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1. Introduction

A probabilistic method to solve a heat equation on differential forms on a
closed compact Riemannian manifold is now well-known ([9], [12]). It is based
on the notion of stochastic moving frame over the manifold. This stochastic
moving frame can be realized on a Wiener space by solving a stochastic
differential equation over the orthonormal frame bundle and the solution of the
initial value problem for the heat equation is given by an integral (expectation)
of a certain Wiener functional. By refining the Wiener functional expectation in
the framework of the Malliavin calculus to include the notion of generalized
Wiener functional expectations ([18], [19]), the heat kernel, i.e, the fundamental
solution for the initial value problem, can be expressed as a generalized Wiener
functional expectation. As a typical example of applications of this stochastic
representation of heat kernels, we can give a simpler proof of the Patodi’s
cancellation [14] in the proof of the Gauss-Bonnet-Chern theorem ([10], [16], [20]).

In the case of a Riemannian manifold with boundary, Conner [3] inves-
tigated the initial value problems for differential forms under absolute or rela-
tive boundary conditions and Ray-Singer [15] constructed the fundamental
solution by the parametrix method. Further Gilkey [5] proved the Gauss-
Bonnet-Chern theorem for a manifold with boundary. We will prove it by a
probabilistic method. 'To construct the fundamental solution, we adopt a
probabilistic approach to the initial value problem due to Airault [1] and Ikeda-
Watanabe [8], [9]. Combining this result with a modified Malliavin calculus,
we can still express the fundamental solution for the initial value problem as
a generalized Wiener functional expectation. We will then evaluate the short
time asymptotic behavior of this generalized expectation probabilistically to
compute directly the Gauss-Bonnet-Chern theorem in the case of manifolds
with boundary.

In this paper, all the stochastic processes are defined on the time interval
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0<t<1. This is because of the simplicity and also that it is sufficient for
applications discussed here.

2. A modified Malliavin calculus

In applying the Malliavin calculus to solutions of stochastic differential
equations (SDE’s) with boundary conditions, a difficulty arises that these solu-
tions are usually not smooth in the sense of Malliavin. For a typical example
of one-dimensional reflecting Brownian motion X (#) realized on the Wiener
space with generic elements w as X(¢)=|w()| or X (t)=£rsl§1§ w(s)—w(t), the

functional F(w)=X (1) is no longer smooth in the sense of Malliavin. To over-
come this difficulty, we regard one component of the Wiener process as fixed
and apply the Malliavin calculus for remaining components of the Wiener
process. This kind of ideas has been used already in, e.g., Bismut [2] and
Ikeda-Kusuoka [7]. The main purpose of this section is to formulate such a
modified Malliavin calculus. Before proceeding, however, we review very
quickly some of the essential in the Malliavin calculus, c.f., e.g. [18], [19] for
details.

Let (W, P) be the r-dimensional Wiener space: W=Wj} is the Banach space
of all continuous paths w: [0, 1]=R" with w(0)=0 endowed with the supremum
norm and P is the standard r-dimensional Wiener measure. Let H(C W) be
the Cameron-Martin Hilbert space formed of all w& W which are absolutely
continuous with square-integrable derivatives and endowed with the norm ||w||z=

Y dw |? 1/2
{Solﬁ () i},

Let E be a real separable Hilbert space and L,(E), 1<p< oo, be the usual
L,-space of E-valued Wiener functionals over the Wiener space (W, P). We
introduce a family Dj(E), 1<<p<<oo, s&R, of Sobolev spaces of E-valued Wiener
functionals so that Dy(E)=L,(E). Roughly, Dj(E)=(I—L)™*/*(L,(E)) and the
norm || ||,,, on Dy(E) is defined by

IFlly,s = I(I—L)" F1l,

where L is the Ornstein-Uhlenbeck operator. Set D°°(E)=Q0 l<(;<"°D,‘,(E) and
D=(E ):sL>J0 1<L‘E'J<"¢'D;S(E ). D™(E)is the Fréchet space of (E-valued) test Wiener
functionals and D~=(E) is its topological dual. We denote these spaces simply
by Dj, D=, D™ in the case E=R. Similarly L,(R) is denoted by L,. The H-
derivative is extended to a closed differential operator D: D™*(E)—D~~(HQE)
and its dual is a differential operator D*: D™"(H Q E)—D~"(E). 'These opera-
tors continuously send Dj*Y(E) into Dj(H®E) and D;*(HQ®E) into Dj(E),
respectively. It holds that L=—D*D.

Let FED>(R?), i.e. F=(F", F? ..., F?) with FFeD". Set o¥#=<{DF',
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DF’>, (HQR is identified with H) and call op=(c¥/) the Malliavin covariance
of the d-dimensional Wiener functional F. Suppose further that
(detop)'€Lla:= N L,.
1<

Then, for any Schwartz tempered distribution T€S'(R?) on R?, the composite
ToF (or the pull-back ToF of T under the d-dimensional Wiener map F: W—>R?)

can be defined as an elementin D™=: =U N D;*. Hence for every GED™:
>0 1<p<

=N U D;,G-ToFeD " is well-defined and the generalized expectation

>0 1<p<e

E[G:ToF]=<G+ToF,1> =<ToF,G>

is well-defined. Here < , > denotes the natural coupling between D} and its

dual (D;)'=D;*, i—1——1—=1, and 1D~ is the Wiener functional identically
equal to 1. r 9

Now we modify this Malliavin calculus so that Wiener functionals may
depend on a parameter ¢ €4 in a finite measure space (4, A, m). For simplic-
ity, we assume that (4, A, m) is a complete probability measure space. As
before, let E be a real separable Hilbert space. For every 1<p<<co, 1<p'<<oo
and sER, let L, (Dj(E)) be the L,/-space with values in the Banach space Dj(E).
Hence L, (Dj;(E)) is a Banach space with the norm || ||,,;,, whose element
F={F(w, @)} is a map (to be precise, an equivalence class of maps coinciding to
each other m-almost everywherc) a € A—F (-, a) € Dj(E) which is .]-measurable

and 5 [|1F(-, a)llﬁfs m(daz)=:|lF||$fs ;#<co. Note that the dual of L,(D;(E))
A

is L (D7*(E)) with %Jr%:l, %+i,=1. If F={F(w, a)} €L, (D}E)) and
g

G={G(w, a)} €L (D;*(E)), then for almost all a4 (m), F(-, @)= D3(E) and

G(-,a)e D*(E)=(Dj(E))’, and hence the coupling {F(-, @), G(+, @)> is
defined. The coupling of F and G is defined by

[, <P a,60,ap maa
which is well-defined because
|, 1<F (-, @), 6(-, @)>Im(der)
<[ I, @lplIGC, @l -, m(da)

<({ 1PC, it me))™ (§ 16, alf-, mda)”
= 1Pl Gl oas -
Define

/7
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(2.1) L. (D"(E)) = oD L,(D;(E))
(2.2) L,(D~(E)) = 0.9 .Y L,(Dy(E))
(2.3) Le.(D™E)=U N N LADy(E))

550 1<p<e 1<p <

2.4) L(D>E)=U U U Ly(D;E)).

>0 1<p<o 1<P/ <o

L._(D=(E)) is a Fréchet space and L, (D ~(E)) is its topological dual.

Note also that there is a natural coupling between L, (D~ =(E)) and L.,_(D~*(E)).
It is easy to see that L._(D~) is an algebra; if F={F(w, a)}, G={G(w, a)} €
L. _(D%), then

F-G = {F(w, @)-G(w, Q)} EL_(D") .

Furthermore, for Fe L., (D~) and ®L, (D), F-®< L, (D™") is defined in
usual way by using the natural coupling:

{G,F-®>=<G-F,®», "GeL. (D).

Similarly, for FEL,,(D”) and ®€ L., (D), F-®<L,,(D™*) is well-defined.
The map I: a€A—1€D., is an element in L._(D”) and, for every &=
{®(w, a)} €L, (D), the coupling I, ®)> coincides with

| E@(, @) mda)

where, for almost every fixed a, E(®(-, ) is the generalized expectation of

&(-,a)eD . Note that E(P(-, a)), as a function of «, belongs to L,,= U
LP. 1<p<e

Let F={F(w, a)} € L.._(D~(R%), i.e. F=(F', F? .-, F%) with Fie
L. (D~),i=1,2,+,d. We assume the following non-degeneracy conditions
on the Malliavin covariance of F:

(2.5) Foralmostall acA(m), (detop. y) 'ELa- .

(2.6) For every p>1, ||(det op. ») 7 ll,, as a function of @, belongs to
L. (A;m)= pﬂ L,(A;m).
1<

Theorem 2.1. For every Schwartz distribution T S'(R?%), the composite
ToF (-, a)e D™ is defined for almost all a < A (m) and

(2.7) ToF = {ToF(-,a)} €L._(D™>).

Proof is almost obvious from that for the corresponding theorem in the
Malliavin calculus (cf. Theorem 1.12 of [18]). Hence, for every G={G(w, a)}
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€L, (D”), G-ToF& L, (D) is well-defined and hence
L E[G(-, @) ToF(-, a)] m(dat)
is well-defined.

Consider a family F,={F,(w, @)} €L.._(D"(R*)) depending on the parame-
ter E€[0, 1]. We suppose that E€[0, 1]>F, & L.._(D(R?)) is C' as a Fréchet
space valued function of €. Suppose that F, satisfies the non-degeneracy
conditions (2.5) and (2.6) for every E€[0, 1] and furthermore that conditions
(2.5) and (2.6) are uniform in &, i.e., for every p>>1 and p'>1,

(2-8) SUP]” ” (det O-Fg(‘,d))_l ||p”Lp’(A;m)<°° .

BE[o’l

Then, by Theorem 2.1, ToF,& L,,_(D~*) is defined for TeS'(R* and €€[0, 1].

Theorem 2.2. For every k=0, 1,2, -,

2.9) ToF,— 3 L 9" ToF, (F,—F,)"+R®

n,ini<t |
and R® = {R® (w, a)} € L.._(D™") satisfies
(2.10) R® = O(E*) as €0 in L. (D™™)
in the sense that s>0 exists such that
IR (-, @)llp,elleycas m = O as €10

for every p>1 and p'>1.

In (2.9), we used the multi-index notation: n=(n, n,, -+, n,)EZ%, nl=
mnyleeomy ), | n| =n,+n,+ - +ny, a"=al ajz--ajs for a=(a,, a,, ++-, a;) ER? and

n 6 " 6 " a " n oo n

9 :<a7> (5;2—) (W) “. Note also that (F,—Fy)*€ L.._(D") and 8"ToF,-
(F,—F,)" is in the sense of multiplication of elements in L.,_(D.) and L, (D)
explained above. As for this multiplication, it holds generally that if GE L.._

(D*) and ®EL,._(D™), then G-®EL.._(D™). Hence 9"ToF,-(F,—F)" <
L.._(D™™). Proof is easily provided by applying the following formula succes-
sively:

ToF,—T-F,— 3 S T . ";5 du .

1Jo ot w

This formula can be obtained by approximating the Schwartz distribution by
smooth functions.
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As an application of the modified Malliavin calculus discussed so far, we
give a stochastic representation of heat kernels on a domain with boundary.
For simplicity, we consider the case of upper half space D={xR"; " >0} of
R". Consider the following heat equation

2.11) Qﬁ:l((a ) ut 35 ()

Lo ou
ot 2 o 6x’> 20 55

with the Neumann boundary condition

(2.12), dul  _
0x 2"=0

and with the Dirichlet boundary condition

(2.12), Ul mgg=0.

We assume that a*/(x), b'(x) are C=-functions on D with bounded derivatives of
all orders and a(x)=(a*/(x)) is uniformly elliptic, i.e., a constant ¢>0 exists such
that

mz-j adi(x)E E>clE|2 forall E=(§, &, -, " )eR™" and x€D.

Let o(x)=(ci(%)), i,k=1, 2, :--, m—1 be the square root of a(x) and (W, P) be
the Wiener space with r=m—1. In the following, we write x=(x", &%, «++, &™) €
R" as x=(%, x™) so that ¥=(x', 4%, ---, x" e R"™ 1. Set A={pesC([0, 1]>R);
»(0)=0}. Let =4 be fixed and consider the following SDE on R"~! for given
x=(%, s")ER";

axi(t) = 3 ol X(t), 18" +o(t)|) dur()) +H(X(), |3 +(0)]) dt
Xi0)=«, i=1,2-,m—1

(2.13)

where X(#)=(X%t), X(¢), ---, X"'(¢)). 'The solution of (2.13) is denoted by
X(¢, x, w; ). Let P™ be the one dimensional standard Wiener measure on 4

and set
Mt, 5,5 9) = exp{ || B"(R(s, 2, w3 ), #"+0(6)) dip(s)
2.14 t oA
( ) _% So I bm(X(S, X, W; ¢)» xm+¢(s)) |2 ds}'

where
b"(x) = b"(%, |a"|) sgn(x™), x = (%, a")ER".

It is well-known that the solutions #*(¢, x) to the initial value problem (2.11) with
#(0, x)=f(x) and the boundary conditions (2.12)y and (2.12),, respectively, are
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given by
o5y WD = EXEY M5 w5 9) fuX (05 w5 9), o),
' t>0,xsD
where
F+) =13, 15"
and

f-) =3, 1Y"])sgn(y™), y=(3,y")ER".

EX E® is the integral (expectation) with respect to the product measure P(dw) X
PY(dp) on Wx A. Now we introduce a parameter £>>0 and consider the SDE

axi(t) = & T ol(X (1), |15"+Ep(t) ) dwi(t)

+& b(X (1), |a"+-ep(t)]) dt
Xi0) =o', i=12 -, m—1.

(2.13),

Denote the solution by X*(¢, x, w; @) and define M*(¢, x, w; @) by
t A
Me(t, %, w; @) — exp {€ SO B (XG5, %, w; @), 2" HE(s)) dep(s)

(2.14), & [t a
—> S | ™(X5(s, x, w; @), &"+Ep(s)) |* ds} .

0
Then noting the scaling property of the Wiener process, the solutions #*(¢, x)
in (2.15) can be also expressed as

wH(E, x) = ExE® [M(1, %, w; 9) fu(X'(1, 2, w; ), 2" +Ep(1))]

(2.15),
&0, xeD.

Let p*(t, x,y) and p~(¢, x, y) be the fundamental solutions (with respect to
the Lebesgue measure dy in D) for the heat equation (2.11) with boundary
conditions (2.12)y and (2.12),, respectively. Let m(dp)=_Pq:o(dp): =P (dop|
@(1)=0) be the pinned Winer measure (the Brownian bridge) on 4. So it is the
image measure of P® by the map @— T on 4 defined by (Te) (£)=p(t)—tp(1).
Then appealing to the modified Malliavin calculus discussed above depending on
the parameter @ = 4, we can give the following stochastic representation for the
heat kernels p*(¢, x, y).

For this, we take generally x, y& R" and >0 and fix them. We write x=
(%, &™), v=(7,y") so that &, yR™'. Set

X(t) = Xo(t, x, w; T"())

and
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M) = M(t, %, w; T2 ()
where T?*(p)E A4, a, bER is defined by

Ti4() (1) = o()+2°

In the definition of M ’(t) by (2.14),, a stochastic integral with respect to
the process Yr()=T*"""(p) (£) is involved and the exact definition will be given
in the proof of Lemma 2.2 below.

-t, 0St£1,¢€A.

Lemma 2.1.
X*(1)EL._(D*(R"™Y))
and it satisfies the non-degeneracy condition (2.5) and (2.6).
Proof. Fixing p= A4, X*"(l) is a solution of SDE (2.13), in which o= 4 is
replaced by T2"""(¢) (£) whose coefficients are therefore time dependent through

T="™(@) (f). We can however apply the Malliavin calculus in such a case
(cf. Taniguchi [17]) to conclude easily the assertion of the lemma. []

Lemma 2.2.
M(1)eL.._(D")

Proof. First we make precise the definition of M*(2). r(2): = T=™"(p) (2)
is a stochastic process on the probalility space (4, m) and it is a semimartingale
with respect to the natural filtration 4,: Indeed

v() = o)+

— (' 26 x"—y"
— B(t) So P6) 4o XYy

where B(Z) is an (_,)-Brownian motion. The stochastic integral
[ &), 2+ ev ) ()
is, by definition, equal to
5: B"(R¥(s), #™-+-&yn(s)) dB(s)— S: b"(X2(s), 8" +-E4r(s)) ‘1?;(_3); ds
+ Y bR, 4o (9) d
So M(t) is defined to be

Me(t) = exple S: BM (X (s), 2™ +-Eyr(s)) dB(s)
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— | @, v ) 2D as
+(9"—«") S: b™(X*(s), 4"+ (s)) ds .
NSO SR O

Next, we show that
Mt(1)EL...(Wx A, Pxm).

It is sufficient to show that

exp{g %@ dsyeL._(A,m).

1
0 s
But m=_Py ¢ is the Gaussian measure on 4 and, by Fernique’s famous theorem
(cf. [11]), it is easy to see that

" dsye L. (A,m)

s

exp {H

()
1—

0

if 0<y<2. )
Now in order to prove M*(1)&L.._(D~), it is sufficient to show that

Sl b"(X*(s), X" +-Exr(s)) dur(s) E Lw_(D*). Tt is clear that 5*(X*(s), x"+-E(s))
0 A
L.._(D=)and strlopllllb"'(X’(s), X" -Er(5))],.4 5 << oo for every p>1,p'>1and k>0.

Then the assertion is a consequence of the following:

Lemma 2.3. Let B(t, p) be an (A,)-Brownian motion on (A, m) and
E(t; w, @) be a function jointly measurable on [0, 11X Wx A such that, for every
te[0, 1], E(t; w, p) € L (D),

sup ||E(t; w, @)|lp5; pr<<oo for every p>1,p'>1 and k>0
te[o,1]

and furthermore, for each t, the map p—E(t; +, p)€ D is A-measurable. Then
the stochastic integral

1
Flw,9) = | E(t; v, 9) dB(t, )
is well-defined and FE L,_(D*).

Proof. We give a main point of the proof since others are routine. For
each k=1, 2, ---,

! k
D*F(w, p) = So D E(t; w, ) dB(t, p)EHR -+ QH .

By Burkholder’s inequality for stochastic integrals with values in a Hilbert
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space HQ k ®H, we have for p>2 and almost all we W (P),
[ 1DF @ 0) 145 map)<C, | 1 1D+t w, ) 55 dy mide)
where C, is a positive constant. Hence
| 1D, 0) s Paw) m(ag)
[ ] 4] 102505, 0) 15 a2 P(a) midg)

SW S: | D* E(t; w, @) | %s dt P(dw) m(dp)

IF 1500 = |
A
CP

<, SA
1
<G}, 15t 0, @)l de<oo .
This proves F& L.._(D>).

Now we can apply Theorem 2.1 to define the following kernel TI(x, y; &)
for fixed x€D, yeR" and £>0:

I(x,y;€) = | EI(1)-85(X*(1)] m(dp)
(10) (=1, Boae 2 w5 7270

X85X(t, 3, w3 T3 ()] Phi(dp))
From (2.15),, we deduce the following:

Theorem 2.3. For given x=(X, x™), y=(¥,y") €D and >0,

*(g2 — 1 _ "=y .

P (E)xxy) \/Zz& eXP { }H(x)yye)

(2.17)

i#__ exp {—_—_
\V2rz& 282

where y=(y, —y")ER".

As an application of the stochastic representations (2.17), we can reproduce
the result of McKean-Singer in §5 of [33] by evaluating probabilistically the
right-hand side of (2.17), cf. [20] for details.

3. Heat kernels on differential forms with absolute boundary
conditions

Let M be a compact, oriented, smooth Riemannian manifold of dimension
m with boundary. We denote by A(M)=317-.DA,(M) the space of smooth
differential forms. Thus A(M) is the vector space formed of all C*-sections
w: M—AT*M where AT*M is the exterior product bundle of the cotangent
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bundle T*M. For e A(M), we denote by wnorm the normal component of w.

DerintTioN 3.1. A differential form w&A(M) is said to satisfy the
absolute boundary conditions if

Oporm = 0 and  (do)gorm =0 on OM
where d is the exterior derivative.
Consider the following initial and boundary value problem on A(M):

ou __ 1
Bt 2

ltlgl u(t, )=f

u satisfies the absolute boundary conditions,

(3.1)

where []=—(d4-d*)(d+d*) is the Laplacian of Hodge-de Rham-Kodaira.
The solution u(¢, x) of (3.1) is given in the form

(32) u(t, x) = | _e(t,,9) f(3) miay)
Here e(t, x, y) e Hom(AT¥(M), AT¥(M)) is the fundamental solution for (3.1)
and m(dy) is the Riemannian volume. Define

(3.3) Strle(t, x, x)] = tr[(—1)F e(2, x, x)]
where (—1)f €End (AT#(M)) is determined by
(—)fo = (—1)o if weA?T¥M), p=0,1,2,-,m.
By the eigenfunction expansion combined with the de Rham theorem, we deduce
(3.4) SM Str [e(z, %, x)] m(dx) = X(M)

X(M) being the Euler-Poincaré characteristic of /4. We would evaluate the
left-hand side of (3.4) to obtain an integral formula of X(M).

If x& M=M\8M, it was established by Patodi [14] (c.f., [10], [20] for a
probabilistic proof) that

(3.5) Str[e(t, x, x)] = C(x)+-o(1) as £}0,

C(x) being an explicit polynomial in components of the Riemann curvature
tensor known as the Chern polynomial, or m-form C(x)\/ g(x)dx' A\ -+ Adx": =
e(TM) known as the Euler form. Hence in order to obtain the asymptotic as
t | 0 of the left-hand side of (3.4), it is sufficient to obtain the asymptotic as
t | 0 of the integral
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(3.6) SU Str [e(t, , x)] m(dw)

where U is any small neighborhood of boundary point x,&9M. Choose V a
coordinate neighborhood of xy&dM such that

VM= {x= (&, -, xs")EV; x">0}

and

VNoM = {x = (', -, a")eV; 1" =0} .

We regard V as a part of RT={x=(x', .-+, x")ER™;x" >0} and extend the
components g;;(x) of the Riemann metric tensor in ¥ to whole R so that g;;(x)=
8;; outside a bounded set in RY. If &(¢,x,y) is the heat kernel for (3.1)
corresponding to this extended Riemannian metric on R%, then for any UC CV,
it can be deduced by a standard argument ([13]) that

S lle(t, x, x)—2(t, x, %)||dx — o(e=*) as 240
U

where ¢ is a positive constant and || || is the operator norm in End(AT¥(M)).
Hence in order to evaluate (3.6), we may assume from the beginning that M=R?,
the components g;(x) in the global Euclidean coordinate satisfy g;;(x)=238;; outside
a bounded set. Furthermore, by choosing a semi-geodesic coordinate in V" above,
we may without loss of generality assume that

3.7) Zum(®)=1 and g, =0, i=1,.-,m—1.
wEA,(M) is given, in the global Euclidean coordinate, as
©= 1$i1<m2<ipsmm‘1"2""'p(x) dxii/\ e Ndx's .

Then the tangent component .., and the normal component wnom of © are
given by
Wian — 2 Q),‘l,'z.,.;p(x) dxts FANEX /\dx"p
1<) < K p<m -1
and

©gorm :15i1<"'<%—1Sm—1wil"z"'ip—1m(x) dxii\ oo Ndxir-1 Ndx™
Hence o satisfies the absolute boundary conditions if and only if
(3.8) Wiyipm(®) =0 on OM for all 1<g< o<, <m—1
and

(3.9) 8_“’5'1_;,,1&(@:0 on 0M  forall 1<i,<-<i,<m—1.
X

We will now represent the heat kernel by a generalized Wiener functional
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expectation as discussed in the prevoius section and use this representation to
compute the asymptotic of (3.6).

Before proceeding, however, we must recall how the initial and boundary
value problem (3.1) can be solved probabilistically by a Wiener functional
expectation, c.f., [1], [8], [9]. First of all, we review very rapidly how this is done
in the case of manifolds without boundary. A basic too! is the stochastic moving
frame r(t)=(X(z), e(t)) over M: X(t) is a Brownian motion on M (i.e., the

diffusion generated by the %A, A being the Laplace-Beltrami operator on M) and

e(t) is the stochastic parallel translation of a frame e=e(0) at x along the Brownian
curve X(t). Here, by a frame e at x& M, we mean an orthonormal basis (ONB)
in the tangent space T,(M). This 7(f) can be constructed by solving a SDE:
For simplicity, we assume M=R" and the component of the Riemann metric
tensor g;;(x) with respect to the global Euclidean coordinate satisfies g;;(¥)=3;;
outside a bounded set in R". For x&R"™ and an ONB e=|e,, **-, ¢,,] in T, (M)
given in the globalE uclidean coordinate as x=(x', -+, 4™) and e,——-ej,%, a=
xi
1,2, -+, m, (we always omit the summation sign for repeated indices), consider the
following SDE for X (t)=(X'(t)) and e(t)=(e}(t)) on the Wiener space (W, P)
with r=m:

dXi(t) = ok(X(2)) dwk(t)—% X () Tix(X (1)) at

(3.10) dei(t) = —Tiu(X(2)) ei(t)odX'(t)
Xi0) =«
ei(0) =eé.

Here (c#(x)) is the square root of (g(x))=(g;;(x))~", Tix(x) are the Christoffel
symbols in the global Euclidean coordinate and o denotes the Stratonovich
differential of semimartingales. The unique solution of (3.10) is denoted by

r(t) = (X(2), e(?))
or, to clarify the dependence on r:=(x, e) and we W, by
r(t,r,w) = (X({¢,r,w), e(t,r,w)).

This is a realization of the stochastic moving frame starting at a frame e at x.
Note that all pairs r=(x, e) of x= M and a frame at x constitute a manifold O(M)
called the orthonormal frame bundle over M which is a principal fibre bundle over
M with the structure group O(m).

We consider the initial value problem of the heat equation on differential
forms on M(=R")
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ou 1
(3.11) 2
ult:O:f‘

To represent the solution u(t, -) by an expectation of a Wiener functional defin-
ed in terms of the stochastic moving frame, we need several notions and nota-

tions concernig exterior algebra AR™ over R™.
th

Let 8%, &% -+, 8" be the canonical ONB of R", i.e., §=(0, ; 1,0, --.0).
The exterior algebra or the Grassmann algebra AR"=317_,PA? R" over R" is,
as usual, the 2"-dimensional Euclidean space with the canonical ONB 841 A -+ A
8, 1< < <, <m, p=0, 1, -, m. For w € A?’R™ and A € A’R", the
exterior product w AN € A?"MR™ is defined as usual and satisfies 0w AX=
(—1*"NAw. Let End(AR™) be the algebra formed of all linear transforma-
tions on AR™. For each i=1, -+, m, define af =End (AR"™) by

(3.12) af(w) =8'No, wEAR"
and ¢, End (AR™) by the dual of af. For a=(a;;)€R"QR", define D\(a)E
End (AR™) by
(3.13) D(a) = a;jaf a;
and, for B=(B;ju)ER"QR"QR"QR", define D,(B)=End(AR"™) by
(3.14) Dy(B) = Biju af a,a¥ a; .
Given r=(x, e)=O(M), there is a canonical isomorphism
P:A?R" - A?T¥M), p=0,-,m
and hence an isomorphism
7: AR" — AT*(M)

defined by

F(S N - AN&2) = fa N A\ fir
where [f, ++-, f"] is the ONB in T*(M) which is dual to the ONB e=l[e;, -, ¢,,]

in T,(M). If (R;;u(x)) are components of the Riemann curvature tensor, its
scalarization or equivariant representation J(r)=(J,sys(r)) ER"QR"QR"QR"
is defined by

faﬂvs(") = Rijlel(x) e eg e-f, e

r=(x,e =[e, ,e,]), e,= e g

A
ox’

Given r=(x, e), we construct the stochastic moving frame 7 (¢, 7, w)=(X (¢, 7, w),
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e(t, 7, w)) as above and define M(¢, r, w) € End(AR™) by the solution of

O — M) D, (5 Tt r,w))
M(0) = I (the identity) .

(3.15)

For a given fe A(M) (=C~(AT*M)) whose components (in the global Euclidean
coordinate) are all tempered C~-functions on M (i.e., C=-functions whose deri-
vatives of all orders are of polynomial growth order), define wu(t, r) AT M)
by the following expectation on (W, P):

(3.16) u(t,r) = PE[M(t,r, w) 7(t, 7, w) " f(X (2, 7, w))] .

(Remember that #(¢,7, w) is the canonical isomorphism AR"—>AT% ;. , »)(M).)
We can deduce that u(¢, ) depends on x only and is independent of a choice of
e. This is a consequence of the fact that

rt,r,w)yg=r(t,rg,g7'w), g€0(m)

where r-g is the action of O(m) on the principal fibre bundle O(M) and the map
w— g~'w on W preserves the measure P. Hence we may write u(¢, 7) as u(¢, x).

Theorem 3.1. u(t, x) is the unique tempered solution of the initial value
problem (3.11).

For details, c.f., [9]. Since e is irrelevant in the definition of u(z, x), we
may always assume that r=(x, e=[e,, -+, e,,]) with e,=a5(x) 9/0x’, a=1, 2, ---, m.
In this case, we denote r by r(x) and also (¢, r, x)=(X (¢, r, w), e(t, 7, w)) and
M(t,r,w) by r(¢, x, w)=(X (¢, x, w), e(t, x,w)) and M(¢, x,w). Since M=R",
we can identify T#(M) and R" by identifying (dx’), and & (this identification is,
of course, an identification as vector spaces, not as inner product spaces). Under
this identification, f(x)eAT¥(M)=AR". And 7(t,x, w)"'€End(AR") is
given by

(3.17) (g, x, w) ™l SN ASir—e'1 (D) A\ N2 (2)

where éi(t)=(ei(2), es(2), -+, en(t)) ER™, i=1,2, ---, m. Set also

(3.18) I (2) (= IL(¢, x, w)) = 7(x) 7 (2, x, @)~
and
(3.19) M () (= M (¢, x, w)) = 7(x) M(2, x, w) 7 (%)~ .

Now u(t, x) € AR"™ is also expressed in the form

(3.20) u(t, x) = E[M@) () f(X (2, x, w))] .
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Note that, from (3.15) that M (z) is the unique solution of

aM(s) _ o (L ,
(3.21) A — M@y 7(0) Dy (5 T (15 0) ) 7(3)

M(0) = I.

It is easy to see from (3.17) and (3.10) that I1 () € End (AR™) is the unique solu-
tion of the following integral equation:

(3.22) () = I—}—S: I (s)0d® (s)

where ©(t) is an End (AR"™)-valued semimartingale defined by
(3.23) 8(t) = Dy(0(?)) = 0.,(t) af a;

and @ (?) is an R"@R"-valued semimartingale given by
(3.24) 8,,(t) = —S: T4 (X (s, %, w))odX'(s, x, w) .

If we set K(t)=M (¢) I1(f)End (AR™), it is easily seen from (3.21) and (3.22)
that K(¢) is the unique solution of

e KO- I+ K@TE)™ 73 Dy (- J0r(s, v, w) ) 7)) ds
o) +{ K(9)ed0(s)
Then u(t, x) is expressed simply by
(3.26) u(t, x) = E[K(t) f(X(t, x, w))] .
ReMARK 3.1. It is easy to see that if a=(a;;)ER"QR",

7(%) Dy(a) 7(x)™ = Dy(@)

where
&;; = Qg oa(%) T3(%)

and, if 8=(8;;y) ER"QR"QR"QR",

7(x) Dy(8) 7 ()™ = Dy(B)
where

B it = Babed Ui(x) ob(x) 71}(”) 7i(x) .

Here (ci(x)) is, as above, the square root of (g/(x)) and (ri(x))==(ci(x))*. Hence

(3.27) #(x) D, (% Jr(s, %, w))) #(%)' = D, <% 40, %, w))
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where 4 (s, x, w)=(Fi;u(s, ¥, w)) ER"QR"QR"QR" is given by
(3.28) Fijua(8, %, ) = Jupea(r (5, %, w)) oa(x) o (x) 75(x) 7H(x) -
Then (3.25) is also written in the form
(3.25) K@) = I+ K@) D, (% 46, x, w)) I0(s) ds
+{ K(s)od0(9).

Now we come back to the case of M=R?Y and the initial and boundary
value problem (3.1). This time, the moving frame r(t)=(X (¢), e(¢)) is defined
in a similar way where X (t) is the reflecting barrier Brownian motion on M and
e(t) is the stochastic parallel translation of e(0) along the path X (z). Keeping
in mind that we want to apply the modified Malliavin calculus of the previous
section, we realize 7(¢) in the following way. First we set

(3.29) b(y) = —%g’""(y) ()
_ 1 8(&"(y) Vdetg())
2v/det g(y) 0y;

so that, by noting (3.7), we have

62 62
oyioy | (@)

1 L3
(3.30) S A= (_]Z:‘.lg (»

L1

)+ B0
i=1 y

Note that by (3.7),

Y | 1 9(detg(y))
(3.31) b"(y) = i+ degy) o
Let (W, P) be the Wiener space with r=m—1 and set A={peC([0, 1]->R);
@(0)=0}. If P® is the one-dimensional Wiener measure on 4, then (Wx A4,
Px P®) is nothing but the m-dimensional Wiener space. Given x& M=R"
written as x=(%, ™) so that ¥ R""!, we consider the following SDE on R™™!
for each p=A:

dXi(t) = ’:2_1 k(X (), [2"+o(t)]) dwh(t)+B(X (2), |2"+o(2)]) dt
i=1,m—-1,
X0)=x
where X (#)=(X¥(?), --, X" '(t)). The solution of (3.32) is denoted by
X (t,x, w; ). Let P be a probability on Wx A which is absolutely continuous
with respect to Px P" with the density given by

(3.32)
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Zd(}’i—f;m)) = m(l, X, W, ¢) = exp{S: l;';(X(S, X, w; ¢)), xm+¢(s)) d¢(5)
(3.33)

_% Sl P (X, w5 @), 5" +(s)) |2 ds}
0

where b™(y)=b"(7, | ¥"|) sgn(y"), y=(J, y")ER". Then, by the Girsanov
theorem, we deduce that the X (i)=X (¢, x, w; @):
(3.34) X() = (X(t, %, w3 9), X"(0) = |[+"+o() )M
is a realization of the reflecting Brownian motion on M under the probabilty
P. Hence, if e(t)=e(t, x, w; p)=(ei(t)) is the solution of SDE:

dei(t) = —Ti(X (1)) ei(t)ed X (1),
635) f 0 = ~ThK) e

ei(0) = aj(x),

then, under the probability P, r(t)=r (¢, x, w; )=(X(£), e(t)) is a realization of
the stochastic moving frame.

Next, we have to define K(f)End(AR"™). Let P, Q=End(AR") be
defined by

(3.36) P=afa, and Q=a,ay.

It is easy to see generally that {a;, a;} ={a¥, a¥} =0 and {a¥, a;} =9,; I where
{4, B} =AB- BA is the anticommutator. Hence we have

(3.37) PP=P, Q*=0Q,P=1—-0Q and PQO=0.

Also it is clear that, under the above identification of AR™ and AT¥(M) as
vector spaces,

(3.38) Plo] = 0normy Q0] = wwn, for wEAM).

For X (t)=(X'(?)) and e(¢)=(ei(?)) given by (3.34) and (3.35), we define II(¢)E
End(AR™) by (3.18) where r(x)=(x, e(x)=(ci(x))). Similarly @(¢)=End(AR")
and (1) R"@R" are defined and I1(¢) satisfies the same integral equation (3.22).

Following [1] and [9], we introduce the following equation for K(¢:)=End(AR")
which is a modified form of (3.25)":

(dK (1) = K(t) TI(2)™" Dz(é_ 4, x, w; ¢))) TI(¢) dt
FLixmn>o K(t)odO(t) ,

(3.39) K(#)P=0 when X"(#)=0,
I=P+Q if »"=X"
k= [L= 70 2 =X00,
\ 0 if & =X"0)=0.

where 4 (¢, x, w; @)=(Fiju(t, x, w; p)) ER"QR"QR"QR" is given by
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(3.40) Fiiults %, W5 @) = Jaes(r (¢, 8, w; @) ou(%) oe(%) 7i(x) 7i(x) -
An exact meaning of (3.39) is given by the following integral equation:

K(#)P = Lusn [P+S: K(s)TL(s)™ D, (% 4(s, %, w; ¢)> T1(s) dsP

+{ ()08 P |
| Hliso [ [[, KOO D, (3 565,01 9) 10 5P
o +]. K(ede(s) P
K®)Q = 0+, KOTE™ D, (- 405,325 9)) 1) dsQ
+{’ K)edd(s) 0
where
(1) = | Txmr»o d005)
and
(3.41) o = inf {t; X"(t) = O}, (f) = sup {s<<t; X"(s) = O}

with the conventions that inf ¢=0c0 and sup ¢=0. The solution K(t)=K
(¢, x, w; @) of the equation (3.39)" exists and is unique as was shown in [8] or [9].

Theorem 3.2. For fe A(M) with tempered C=-components, define u(t, x) E
AT¥(M)=AR" (by the above identification of these vector spaces) by

(342)  u(t, x) = EP**P [m(1, x, w; ) K(t, 2, w; @) [(X (2, %, w; @))] -

Then any solution of the initial and boundary value problem (3.1) with tempered
C=-components must coincide with u(t, x).

For the proof, c.f., [8], [9]

Now we can represent the heat kernel e(z, x, v) € Hom (A TF (M), AT*(M))
by a generalized Wiener functional expectation in the framework of the modified
Malliavin calculus, For this, it is more convenient to introduce a parameter
&>0 as in the previous section. So let x=(&, x")e M=R? and >0 be given
and fixed. We modify the equation (3.32) as

dXi(t) = € ,,2 X (2), | 2" +-Ep(t)|) dut(2)
(3.32), 1 WX, |7 +ep(t)|)dt, i=1,+,m—1,
X0 ==
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and denote the solution by X*(#)=X"(¢, x, w; p)=(X"'(t, x, w; @), -+-, X*"!
(2, %, w; @)). Set X*(t)=X'(t, x, w; @)=(X*(t, x, w; @), X" (t)=|x"+Ep()|).
Set
1
m*(1, x, w; @): = exp {ESO 13"‘(X'(s, x, w; @), 8" +Ep(s)) dp(s)
(3.33), . )
—E [ 1B, 5 wi ), el | i}

where b"(y)=b"(7, | y"|) sgn(y™) for y=(5,y")ER". Define e'(t)=e'(t, x, w; @),
II*(t)==II%(t, x, w; @) and O(t) =O*(¢, x, w; @) in the same way as abeve from
X*(t)=X"'(t, x, w; @) instead of X(¢). Finally define K*(t)=K*(¢, x, w; ) to be
the unique solution of

K@) P = I | P+ | K6 0 D, (5 865, w3 )
X II*(s) dsP+S: K(s)od®"(s) P}

oo &, KOO D, (1 565 wip)

(3.39)!
X TT*(s) dsP+ S;m K(5)od®(s) P]
K®) 0 = 0+8 [ KO Dy (- 56, wi 9)) 19 dsQ
+{. Txvmcrsa K(90d8) 0
where

8(t) = | Taemrno d0%(9),
r’(t)=r't, x, w; p)=(X*(t, x, w; @), €(t, ¥, w; )) and
F@, 2, w; @)=(Fin(t, x, w; p)) with
Fiini(t, %, w5 @) = Juea(r (2, %, w; @)) oi(x) ob(x) T5(x) Ti(x) .

Furthermore, o*=inf {t; X*"(#)=0} and +*(t)=sup {s<<t; X*"(s)=0}. Noting
the scaling property of the Wiener measure, we deduce easily that the expecta-
tion u(¢, x) of (3.42) can also be expressed as

(3.43) u(&? x) = EP*P® [m*(1, x, w; @) K*(1, %, w; @) f(X*(1, x, w; @))] .

For each y=(7,y")ER" and @< A4, define T:"*"(p)EA as in the previous
section by

T () () = o)+ 751, 0<1<1.
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Set
Xe(t) = X°(t, x, w; T () € R
(1) = m*(1, x, w; T{"(@)) €(0, )
&'(t) = e'(t, x, w; T:""(p))EGL(m; R)
() = %, », w; T:™""(p)) €End (AR™)
and

K(t) = K(t, x, w; T:""(¢)) €End (AR™) .

Let m(dp)="P;:3(dp) be the pinned Wiener measure on 4. As in the previous
section

X(lyeL._(D(R"Y),

m*(1)eL.._(D),

I1*(1), K*(1) € L.._(D=(End (AR™))) .
Therefore, we can apply Theorem 2.1 to define the following kernel € (x, y; §) €
End(AR"™) for fixed x=(%, x")e M=R?, y=(9,y")ER" and £>0:

E(x,y;€) = SA E[(1) K*(1) 85(X*(1)))] m(de)

(3:44) = | Bt 2w T () KU1, 3, w3 T2 ()
X 85(X*(1, x, w; T{™"()))] Pi:5(dep) -
From (3.43), we can finally deduce the following:
Theorem 3.3. For given x=(%, x"), y=(7,y")EM=R?% and £>0, the

fundamental solution e(t, x,y) to the initial and boundary value problem (3.1) with
respect to the Riemannian volume is expressed as

2 __ 1 1 (" —y") .
(3.45) e(& x,y) = Vaetz0) [\/—2};8 exp {——T} E(x,y;8)

g e |~ 6,350

where y=(y, —y")=ER".

4. Gauss-Bonnet-Chern theorem for manifolds with boundary

Our main object in this section is to evaluate the integral (3.6) by using
the expression of e(¢, x, x) given by Theorem 3.3. We can thereby obtain an
integral formula for the Euler-Poincaré characteristic of the manifold M as
explained in the previous section. This formula is known as the Gauss-Bonnet-
Chern theorem for manifolds with boundary.
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First, we introduce the following notations in order to apply Theorem 3.3
for the heat kernel e(?, x, x) on the diagonal. For given x=(%, x")R%, 0<
€<1 and p= 4, define maps T}, T, on 4 by

1) ) = @
and

+2) Tig)t) = pl)— 2,  0<i<l.

Set, for each 1= 1, 2,

(4.3) X)) = X, x, w; Tip)) =R,

(4.4) min(1) = m'(1, x, w; T{p))€(0, =),
(4.5) en(t) = ée'(t, x, w; T{p))€GL(m, R),
(4.6) () =II°(¢, x, w; Ty(p)) €End(AR™),
(4.7) K3(t) = K*(t, x, w; Ti(p))€End (AR™).

Then by Theorem 3.3, we have

e(&, x, x)
. 1 1 e € _ e 1,0
= g Ve ) F (DK 8] Phde)
(4.8) 1 1 _2(")
Vdetg(x) V2rze exp { & }

x| Emin(DK (D3 X (D)IPhi(dg)

By applying the time dependent Malliavin calculus ([17]) and estimates given in
§ 2 (Lemma 2.1 and 2.2), we see that X{;)(1) € L.._(D*(R"™")), m{;\(1) € L.._(D™),

ty(1) ELw_(D~(End (AR™))). Furthermore, we can see easily that, for every
k=12, and p, p' (1, o), (denoting by K, K,, -+, positive constants
depending on p, p’ and & but not on x€RY and 0<€<1)

HX:i)(l)Hp,k;p’SKl

lmeoy(Dllpe: o <K

llmiay(Dllp,e 5y < Ky exp {K,x"}
TG (Dlp,e5 < K

Ty (D6 » < Ks exp {K; «"}
”K:D(l)”p,k:p’ng

“KEZ)(l)Hp,k; p’SKs exp {wam} .
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It holds that
(49 Xio) = 5+6 [ o®, ¥ +eTp)0) du()+O(E)
as €0 in L._(D"(R™™"))

and O(&?) is uniform in x&R%. By setting

3

F. — %’?E L. (D=(R"™),

we see easily that for every p, p' (1, o0)
(4.10) SPP”(det or) Ny <o

where || ||, is Ly (A4, Ps:3; L,(W, P))-norm. Hence, by Theorem 2.2 and
its obvious modification, we can conclude that

8:(X5iy(1)) = 8x(X+EF))

(4.11) =g mH1§(F)
= i3y [ o(®, |+ T ) 0) () +OE)]  in Lu (D),
i=1,2.

Next, we have
(4.12) miy(1) = 14+0(8) in L._(D")
uniformly in x and
(4.13) miz(1) = 14+0(E)ex*"" in L. (D)

in the following sense: Generally, for ®(€, x) ={®(E, %, w; @)} € L.._(D~), we
write

@€, x) = OE"*  in L..(D*)as€}0

if, for every p, p’E(1, o) and k>0, there exist K;=K; (p, k; p')>0, i=1, 2,
such that

“(D(ea x)”p,k ; p’SKleleszm/! .

Next, we have to estimate K{;,(1)€End (AR™). The cancellation of the
supertrace is based on the following Berezin formula. As before, Str[A] for

AeEnd (AR") is defined to be
Str [A] = tr[(—1)" 4]
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where (—1)"€End (AR™) is determined by
(—)fo = (—1Yw if w€End(A’R™), p=0,-,m.
Lemma 4.3. (Berezin formula, cf. [4])
Every A= End (AR™) is uniquely expressed as
(4.14) 4= gzcxm.i;(A)a}’éaL (ax,2i(A)ER) .

Here, K, L range over all subsets of {1, ---, m} and

a;’éaL — (l):‘: “ee az‘pall eee a’q

if K={k<--<k,} and L={l,<---<l} (Of course, af—=ay,=1I). Moreover, L
means L.— {,, iz, vl b and the symbol A is to emphasize that it is related to not
af but a;. Then Str [A] is given by

(4.15) Str[A] = (=12 g a.m[A] .

Noting that Q=a,a% (cf. (3.36)) and the commutation relations of a4;, a¥, we
have

Corollary. For every A=End (AR™),

(4.16) Str[AQ] = (—1)y"=»=D2g it win [A] -
Define End (AR™)-valued semimartingales 5f;)(2), i=1, 2, by
P ¢ e - 1 e e
(+.17) Ein(®) = & | o) Do 5-Fio(6) ()

t
+ SO T peryori>0 4O (S)

where IIiy(t)=II*(t, %, w; T3(p)), ©h(t)=O"(t, x, w; Ti(p)) and Fin(t)=
Fi(t, x, w; Tip)), i=1, 2. Then, noting P4-Q=1I, the equation (3.39); can be
written in the form

t
K(#) = Liog>nl1 +So Ki(s)odEu(9)]P

t
iy [y KioedZioP
t
+ U+, Kio(9)odEin©)]Q
(4.18) ;
= Iyl I+ Kin(s)odEin(9)]

Higsal {, | Kin()odEio©P

t
T:i)
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t
AL+ |, Kin(0)odBt(oH 0]
Here, of;,=inf {t: #"+&T(p)(2)=0} and 7, (¢?) is defined similarly. We sub-
stitute this expression of K{;)(¢) into K {;(s) appearing in the right-hand side
of (4.18). We iterate this substitution m-times. Then, noting the Berezin
formulas (4.15) and (4.16), the fact that Ef,(t)=0(€) in L._(D=(AR")) and also
that PQ=QP=0 and P?=0Q?=1, we can easily deduce that

Kio(1) = Ty 0[O+ R1]
m=1 (1 S
Loy (5 | Biod(s) | edBt () -

(4.19) s,
x [ odmty(s)0+ O+ R

in Le_(D*(End (AR™)),

where Str(R})=Str(R$)=0 and O(£") are uniform in x. Similarly we can
deduce that

K1) = Ligg, >n[O(€") exp {Kx" [€} + R3]

m-1 p1 s
Hagyen [ | dBtn (@) | "odtae) -
(4.20)
x|, odBtu(s)0+O(") exp {Kx"je} +R1]

in L._(D"(End(AR™)),

where Str (R§)=5tr (R})=0 and O(€") are uniform in x. Set

I

m—11 s
i(: Ei(x1 &, w; ¢)) = lEzo SoodE'(!,') (31) SolodEf;)(Sz)
x [ od St (s)Q € L (D" (End (ARY)
0
the term correponding to /=0 being [ and s,=1. 'Then, by (4.8),

Str [e(&, x, x)]
1 1

X L E[m{y(1) Str [Ky(1)]0x(X tn(1))] Po:3(dp)

1 1 oy
T Videtg(x) V2re exp{ & }

X SA E[mi)(1) Str [K (1)18:(X &(1))]Ps:0(d @)
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and by the above estimates (4.11), (4.12), (4.13), (4.19) and (4.20), we have

Str [e(€?, x, x)]
-1 .
V27 - det g(x)

X E[Str [E,]8,( S: (%, |"+Ep(t)|)dw(?))]Pos (dp)

(4.21) 1 . 2(x™y
+ \/Zn--detg(x)(9 xp {— & }

x| Biswims [ ol 15™+egm(0) 25" du() P )

-m
SA Lo, <n

+o+ep{-2EL 1 K o) s ey,

for some K>0 which is independent of x and &€ and O(1) is uniform in x. By
the reflection principle applied to the pinned process {@(t), Pg:o}, we see easily
that

[ Tty BIStr 2180 || o(®, 15" +601(0) du(e)1Pi(d0)
—exp{—2EN [ mrsu = [ o(a, 157(1-20-+ep() )an 0)1Pisde) .

Hence, we have
Str [e(&2, x, x)]

B 2 o [ 205
- \/Zn-detg(x)e ¢ p{ & }

x [ Brsum18( | o, 157120 +e0(t) ()] Phi(dep)

(4.22)

m\2 m
+O(1)+exp{—%~l+KTx}-O(l) as €40.
As is explained in § 3, we need to estimate the integral (3.6) in which a
neighborhood U is of the form
U=Ux{0<a"<v}, UcRr"!.
Then

SU Str [e(€?, x, x)]m(dx)

(4.23) ; _
= [, vaetg@® az {{ strle(e?, 5 "), (7 x“))]%?dxm} .

We set
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Vdetg(%, x") , m

(4.24) I(e,ﬁ:'v>=§z Stre(e, & &), & SN ger om0y

Also we introduce the following notation:
A(E, v)=0y;0(&) as €10
if
tim {m [ A& D]} — 0.
yyo Leyo &k
For example, O(€)+O(v)=0y,((1) and exp {—2(%)} =0y,(€*) for every k>0.
Our aim now is to obtain the following estimate:
(4.25)  I(&, ®; ) = I(B)+0y,(1) as & 0 uniformly in xe R""!

and obtain an explicit form of I(%). So we fix x&R”™'. Without loss of
generality, we may assume that our local coordinate has been so chosen that
gi;(%, 0)=3§,,;, T} j(®, 0)=0 for every 1<74, j, k<m—1. Then, setting x"=¢€§,
we see easily that

Ein(t) = 82[% R; (%, O)aj-“ajafa,]t—E[I‘i;,j(a?, 0)a¥ a;]
(4.26)
t
X YO I-g9+01508 | E(1—25)+o(s) | "|—Cij(t)a;!<ai

with C,;(#)=0(&?) exp (K&) in L,_(D"). On the probability space (4, P53 (dp)),
the semimartingale |@(¢)+£(1—2¢)| has the following decomposition:

|p(0)+(1—20) —& = | sgn(ep(s)+E(1—29)dp(5)+ L, &)

where

t
(4.27) L(t,£) = lim o || Te0o(p(9)+E(1—2))ds
Then

t
SO Liga-29 401508 |E(1—=28)+p(5) |

— g sgn (p(s)+£(1—25))dg(s)
= |p@)+E(1—2t)| —E—L(t, £) .

In particular

(4.28) S:](|€(l-2s)+¢(s)l>0)d]E(l_zs)+¢(s)l = —L(1, §).
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Now we can deduce from (4.16), (4.17) and (4.28) that

m—=1
Str[E,] = (—1)" =Dl . a e [2 l{ele,.,.,,,(x, 0)
»=1 pl 2

x a¥aata, 6T (%, O)ata; L(L, g)}"]+ O™ exp {KE}
= (et S
(4.29) sy
X %(%R, u(® 0)ata;ata, )
X L(TLE, O)aF L1, E)F [ +0E) exp 1K)
in L._(D%).

Also, setting x™=&§ again,

80< S: (%, |#"(1—2t)+-Ep(t)| )dw(t))
= 8y(a(®, 0)zw(1))+O0(E)(1+£) )
= Vdet g(%, 0) S(w(1))+O0@E)(1+E)  in La (D).

Hence, by (4.22) and by changing the variable x™(=&E) into & in (4.24), we
have

(4.30)

11

oy, E<m-1 pl 4!
V+M=m—1

1 _ v
XA,y m=1,1,,m21) [(?Rijkl(xy 0)a¥ a;aif al)

I(&, %, ) = (—1)mm-Di2

X (Thy (&, O)at ) |Blda(1)]
(431) x (" exp {263 BRSILAL, £Y1dE-+O(E)+0()

— (_1)m(m—!)/2 2 i l
(V27z)" tosvi=m-1 p! g !

2V+M=m—1

1 v
XA, oym-1,1,,m21) [(7Rijkl(x: 0)af a; af a,)

X (T4 @, O)afay |
% g:’ exp {—28% E4S[L(1, E)*]dE~+0p40(1)
as &10.
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(Here, Eg;g[q:]:SA @(p)Pi-i(d9) in notation.)
Lemma 4.2,

5” :/12:” exp {—2£} B4 [L(1, £)]dE

(4.32) |
=B p=01,2 .
QR/2+2 1"(”' _l_l)

Proof. Let P;:% be the probability law of pinned Brownian motion such

that x(0)=a and x(1)=b. If/ (t)—hm Zi S I o(%(s))ds, then clearly

Ea[L(1, £)] = EoF¥[4(1)"]
where E (’,'2 denotes the expectation with respect to Pg:2. It is easy to see that

5= exp {28 BFL(1))

1 g 1
= ! cee dt. dt, -+ dt <___ - =
s S S Y 2tl>\/27z(t2—tl)

0 <ty <<ty <1

1 1 I
M o teta) V2r(l—1) eXP( 2(1—tp)>'

Hence

< 1 -

[ o exp{—28 B (1)1

| * 1
433) =B S -
(#:33) 2\/27z"ostlgzsméms1 Vitp—tuy Vb —tu_y Vt,—t, V1 —tu+t,
Xdt, o diy

because

RS ey (R -G - ) 1
So 2ty 2n(1—ta) exP( 21, 2(1—@)) LRV iy
The integral (4.33) can be computed successively to obtain
w! 1 1 1 2 1 p— 3 p—1
g (3 2) (3
(%.33) = 2(\/271:)“ 2 2> 2’ 2 2’ 2 (2 2

- w
/242 N
2mar(s +1)
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By the Bianchi identity for the curvature tensor {R;;;}, it is easy to deduce
that

1 _
e Rijkl(x) 0) a¥ a; afa,

(4.34) )

= —— R;;u(%, 0)a¥ af a,a,+lower terms in af and q; .
Also
(4.35) T;i(%, 0)afa; = —T7(%, 0)a¥a; .

Now (4.31) implies our desired estimate (4.25) and, combining this with (4.32),
(4.34) and (4.35), we see easily that I(X) in (4.25) is given as follows:

(436  Im) = Lo (—tpee s 1L et
(V2r) ssvbzna vl pl e I‘( % N 2)

1 _ % v
Xy, eeym=1,1,,m21) [(_'IRijkl(x) 0)a¥ af a,a

X(—T%(s, O)at a,)'|
2 (_l)m(m_l)/2 2 (_1)v+ﬂ'il 1
v

- (V2z)m™t 2VEmE oy ims ! M )
2V+=m—-1 F<7+2
1 v
Xa(l,-“,m—l,f,n-,m:l) [('_Z—Rijkl(xy O)a:ka;k ak“l)

X (T7(®, 0)a} aj)“]

The estimate (4.25) is clearly uniform in & R" .
We will proceed to calculate I(%), x=(x, ---, x*)&R™™'. For this, we
consider the following cases separately.

Case I. m is odd. We write m—1=2n. Then u in (4.36) is even and
we set u=2p. Now, by (4.36),

I(®) = 1 (=1 11
2 7"2% ogvp<n p! p!
V+p=n
\ 1 %k Y
XAy, ym-1,1,,m21) _ERijkl(x> 0)at a¥ a,q,
(+37) X (T5(s, 0)a¥ @, T (s, O)at a) |

1 1 1/1 "
=35 Ay, m-1,1,m1) [—<_kijkl(x$ O)a;ka;!‘akal> ]
n!\2

Ao K,
2 "2
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where
(4.38) Riju(®, 0) = Ryjy(®, 0)+2T7(%, O)TT(%, 0).

{1@;,-,,,(3?, 0)}o<i,j.e.1<m—-1 can be identified with the curvature tensor of submani-
fold @M. Introducing the curvature form &;; for 8M by

(4.39) fz.:%"’z__‘k,,,,,(x,())dxk/\dx', =12, m—1,

1]

we see easily that (4.37) is equivalent to the following:
I(Z)dx' N\ -+ Ndxm™!

1
> sga(o )Qu(l)a(?) AN Qo‘(s)u'“) VARIEWAN Qa‘(Zﬂ—l)o‘(Zﬂ)

(4.40) 1
2 7"2*n! ;c62n)

where &(2n) is the symmetric group of order 2z (i.e., the group of permuta-
tions over {1,2,-:-,2n}). By the definition of the Euler form for closed
Riemannian manifold of even dimension (cf. [6]), we can finally identify I(¥) as

(4.41) [®)dx' A -+ A dxm = —e(TOM)

1
2
where ¢(T9M) is the Euler form of 9.
Case II. m is even. We write m=2n. In (4.36),
p=m—1—2p =2n—2v—1

and

r<%+ 1)= F(n—v +%) - gl-S e (2n—2v—1).
Introducing Q;;E Ay(M)| sy and w;, EA(M) |4y by
442) Q= % 2 Riu(®, O Adx!, 4 j=1,2, -, m—1,
and
(443) o= SITHE O,  i=1,2m—1,
we see easily that (4.36) is equivalent to the following:

@444)  I®dA-Aden = 50, ,(TM, TOM)

where
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1
2" 012713 2n—20—1)

(4.45) X 21 sgn () Qe A\ AQotzv-102v)
c=6(2n—1)

Qy.m(TM, TOM) =

/\ma'(ZV+1)m/\ /\wa-(zn—nm .

Now we return to our starting situation of compact Riemannian manifold
M with boundary. We have obtained above that, for any coordinate neighbor-
hood U of a boundary point in the form U= {x=(%, x™); F#=(«%, +--, s" )€U,
0<a"<q},

Sve(ez, , xym(dx) = Sae(TaMH—o.”o(l) as €10

if m is odd, and

[, e x ymi@n) = |5 0,u(ToM)+ongl)  as €0
if mis even. If UC C M, then we know that

gve(ez, x, Xym(dx) — o(1)  as €10
if m is odd, and

Sue(Ez, %, x)m(dx) = Sue(TM)—t—o(l) as €10
if m is even. Therefore, we can finally deduce the following (Gilkey [5], [6]):

Theorem 4.1 (Gauss-Bonnet-Chern theorem for manifolds with
boundary).

1

X(M) = LMe(TaM) if m is odd,

and

X (M) = S e(TM) +Sa S 0,.(TM, TOM)  if m — 2n is even .

M M v=0

REMARK 4.1. When 0M==¢, the Euler-Poincaré characteristic X(M, 0 M)
with respect to the relative homology Hy(M, 0M) is also well-known. For this
X(M, 0M), the following formula is known (Gilkey [6] p. 246):

X(M, 0M) = S Str [epa(t, %, %)Jm(dx)
M

where e, (2, %, x) is the fundamental solution for the following heat equation:
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ou_ 1
6t 2

lim u(t, +) =
im ut, -) = f
u satisfies the relative boundary conditions .

Here w& A(M) is said to satisfy the relative boundary conditions (Conner [3],
Ray-Singer [15]) if

0an =0 and (d*0)a=0 on oM.
For this fundamental solution, it holds that
et x, y) = *7e(t, x, y)*
where # is the Hodge *-operator. By using this fact, we can easily see that
X(M, 0M) = (—1)"xX(M) .

Thus the Gauss-Bonnet-Chern theorem for X(M, M) is easily deduced from
Theorem 4.1.

Remark 4.2. In this paper, we follow the definition of the curvature
tensor {R;;;} to [9]: Note that the curvature tensor in [4], [6], [14] is of
opposite sign and therefore certain powers of —1 appear in the definition of

e(ToM), e(TM) and O, ,(TM, TOM).
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