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Abstract
P.D. Hislop and F. Klopp proved a Wegner estimate for Scimgeli operators
with nonsign definite potentials for each fixed position ofpumities [12]. In this
paper, a similar estimate is proven treating also the positif impurities as random
variables.

1. Introduction

In this paper, we will give a Wegner estimate for a Schrodingegerator,

(L1) H?:=Ho+V“(x) with V°():=>" f?u(x—£%) and Hp=-A,
ieN

whereu is a continuous function with a compact support and does awe la fixed
sign, {f*, i € N, w1 € €21} on some probability space2f, Fi, P;) are independently
and identically distributed random variables with the pdolity density functionhg
Cé such thatPy(f{”* € dij) = ho(%;)dA; satisfying supfe = [m, m’], and {§?, i € N,
w € 2} on some probability space2g, F,, P,) is a Poisson point process independent
of { f{”*} with the Lebesgue measure as its intensity. We wiite- (w1, w,). For any
yeRYandL >0, we setA (y) = {x e R%: |x, —yi| < L/2 for 1 <i < d} and
AL := A (0). For simplicity we assume suppC A, and ||u]l» = 1, wherea > 0. As
in [2, 22], we can prove the essential self-adjointness aednteasurability inv of the
Schrédinger operatoH®, and that the spectrum(H“) = R for almost allw. In the
rest of this paper we denote the unique self-adjoint ex¢enby the same symbdti®.
We consider the approximation ¢1 defined by the self-adjoint operator

Hy t=Ho+Va, Va = Y  fou(x—g%)

i:72eAL

on L%(RY) following Klopp [16] and Hislop and Klopp [12].
The main theorem of this paper is the following:
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Theorem 1.1. For any§ > 0, g > 1 and arbitrarily small ¢ > 0, there exists a
finite positive constant £ . such that

(1.2) P{dist( (Ha, ), Eo) <} < Cqs,, L3I0,
for L > 0, Eq.o and n > 0 satisfyingn < §/4 and & + n < —$6.

REMARK 1. We can prove Theorem 1.1 féty = —A+V, whereV is a periodic
non-random potential. However in this paper, we will assine- 0 for simplicity.

REMARK 2. We can extend Theorem 1.1 for more general distributidnspu-
rities’ positions{£?} (see Remark 5, 6 below).

REMARK 3. The initial length scale estimate, which is an importastineate to-
gether with a Wegner estimate to prove the Anderson lodaizaholds in this case
as in [22].

As one of the applications, we obtain the strong Hilbert-Sidh dynamical local-
ization which is deduced in the same way as [22] based on the theorem.

Corollary 1.1. There exists E< 0 such that

E[SEHIIIXIre‘“HwP‘”(I)Xolllﬁ} <00
for any r > 0 and any compact interval | satisfyingupl < Eo.
The estimate
(1.3) P{distl(Ha, ), Eo) < n} < CLAYB,

with A > 1 and B < 1 as (1.2) is called a Wegner estimate. From the fact that
P{distc(Ha,), Eo) < n} is dominated byE[#{c(HA ) N [Eoc — 1, Eo + n]}] and
E[#{o(Hx, )N[Eo—n, Eo+n]}]/LY converges to the density of states (DS)Las> oo,

we expect thatA = B = 1 are the best exponents.

Wegner [24] firstly obtained this estimate for the Andersoodel. After that the
estimate (1.3) with general exponersand B is applied to the proof of the Anderson
localization [6, 8, 21].

There had been many prior results on a Wegner estimate fdidimgnsional and
continuous Schrodinger operators with Anderson-type@angdotentials whose positions
corresponding t&” in equation (1.1) were fixed on the lattice [17, 3, 13, 21]. Ago
them, Combes, Hislop and Nakamura obtained a bound as (itl3)A~= 1 andB < 1
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which is arbitrarily close to 1 for the Schrodinger operataith the Anderson-type posi-
tive potentials by the method of the spectral shift functjibh Kirsch and Vesef used
this method to prove a bound as (1.3) with= 1 and B arbitrarily close to 1 for
the negative potentials called generalized alloy type mi@ks where the positions of
the impurities were fixed randomly oRY [14]. With the method of [14], the author
proved a bound as (1.3) witA = 2 and B arbitrarily close to 1 at negative energies for
Schrodinger operators with negative potent¥dl$ under the conditions that** € [0, 1]
and u is negative and, showed the results of the localization.[22]je exponentA in
[22] can be taken arbitrarily nearly to 1 by the method in [ZBhese results on a Weg-
ner estimate were obtained by the property that the eigeesahonotonously depended
on the coupling constants. Therefore, this method needgribgerty that a single-site
potential has the definite sign. We would like to drop thisditian for this paper.

In 2002, Hislop and Klopp obtained a bound as (1.3) witk= 1 and B arbitrarily
close to 1 for the nonsign definite Anderson-type potentising Klopp’s vector field
method [16] and the spectral shift function method [12]. Bppg their method and
[14], we obtain Theorem 1.1, which is a bound as (1.3) wAtland B arbitrarily close
to 1. Theorem 1.1 may not have the optimal exponentd adnd n for the Wegner
estimate. However, this is the best result that we are abldetove up to now. In
2007, Germinet, Hislop and Klein proved the localizatiom o sign definite Poisson
potential model withoutf,”*, which is more difficult problem than ours. The inequality
corresponding to the Wegner estimate for their proof of tlization is restricted to
n ~ L~Y", for that reason the expone#t depends orl [9, 10].

REMARK 4. The best estimate of Wegner-type for continuous Schgédioper-
ators with Anderson-type random potentials was proved bmi@s, Hislop and Klopp
with A=1 andB < 1 [4]. This estimate was obtained by the method of the spectra
averaging mainly for Schrédinger operators with a nonnegatingle-site potential. It
seems to be very difficult to extend this result to a nonsiginide single-site potential
with a randomly distributed position,

Corollary 1.1 is obtained for the first time by treating thesitions ¢ of the single-
site potentials as random variables. This is the differamintpfrom [14].

2. The proof of the main theorem

In this section, we will prove a Wegner estimate, Theorem @sing the method
in [12].
The resolventR, (Eo, ) := (HY — Eo)~! is written as

Ra. (Eo, ®) = (Ho — Eq)™™3(1 + 'y (Eo, ®)) " (Ho — Eo) ™2,

whereTl',, (E,w) is a compact operator defined biy— E) 2V, (Ho— E) ¥2. Then,
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using the inequality| Ry, (Eo, ®)|| < 871|(1 + T, (Eo, ®))72|l, we have
P(dist(e (Ha,), Eo) < n} < P{distlo (', (Eo, @), ~1) < g}
Consequently, we have only to show
P{dist(o (s, (Eo, ®)), —1) < &} < Cq5,, LI,

wherek := n/8.
We now apply Chebyshev’s inequality,

(1) Pdiste (I, (Eo, ), ~1) = 7} = PIT(PE, (1)) = 1] < ELTI(P, (1))

where Py denotes the spectral projection B, (Eo, ) and I, :=[-1 -k, =1 + «].

We will at first estimate the expectation of the right handesaf (2.1) with re-
spect to the randomness @f. This estimate holds for any point processes. Then we
will calculate its expectation with respect to the randossnefw,, only which Poisson
process affects (see (2.9)).

We define E“* as the expectation with respect to the randomnessoofand
s, (Eo, A, @) asTa, (Eg, w) in which f* for anyi € {i € N: §™ € A_} is replaced
by Ai for any & = (&i);. g2ca, € [M, m]#i#2<A By the method in [12], we have

E“[Tr Py (1,)]

[0} /2 d
22 = E {/_ g Tlp(C (o, @) + 1-1)] dt}

3k /2

n /2 g
[T [ naan{ i TP (B 02) + 1-0) at},

| m

where p is a nonnegative, smooth, monotone decreasing functioh that p(x) = 1
for X < —«/2 and p(x) = 0 for x > «/2.

Since suppp is included in (oo, /2], Ts, (Eo, A, wz) of the right hand side of
(2.2) is restricted to the spectral subspace where the mpasasmaller than {1+ 2«)
which is negative. Therefore, noting that is negative,

d d
— TH{p(Ta (Eo, 2 w2) + 1—1)] = > —p(Ej +1-1)
dt | dt
j: Eje[—1-2¢,—1+2«]
—E;
3 = > L p'(Ej +1-1)

jiE; e[—1-2¢,—1+ 2] 142

= 11 Trlp'(Ta, (Eo, A, @2) + 1 —t)T's, (Eo, A, @2)],
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where{Ej};en are the eigenvalues dfa, (Eo, A, w)).
On the other hand, using the Hellmann—Feynman theorem anédhation

Z )»u IU\L(|50, A, w2) = I'p (Eo, A, @2),

|é 2eAL

we can show

D kg Tr[p(rAL(Eo,xwz)H—t)]

|E 2eAL

= 3 {p’(Ej+1—t)- D g }

i Ejel-1-2¢,-1+2¢] i1 E%2eA,

(2.4)

= Tr[p'(Ta_(Eo, A, w2) + 1 = t)['4 (Eo, A, @2)].

By (2.3) and (2.4), we obtain
d
- Tr[P(FAL(EO; A, w2) +1—1)]

Aj— Tr s, (Eo, A, 1-t
< EZ 75 TMlp(Ta, (Eo. 2 @) + 1= D).
1 eAL

By this estimate and the integration by parts with respedt; tdhe right hand side
of (2.2) is less than or equal to

-1 3ic/2 m’
-1+ 2¢ Z ) /3,(/2 dt{l,_[/m ho()w)d)w}

ERACITN

y { T, (o 2 0) +1- t)]}

N (Gl M) ]l) V ho(m)
- 1-2«)

3k/2
<2 [ a] / ho(i) d[Tr(D(i, Eo, m, 411,

i N 3k /2 I £i

(2.5)

wherehg() is the functiomhg() andD(i, Eg,m, Ao) is the operatop(I"y, (Eo, »,w2)™ +
1—t)— p(Ta, (Eo, A, w2)*® 4+1—t). We denotd™,, (Eg, A, w2)”"' for @ € [m, m] by the
operators, (Eo, 1, wz) with the fixed coupling constan = w at thei-th site, and\;" €
[m,m] by the value of the coupling constantwhere the maximum gffr{ D(i, Eo,m,10)}|
is attained.
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Now we use the following proposition on spectral shift fuoos ([5] Theorem 2.1,
[25] Chapter 8 83 Theorem 3 and Theorem 6):

Proposition 2.1. Let A, and A be self-adjoint operators such that; A Ag €
Zy)p for p> 1, whereZy,, is the family of compact operators of the super trace ¢lass
which we define as followswe say that Ac 7y, if for some p> 1, [|Allly, =
(>, 1 (A)YP)? < 0o, where itj(A) denotes the j-th singular value of A.

Then there exists some( - ; Ay, Ag) € LP(R) such that for¢ € C>(I") where
' C R: a compact interval which contains(Ag) and o (Ay),

TrH(AL — $(A0)] = [ 7(: As, AQ)p (1) d,
and

1
Izl < 1AL — Aoll )8,

We fix p > 1 and setA; = (Ca, (Eo, &, 2)" 1) and Ay = (I's, (Eo, A, wp)™')' for
any | greater thardp/2 + 1, andV; = (A" — m)Ro(Eo)¥2u(x — £”2)Ro(Eo)¥2, where
Ro(Eo) := (Ho — Eo)™%. Then,

-1

Veir 1= Ar— Ao = Y (T'a, (Eo, &, @2)" ) 172V (I, (Eo, A, wp)™))!
j=0

-1
= 0" =m) Y 13T Ro(Eo)V, ) T Ro(Eo) YA Uy

j=0

x [ 3 (Ro(Eo)V,™) Ro(Eo) ¥,

where J € C§° such thatJ(x)u(x) = u(x). We denoteu; := u(x—§), J := J(x—§"?)
and form € [m,m’], V,f’L’i is the potentiaV,, with the fixed coupling constant; = @
at thei-th site.

According to Proposition 12 in [18], for any € supphy andr € N,

N r
(2.6) I (Ro(Eo)V5!) Ro(Eo)? = {1‘[ 3*? Ro(Eq) Bf"’*},

p=1

a=1

where the bounded operatof¢”ﬂ are combinations of the derivatives df, and the

operatorsBi“’ﬂ are the polynomials of the bounded operators contaiMﬁg
Let s > d/2. Using the estimates of the norms in Theorem 4.1 of [20],

19" Ro(Eo)llz, < 197" Il s(rey

X2 = Eo || Ls(re)
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which is bounded by a constant independentAgf. The norms of the operatoB{’"B
are estimated as follows:

14
187 lseerey < CHIVA" oo + 117 < C|: sup #k € N: §7 € Aza(X)) + 1} ,

XEAL+a

for somey and C independent ofA, . Therefore, we can obtain the estimate of the
norm of Vess as follows:

/

14
IIVerslllz/h < C( — )[ sup #(k € N: §7 € Aza(x)) + 1} :

XEAL+a

for somey’.
Noting suppo’(- + 1—t) is included inX := [-1 — 3k, 0), we have

|Tr D(i, Eo, m, ;)]
= |Tr[p(FAL(E07 )\ wZ))\r’i —-E+ t) - p(FAL(EOI )"1 wZ)in - E+ t)]|

@.7) V MN 190 dw

3,0 q 1/q
—((A+1-1t)| da ,
voiof )

whereq is the positive number such thayd+ 1/ = 1, andx is the spectral shift

function for A; and Ao.
By using also

Y
< C[ sup #(k € N: £ € Ag(x)) + 1} (/
p))

XEAL+a

/lp/(y)|q dy < /|/O/()/)| dy supoo/)(Q—l),
R R

we can show that the second factor of the right hand side &) (8. dominated by
x(/a-1),

Consequently, according to (2.2), (2.5), (2.7) and abovargents, we obtain
E{Tr PY (1)}
(2.8)

XEAL+a

"
< CipY9E®2 {#(j eN: g e AL){ sup #(K e N: £ € Az(X)) + 1} }
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For (2.8), using the Hdlder inequality, we obtain

E(Tr PY (1)}

< Clnl/quz[#(j eN: %—sz c AL)1+9]1/(1+9)
(2.9)

(©+1)y/670/0+0)
x E*2 { sup #(k € N: 7 € Ag(x)) + 1}
XEAL +a

for 6 > 0.
Noting that the third factor of the right hand side of (2.9)isunded byC LY and
the fourth factor is less than or equal to
O+1)y'/6 0/(146)
Z E“’Z[ sup #(k € N: 7 € Aza(X)) + 1} < C L9/t

ecA+aNZ xeA(€)

we obtain the theorem.

REMARK 5. By (2.8), the main theorem holds for a model of which the unity
position&; (w2) = & + Vi (w2) with a uniformly boundedy, (w;) as A=1 similarly to [12],
where{g:i € N} = Z9.

REMARK 6. Our proof of this paper needs only ti stationary property and
the finite moments’ property for all orders for the number wipurities in the finite
cube. Moreover, if we treat point processes with finite momesft somen > d/2,
then our results hold foA > 1 4+ y’/n. The conditionn > d/2 is for the essential
self-adjointness of our Schrodinger operators@gﬂ(Rd) [14].
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