that�KX and D are numerically proportional
(i.e., there exists a positive rational numbert such that�KX � t D). We note that
t � nC 1 and the equality holds if and only ifX ' Pn and D 2 jO

P

n(1)j by [10]. In
this case we have

� (D) D volX(D)

�

tn
�

Z t

0
(t � x)n dx

�

D volX(D)tn

�

1�
t

nC 1

�

� 0,

and equality holds if and only ift D nC1. Therefore we have proved the theorem for
the case�KX and D are numerically proportional.

Now we consider the case that�KX and D are not numerically proportional. We
can assume�(D) > 1 by Remark 3.4. LetP � N1(X) be the 2-dimensional vector
subspace spanned by [�KX ] and [D] (the classes of�KX and D in N1(X)). We take
[H1], [ H2] 2 P \ Nef(X) such thatP \ Nef(X) D R

�0[H1] C R

�0[H2]. Then after
interchangingH1 and H2, if necessary, we can write�KX � p1H1 C p2H2 and D �
q1H1 C q2H2, where p1, p2, q1 > 0, q2 � 0 and 1=�(D) D q1=p1 > q2=p2 holds. We
note that D is ample if and only ifq2 > 0. We also note that there exists extremal
rays R1, R2 � NE(X) such that (Hi � Rj ) D 0 if and only if i ¤ j holds where 1� i ,
j � 2, since the class of�KX lives in the interior of Nef(X). We choose minimal
rational curvesC1 and C2 of R1 and R2, respectively. We have (�KX �Ci ) � n for any
i D 1, 2 by [4]. If qi > 0 then we havepi =qi � n since (�KX � Ci ) � n, (D � Ci ) � 1



SLOPE STABILITY OF FANO MANIFOLDS 81

and pi =qi D (�KX � Ci )=(D � Ci ) hold. Then we can show that

� (D) D volX(p1H1C p2H2)C

�

p1

q1
� 1

�

volX

��

p2 � q2
p1

q1

�

H2

�

�

Z p1=q1

0
volX((p1 � q1x)H1C (p2 � q2x)H2) dx

D (Hn
2 )pn

2

�

1C

�

p1

q1
� 1

��

1�
q2

p2

p1

q1

�n

�

Z p1=q1

0

�

1�
q2

p2
x

�n

dx

�

C

n�1
X

iD1

(H i
1 � H

n�i
2 )pi

1 pn�i
2

�

n

i

��

1�
Z p1=q1

0

�

1�
q1

p1
x

�i�

1�
q2

p2
x

�n�i

dx

�

C (Hn
1 )pn

1

�

1�
Z p1=q1

0

�

1�
q1

p1
x

�n

dx

�

.

We denote the coefficient of (H i
1 � H

n�i
2 ) by Mi . We claim that (H i

1 � H
n�i
2 ) � 0 for

any 0� i � n and (H i
1 �H

n�i
2 ) > 0 for somei since H1 and H2 are nef and [�KX ] 2 P.

First, we consider the caseD is ample. It is enough to showMi > 0 for any i by
the above claim. We have

M0 D pn
2

�

1�
1

nC 1

p2

q2
C

�

1�
q2

p2

p1

q1

�n� p1

q1
� 1C

1

nC 1

�

p2

q2
�

p1

q1

���

> 0,

Mn D pn
1

�

1�
1

nC 1

p1

q1

�

> 0,

Mi >

�

n

i

�

pi
1 pn�i

2

�

1�
Z p1=q1

0

�

1�
p2

q2
x

�n

dx

�

D

�

n

i

�

pi
1 pn�i

2
p2

q2(nC 1)

�

(nC 1)
q2

p2
� 1C

�

1�
q2

p2

p1

q1

�nC1�

> 0 (0< i < n).

Thus we have proved the theorem for the caseD is ample.
Now, we consider the case thatD is not ample. Sinceq2 D 0, we have

� (D) D
n
X

iD1

(H i
1 � H

n�i
2 )

�

n

i

�

pi
1 pn�i

2

�

1�
1

i C 1

p1

q1

�

.

Therefore we have� (D) > 0 (resp.� 0) if (H i
1 � H

n�i
2 ) D 0 for any 1� i � p1=q1 � 1

(resp. 1� i < p1=q1 � 1) by the same argument of the caseD is ample.

As an immediate corollary of Theorem 4.6, we get Odaka’s result:

Corollary 4.7 (Odaka). Let X be a Fano manifold with the Picard number�X D

1 and let D� X be a divisor. Then X is slope stable along D unless X is isomorphic
to a projective space and D is a hyperplane section.
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Proof. The divisorD is ample since�X D 1. Hence the assertion is obvious from
Theorem 4.6 (1).

REMARK 4.8. There exists a Fanon-fold X and a nef effective divisorD � X
such thatX is not slope semistable alongD. For example, letX be the Fano manifold
obtained by the blowing up of then-dimensional projective space along a (reduced)
point and D be the strict transform of a hyperplane passing through the center of the
blowing up. ThenD is a nef divisor and

volX(�KX � x D) D (nC 1� x)n
� (n� 1� x)n

holds. Hence we have

� (D) D
2(n� 1)

nC 1
{n � 2n�1

� (n� 1)n�1},

which takes a negative value ifn � 5.

5. Examples and applications

5.1. Projective spaces. Let Z � Pn be a linear subspace of codimensionr � 1.
If r D 1, then

� (Z) D (nC 1)n �
Z nC1

0
(nC 1� x)n dx D 0

(see also the proof of Theorem 4.6).
We consider the caser � 2. Let the blowing up ofPn along Z be � W OX ! P

n

and the exceptional divisor beE. We can show that�(Z) D nC 1, E ' Pn�r
� P

r�1,
NE= OX ' O

P

n�r
�P

r�1(1,�1) andO
OX(�K

OX)jE ' O
P

n�r
�P

r�1(n� r C 2, r � 1). Hence

� (Z) D n
Z nC1

0
(r � x) vol

P

n�r
�P

r�1(O
P

n�r
�P

r�1(nC 1� x, x)) dx

D n

�

n� 1

r � 1

�

Z nC1

0
(r � x)(nC 1� x)n�r xr�1 dx D 0

by a simple calculation. Therefore, we have the following:

Proposition 5.1. The projective spacePn is not slope stable but slope semistable
along any linear subspace.

In fact, it is well known that then-dimensional projective space admits a Kähler–
Einstein metrics; the Fubini–Study metric.
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5.2. Surfaces. In Section 5.2, we consider the case such that the dimension is
equal to two.

Proposition 5.2. Let S be a del Pezzo surface, that is, S is a Fano manifold with
dim SD 2.
(1) S is slope semistable along any curve but there exists a curveC � S such that S
is not slope stable along C if and only if S is isomorphic to either P2 or P1

� P

1.
(2) There exists a curve C� S such that S is not slope semistable along C if and
only if S is isomorphic toF1.

Proof. If volS(�KS) � 7, then we know that any extremal rayR � NE(S) sat-
isfies thatl (R) D 1. HenceS is slope stable along any curve by Proposition 4.5. If
SD P2 or P1

�P

1, then the assertion (1) in Proposition 5.2 holds by Theorem 4.6 (1)
and Corollary 4.4. IfSD F1, then S is not slope semistable alonge� F1 by Propos-
itions 5.1 and 3.5.

REMARK 5.3. In fact, Tian [21] proved thatS doesnot admit Kähler–Einstein
metrics if and only ifS is isomorphic toF1 or S7.

5.3. Non-slope-semistable examples.Let Z be a Fano (n � 1)-fold of �Z D 1
and the Fano indext � 2. Let OZ(1) be the ample generator of Pic(Z). We note that
t � n, see [10].

We set X WD PZ(OZ � OZ(s))
�

�! Z with t > s > 0. We denote the section of�
with NE=X ' OZ(�s) by E � X. Then it is easy to show thatX is a Fanon-fold
which satisfies that

volX(�KX) D
(t C s)n

� (t � s)n

s
volZ(OZ(1))

and

NE(X) D R
�0[ f ] C R

�0[e],

where f is a fiber of� and e � E is an arbitrary irreducible curve inE. Then we
can show that�(E) D 2. Hence we have the following result by Proposition 4.1 (2).

Proposition 5.4. X is not slope semistable along E.

As a corollary, we give the following counterexample.

Corollary 5.5 (counterexamples to Conjecture 1.3). For any n� 4, there exists a
Fano n-fold X such that
(1) the anticanonical volume of X is equal to2(3n

� 1) (note that 2(3n
� 1) <

((nC 1)2=2n)n if n � 5) and
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(2) X does not admit Kähler–Einstein metrics.

Proof. Let� W Z! P

n�1 be the double cover such that the branch locusB � Pn�1

is a smooth divisor of degree 2(n � 2). We note thatZ is isomorphic to a weighted
hypersurface of degree 2(n�2) in P (1n,n�2). Let OZ(1) WD ��O

P

n�1(1), then we have
OZ(�KZ)' ��(O

P

n�1(�K
P

n�1)
O
P

n�1(2�n))'OZ(2). HenceZ is a Fano (n�1)-fold
with �Z D 1, the Fano index ofZ is equal to 2 and volZ(OZ(1))D 2 holds.

Let X WD PZ(OZ �OZ(1)), then X is a Fanon-fold and volX(�KX) D 2(3n
� 1).

On the other hand,X is not slope semistable by Proposition 5.4. ThusX does not
admit Kähler–Einstein metrics by Theorem 2.4.

REMARK 5.6. In [1], Aubin reduced Conjecture 1.3 to [1, Inequality (4)]. How-
ever the inequality does not hold, as already pointed out by Yuji Sano, for example for
S3 � P

1.

REMARK 5.7. The above Fano manifolds, which are given byX D PZ(OZ �

OZ(s)) such thatZ is a Fano (n � 1)-fold of �Z D 1 and the Fano indext which
satisfiest > s > 0, are characterized by the smooth projective varieties which have
an elementary birationalKX-negative extremal divisor-to-point contraction and havea
P

1-bundle structure. See [7, Remark 2.4 (a)] or [3, Lemma 3.6].

6. Threefold case

Throughout this section, letX be a Fano threefold which satisfies that� (D) � 0 for
some divisorD � X. For thetype of an extremal ray for smooth projective threefolds,
we refer the readers to [14].

6.1. �X D 1 case. This case has been shown in Theorem 4.6 (1) since any ef-
fective divisor is ample. We haveX ' P3 and D is a hyperplane section. In this case,
X is slope semistable alongD.

6.2. �X D 2 case. We set NE(X) D R1 C R2 and we also set minimal rational
curves [l1] 2 R1 and [l2] 2 R2. We denote the contractions�i WD contRi W X! Yi and let
Hi 2 Pic(X) be the pullback of the ample generator of Pic(Yi ). We note that Nef(X) D
R

�0[H1] C R
�0[H2]. Then we have

• Pic(X) D Z[H1] � Z[H2],
• (H1 � l2) D 1, (H2 � l1) D 1,
• �KX � l (R2)H1C l (R1)H2

by [14, Theorem 5.1].
First, we consider the casel (R1) D 3 (i.e., �1 is a P2-bundle). ThenX is either

isomorphic toP1
� P

2 or P
P

1(O�O�O(1)).
(1) If X ' P1

�P

2, then X is not slope stable along some divisor but slope semistable
along any divisor by Theorem 4.6 (1) and Corollary 4.4.
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(2) If X ' P
P

1(O�O�O(1)), thenX is isomorphic to the blowing up ofP3 along a
line. Thus X is not slope semistable along the exceptional divisor by Propositions 5.1
and 3.5.

Hence we can assumel (R1) � 2 andl (R2) � 2. By Proposition 4.5, we can assume
l (R1) D 2 and (D � l1) D 1. Hence we can writeD � aH1 C H2 (a 2 Z). Note that
a � 0 by Theorem 4.6 (1).

Assume thata D 0. We setb WD l (R2) (note thatb D 1 or 2). Then we have
�KX � bH1C 2H2 and D � H2 hence�(D) D 2. However we have

1

3
� (D) D

Z 2

0
(1� x)(H2 � (bH1C (2� x)H2)2) dx

D

4b

3
(H1 � H

2
2 )C

4

3
(H3

2 ) � 0,

and equality holds if and only if (H1 � H2
2 ) D 0 and (H3

2 ) D 0. In this case�2 is a
del Pezzo fibration withl (R2) � 2 and l (R1) D 2. However there are no Fano three-
folds satisfying these conditions by [14, Theorem 1.7]. Therefore � (D) always takes a
positive value; this leads to a contradiction.

As a consequence, we havea < 0. Since D � aH1 C H2 is effective, �2 is a
divisorial contraction. HenceR2 is of type E1, E2, E3, E4 or E5.
(1) If R2 is of type E2, E3, E4 or E5 (divisor-to-point type),X is either isomorphic to
P

P

2(O�O(1)) or P
P

2(O�O(2)) by [14, Theorem 1.7]. These are not slope semistable
along a divisor by Proposition 5.4.
(2) We consider the case thatR2 is of type E1 (divisor to smooth curve). LetF be the
exceptional divisor of�2 and t be the Fano index ofY2. We haveF � �H1C (t�2)H2

since�KX � H1C2H2 and�KX � t H2� F . Since Eff(X)\ (R
�0[�H1]CR

�0[H2]) D
R

�0[F ] C R
�0[H2] and D � aH1 C H2 is an effective divisor, we havet D 3 (i.e.,

Y2 ' Q
3) and a D �1 (i.e., D D F) (hence�(D) D 2). ThereforeX is isomorphic to

either BlconicQ
3 or Blline Q

3 since l (R1) D 2 (see [14, (5.3), (5.5)]).
• If X ' BlconicQ

3, then it is easy to show thatF ' P

1
� P

1 and NF=X '

O
P

1
�P

1(2,�1) andOX(�KX)jF ' O
P

1
�P

1(4, 1). Hence we have

1

3
� (F) D

Z 2

0
(1� x) vol

P

1
�P

1(O(4, 1)� xO(2,�1)) dx D
8

3
> 0,

this lead to a contradiction.
• If X ' Bl line Q

3, then it is easy to show thatF ' F1 and NF=X ' O
F1(�e)

and�KXjF ' O
F1(3 f C e). Hence we have

1

3
� (F) D

Z 2

0
(1� x) vol

F1(3 f C e� x(�e)) dx D �
4

3
< 0.

ThereforeX is not slope semistable alongF .



86 K. FUJITA

6.3. �X D 3 case. By Proposition 4.5, there exists an extremal rayR� NE(X)
with a minimal rational curve [CR] 2 R such thatl (R) D 2 and (D.CR) D 1. HenceR
is either of typeE2 or C2.

(1) If R is of type E2 (smooth point blowing up), thenX is isomorphic to Blp(Yd)
(let � WD Bl p) with 1� d � 3, where� W Yd ! P

3 is the blowing up ofP3 along B such
that H0 � P

3 is a hyperplane,B � H0 is a smooth curve of degreed, H � Yd is the
strict transform ofH0 and satisfiesp � H (see [12, p. 160] or [2]).

Let E be the exceptional divisor of�, let F be the exceptional divisor of� and
let F 0 be the strict transform of the locus of lines passing throughp and B. We set
e� E and h � H such that lines (bothE and H are isomorphic toP2), f � F be an
exceptional curve of� and f 0 � F 0 be the strict transform of a line passing through
p and a point inB. Then it is easy to show that

NE(X) D R
�0[e] C R

�0[h] C R
�0[ f ] C R

�0[ f 0],

Pic(X) D Z[E] � Z[H ] � Z[F ],

�KX � �2E C 4H C 3F,

F 0

� �d EC d H C (d � 1)F .

We can show thatEC F 0, FCH and (FC F 0)=d are nef. Therefore, for [pECq HC
r F ] 2 Eff(X) (p, q, r 2 R), we have
• r D (pEC q H C r F � (F C H )2) � 0,
• pC r D (pEC q H C r F � ((F C F 0)=d)2) � 0,
• dqD (pEC q H C r F � F C H � E C F 0) � 0,
• (d � 1)pC dqD (pEC q H C r F � (F C F 0)=d � E C F 0) � 0.
Hence we have

Eff(X) D R
�0[E] C R

�0[H ] C R
�0[F ] C R

�0[F 0].

We write D � pECq HCr F , where p,q,r 2 Z. Then we have (D �e)D 1, (D � f ) � 0,
(D � f 0) � 0 and (D �h) < (�KX �h)D 4�d by Proposition 4.5. Thus we havepD �1,
q D 1, r D 1 sinceD is effective. HenceD � �EC H C F and �(D) D 2. Therefore
we have

1

3
� (D) D

Z 2

0
(1� x)(�E C H C F � ((x � 2)E C (4� x)H C (3� x)F)2) dx

D

Z 2

0
(1� x)(�4x C 12� d) dx D

8

3
> 0I

this leads to a contradiction.
(2) If R is of type C2, then R induces aP1-bundle� W X ! Z. Since�X D 3,

Z is isomorphic to eitherF1 or P1
� P

1.
We claim that such Fano threefolds has been classified by Szurek and

Wiśniewski [20]:
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Claim 6.1. (i) If Z ' F1, X is isomorphic to one ofF1 �
P

2
P (T

P

2), F1 � P
1 or

F1 �
P

2
P (O�O(1)).

(ii) If Z ' P1
�P

1, X is isomorphic to one of a smooth divisor of tridegree(1, 1, 1) in
P

1
�P

1
�P

2, P
P

1
�P

1(O(0, 1)�O(1, 0)), P1
�P

1
�P

1, F1�P
1 or P

P

1
�P

1(O�O(1, 1)).

(I) AssumeX ' F1�
P

2
P (T

P

2). Then we can show thatX � F1�P
2 is a smooth

divisor with X 2 jO
F1�P

2(eC f, 1)j. Let E, F , H be effective divisors onX correspond
to OX(e, 0), OX( f, 0), OX(0, 1), respectively. Then we can show that

Pic(X) D Z[E] � Z[F ] � Z[H ].

We can also show that there exists the structure of the blowing up X ! P

1
� P

2 with
the exceptional divisorE0

� H � E. We note thatF , H and EC F are nef. Therefore,
for [ pEC q F C r H ] 2 Eff(X), we have
• r D (pEC q F C r H � (E C F)2) � 0,
• q D (pEC q F C r H � H2) � 0,
• pC r D (pEC q F C r H � F � H ) � 0.
Hence we have

Eff(X) D R
�0[E] C R

�0[F ] C R
�0[E0]

and it is easy to show that�KX � E C 2F C 2H .
Let m be a fiber of� , let l be an exceptional curve ofX ! P (T

P

2) and let l 0 be
an exceptional curve ofX ! P

1
� P

2. Then it is easy to show that

NE(X) D R
�0[m] C R

�0[l ] C R
�0[l 0].

We write D � pE C q F C r E 0, where p, q, r 2 Z. Then we have (D � m) D 1,
(D � l ) � 0 and (D � l 0) � 0 by Proposition 4.5. We also note thatpD 1, q D 0, r D 1
(henceD � H ) and �(D) D 2 since D is effective. Therefore we have

1

3
� (D) D

Z 2

0
(1� x)(H � (E C 2F C (2� x)H )2) dx

D

Z 2

0
(1� x)(O(0, 1) �O(eC 2 f, 2� x)2

�O(eC f, 1))
F1�P

2 dx

D

Z 2

0
(1� x)(11� 4x) dx D

8

3
> 0I

this leads to a contradiction.
(II) Assume X ' F1�P

1. Then X is not slope semistable alongp�1e by Propos-
itions 5.2 and 4.2.

(III) Assume X ' F1 �
P

2
P (O �O(1)). Let H be the section of� with normal

bundleNH=X ' O
F1(�e� f ), let E be the pullback ofe� F1 with respect to� and
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let F be the pullback of f � F1 with respect to� . Then we can show that�KX �

4F C 3E C 2H , �(H ) D 2 and

1

3
� (H ) D

Z 2

0
(1� x)(H � (4F C 3E C (2� x)H )2) dx

D

Z 2

0
(1� x)(1C x)(3C x) dx D �4< 0,

henceX is not slope semistable alongH .
(IV) Assume X 2 jO

P

1
�P

1
�P

2(1, 1, 1)j. Let Hi (1 � i � 3) be the restriction of
p�i O(1) to X. Then we have

Pic(X) D Z[H1] � Z[H2] � Z[H3]

by the theorem of Lefschetz. We can show that�KX � H1 C H2 C 2H3. We can
also show thatp13jX W X ! P

1
� P

2 and p23jX W X ! P

1
� P

2 are the blowing up
along smooth curves with the exceptional divisorsF13 � H1 � H2 C H3 and F23 �

�H1C H2C H3, respectively.
We note thatH1, H2 and H3 are nef. Therefore, for [a1H1Ca2H2Ca3H3] 2 Eff(X)

(a1, a2, a3 2 R), we have
• a3 D (a1H1C a2H2C a3H3 � H1 � H2) � 0,
• a1C a3 D (a1H1C a2H2C a3H3 � H2 � H3) � 0,
• a2C a3 D (a1H1C a2H2C a3H3 � H1 � H3) � 0,
• a1C a2 D (a1H1C a2H2C a3H3 � H2

3 ) � 0.
Hence we have

Eff(X) D R
�0[H1] C R

�0[H2] C R
�0[F13] C R�0[F23].

Let l3, l2, l1 be nontrivial irreducible fibers ofp12jX, p13jX, p23jX, respectively. Then
we can show that

NE(X) D R
�0[l1] C R

�0[l2] C R
�0[l3].

We write D � a1H1C a2H2C a3H3, wherea1, a2, a3 2 Z. Then we have (D � l1) � 0,
(D � l2) � 0 and (D � l3) D 1 by Proposition 4.5. We also know thata1 D 0, a2 D 0 and
a3 D 1 (henceD � H3) and �(D) D 2 since D is effective. Hence we have

1

3
� (D) D

Z 2

0
(H3 � (H1C H2C (2� x)H3)2) dx

D

Z 2

0
(1� x)(O(0, 0, 1)�O(1, 1, 2� x)2

�O(1, 1, 1))
P

1
�P

1
�P

2 dx

D

Z 2

0
(1� x)(10� 4x) dx D

8

3
> 0I
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this leads to a contradiction.
(V) AssumeX ' P

P

1
�P

1(O(0, 1)�O(1, 0)). Let E1 and E2 be the sections of�
such that the normal bundles areNE1=X ' O(�1, 1) andNE2=X ' O(1,�1), and Hi WD

�

�p�i O(1) (i D 1, 2). Let ei � Ei be a fiber of the projectionp j W Ei ' P
1
�P

1
! P

1

(for {i , j } D {1, 2}) and f be a fiber of� . Then we can show that�KX � 3H1 C

H2C 2E2,

NE(X) D R
�0[e1] C R

�0[e2] C R
�0[ f ],

Pic(X) D Z[H1] � Z[H2] � Z[E1],

Eff(X) D R
�0[H1] C R

�0[H2] C R
�0[E1] C R

�0[E2].

Hence we can show thatD � E1 or D � E2 or D � E1C H1 (in each case we have
�(D) D 2).

If D � E1C H1, then we have

1

3
� (D) D

Z 2

0
(1� x)(E1C H1 � ((3� x)H1C H2C (2� x)E1)2) dx

D

Z 2

0
(1� x)(2� x)(4� x) dx D

8

3
> 0I

this leads to a contradiction.
If D � E1 (or E2), then we have

1

3
� (D) D

Z 2

0
(1� x)(E1 � (3H1C H2C (2� x)E1)2) dx

D

Z 2

0
2(1� x)(1C x)(3� x) dx D 0.

Hence X is slope semistable but not slope stable alongE1 (and also alongE2).
(VI) Assume X ' P1

� P

1
� P

1. Then X is slope semistable along any divisor
but is not slope stable along a fiber ofp1 by Theorem 4.6 (1) and Corollary 4.4.

(VII) Assume X ' P

P

1
�P

1(O � O(1, 1)). Let E be the section of� with the
normal bundleNE=X ' O(�1,�1). Then we have�(E) D 2. ThereforeX is not slope
semistable alongE by Proposition 4.1 (2).

6.4. �X � 4 case. There exists an extremal rayR� NE(X) of type C2 by Prop-
osition 4.5 and [12, p. 160]. We write its contraction� W X ! S. We know thatS is
a del Pezzo surface of�S � 3. Hence we haveX ' P1

� Sm with 1 � m � 7 by [15,
Theorem 4.20] (see also [20]).

HenceX is slope semistable along any divisor but is not slope stablealong some
divisor by Proposition 5.2, Theorem 4.6 (1) and Corollary 4.4.

As a consequence, we have the following result:
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Theorem 6.2. Let X be a Fano threefold.
(1) X is slope semistable along any effective divisor but there exists a divisor D� X
such that X is not slope stable along D if and only if X is isomorphic to one of:

P

3, P

1
� P

2, P

P

1
�P

1(O(0, 1)�O(1, 0)),

P

1
� P

1
� P

1, P

1
� Sm (1� m� 7).

(2) There exists a divisor D� X such that X is not slope semistable along D if and
only if X is isomorphic to one of:

Bl line Q
3, Blline P

3, P

P

2(O�O(1)), P

P

2(O�O(2)),

P

1
� F1, P

F1(O�O(eC f )), P

P

1
�P

1(O�O(1, 1)).

REMARK 6.3. By Theorem 6.2, [6, Theorem 1.1] and the result of Steffens [19,
Theorem 3.1], there exists a Fano threefoldX which is slope stable along all divisors
and smooth subvarieties but has the unstable tangent bundle. For example,X is the
blowing up of P

P

2(O � O(1)) along a line on the exceptional divisor (' P

2) of the
blowing up P

P

2(O � O(1))! P

3 (no. 29 in Table 3 in Mori and Mukai’s list [12]).
In fact, Mabuchi [11, Remark 2.5] observed that the aboveX does not admit Kähler–
Einstein metrics.
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