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Abstract
P.D. Hislop and F. Klopp proved a Wegner estimate for Schrödinger operators

with nonsign definite potentials for each fixed position of impurities [12]. In this
paper, a similar estimate is proven treating also the position of impurities as random
variables.

1. Introduction

In this paper, we will give a Wegner estimate for a Schrödinger operator,

(1.1) H!

WD H0C V!(x) with V!(x) WD
X

i2N

f !1
i u(x � �!2

i ) and H0 D �1,

where u is a continuous function with a compact support and does not have a fixed
sign, { f !1

i , i 2 N, !1 2 �1} on some probability space (�1, F1, P1) are independently
and identically distributed random variables with the probability density functionh0 2

C1
0 such thatP1( f !1

i 2 d�i ) D h0(�i ) d�i satisfying supph0 D [m, m0], and {�
!2
i , i 2 N,

!2 2 �2} on some probability space (�2, F2,P2) is a Poisson point process independent
of { f !1

i } with the Lebesgue measure as its intensity. We write! D (!1, !2). For any
y 2 Rd and L >0, we set3L (y) D {x 2 Rd

W jxi � yi j < L=2 for 1 � i � d} and
3L WD 3L (0). For simplicity we assume suppu � 3a andkuk

1

D 1, wherea > 0. As
in [2, 22], we can prove the essential self-adjointness and the measurability in! of the
Schrödinger operatorH!, and that the spectrum� (H!) D R for almost all!. In the
rest of this paper we denote the unique self-adjoint extension by the same symbolH!.

We consider the approximation ofH! defined by the self-adjoint operator

H!

3L
WD H0C V

3L , V
3L WD

X

i W�
!2
i 23L

f !1
i u(x � �!2

i )

on L2(Rd) following Klopp [16] and Hislop and Klopp [12].
The main theorem of this paper is the following:
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Theorem 1.1. For any Æ > 0, q > 1 and arbitrarily small � > 0, there exists a
finite positive constant Cq,Æ,� such that

(1.2) P{dist(� (H
3L ), E0) � �} � Cq,Æ,� L (1C� )d

�

1=q,

for L > 0, E0<0 and � > 0 satisfying� < Æ=4 and E0C � < �Æ.

REMARK 1. We can prove Theorem 1.1 forH0D�4CV , whereV is a periodic
non-random potential. However in this paper, we will assumeV D 0 for simplicity.

REMARK 2. We can extend Theorem 1.1 for more general distributions of impu-
rities’ positions{�

!2
i } (see Remark 5, 6 below).

REMARK 3. The initial length scale estimate, which is an important estimate to-
gether with a Wegner estimate to prove the Anderson localization, holds in this case
as in [22].

As one of the applications, we obtain the strong Hilbert–Schmidt dynamical local-
ization which is deduced in the same way as [22] based on the main theorem.

Corollary 1.1. There exists E0 < 0 such that

E
�

sup
t
jjjjxjr e�i t H !

P!(I )�0jjj
2
2

�

<1

for any r > 0 and any compact interval I satisfyingsupI � E0.

The estimate

(1.3) P{dist(� (H
3L ), E0) � �} � C LAd

�

B,

with A � 1 and B � 1 as (1.2) is called a Wegner estimate. From the fact that
P{dist(� (H

3L ), E0) � �} is dominated byE[#{� (H
3L ) \ [E0 � �, E0 C �]}] and

E[#{� (H
3L )\ [E0��, E0C�]}]=Ld converges to the density of states (DS) asL !1,

we expect thatAD B D 1 are the best exponents.
Wegner [24] firstly obtained this estimate for the Anderson model. After that the

estimate (1.3) with general exponentsA and B is applied to the proof of the Anderson
localization [6, 8, 21].

There had been many prior results on a Wegner estimate for multidimensional and
continuous Schrödinger operators with Anderson-type random potentials whose positions
corresponding to�!2

i in equation (1.1) were fixed on the lattice [17, 3, 13, 21]. Among
them, Combes, Hislop and Nakamura obtained a bound as (1.3) with AD 1 and B < 1
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which is arbitrarily close to 1 for the Schrödinger operators with the Anderson-type posi-
tive potentials by the method of the spectral shift function[5]. Kirsch and Veselíc used
this method to prove a bound as (1.3) withA D 1 and B arbitrarily close to 1 for
the negative potentials called generalized alloy type potentials where the positions of
the impurities were fixed randomly onRd [14]. With the method of [14], the author
proved a bound as (1.3) withAD 2 andB arbitrarily close to 1 at negative energies for
Schrödinger operators with negative potentialsV! under the conditions thatf !1

i 2 [0, 1]
and u is negative and, showed the results of the localization [22]. The exponentA in
[22] can be taken arbitrarily nearly to 1 by the method in [22]. These results on a Weg-
ner estimate were obtained by the property that the eigenvalues monotonously depended
on the coupling constants. Therefore, this method needs theproperty that a single-site
potential has the definite sign. We would like to drop this condition for this paper.

In 2002, Hislop and Klopp obtained a bound as (1.3) withAD 1 and B arbitrarily
close to 1 for the nonsign definite Anderson-type potentialsusing Klopp’s vector field
method [16] and the spectral shift function method [12]. Applying their method and
[14], we obtain Theorem 1.1, which is a bound as (1.3) withA and B arbitrarily close
to 1. Theorem 1.1 may not have the optimal exponents ofL and � for the Wegner
estimate. However, this is the best result that we are able toderive up to now. In
2007, Germinet, Hislop and Klein proved the localization for a sign definite Poisson
potential model withoutf !1

i , which is more difficult problem than ours. The inequality
corresponding to the Wegner estimate for their proof of the localization is restricted to
� � L�L�

, for that reason the exponentA depends onL [9, 10].

REMARK 4. The best estimate of Wegner-type for continuous Schrödinger oper-
ators with Anderson-type random potentials was proved by Combes, Hislop and Klopp
with AD 1 and B � 1 [4]. This estimate was obtained by the method of the spectral
averaging mainly for Schrödinger operators with a nonnegative single-site potential. It
seems to be very difficult to extend this result to a nonsign definite single-site potential
with a randomly distributed position,

Corollary 1.1 is obtained for the first time by treating the positions � of the single-
site potentials as random variables. This is the different point from [14].

2. The proof of the main theorem

In this section, we will prove a Wegner estimate, Theorem 1.1, using the method
in [12].

The resolventR
3L (E0, !) WD (H!

3L
� E0)�1 is written as

R
3L (E0, !) D (H0 � E0)�1=2(1C 0

3L (E0, !))�1(H0 � E0)�1=2,

where0
3L (E,!) is a compact operator defined by (H0�E)�1=2V

3L (H0�E)�1=2. Then,
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using the inequalitykR
3L (E0, !)k � Æ�1

k(1C 0
3L (E0, !))�1

k, we have

P{dist(� (H
3L ), E0) � �} � P

{

dist(� (0
3L (E0, !)), �1)�

�

Æ

}

.

Consequently, we have only to show

P{dist(� (0
3L (E0, !)), �1)� �} � Cq,Æ,� L (1C� )d

�

1=q,

where� WD �=Æ.
We now apply Chebyshev’s inequality,

(2.1) P
{

dist(� (0
3L (E0, !)), �1)�

�

Æ

}

D P[Tr( P!

3L
(I
�

)) � 1] � E[Tr( P!

3L
(I
�

))],

where P!

3L
denotes the spectral projection of0

3L (E0, !) and I
�

WD [�1� �, �1C �].
We will at first estimate the expectation of the right hand side of (2.1) with re-

spect to the randomness of!1. This estimate holds for any point processes. Then we
will calculate its expectation with respect to the randomness of!2, only which Poisson
process affects (see (2.9)).

We define E!1 as the expectation with respect to the randomness of!1 and
0

3L (E0, �, !2) as0
3L (E0, !) in which f !1

i for any i 2 {i 2 N W �!2
i 2 3L} is replaced

by �i for any � D (�i )i W �
!2
i 23L

2 [m, m0]#{i W�
!2
i 23L }. By the method in [12], we have

(2.2)

E!1[Tr P!

3L
(I
�

)]

� E!1

�

Z 3�=2

�3�=2

d

dt
Tr[�(0

3L (E0, !)C 1� t)] dt

�

D

Y

l

Z m0

m
h0(�l ) d�l

�

Z 3�=2

�3�=2

d

dt
Tr[�(0

3L (E0, �, !2)C 1� t)] dt

�

,

where � is a nonnegative, smooth, monotone decreasing function such that �(x) D 1
for x < ��=2 and�(x) D 0 for x � �=2.

Since supp� is included in (�1, �=2], 0
3L (E0, �, !2) of the right hand side of

(2.2) is restricted to the spectral subspace where the operator is smaller than (�1C2�)
which is negative. Therefore, noting that� 0 is negative,

(2.3)

d

dt
Tr[�(0

3L (E0, �, !2)C 1� t)] D
X

j W E j2[�1�2�,�1C2�]

d

dt
�(E j C 1� t)

�

X

j WE j2[�1�2�,�1C2�]

�E j

�1C 2�
�

0(E j C 1� t)

D

�1

�1C 2�
Tr[� 0(0

3L (E0, �, !2)C 1� t)0
3L (E0, �, !2)],
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where{E j } j2N are the eigenvalues of0
3L (E0, �, !2).

On the other hand, using the Hellmann–Feynman theorem and the equation

X

i W �
!2
i 23L

�i
�

��i
0

3L (E0, �, !2) D 0
3L (E0, �, !2),

we can show

(2.4)

X

i W �
!2
i 23L

�i
�

��i
Tr[�(0

3L (E0, �, !2)C 1� t)]

D

X

j W E j2[�1�2�,�1C2�]

8

<

:

�

0(E j C 1� t) �
X

i W �
!2
i 23L

�i
�

��i
E j

9

=

;

D Tr[� 0(0
3L (E0, �, !2)C 1� t)0

3L (E0, �, !2)].

By (2.3) and (2.4), we obtain

d

dt
Tr[�(0

3L (E0, �, !2)C 1� t)]

�

�1

�1C 2�

X

i W�
!2
i 23L

�i
�

��i
Tr[�(0

3L (E0, �, !2)C 1� t)].

By this estimate and the integration by parts with respect to�i , the right hand side
of (2.2) is less than or equal to

(2.5)

�1

�1C 2�

X

i W �
!2
i 23L

Z 3�=2

�3�=2
dt

(

Y

l

Z m0

m
h0(�l )d�l

)

�

�

�i
�

��i
Tr[�(0

3L (E0, �, !2)C 1� t)]

�

� 2
((m0

�m)kQh00k1) _ Qh0(m0)

(1� 2�)

�

X

i W �
!2
i 23

Z 3�=2

�3�=2
dt
Y

l¤i

Z m0

m
h0(�l ) d�l jTr{D(i , E0, m, �Ci )}j,

whereQh0(�) is the function�h0(�) andD(i , E0,m,�0) is the operator�(0
3L (E0,�,!2)m,i

C

1� t)��(0
3L (E0,�,!2)�0,i

C1� t). We denote0
3L (E0,�,!2)$ ,i for $ 2 [m, m0] by the

operator0
3L (E0,�,!2) with the fixed coupling constant�i D $ at thei -th site, and�Ci 2

[m,m0] by the value of the coupling constant�i where the maximum ofjTr{D(i ,E0,m,�0)}j
is attained.
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Now we use the following proposition on spectral shift functions ([5] Theorem 2.1,
[25] Chapter 8 §3 Theorem 3 and Theorem 6):

Proposition 2.1. Let A1 and A0 be self-adjoint operators such that A1 � A0 2

I1=p for p> 1, whereI1=p is the family of compact operators of the super trace class,
which we define as follows: we say that A2 I1=p if for some p> 1, jjjAjjj1=p WD
�

P

j � j (A)1=p
�p
<1, where� j (A) denotes the j-th singular value of A.

Then, there exists some�( � I A1, A0) 2 L p(R) such that for� 2 C1(0) where
0 � R: a compact interval which contains� (A0) and � (A1),

Tr[�(A1) � �(A0)] D
Z

0

�(�I A1, A0)�0(�) d�,

and

k�kp � jjjA1 � A0jjj
1=p
1=p.

We fix p > 1 and setA1 D (0
3L (E0, �,!2)�

C

i ,i )l and A0 D (0
3L (E0, �, !2)m,i )l for

any l greater thandp=2C 1, and Vi D (�Ci � m)R0(E0)1=2u(x � �!2
i )R0(E0)1=2, where

R0(E0) WD (H0 � E0)�1. Then,

Vef f WD A1 � A0 D

l�1
X

jD0

(0
3L (E0, �, !2)�

C

i ,i )l� j�1Vi (03L (E0, �, !2)m,i )) j

D (�Ci �m)
l�1
X

jD0

[ J l� j�1
i (R0(E0)V

�

C

i ,i
3L

)l� j�1R0(E0)1=2]�ui

� [ J j
i (R0(E0)Vm,i

3L
) j R0(E0)1=2],

where J 2 C1

0 such thatJ(x)u(x)D u(x). We denoteui WD u(x��!2
i ), Ji WD J(x��!2

i )

and for$ 2 [m,m0], V$ ,i
3L

is the potentialV
3L with the fixed coupling constant�i D$

at the i -th site.
According to Proposition 12 in [18], for any� 2 supph0 and r 2 N,

(2.6) Jr
i (R0(E0) QV � ,i

3L
)r R0(E0)1=2

D

N
X

�D1

8

<

:

r
Y

�D1

J�,�
i R0(E0)B�,�

i

9

=

;

,

where the bounded operatorsJ�,�
i are combinations of the derivatives ofJi , and the

operatorsB�,�
i are the polynomials of the bounded operators containingV � ,i

3L
.

Let s> d=2. Using the estimates of the norms in Theorem 4.1 of [20],

kJ�,�
i R0(E0)kIs � kJ

�,�
i kLs(Rd)













1

jxj2 � E0













Ls(Rd)

,
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which is bounded by a constant independent of3L . The norms of the operatorsB�,�
i

are estimated as follows:

kB�,�
i kB(Ls(Rd)) � CjkV � ,i

3

k

1

C 1j
 � C

"

sup
x23LCa

#(k 2 N W �!2
k 2 33a(x))C 1

#




,

for some
 and C independent of3L . Therefore, we can obtain the estimate of the
norm of Vef f as follows:

kjVef f jk
1=p
1=p � C(l � 1)

"

sup
x23LCa

#(k 2 N W �!2
k 2 33a(x))C 1

#




0

,

for some
 0.
Noting supp� 0( � C 1� t) is included in6 WD [�1� 3�, 0), we have

(2.7)

jTr D(i , E0, m, �i )j

D jTr[�(0
3L (E0, �, !2)�

C

i ,i
� E C t) � �(0

3L (E0, �, !2)m,i
� E C t)]j

D

�

�

�

�

Z

6

��(�0 C 1� t)

��

0

�(�0) d�0
�

�

�

�

� C

"

sup
x23LCa

#(k 2 N W �!2
k 2 33a(x))C 1

#




0

�

Z

6

�

�

�

�

��

��

(�C 1� t)

�

�

�

�

q

d�

�1=q

,

where q is the positive number such that 1=pC 1=q D 1, and� is the spectral shift
function for A1 and A0.

By using also

Z

R
j�

0(
 )jq d
 �
Z

R
j�

0(
 )j d
 sup(� 0)(q�1),

we can show that the second factor of the right hand side of (2.7) is dominated by
�

(1=q�1).
Consequently, according to (2.2), (2.5), (2.7) and above comments, we obtain

(2.8)

E{Tr P!

3L
(I
�

)}

� C1�
1=qE!2

2

4#( j 2 N W �!2
j 2 3L )

(

sup
x23LCa

#(k 2 N W �!2
k 2 33a(x))C 1

)




0

3

5.
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For (2.8), using the Hölder inequality, we obtain

(2.9)

E{Tr P!

3L
(I
�

)}

� C1�
1=qE!2[#( j 2 N W �!2

j 2 3L )1C� ]1=(1C�)

� E!2

2

4

(

sup
x23LCa

#(k 2 N W �!2
k 2 33a(x))C 1

)(�C1)
 0=�
3

5

�=(1C�)

,

for � > 0.
Noting that the third factor of the right hand side of (2.9) isbounded byC Ld and

the fourth factor is less than or equal to

2

4

X

e23LCa\Z

E!2

"

sup
x231(e)

#(k 2 N W �!2
k 2 33a(x))C 1

#(�C1)
 0=�
3

5

�=(1C�)

� C Ld�=(1C�),

we obtain the theorem.

REMARK 5. By (2.8), the main theorem holds for a model of which the impurity
position�i (!2)D aiC yi (!2) with a uniformly boundedyi (!2) as A=1 similarly to [12],
where{ai W i 2 N} D Zd.

REMARK 6. Our proof of this paper needs only theZd stationary property and
the finite moments’ property for all orders for the number of impurities in the finite
cube. Moreover, if we treat point processes with finite moments of somen > d=2,
then our results hold forA > 1C 
 0=n. The conditionn > d=2 is for the essential
self-adjointness of our Schrödinger operators onC1

0 (Rd) [14].
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