HEAT KERNEL AND SINGULAR VARIATION OF DOMAINS

Shin OZAWA and Susumu Roppongi

(Received March 9, 1994)

1. Introduction

We consider a bounded region M in R^{n} ($n=2$ or 3) whose boundary is smooth. Let w be a fixed point in M. By $B(\varepsilon ; w)$ we denote a ball of radius ε with the center w. We put $M_{\varepsilon}=M \backslash \overline{B(\varepsilon ; w)}$.

Let $U(x, y, t)\left(U^{(\varepsilon)}(x, y, t)\right.$; respectively) be the heat kernel in $M\left(M_{\varepsilon}\right.$; respectively) with the Dirichlet condition on its boundary $\partial M\left(\partial M_{\varepsilon}\right.$; respectively). That is, it satisfies

$$
\begin{align*}
& \left\{\begin{array}{c}
\left(\partial_{t}-\Delta_{x}\right) U(x, y, t)=0 \quad x, y \in M, \quad t>0 \\
U(x, y, t)=0 \quad x \in \partial M, \quad y \in M, \quad t>0 \\
\lim _{t \rightarrow 0} U(x, y, t)=\delta(x-y) \quad x, y \in M
\end{array}\right. \tag{1.1}\\
& \left\{\begin{array}{cl}
\left(\partial_{t}-\Delta_{x}\right) U^{(\varepsilon)}(x, y, t)=0 & x, y \in M_{\varepsilon}, \quad t>0 \\
U^{(\varepsilon)}(x, y, t)=0 & x \in \partial M_{\varepsilon}, \quad y \in M_{\varepsilon}, \quad t>0 \\
\lim _{t \rightarrow 0} U^{(\varepsilon)}(x, y, t)=\delta(x-y) \quad x, y \in M_{\varepsilon}
\end{array}\right.
\end{align*}
$$

We put

$$
\begin{equation*}
\left(U_{t} f\right)(x)=\int_{M} U(x, y, t) f(y) d y, \quad f \in L^{p}(M) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(U_{t}^{(\varepsilon)} f\right)(x)=\int_{M_{\varepsilon}} U^{(\varepsilon)}(x, y, t) f(y) d y, \quad f \in L^{p}\left(M_{\varepsilon}\right) \tag{1.3}
\end{equation*}
$$

Then, $U_{t} f$ and $U_{t}^{(\varepsilon)} f$ satisfy the following.

$$
\left(\left(\partial_{t}-\Delta_{x}\right)\left(U_{t} f\right)(x)=0 \quad x \in M, \quad t>0\right.
$$

$$
\left\{\begin{array}{rl}
\left(U_{t} f\right)(x)=0 & x \in \partial M, \quad t>0 \\
\left\|U_{t} f-f\right\|_{L^{p}(M)} \rightarrow 0 & \text { as } t \rightarrow 0 \\
\left\{\begin{array}{rl}
\left(\partial_{t}-\Delta_{x}\right)\left(U_{t}^{(\varepsilon)} f\right)(x)=0 & x \in M_{\varepsilon}, \quad t>0 \\
\left(U_{t}^{(\varepsilon)} f\right)(x)=0 & x \in \partial M_{\varepsilon}, \quad t>0 \\
\left\|U_{t}^{(\varepsilon)} f-f\right\|_{L^{p}\left(M_{\varepsilon}\right)} \rightarrow 0 & \text { as } t \rightarrow 0
\end{array}\right.
\end{array}\right.
$$

We want to construct an approximate kernel of $U^{(z)}(x, y, t)$ by using $U(x, y, t)$. We put

$$
\begin{equation*}
V^{(\varepsilon)}(x, y, t)=U(x, y, t)-L_{n}(\varepsilon) \int_{0}^{t} U(x, w, \tau) U(w, y, t-\tau) d \tau \tag{1.4}
\end{equation*}
$$

where

$$
L_{n}(\varepsilon)= \begin{cases}-2 \pi(\log \varepsilon)^{-1} & (\text { if } n=2) \\ 4 \pi \varepsilon & (\text { if } n=3)\end{cases}
$$

and we put

$$
\left(V_{t}^{(\varepsilon)} f\right)(x)=\int_{M} V^{(z)}(x, y, t) f(y) d y, \quad f \in L^{p}(M)
$$

Let T and T_{ε} be operators on M and M_{ε}, respectively. Then, $\|T\|_{p},\left\|T_{\varepsilon}\right\|_{p, \varepsilon}$ denotes the operator norm on $L^{p}(M), L^{p}\left(M_{\varepsilon}\right)$, respectively. Let f and f_{ε} be functions on M and M_{ε}, respectively. Then, $\|f\|_{p},\left\|f_{\varepsilon}\right\|_{p, \varepsilon}$ denotes the norm on $L^{p}(M)$, $L^{p}\left(M_{\varepsilon}\right)$, respectively.

Let χ_{ε} denote the characteristic function of M_{ε}. Then, we have the following Theorems 1 and 2.

Theorem 1. Assume that $n=2$. Then, there exists a constant C_{t}, which may depend on t but which is independent of ε such that

$$
\leq\left\{\begin{array}{ll}
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \\
C_{\epsilon} \varepsilon^{1 / p}|\log \varepsilon|^{-1} & \text { if } p \in(2, \infty) \\
C_{\varepsilon} \varepsilon^{(1-s) / 2}|\log \varepsilon|^{-1} & \text { if } p=2 \\
C_{t} \varepsilon^{1-(1 / p)}|\log \varepsilon|^{-1} & \text { if } p \in(1,2)
\end{array} ~ . ~\right.
$$

hold. Here $s \in(0,1)$ is an arbitrary fixed constant.
Theorem 2. Assume that $n=3$. Then, there exists a constant C_{t} independent
of ε such that

$$
\leq\left\{\begin{array}{ll}
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} \delta_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \\
C_{t} \varepsilon^{1+(2 / p)} & \text { if } p \in(3, \infty) \\
C_{t} \varepsilon^{(5-s) / 3} & \text { if } p \in[3 / 2,3] \\
C_{t} \varepsilon^{3-(2 / p)} & \text { if } p \in(1,3 / 2)
\end{array} ~ . ~ \$\right.
$$

hold. Here $s \in(0,1)$ is an arbitrary fixed constant.
Remark. Thus, by Theorems 1 and 2, we know that

$$
-L_{n}(\varepsilon) \chi_{\varepsilon}(x) \chi_{\varepsilon}(y) \int_{0}^{t} U(x, w, \tau) U(w, y, t-\tau) d \tau
$$

gives a main asymptotic term of the difference between $U^{(e)}(x, y, t)$ and $U(x, y, t)$.
The Hadamard variation of the heat kernel was discussed in [2]. And we have various papers on singular variation of domain. See, for example, [3], [4], [5], [6].

We give the proof of Theorems 1 and 2 in section 2 and section 3, respectively. In Appendix we give some properties of $U(x, y, t)$ and $U^{(\varepsilon)}(x, y, t)$. Following an usual custom, we use the same letter C in inegualities which are independent of ε.

2. Proof of Theorem 1

Throughout this section we assume that $n=2$. We put

$$
\begin{equation*}
U(x, y, t)=W(x, y, t)+S(x, y, t), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
W(x, y, t)=(4 \pi t)^{-n / 2} \exp \left(-|x-y|^{2} / 4 t\right) . \tag{2.2}
\end{equation*}
$$

We write $B(\varepsilon ; w)=B_{\varepsilon}$. Without loss of generality we may assume that $w=0$.
We take arbitrary $f \in L^{p}\left(M_{\varepsilon}\right)$. Let \hat{f} be an extension of f to M which is 0 on B_{ε}. At first we want to estimate $\left|\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)\right|_{\mid x \in \partial B_{\varepsilon} .} \quad$ By (2.2), we have

$$
\begin{align*}
& \int_{0}^{t} W(x, w, \tau) d \tau \mid x \in \partial B_{\varepsilon} \tag{2.3}\\
= & \int_{0}^{t}(4 \pi \tau)^{-1} \exp \left(-\varepsilon^{2} / 4 \tau\right) d \tau \\
= & (4 \pi)^{-1} \int_{\varepsilon^{2} / 4 t}^{\infty} s^{-1} e^{-s} d s
\end{align*}
$$

$$
\begin{aligned}
& =(4 \pi)^{-1}\left(e^{-s} \log s\right) \left\lvert\, \begin{array}{l}
s=\infty \\
s=\varepsilon^{2} / 4 t
\end{array}+\int_{\varepsilon^{2} / 4 t}^{\infty} e^{-s}(\log s) d s\right. \\
& =(4 \pi)^{-1}(-2 \log \varepsilon+R(\varepsilon, t)),
\end{aligned}
$$

where

$$
\begin{aligned}
R(\varepsilon, t)= & 2\left(1-\exp \left(-\varepsilon^{2} / 4 t\right)\right) \log \varepsilon+\left(\exp \left(-\varepsilon^{2} / 4 t\right)\right) \log (4 t) \\
& +\int_{\varepsilon^{2} / 4 t}^{\infty} e^{-s}(\log s) d s
\end{aligned}
$$

Let γ be the Euler constant. Then,

$$
\gamma=-\int_{0}^{\infty} e^{-s}(\log s) d s
$$

Thus, we have

$$
\begin{align*}
R(\varepsilon, t)= & 2\left(1-\exp \left(-\varepsilon^{2} / 4 t\right)\right) \log \varepsilon \tag{2.4}\\
& +\left(\exp \left(-\varepsilon^{2} / 4 t\right)\right) \log (4 t) \\
& -\gamma-\int_{0}^{\varepsilon^{2} / 4 t} e^{-s}(\log s) d s \\
= & -\gamma+\log (4 t)+\int_{0}^{\varepsilon^{2} / 4 t} e^{-s} \log \left(\varepsilon^{2} /(4 t s)\right) d s .
\end{align*}
$$

Since $0 \leq \log \left(\varepsilon^{2} /(4 t s)\right) \leq 2\left(\varepsilon^{2} /(4 t s)\right)^{1 / 2}=\varepsilon(t s)^{-1 / 2}$ hold for any $s \in\left(0, \varepsilon^{2} / 4 t\right)$, we have

$$
\begin{align*}
& \int_{0}^{\varepsilon^{2 / 4 t}} e^{-s} \log \left(\varepsilon^{2} /(4 t s)\right) d s \mid \tag{2.5}\\
& \leq \varepsilon t^{-1 / 2} \int_{0}^{\varepsilon^{2 / 4 t}} s^{-1 / 2} e^{-s} d s \\
& \leq \varepsilon t^{-1 / 2} \int_{0}^{\infty} s^{-1 / 2} e^{-s} d s=\pi^{1 / 2} \varepsilon t^{-1 / 2} .
\end{align*}
$$

It is easy to see that $|\log t| \leq 2\left(t+t^{-1 / 2}\right)$ holds for any $t \in(0, \infty)$. Thus, by (2.3), (2.4) and (2.5), we get

$$
\begin{equation*}
\int_{0}^{t} W(x, w, \tau) d \tau_{\mid x \in \partial B_{\varepsilon}}=-(2 \pi)^{-1} \log \varepsilon+R(\varepsilon, t), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
|R(\varepsilon, t)| & \leq C\left(|\log t|+t^{-1 / 2}+1\right) \\
& \leq C\left(t+t^{-1 / 2}+1\right)
\end{aligned}
$$

hold for any sufficiently small $\varepsilon>0$.
On the other hand, since

$$
\begin{aligned}
U(w, y, t-\tau)-U(w, y, t) & =\int_{0}^{\tau} \frac{\partial}{\partial s} U(w, y, t-s) d s \\
& =-\int_{0}^{\tau} \frac{\partial}{\partial t} U(w, y, t-s) d s
\end{aligned}
$$

hold for $\tau \in(0, t)$ and $y \in M_{\varepsilon}$, we see that

$$
\begin{aligned}
& \int_{0}^{t} W(x, w, \tau) U(w, y, t-\tau) d \tau \\
= & \left(\int_{0}^{t} W(x, w, \tau) d \tau\right) U(w, y, t) \\
& -\int_{0}^{t} W(x, w, \tau)\left(\int_{0}^{\tau} \frac{\partial}{\partial t} U(w, y, t-s) d s\right) d \tau .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \int_{M_{\varepsilon}}\left(\int_{0}^{t} W(x, w, \tau) U(w, y, t-\tau) d \tau\right) f(y) d y \\
= & \left(\int_{0}^{t} W(x, w, \tau) d \tau\right) \int_{M_{\varepsilon}} U(w, y, t) f(y) d y \\
& -\int_{0}^{t} W(x, w, \tau)\left(\int_{0}^{\tau}\left(\int_{M_{\varepsilon}} \frac{\partial}{\partial t} U(w, y, t-s) f(y) d y\right) d s\right) d \tau \\
= & \left(\int_{0}^{t} W(x, w, \tau) d \tau\right)\left(U_{t} \hat{f}\right)(w)-\int_{0}^{t} W(x, w, \tau)\left(\int_{0}^{\tau} \frac{\partial}{\partial t}\left(U_{t-s} \hat{f}\right)(w) d s\right) d \tau
\end{aligned}
$$

for $x \in M$. Combining this equality with (1.2), (1.4) and (2.1), we can easily see

$$
\begin{align*}
& \left(V_{t}^{(\varepsilon)} \hat{f}\right)(x) \tag{2.7}\\
= & \int_{M_{\varepsilon}} U(x, y, t) f(y) d y \\
& -L_{n}(\varepsilon) \int_{M_{\varepsilon}}\left(\int_{0}^{t} W(x, w, \tau) U(w, y, t-\tau) d \tau\right) f(y) d y
\end{align*}
$$

$$
\begin{aligned}
& -L_{n}(\varepsilon) \int_{M_{\varepsilon}}\left(\int_{0}^{t} S(x, w, \tau) U(w, y, t-\tau) d \tau\right) f(y) d y \\
= & \left(U_{t} \hat{f}\right)(x)-L_{n}(\varepsilon)\left(\int_{0}^{t} W(x, w, \tau) d \tau\right)\left(U_{t} \hat{f}\right)(w) \\
& +L_{n}(\varepsilon) \int_{0}^{t} W(x, w, \tau)\left(\int_{0}^{\tau} \frac{\partial}{\partial t}\left(U_{t-s} \hat{f}\right)(w) d s\right) d \tau \\
& -L_{n}(\varepsilon) \int_{0}^{t} S(x, w, \tau)\left(U_{t-\tau} \hat{f}\right)(w) d \tau
\end{aligned}
$$

for $x \in M$.
We recall that $L_{n}(\varepsilon)=-2 \pi(\log \varepsilon)^{-1}$ for $n=2$. Thus, by (2.6) and (2.7), we have

$$
\begin{equation*}
\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)_{\mid x \in \partial B_{\varepsilon}}=\sum_{i=1}^{3} I_{i}(\varepsilon, t) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}(\varepsilon, t)=\left(U_{t} \hat{f}\right)(x)_{\mid x \in \partial B_{\varepsilon}}-\left(U_{t} \hat{f}\right)(w) \\
& I_{2}(\varepsilon, t)=-2 \pi(\log \varepsilon)^{-1} \int_{0}^{t} W(x, w, \tau)\left(\int_{0}^{\tau} \frac{\partial}{\partial t}\left(U_{t-s} \hat{f}\right)(w) d s\right) d \tau \\
& I_{3}(\varepsilon, t)=2 \pi(\log \varepsilon)^{-1}\left(R(\varepsilon, t)\left(U_{t} \hat{f}\right)(w)+\int_{0}^{t} S(x, w, \tau)\left(U_{t-\tau} \hat{f}\right)(w) d \tau\right)
\end{aligned}
$$

for $x \in \partial B_{\varepsilon}$.
Notice that $S(x, w, \tau)$ is uniformly bounded for $x \in M$ and $\tau \in[0, t]$. Thus, by (2.6) and Lemma A. 3 in Appendix,

$$
\begin{align*}
& \left|R(\varepsilon, t)\left(U_{t} \hat{f}\right)(w)\right| \tag{2.9}\\
\leq & C|R(\varepsilon, t)| t^{-1 / p}\|\hat{f}\|_{p} \leq C t^{-1 / p}\left(t+t^{-1 / 2}+1\right)\|f\|_{p, \varepsilon}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\int_{0}^{t} S(x, w, \tau)\left(U_{t-\tau} \hat{f}\right)(w) d \tau\right| \tag{2.10}\\
\leq & C \int_{0}^{t}\left|\left(U_{t-\tau} \hat{f}\right)(w)\right| d \tau \\
\leq & C\|\hat{f}\|_{p} \int_{0}^{t}(t-\tau)^{-1 / p} d \tau \leq C t^{1-(1 / p)}\|f\|_{p, \varepsilon}
\end{align*}
$$

hold for $p>1$ and $x \in M$. Therefore, by (2.8), (2.9) and (2.10), we have

$$
\begin{equation*}
\left|I_{3}(\varepsilon, t)\right| \leq C|\log \varepsilon|^{-1} t^{-1 / p}\left(t+t^{-1 / 2}+1\right)\|f\|_{p, \varepsilon} \tag{2.11}
\end{equation*}
$$

for $p>1$. The same calculation as above yields

$$
\begin{align*}
& \left|\int_{0}^{\tau} \frac{\partial}{\partial t}\left(U_{t-s} \hat{f}\right)(w) d s\right| \tag{2.12}\\
\leq & C\|\hat{f}\|_{p} \int_{0}^{\tau}(t-s)^{-1-(1 / p)} d s \\
\leq & C\|f\|_{p, \varepsilon}\left((t-\tau)^{-1 / p}-t^{-1 / p}\right) \\
\leq & C\|f\|_{p, \varepsilon} t^{-1 / p} \tau^{1 / p}(t-\tau)^{-1 / p}
\end{align*}
$$

for $p>1, \tau \in(0, t)$ and

$$
\begin{align*}
\left|I_{1}(\varepsilon, t)\right| & =\varepsilon\left|\nabla_{x}\left(U_{t} \hat{f}\right)(w+\theta(x-w))\right|_{x \in \partial B_{\varepsilon}} \tag{2.13}\\
& \leq C \varepsilon t^{-(1 / p)-(1 / 2)}\|f\|_{p, \varepsilon}
\end{align*}
$$

for $p>1$, where $\theta \in(0,1)$ denotes some constant. Furhermore, by (2.2), (2.8) and (2.12),

$$
\begin{align*}
& \left|I_{2}(\varepsilon, t)\right| \tag{2.14}\\
\leq & C|\log \varepsilon|^{-1} t^{-1 / p}\|f\|_{p, \varepsilon} \int_{0}^{t} \tau^{(1 / p)-1}(t-\tau)^{-1 / p} \exp \left(-\varepsilon^{2} / 4 \tau\right) d \tau \\
\leq & C|\log \varepsilon|^{-1} t^{-1 / p}\|f\|_{p, \varepsilon} \int_{0}^{t} \tau^{(1 / p)-1}(t-\tau)^{-1 / p} d \tau \\
= & C|\log \varepsilon|^{-1} t^{-1 / p}\|f\|_{p, \varepsilon} \int_{0}^{1} s^{(1 / p)-1}(1-s)^{-1 / p} d s \\
\leq & C|\log \varepsilon|^{-1} t^{-1 / p}\|f\|_{p, \varepsilon}
\end{align*}
$$

hold for $p>1$.
Summing up (2.8), (2.11), (2.13) and (2.14), we get the following.
Proposition 2.1. Fix $p>1$ and $t>0$. Then, there exists a constant C independent of ε, t such that

$$
\left.\left|\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)_{\mid x \in \partial B_{\varepsilon}} \leq C t^{-1 / p}\left(t+t^{-1 / 2}+1\right)\right| \log \varepsilon\right|^{-1}\|f\|_{p, \varepsilon}
$$

holds for any $f \in L^{p}\left(M_{\varepsilon}\right)$.

Now we are in a position to prove Theorem 1. We put $v(x, t)=\left(U_{t}^{(\varepsilon)} f\right)(x)$ $-\left(V_{t}^{(\varepsilon)} f\right)(x)$. Then $v(x, t)$ satisfies the following.

$$
\left\{\begin{align*}
\left(\partial_{t}-\Delta_{x}\right) v(x, t) & =0 \quad x \in M_{\varepsilon}, \quad t>0 \tag{2.15}\\
v(x, t) & =0 \quad x \in \partial M, \quad t>0 \\
v(x, t) & =-\left(V_{t}^{(\varepsilon)} f\right)(x) \quad x \in \partial B_{\varepsilon}, \quad t>0 \\
\lim _{t \rightarrow 0} v(x, t)=0 & \text { a.a. } \quad x \in M_{\varepsilon} .
\end{align*}\right.
$$

By the maximum principle we have

$$
\sup _{x \in M_{\varepsilon}}|v(x, t)| \leq \sup _{x \in \partial M_{\varepsilon}}|v(x, t)| \leq \sup _{x \in Q B_{\varepsilon}}\left|\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)\right| .
$$

Thus, by Proposition 2.1,

$$
\begin{align*}
& \left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{\infty, \varepsilon} \tag{2.16}\\
= & \|v(\cdot, t)\|_{\infty, \varepsilon} \leq C t^{-1 / p}\left(t+t^{-1 / 2}+1\right)|\log \varepsilon|^{-1}\|f\|_{p, \varepsilon}
\end{align*}
$$

hold for $p>1$.
On the other hand, by (1.1) $)_{\varepsilon}$ and (2.15), $v(x, t)$ is explicitly represented as follows.

$$
\begin{equation*}
v(x, t)=\int_{0}^{t}\left(\int_{\partial B_{\varepsilon}}\left(V_{\tau}^{(\varepsilon)} \hat{f}\right)(z) \frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t-\tau) d \sigma_{z}\right) d \tau \tag{2.17}
\end{equation*}
$$

Here $\partial / \partial v_{z}$ denotes the derivative along the exterior normal direction with respect to M_{ε}. Thus, by (2.17), Proposition 2.1 and Lemma A. 5 in Appendix, we have

$$
\begin{align*}
& \left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{1, \varepsilon} \tag{2.18}\\
= & \|v(\cdot, t)\|_{1, \varepsilon} \\
\leq & \int_{0}^{t}\left(\sup _{x \in \partial B_{\varepsilon}} \mid\left(V_{t}^{(\varepsilon)} \hat{f}\right)(z)\right)\left(\int_{\partial B_{\varepsilon}}\left(\int_{M_{\varepsilon}}\left|\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t-\tau)\right| d x\right) d \sigma_{z}\right) d \tau \\
\leq & C \varepsilon|\log \varepsilon|^{-1}\|f\|_{p, \varepsilon} \int_{0}^{t} \tau^{-1 / p}\left(\tau+\tau^{-1 / 2}+1\right)(t-\tau)^{-1 / 2} d \tau \\
\leq & C \varepsilon|\log \varepsilon|^{-1}\|f\|_{p, \varepsilon^{\prime}} t^{(1 / 2)-(1 / p)}\left(t+t^{-1 / 2}+1\right)
\end{align*}
$$

for $p>2$.
We fix $p>2$ and $t>0$. Then, by (2.16), (2.18) and the interpolation inequality, we see

$$
\begin{equation*}
\left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{p, \varepsilon} \tag{2.19}
\end{equation*}
$$

$$
\begin{aligned}
& \leq\left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{1, \varepsilon}^{1 / p}\left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{\infty, \varepsilon}^{1-(1 / p)} \\
& \leq C_{t} \varepsilon^{1 / p}|\log \varepsilon|^{-1}\|f\|_{p, \varepsilon}
\end{aligned}
$$

Therefore we get the following.

Proposition 2.2. Fix $p>2$ and $t>0$. Then, there exists a constant C_{t} independent of ε such that

$$
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \leq C_{t} \varepsilon^{1 / p}|\log \varepsilon|^{-1}
$$

holds.

From (1.4) and Lemma A. 2 in Appendix, we can see that $\left(V_{t}^{(\varepsilon)}\right)^{*}=V_{t}^{(\varepsilon)}$ and $\left(U_{t}^{(\varepsilon)}\right)^{*}=U_{t}^{(\varepsilon)}$. Thus, by the duality argument,

$$
\begin{equation*}
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p^{\prime}, \varepsilon}=\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \tag{2.20}
\end{equation*}
$$

holds for any $p \in(2, \infty)$, where $p^{\prime}=(1-1 / p)^{-1}$. Furthermore, by Proposition 2.2, (2.20) and the Riesz-Thorin interpolation theorem,

$$
\begin{equation*}
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{2, \varepsilon} \leq\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \tag{2.21}
\end{equation*}
$$

holds for any $p \in(2, \infty)$.
From Proposition $2.2,(2.20)$ and (2.21), we can easily get Theorem 1.

3. Proof of Theorem 2

Throughout this section we assume that $n=3$. We recall (2.2). Then

$$
\begin{aligned}
& \int_{0}^{t} W(x, w, \tau) d \tau_{\mid x \in \partial B_{\varepsilon}} \\
= & \int_{0}^{t}(4 \pi \tau)^{-3 / 2} \exp \left(-\varepsilon^{2} / 4 \tau\right) d \tau \\
= & 4^{-1} \pi^{-3 / 2} \varepsilon^{-1} \int_{\varepsilon^{2} / 4 t}^{\infty} s^{-1 / 2} e^{-s} d s .
\end{aligned}
$$

Since

$$
\int_{0}^{\infty} s^{-1 / 2} e^{-s} d s=\pi^{1 / 2}
$$

and

$$
\left|\int_{0}^{\varepsilon^{2} / 4 t} s^{-1 / 2} e^{-s} d s\right| \leq \int_{0}^{\varepsilon^{2} / 4 t} s^{-1 / 2} d s=\varepsilon t^{-1 / 2}
$$

hold, we have

$$
\begin{equation*}
\int_{0}^{t} W(x, w, \tau) d \tau_{\mid x \in \partial B_{\varepsilon}}=(4 \pi \varepsilon)^{-1}+R_{1}(\varepsilon, t) \tag{3.1}
\end{equation*}
$$

where

$$
\left|R_{1}(\varepsilon, t)\right| \leq 4^{-1} \pi^{-3 / 2} t^{-1 / 2}
$$

We fix an arbitrary $f \in L^{p}\left(M_{\varepsilon}\right)$. We recall (2.7) and $L_{n}(\varepsilon)=4 \pi \varepsilon$ for $n=3$. Thus, by (2.7) and (3.1), we have

$$
\begin{equation*}
\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)_{\mid x \in \partial B_{\varepsilon}}=\sum_{i=4}^{6} I_{i}(\varepsilon, t) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{4}(\varepsilon, t)=\left(U_{t} \hat{f}\right)(x)_{\mid x \in \partial B_{\varepsilon}}-\left(U_{t} \hat{f}\right)(w) \\
& I_{5}(\varepsilon, t)=4 \pi \varepsilon \int_{0}^{t} W(x, w, \tau)\left(\int_{0}^{\tau} \frac{\partial}{\partial t}\left(U_{t-s} \hat{f}\right)(w) d s\right) d \tau \\
& I_{6}(\varepsilon, t)=-4 \pi \varepsilon\left(R_{1}(\varepsilon, t)\left(U_{t} \hat{f}\right)(w)+\int_{0}^{t} S(x, w, \tau)\left(U_{t-\tau} \hat{f}\right)(w) d \tau\right)
\end{aligned}
$$

for $x \in \partial B_{\varepsilon} . \quad$ By (3.1) and Lemma A. 3 in Appendix,

$$
\begin{align*}
& \quad\left|I_{6}(\varepsilon, t)\right| \tag{3.3}\\
& \leq C \varepsilon\left(t^{-1 / 2}\left|\left(U_{t} \hat{f}\right)(w)\right|+\int_{0}^{t}\left|\left(U_{t-\tau} \hat{f}\right)(w)\right| d \tau\right) \\
& \leq C \varepsilon\left(t^{-(1 / 2)-(3 / 2 p)}\|\hat{f}\|_{p}+\|\hat{f}\|_{p} \int_{0}^{t}(t-\tau)^{-3 / 2 p} d \tau\right) \\
& \leq C \varepsilon t^{-3 / 2 p}\left(t+t^{-1 / 2}\right)\|f\|_{p, \varepsilon} \quad(p>3 / 2) \\
& \qquad\left|I_{4}(\varepsilon, t)\right|=\varepsilon\left|\nabla_{x}\left(U_{t} \hat{f}\right)(w+\theta(x-w))\right|_{\mid x \in \partial B_{\varepsilon}} \\
& \leq C \varepsilon t^{-(3 / 2 p)-(1 / 2)}\|f\|_{p, \varepsilon} \quad(p>1)
\end{align*}
$$

and

$$
\begin{equation*}
\left|\int_{0}^{\tau} \frac{\partial}{\partial t}\left(U_{t-s} \hat{f}\right)(w) d s\right| \leq C\|f\|_{p, \varepsilon} \int_{0}^{\tau}(t-s)^{-1-(3 / 2 p)} d s \quad(p>1) \tag{3.5}
\end{equation*}
$$

hold for $\tau \in(0, t)$, where $\theta \in(0,1)$ denotes some constant.
Next we want to estimate $I_{5}(\varepsilon, t)$. By (2.2), (3.2) and (3.5), we see

$$
\begin{equation*}
\left|I_{5}(\varepsilon, t)\right| \leq C \varepsilon\|f\|_{p, \varepsilon} I_{7}(\varepsilon, t), \tag{3.6}
\end{equation*}
$$

where

$$
I_{7}(\varepsilon, t)=\int_{0}^{\tau} \tau^{-3 / 2} \exp \left(-\varepsilon^{2} / 4 \tau\right)\left(\int_{0}^{\tau}(t-s)^{-1-(3 / 2 p)} d s\right) d \tau .
$$

Since

$$
\begin{aligned}
& I_{7}(\varepsilon, t)=\iint_{0 \leq s \leq \tau \leq t} \tau^{-3 / 2} \exp \left(-\varepsilon^{2} / 4 \tau\right)(t-s)^{-1-(3 / 2 p)} d s d \tau \\
= & \int_{0}^{t}(t-s)^{-1-(3 / 2 p)}\left(\int_{s}^{t} \tau^{-3 / 2} \exp \left(-\varepsilon^{2} / 4 \tau\right) d \tau\right) d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{s}^{t} \tau^{-3 / 2} \exp \left(-\varepsilon^{2} / 4 \tau\right) d \tau \\
= & 2 \varepsilon^{-1} \int_{\varepsilon^{2} / 4 t}^{\varepsilon^{2 / 4 s}} r^{-1 / 2} e^{-r} d r \\
\leq & 2 \varepsilon^{-1} \int_{\varepsilon^{2} / 4 t}^{\varepsilon^{2} / 4 s} r^{-1 / 2} d r \\
= & 2(s t)^{-1 / 2}\left(t^{1 / 2}-s^{1 / 2}\right) \leq 2(s t)^{-1 / 2}(t-s)^{1 / 2}
\end{aligned}
$$

hold for $s \in(0, t)$, we have

$$
\begin{aligned}
I_{7}(\varepsilon, t) & \leq 2 t^{-1 / 2} \int_{0}^{t} s^{-1 / 2}(t-s)^{-(1 / 2)-(3 / 2 p)} d s \\
& =2 t^{-(1 / 2)-(3 / 2 p)} \int_{0}^{1} \tau^{-1 / 2}(1-\tau)^{-(1 / 2)-(3 / 2 p)} d \tau \\
& \leq C t^{-(1 / 2)-(3 / 2 p)}
\end{aligned}
$$

for $p>3$. Combining this inequality with (3.6), we get

$$
\begin{equation*}
\left|I_{5}(\varepsilon, t)\right| \leq C \varepsilon t^{-(1 / 2)-(3 / 2 p)}\|f\|_{p, \varepsilon} \tag{3.7}
\end{equation*}
$$

for $p>3$.
Summing up (3.2), (3.3), (3.4) and (3.7), we can get the following.

Proposition 3.1. Fix $p>3$ and $t>0$. Then there exists a constant C independent of ε, t such that

$$
\left|\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)\right|_{\mid x \in \partial B_{\varepsilon}} \leq C \varepsilon t^{-3 / 2 p}\left(t+t^{-1 / 2}\right)\|f\|_{p, \varepsilon}
$$

holds for any $f \in L^{p}\left(M_{\varepsilon}\right)$.
By Proposition 3.1, Lemma A. 5 in Appendix and the same argument as in section 2, we have

$$
\begin{align*}
\left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{\infty, \varepsilon} & \leq \sup _{x \in \partial B_{\varepsilon}}\left|\left(V_{t}^{(\varepsilon)} \hat{f}\right)(x)\right| \tag{3.8}\\
& \leq C \varepsilon t^{-3 / 2 p}\left(t+t^{-1 / 2}\right)\|f\|_{p, \varepsilon}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|U_{t}^{(\varepsilon)} f-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \hat{f}\right\|_{1, \varepsilon} \tag{3.9}\\
\leq & \left.\int_{0}^{\tau} \sup _{0}\left|\left(V_{\tau}^{(\varepsilon)} \hat{f}\right)(z)\right|\right)\left(\int_{\partial B_{\varepsilon}}\left(\int_{M_{\varepsilon}}\left|\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t-\tau)\right| d x\right) d \sigma_{z}\right) d \tau \\
\leq & C \varepsilon^{3}\|f\|_{p, \varepsilon} \int_{0}^{t} \tau^{-3 / 2 p}\left(\tau+\tau^{-1 / 2}\right)(t-\tau)^{-1 / 2} d \tau \\
= & C \varepsilon^{3}\|f\|_{p, \varepsilon} t^{(1 / 2)-(3 / 2 p)} \int_{0}^{1} s^{-3 / 2 p}\left(t s+(t s)^{-1 / 2}\right)(1-s)^{-1 / 2} d s \\
\leq & C \varepsilon^{3} t^{(1 / 2)-(3 / 2 p)}\left(t+t^{-1 / 2}\right)\|f\|_{p, \varepsilon}
\end{align*}
$$

for $p>3$.
From (3.8), (3.9) and the interpolation inequality (see (2.19)), we get the following.

Proposition 3.2. Fix $p>3$ and $t>0$. Then there exists a constant C_{t} independent of ε such that

$$
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \leq C_{t} \varepsilon^{1+(2 / p)}
$$

holds.

Furthermore, by the duality argument and the Riesz-Thorin interpolation theorem, we have (2.20) for any $p \in(3, \infty)$ and

$$
\begin{equation*}
\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{r, \varepsilon} \leq\left\|U_{t}^{(\varepsilon)}-\chi_{\varepsilon} V_{t}^{(\varepsilon)} \chi_{\varepsilon}\right\|_{p, \varepsilon} \tag{3.10}
\end{equation*}
$$

for any $p \in(3, \infty)$ and $r \in[3 \backslash 2,3]$.

From Proposition 3.2, (2.20) and (3.10), we can easily get Theorem 2.

4. Appendix

Let $M, M_{\varepsilon}, U(x, y, t), U^{(\varepsilon)}(x, y, t)$ be as in Introduction. See Friendman [1] for the fundamental properties of the heat kernel. We have the following.

Lemma 1.1. There exists a constant C independent of x, y, t such that

$$
\begin{equation*}
0 \leq U(x, y, t) \leq C t^{-n / 2} \exp \left(-|x-y|^{2} / C t\right) \tag{A.1}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\partial U}{\partial x_{i}}(x, y, t)\right| \leq C t^{-(n+1) / 2} \exp \left(-|x-y|^{2} / C t\right) \quad(1 \leq i \leq n) \tag{A.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\partial U}{\partial t}(x, y, t)\right| \leq C t^{-(n+2) / 2} \exp \left(-|x-y|^{2} / C t\right) \tag{A.3}
\end{equation*}
$$

hold for $x, y \in \bar{M}, t>0$.

Lemma A.2. We have

$$
U(x, y, t)=U(y, x, t) \quad x, y \in \bar{M}, t>0
$$

and

$$
U^{(\varepsilon)}(x, y, t)=U^{(\varepsilon)}(y, x, t) \quad x, y \in \bar{M}_{\varepsilon}, t>0 .
$$

Let U_{t} be as in (1.2). Then we have the following.
Lemma A.3. Fix $p \in(1, \infty)$. Then there exists a constant C independent of t such that

$$
\begin{equation*}
\sup _{x \in \bar{M}}\left|\left(U_{t} f\right)(x)\right| \leq C t^{-n / 2 p}\|f\|_{p} \tag{A.4}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{x \in \bar{M}}\left|\frac{\partial}{\partial x_{i}}\left(U_{t} f\right)(x)\right| \leq C t^{-(n / 2 p)-(1 / 2)}\|f\|_{p} \quad(1 \leq i \leq n) \tag{A.5}
\end{equation*}
$$

$$
\begin{equation*}
\left.\sup _{x \in \bar{M}} \frac{\partial}{\partial t}\left(U_{t} f\right)(x) \right\rvert\, \leq C t^{-(n / 2 p)-1}\|f\|_{p} \tag{A.6}
\end{equation*}
$$

hold for $f \in L^{p}(M)$ and $t>0$.
Proof. We take an arabitrary $x \in \bar{M}$. Then, by (1.2), (A.1) and using the transformation of co-ordinates : $y=x+(C t)^{1 / 2} z$, we have

$$
\begin{aligned}
\left|\left(U_{t} f\right)(x)\right| & \leq C t^{-n / 2} \int_{M} \exp \left(-|x-y|^{2} / C t\right)|f(y)| d y \\
& \leq C t^{-n / 2}\|f\|_{p}\left(\int_{M} \exp \left(-|x-y|^{2} / C t\right) d y\right)^{1 / p^{\prime}} \\
& \leq C t^{-(n / 2)+\left(n / 2 p^{\prime}\right)}\|f\|_{p}\left(\int_{R^{n}} \exp \left(-|z|^{2}\right) d z\right)^{1 / p^{\prime}} \\
& \leq C t^{-n / 2 p}\|f\|_{p}
\end{aligned}
$$

where $(1 / p)+\left(1 / p^{\prime}\right)=1$.
Therefore we get (A.4). By the same argument as above, we get (A.5) and (A.6) from (A.2) and (A.3), respectively.

By $B(r ; w)$ we denote a ball of radius $r>0$ with the center w. And we write $B_{r}=B(r ; w)$ as before.

Lemma A.4. There exists a constant C independent of ε, x, t such that

$$
\begin{equation*}
0 \leq-\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t) \leq C t^{-(n+1) / 2} \exp \left(-|x-z|^{2} / C t\right) \tag{A.7}
\end{equation*}
$$

hold for $z \in \partial B_{\varepsilon}, x \in M_{\varepsilon}$ and $t>0$.
Here $\partial / \partial v_{z}$ denotes the derivative along the exterior normal direction with respect to M_{ε}.

Proof. Let $F^{(r)}(x, y, t)$ be the fundamental solution of the heat equation in $R^{n} \backslash \bar{B}_{r}$ under the Dirichlet condition on ∂B_{r}. Then we have the following identity.

$$
F^{(\varepsilon)}(x, y, t)=F^{(1)}\left(\varepsilon^{-1} x, \varepsilon^{-1} y, \varepsilon^{-2} t\right) \varepsilon^{-n} \quad x, y \in R^{n} \backslash B_{\varepsilon}, t>0
$$

Thus,

$$
\frac{\partial F^{(\varepsilon)}}{\partial y_{i}}(x, y, t)=\left(\frac{\partial F^{(1)}}{\partial y_{i}}\right)\left(\varepsilon^{-1} x, \varepsilon^{-1} y, \varepsilon^{-2} t\right) \varepsilon^{-(n+1)} \quad(1 \leq i \leq n)
$$

holds for $x, y \in R^{n} \backslash B_{\varepsilon}, t>0$.
It is well known that there exists a constant C such that

$$
\begin{aligned}
& \left|F^{(1)}(x, y, t)\right| \leq C t^{-n / 2} \exp \left(-|x-y|^{2} / C t\right) \\
& \left|\frac{\partial F^{(1)}}{\partial y_{i}}(x, y, t)\right| \leq C t^{-(n+1) / 2} \exp \left(-|x-y|^{2} / C t\right) \quad(1 \leq i \leq n)
\end{aligned}
$$

hold for $x, y \in R^{n} \backslash B_{1}, t>0$. Thus, we get

$$
\begin{equation*}
\left|\frac{\partial F^{(\varepsilon)}}{\partial y_{i}}(x, y, t)\right| \leq C t^{-(n+1) / 2} \exp \left(-|x-y|^{2} / C t\right) \quad(1 \leq i \leq n) \tag{A.8}
\end{equation*}
$$

for $x, y \in R^{n} \backslash B_{\varepsilon}, t>0$.
It should be remarked that the constant C in (A.8) does not depend on ε.
Let $H^{(z)}(x, y, t)=F^{(\varepsilon)}(x, y, t)-U^{(z)}(x, y, t)$. Then, $H^{(\varepsilon)}(x, y, t)$ satisfies the following.

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta_{x}\right) H^{(\varepsilon)}(x, y, t)=0 \quad x, y \in M_{\varepsilon}, t>0 \\
H^{(\varepsilon)}(x, y, t)=F^{(\varepsilon)}(x, y, t) \geq 0 \quad x \in \partial M, y \in M_{\varepsilon}, t>0 \\
H^{(\varepsilon)}(x, y, t)=0 \quad x \in \partial B_{\varepsilon}, y \in M_{\varepsilon}, t>0 \\
\lim _{t \rightarrow 0} H^{(\varepsilon)}(x, y, t)=0 \quad x, y \in M_{\varepsilon}
\end{array}\right.
$$

By the maximum principle, $H^{(\varepsilon)}(x, y, t) \geq 0$ holds for $x, y \in \bar{M}_{\varepsilon}, t>0$. Therefore,

$$
\begin{equation*}
0 \leq U^{(\varepsilon)}(x, y, t) \leq F^{(\varepsilon)}(x, y, t) \tag{A.9}
\end{equation*}
$$

hold for $x, y \in \bar{M}, t>0$.
We fix an arbitrary $z \in \partial B_{\varepsilon}$. Then, $v_{z}=-(z-w) /|z-w|$ denotes the exterior normal unit vector at $z \in \partial B_{\varepsilon}$ with respect to M_{ε}. We recall that

$$
\begin{equation*}
U^{(\varepsilon)}(x, z, t)=F^{(\varepsilon)}(x, z, t)=0 \tag{A.10}
\end{equation*}
$$

for $x \in M_{\varepsilon}, t>0$. Therefore, by (A.9) and (A.10),

$$
\begin{align*}
0 & \leq\left(U^{(z)}\left(x, z-h v_{z}, t\right)-U^{(z)}(x, z, t)\right) / h \tag{A.11}\\
& \leq\left(F^{(z)}\left(x, z-h v_{z}, t\right)-F^{(z)}(x, z, t)\right) / h
\end{align*}
$$

hold for $x \in M_{\varepsilon}, t>0$ and any sufficiently small $h>0$. Letting $h \downarrow 0$ in (A.11), we have

$$
0 \leq-\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t) \leq-\frac{\partial F^{(\varepsilon)}}{\partial v_{z}}(x, z, t)
$$

for $x \in M_{\varepsilon}, t>0$.
Combining this inequality with (A.8),

$$
\begin{aligned}
0 & \leq-\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t) \leq\left|\left(\nabla_{z} F^{(\varepsilon)}\right)(x, z, t)\right| \\
& \leq C t^{-(n+1) / 2} \exp \left(-|x-z|^{2} / C t\right)
\end{aligned}
$$

hold for $x \in M_{\varepsilon}, t>0$.
Therefore we get (A.7).
q.e.d.

Now we have teh following.

Lemma A.5. There exists a constant C independent of ε, t such that

$$
\begin{equation*}
\int_{\partial B_{\varepsilon}}\left(\int_{M_{\varepsilon}}\left|\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t)\right| d x\right) d \sigma_{z} \leq C \varepsilon^{n-1} t^{-1 / 2} \tag{A.12}
\end{equation*}
$$

holds. for $t>0$.

Proof. We fix an arbitrary $z \in \partial B_{\varepsilon}$. Then, by (A.7) and using the transformation of co-ordinates : $x=z+(C t)^{1 / 2} y$,

$$
\begin{aligned}
\int_{M_{\varepsilon}}\left|\frac{\partial U^{(\varepsilon)}}{\partial v_{z}}(x, z, t)\right| d x & \leq C t^{-(n+1) / 2} \int_{M_{\varepsilon}} \exp \left(-|x-z|^{2} / C t\right) d x \\
& \leq C t^{-1 / 2} \int_{R^{n}} \exp \left(-|y|^{2}\right) d y \\
& \leq C t^{-1 / 2}
\end{aligned}
$$

hold for $t>0$. Here C denotes some different positive constants independent of ε, t. Integrating this inequality on ∂B_{ε}, we can immediately get (A.12).

References

[1] A. Friedman: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.
[2] S. Ozawa: Hadamard's variation of the Green kernels of heat equations and their traces I, J. Math. Soc. Japan, 34 (1982), 455-473.
[3] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 30 (1983), 53-62.
[4] S. Ozawa: Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary I, Osaka J. Math., 29 (1992), 837-850.
[5] S. Ozawa and S. Roppongi: Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary II, Kodai Math. J., 15 (1992), 403-429.
[6] S. Roppongi: Asymptotics of eigenvalues of the Laplacian with small spherical Robin boundary, Osaka J. Math., 30 (1993), 783-811
[7] M.M. Schiffer and D.C. Spencer: Functionals of Finite Riemann Surfaces. Princeton Univ. Press, Princeton 1954.

```
Department of Mathematics
Faculty of Sciences
Tokyo Institute of Technology
O-okayama, Meguroku,
Tokyo 152
Japan
```

