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Abstract
We construct automorphic functions on the real3-dimensional hyperbolic space

H3 for the Whitehead-link-complement groupW � GL2(Z[i ]) and for a few groups
commensurable withW. These automorphic functions give embeddings of the orbit
spaces ofH3 under these groups, and arithmetical characterizations ofthem.

Contents
1. Introduction ........................................................................... 840
2. A hyperbolic structure on the complement of the Whiteheadlink ....... 841
3. Discrete subgroups ofGL2(C), especially3 .................................. 843
4. Symmetry of the Whitehead link ................................................ 846

4.1. Symmetries ofL. ............................................................. 846
4.2. Fixed loci. ...................................................................... 847

5. Orbit spaces under̆W; S00(1 + i ) and3 ....................................... 848
5.1. The orbifoldH3

Æ
W̆. ......................................................... 849

5.2. The orbifoldH3=S00(1 + i ). ................................................ 849
5.3. The orbifoldH3=3. .......................................................... 850

6. Theta functions ...................................................................... 851
6.1. Theta functions onD. ........................................................ 851
6.2. Embedding ofH3 into D and the pull-back of the theta functions. 853
6.3. Automorphic functions for0T (2) and an embedding ofH3=0T (2). 854
6.4. Automorphic functions for3 and an embedding ofH3=3. ........ 854

7. Automorphic functions forW .................................................... 856
7.1. Fundamental properties of81;82 and83. ............................. 856
7.2. Isotropy subgroups. ........................................................... 857
7.3. An arithmetical characterization of the Whitehead-link-complement

group. ............................................................................ 859
8. Embeddings of the quotient spaces ............................................. 865

8.1. Automorphic functions forW vanishing alongF j . ................... 865
8.2. An embedding ofH3=S00(1 + i ). .......................................... 871
8.3. An embedding ofH3

Æ
W̆. ................................................... 873

8.4. An embedding ofH3=W. ................................................... 874

2000 Mathematics Subject Classification. 11F55, 14P05, 57M25.



840 K. MATSUMOTO, H. NISHI AND M. YOSHIDA

Fig. 1. Whitehead link with its symmetry axes

1. Introduction

Fig. 1 shows the Whitehead linkL = L0 [ L1 in S3 = R3 [ f�g. The Whitehead-
link-complementS3� L is known to admit a hyperbolic structure: there is a groupW
acting properly discontinuously on the 3-dimensional hyperbolic spaceH3, and there
is a homeomorphism

h : H3=W �=! S3 � L :
No one has ever tried to make the homeomorphismh explicit.

In this paper we construct automorphic functions forW (analytic functions de-
fined in H3 which are invariant underW), and express the homeomorphismh in terms
of these automorphic functions. Since our embedding ofH3=W requires many auto-
morphic functions (codimension of the embedding is high), we find several extensions
of W, and give their embeddings, which have lower embedding dimensions. In particu-
lar, for the extensionW0 such thatW0=W (�= (Z=2Z)2) represents the group of symme-
tries (orientation-preserving ambient homotopies) ofL � S3, we find five automorphic
functions, say,h1; : : : ; h5, so that the map

H3 3 x 7! (h1(x); : : : ; h5(x)) 2 R5

gives an embedding ofH3=W0. Its image is explicitly presented as part of an affine
algebraic variety.
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Our automorphic functions are made from theta functions over the ring Z[i ]. Our
proofs heavily depends on properties of these theta functions, and on quadratic rela-
tions among them established in [2], [3] and [5].

2. A hyperbolic structure on the complement of the Whiteheadlink

Let H3 be the upper half space model

H3 = f(z; t) 2 C� R j t > 0g
of the 3-dimensional real hyperbolic space. The groupGL2(C) and an involutionT act
on H3 as

g � (z; t) =

 
g11ḡ21t2 + (g11z + g12)(g21z + g22)jg21j2t2 + (g21z + g22)(g21z + g22)

; jdet(g)jt
jg21j2t2 + (g21z + g22)(g21z + g22)

!
;

T � (z; t) = (z̄; t);
where g = (g jk) 2 GL2(C). Let GLT

2 (C) be the group generated byGL2(C) and an
involution T with relationsT � g = ḡ � T for g 2 GL2(C).

The Whitehead-link-complementS3�L admits a hyperbolic structure (cf. [6], [7]):
Let W be the discrete subgroupW of GL2(C) generated by the two elements

g1 =

�
1 i
0 1

�
and g2 =

�
1 0

1 + i 1

� :
We have the homeomorphism

H3=W �=! S3 � L :
We call W the Whitehead-link-complement group. A fundamental domain, which will
be denoted byFD, for W in H3 is given in Fig. 2 (cf. [7]); two pyramids are shown.
Each face of the pyramids is a mirror of a reflection belongingto GL2(Z[i ]) � T . The
faces (together with the corresponding reflections) of the two pyramids and their patch-
ing rules are as follows:
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Fig. 2. Fundamental domainFD of W in H3

The faces of the two pyramids
No. face reflection No. face reflection

#1
Im(z) = 0,�1� Re(z) � 0,

T , #2
Im(z) = 0,

0� Re(z) � 1,
T ,

#3
Re(z) = 0,

0� Im(z) � 1,

��1
1

�
T , #4

Re(z) = 0,�1� Im(z) � 0,

��1
1

�
T ,

#5
Im(z) = 1,�1� Re(z) � 1,

�
1 2i
0 1

�
T , #6

Im(z) = �1,
0� Re(z) � 1,

�
1 �2i
0 1

�
T ,

#7
Re(z) = �1,

0� Im(z) � 1,

��1 �2
0 1

�
T , #8

Re(z) = 1,�1� Im(z) � 0,

��1 2
0 1

�
T ,

#9

����z��1+i

2

����
2

+ t2 =
1

2
,

�
i 0

1� i 1

�
T , #10

����z� 1� i

2

����
2

+ t2 =
1

2
,

�
i 0�1+i 1

�
T .

Patching rule
face element ofW its image face element ofW its image

#1

�
1 i
0 1

�
#5 #2

�
1 �i
0 1

�
#6

#3

�
1 �i
0 1

�
#4 #7

�
1 2� i
0 1

�
#8

#9

�
1 0

1 + i 1

�
#10

The groupW has two cusps. They are represented by the vertices of the pyramids:

(z; t) = (�;+1); (0;0)� (�i;0)� (�1;0)� (�1� i;0):
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REMARK 1. The translationt2 :=
�

1 2
0 1

�
is an element ofW. Indeed one finds the

relation g�1
2 t2g�1

1 g�1
2 g�1

1 g2g1g2g�1
1 = �1 in [7]. We can decide whether a given 2� 2

matrix is an element ofW by Theorem 5 in§7.3.

3. Discrete subgroups ofGL2(C), especiallyΛ

We define some discrete subgroups ofGL2(C):

0 = GL2(Z[i ]);00(1 + i ) = fg = (g jk) 2 0 j g21 2 (1 + i )Z[i ]g;
S00(1 + i ) = fg 2 00(1 + i ) j det(g) = �1g;0(1 + i ) = fg 2 0 j g11� 1; g12; g21; g22� 1 2 (1 + i )Z[i ]g;0(2) = fg 2 0 j g11� 1; g12; g21; g22� 1 2 2Z[i ]g;

W = T W T = fḡ j g 2 Wg;
Ŵ = W \ W;
W̆ =



W;W � :

CONVENTION. Since we are interested only in the action of these groups onH3,
we regard these groups as subgroups of the projectified groupPGL2(C); in other words,
every element of the groups represented by a scalar matrix isregarded as the identity.
For any subgroupG in 0; we denoteGT the group generated byG and T in GLT

2 (C).

It is known ([5]) that the group0T (2) is a Coxeter group generated by the eight
reflections

T; � �1 0
0 1

�
T; � �1 �2

0 1

�
T; �

1 2i
0 1

�
T;�

1 0�2i 1

�
T; � �1 + 2i �2

2 1 + 2i

�
T; �

1 + 2i 2i�2i 1� 2i

�
T; � �1 0

2 1

�
T:

The mirrors of the reflections are four walls Im(z) = 0, Re(z) = 0, Re(z) = �1, Im(z) =
1, and four northern hemispheres with radius 1=2 and centersi =2, �1=2 + i , �1 + i =2,�1=2, respectively, see Fig. 3. Note that the Weyl chamber bounded by these eight
mirrors is an (ideal) octahedron in the hyperbolic spaceH3.

The group0T (2) is well-studied in [5]. To relate0T (2) with the Whitehead-
link-complement groupW, we consider the smallest group which contains both0T (2)
andW:

3 =

0T (2);W�:

Lemma 1. 1. 0T (2) is a normal subgroup of3, and 3=0T (2) is isomorphic
to the dihedral group of order eight.
2. [3;W] = 8, W is not a normal subgroup of3: T W T = W.
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Fig. 3. Weyl chamber of0T (2)

Proof. 1. We extend the reflection group0T (2) by adding the reflectiong1T
with mirror Imz = 1=2, and the 2-fold rotation with axis the geodesic arc joiningthe
points (z; t) = (0;0) and (�1 + i;0), which is given by

R =

�
i 0

1� i �i

� :
These reflection and rotation preserve the Weyl chamber above, and generate a group
isomorphic to the dihedral group of order eight. Since we have� �1 0

2 1

� ; �
1 0
2 �1

� 2 0T (2)

and �
1 0
2 �1

��
i 0

1� i �i

�� �1 0
2 1

�
= �i

�
1 0�1� i 1

�
= g�1

2 ;
this extended group coincides with3.

2. By comparing the Weyl chamber of0T (2) with the fundamental domainFD
of W, we see thatW has the same co-volume with0T (2). Thus [3;W] = 8.

From the proof of this lemma, we have

Corollary 1. The domain bounded by the four walls

a : Im(z) = 0; b: Re(z) = 0; c: Im(z) =
1

2
; d : Re(z) = �1

2
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Fig. 4. Fundamental domain of3
and the big hemisphere#9 in §2 is a fundamental domain of3, seeFig. 4. The hemi-
sphere part is folded by the rotation R above.

We use this fundamental domain in§5.3.

Lemma 2. We have3 = S0T
0 (1 + i ) and [S00(1 + i );W] = 4.

Proof. It is clear that3 � S0T
0 (1 + i ). Since

�0T
0 (1 + i ); 0T (2)

�
= 16 and

�0T
0 (1 + i ); S0T

0 (1 + i )
�

= 2;
we have3 = S0T

0 (1 + i ).

So far we defined many subgroups of0T = GLT
2 (Z[i ]); their inclusion relation can

be depicted as follows:

0T
0 (1 + i )

� j0T (1 + i ) 3 = S0T
0 (1 + i )j � j

S0T (1 + i ) S00(1 + i )j j� W̆ =


W;W �

j � �0T (2) W Wj � �0(2) Ŵ = W \ W
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When two groups are connected by a segment, the one below is a subgroup of the one
above of index 2. More explanation about these groups will be given in §7.2.

4. Symmetry of the Whitehead link

In this section, we study the symmetries of the Whitehead link, and express each
symmetry as an extension of the groupW.

4.1. Symmetries ofL. The �-rotations with axesF1; F2 and F3 in Fig. 1 are
orientation preserving homeomorphisms ofS3 keeping L fixed; they form a group
(Z=2Z)2. Here the axes are defined in Fig. 1;F1 (resp. F2) meet L1 (resp. L0) at
two points, andF3 meetsL1 at two points andL0 at two points.

Recall that there is a homeomorphismS3 � L �= H3=W where the stringsL0 and
L1 correspond to the cusps ofW represented by

0 := (0;0); and 1 := (�;+1) 2 �H3;
respectively. Under this identification, we show

Proposition 1. The three�-rotations with axes F1; F2 and F3 can be represented
by the transformations

z 7! �z + 1; z 7! z + 1; and z 7! �z;
respectively, of H3 modulo W.

This assertion will be clear as soon as we study the fixed points of these transforma-
tions in the next subsection. Note that the three rotations modulo W (and the identity)
form a group isomorphic to (Z=2Z)2, since [z 7! z + 2] 2 W (see Remark 1).

We make some convention. The symbols� and stand for the points in theW-
orbits of

� =

��1 + i

2
; 1p

2

� ; and  =

�
i

2
; 1

2

� 2 H3;
respectively. Let� be the projection

� : H3 3 (z; t) 7! z 2 C : z-plane:
In the figures on thez-plane, a thick segment stands for a geodesic curve (in the upper
half spaceH3) on the hemispheres with center (�(1� i )=2;0) and radius 1=p2 (the
big hemispheres #9 and #10 in§2); its image under� is the given segment.

The eight geodesics in the fundamental domainFD shown in Fig. 2, given as the
intersections of walls

#1\ #9; #3\ #9; #5\ #9; #7\ #9; #2\ #10; #4\ #10; #6\ #10; #8\ #10;
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Fig. 5. Identification of eight geodesics inFD

are identified moduloW as is seen in Fig. 5. This identification will be used
freely later.

4.2. Fixed loci. We study the fixed points of the transformations in Proposi-
tion 1 in H3=W. Recall that the translations [z 7! z + i ] and [z 7! z + 2] belong
to W.
1. The transformation ofH3=W represented by [z 7! �z+ 1] fixes pointwise the fol-
lowing geodesics inFD:

z = �1

2
; z =

1

2
; z =

1� i

2
; z =

�1 + i

2
:

In fact, for example, we have

� 1

2
!���1

2

�
+ 1 =�1

2
+ 2� �1

2
mod 2;

1� i

2
!�1� i

2
+ 1 =

1� i

2
+ i � 1� i

2
mod i :

Thus the set of fixed points consists of two geodesics both starting and ending at1 2�H3, and passing through� and, respectively. These can be easily understood by
the diagram:

1——–�——–1; 1——–——–1:
This implies that this transformation represents the rotation with axis F1.
2. The transformation [z 7! z + 1] fixes pointwise the following geodesics inFD:

geodesic joining 0 and (i;0) through ;
geodesic joining (i;0) and (�1;0) through �:

In fact, the former can be seen by the translation of thez-plane by i , and the identi-
fication of the eight geodesics shown in Fig. 5; and the latterby the same translation
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Fig. 6. The fixed loci of [z 7! �z + 1]; [z 7! z + 1]; [z 7! �z]

and the transformation patching the big hemispheres #9 and #10 appeared in§2. Thus
the set of fixed points consists of two geodesics both starting and ending at 02 �H3,
and passing through� and , respectively. These can be easily understood by the
diagram:

0——–�——–0; 0——–——–0:
This implies that this transformation represents the rotation with axis F2.
3. The transformation [z 7! �z] fixes pointwise the following geodesics inFD:

geodesic joining 0 and (�1 + i;0) through �;
z = 0; z = �1; z = �1 +

i

2
; z =

i

2
:

One can check these in the same way as the above two cases. These can be visual-
ized as

0——–�——–0; 0——–1; 1——–——–1; 1——–0:
This implies that this transformation represents the rotation with axis F3.
The fixed loci inFD, as well as inH3=W, of the rotations [z 7! �z + 1], [z 7! z + 1]
and [z 7! �z] are also called the axesF1; F2 and F3; they are depicted inFD as in
Fig. 6. A bullet � stands for a vertical line: the inverse image of the point under � .

5. Orbit spaces underW̆;SΓ0(1 + i) and Λ

Note thatW � W̆ � S00(1 + i ) � 3,

��W̆Æ
W
�� =

��S00(1 + i )
Æ

W̆
�� = j3=S00(1 + i )j = 2; S00(1 + i )=W �= (Z=2Z)2;

and that

[z 7! �z + 1] 2 W̆ � W; [z 7! �z] 2 S00(1 + i )� W̆; [z 7! z̄] 2 3� S00(1 + i ):
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Fig. 7. A fundamental domain for̆W and the orbifoldH3
Æ

W̆

By quotienting out the symmetry of the Whitehead link, we will see an essence of
the Whitehead link. In fact, though the Whitehead link has atleast five crossings, we
will see that the quotient space has only one crossing; of course the ambient space
necessarily has orbifold singularities.

5.1. The orbifold H3
Æ

W̆. Fig. 7 (left) shows a fundamental domain for̆W in
FD; every wall has a counterpart to be identified with (under theorder-2-rotations
around the geodesicsz = �(1 � i )=2, together with the patching rules of the walls
tabulated in§2).

In the figure, a very thick segment stands for a vertical plane: the inverse image
of the segment under� .

The quotient ofS3, where L lives, by the�-rotation around the axisF1 is again
a 3-sphere but with orbifold-singularities of index 2 alonga curve; in Fig. 7 (right),
this curve is labeled byF1 and the numeral 2 is attached.

5.2. The orbifold H3=SΓ0(1 + i). Fig. 8 (left) shows a fundamental domain for
S00(1 + i ) in FD bounded by the four walls and the rectangle (part of the hemisphere
#9 cut out by the four walls). Every wall has a counterpart to be identified with (un-
der the order-2-rotations around the geodesicsz = i =2; (�1 + i )=2, together with the
displacement [z 7! z + i ]). The rectangle is divided into two squares; the upper square
is folded (identified) by the rotation centered along the geodesic joining� and (i;0),
and the lower one is folded by the rotation centered along thegeodesics joining� and
0 = (0;0).

The quotient ofS3, where L lives, by the�-rotations around the axesF1; F2 and
F3—this is equivalent to the quotient of the orbifoldH3

Æ
W̆ obtained in the previous

subsection by the�-rotation around the horizontal axis shown in Fig. 7 (right)—is
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Fig. 8. A fundamental domain forS00(1 + i ) and the orbifold
H3=S00(1 + i )

Fig. 9. A better picture of the fundamental domain forS00(1+i )
corresponding to the left figure in Fig. 8

again a 3-sphere but with orbifold-singularities of index 2along three curves; in Fig. 8
(right), these curves are labeled byF1; F2 and F3, and the numeral 2 is attached to
each of these.

5.3. The orbifold H3=Λ. Fig. 10 (left) shows a fundamental domain for3 in
FD bounded by the four wallsa;b; c and d defined in Corollary 1, and the square
(part of the hemisphere #9 cut out by the four walls). Every wall has no counterpart
to be identified with. The square is folded (identified) by therotation centered with the
geodesic joining� and 0 = (0;0). Thus the orbifoldH3=3 must be a 3-ball bounded
by the 2-sphere divided by four (triangular) walls, which are shown in Fig. 10 (right).
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Fig. 10. A fundamental domain for3 and the boundary ofH3=3
On the other hand the orbifoldH3=3 should be equivalent to the quotient of the

orbifold H3=S00(1+i ) obtained in the previous subsection by the reflection represented
by T : z 7! z̄. The mirror of the reflection in the orbifoldH3=S00(1 + i ) is shown in
Fig. 11 as the union of fourtriangles, they are labeled bya;b; c andd for the obvious
reason.

6. Theta functions

In §6.1, 6.2, 6.3, we introduce some results for theta functionsdefined on a
Hermitian symmetric domainD, and restrict them onH3 embedded inD; refer to [1],
[2], [3] and [5]. In §6.4, the final subsection, we give an embedding ofH3=3.

6.1. Theta functions onD. The symmetric domainD of type I2;2 is defined as

D =

�� 2 M2;2(C)

���� � � � �2i
is positive definite

� :
The group

U2;2(C) =

�
g 2 GL4(C)

���� gJg� = J =

�
O �I2

I2 O

��

and an involutionT act onD as

g � � = (g11� + g12)(g21� + g22)
�1; T � � = t� ;

where g = (g jk) 2 U2;2(C), and g jk are 2� 2 matrices.
Theta functions2�ab�(� ) on D are defined as

2�a

b

�
(� ) =

X
n2Z[i ]2

e[(n + a)� (n + a)� + 2 Re(nb�)];
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Fig. 11. The mirror of the reflection in the orbifoldH3=S00(1+i )
is shown as the union of four parts

where � 2 D, a;b 2 Q[i ]2 and e[x] = exp[� i x ]. By definition, we have the following
theta-transformation-formulas.

FACT 1. 1. If b 2 (Z[i ]=(1 + i ))2, then2� a
ib

�
(� ) = 2�ab�(� ).

If b 2 (Z[i ]=2)2, then2� a�b

�
(� ) = 2�ab�(� ).

2. For k 2 Z and m;n 2 Z[i ]2, we have

2�i ka

i kb

�
(� ) = 2�a

b

�
(� );

2�a + m

b + n

�
(� ) = e[�2 Re(mb�)]2�a

b

�
(� ):

3. We have

2�a

b

�
(g�g�) = 2� ag

b(g�)�1

�
(� ) for g 2 0;
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2�a

b

�
(T � � ) = 2�ā

b̄

�
(� ):

It is shown in [3] that theta functions2�ab�(� ) satisfy the following quadratic relations.

Proposition 2. We have

42�a + c

b + d

�
(� )2�a� c

b� d

�
(� )

=
X

e; f 2 1+i
2 Z[i ]2=Z[i ]2

e[2 Re((1 +i )(b + d)e�)]2�e+ (1 + i )a

f + (1 + i )b

�
(� )2� e+ (1 + i )c

f + (1 + i )d

�
(� ):

Especially,

42�a

b

�
(� )2 =

X
e; f 2 1+i

2 Z[i ]2=Z[i ]2

e[2 Re((1 +i )be�)]2�e+ (1 + i )a

f + (1 + i )b

�
(� )2�e

f

�
(� ):

6.2. Embedding ofH3 into D and the pull-back of the theta functions. We
embedH3 into D by

| : H3 3 (z; t) 7! i

t

�
t2 + jzj2 z

z̄ 1

� 2 D;

accordingly, we define the homomorphism

| : GL2(C) 3 g 7!
 

g
Æpjdet(g)j O

O
�
g�Æpjdet(g)j��1

!
2 U2;2(C);

which we denote by the same symbol| , sorry. They satisfy

| (g � (z; t)) = | (g) � | (z; t) for any g 2 GL2(C);
| (T � (z; t)) = T � | (z; t):

We denote the pull back of2�ab�(� ) under the embedding| : H3 ! D by 2�ab�(z; t).
The following is shown in [2] and [5].

FACT 2. 1. For a;b 2 (Z[i ]=2)2, each2�ab�(z; t) is real valued. If Re(ab�) +
Im(ab�) =2 Z[i ]=2 then2�ab�(z; t) is identically zero.
2. If b = (0;0) then2�ab�(z; t) is non-negative.
3. For a;b 2 (Z[i ]=(1 + i ))2, each2�ab�(z; t) is invariant under the action of0T (2).

4. The function2 = 2�00
00

�
(z; t) is positive and invariant under the action of0T .
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6.3. Automorphic functions for Γ
T(2) and an embedding ofH3=ΓT(2). Set

2 � p

q

�
= 2 � p

q

�
(z; t) = 2�p=2

q=2
�

(z; t); p;q 2 Z[i ]2

and

x0 = 2; x1 = 2 �1 + i;1 + i

1 + i;1 + i

� ; x2 = 2 �1 + i;0
0;1 + i

� ; x3 = 2 �0;1 + i

1 + i;0
� :

One of the main results in [5] is

Theorem 1. The map

# : H3 3 (z; t) 7! 1

x0
(x1; x2; x3) 2 R3

induces an isomorphism betweenH3=0T (2) and the octahedron

Oct =
�
(t1; t2; t3) 2 R3

�� jt1j + jt2j + jt3j � 1
	

minus the six vertices(�1;0;0); (0;�1;0); (0;0;�1).

There are essentially ten non-zero2�ab�(� ) for a;b 2 (Z[i ]=2)2. Their restrictions
on H3 are expressed in terms ofx0; : : : ; x3 in [5]; we cite these expression as

FACT 3.

2 �1 + i;1 + i

0;0
�2

= 2 � 0;0
1 + i;1 + i

�2

=
1

2

�
x2

0 + x2
1 � x2

2 � x2
3

�;
2 �1 + i;0

0;0
�2

= 2 � 0;0
0;1 + i

�2

=
1

2

�
x2

0 � x2
1 + x2

2 � x2
3

�;
2 �0;1 + i

0;0
�2

= 2 � 0;0
1 + i;0

�2

=
1

2

�
x2

0 � x2
1 � x2

2 + x2
3

�:
6.4. Automorphic functions for Λ and an embedding of H3=Λ. Once an

embedding ofH3=0T (2) is obtained, in terms ofx j , for a supergroup3 of 0T (2),
an embedding ofH3=3 can be obtained by polynomials of thex j ’s invariant
under the finite group3=0T (2); this is a routine process. Since we have3 =h0T (2); g1; g2i, we study the actions of the generatorsg1 and g2 of the Whitehead-
link-complement groupW on the theta functions2 � a

b

�
for a;b 2 (1 + i )Z[i ]2. The

theta-transformation-formulas (Fact 1) leads to the following.
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Proposition 3. The generators g1 and g2 induce linear transformations of x1; x2

and x3:

0
� x1

x2

x3

1
A � g1 =

0
� �1�1

1

1
A
0
� x1

x2

x3

1
A ;

0
� x1

x2

x3

1
A � g2 =

0
� �1

1 �1

1
A
0
� x1

x2

x3

1
A :

Theorem 2. The functions x21 + x2
2; x2

1x2
2; x2

3 and x1x2x3 are invariant under the
action of 3. The map

� : H3 3 (z; t) 7! (�1; �2; �3; �4) =
��2

1 + �2
2 ; �2

1�2
2 ; �2

3 ; �1�2�3
� 2 R4;

where � j = x j =x0, induces an embedding ofH3=3 into the subdomain of the variety�2�3 = �2
4 (homeomorphic to a3-ball with two holes) bounded by the four triangular

faces, which are the images(under H3=0T (2) 3 x 7! � 2 H3=3) of

a : x1 � x2 + x3 = x0; b: x1 + x2 + x3 = x0; c: x1 � x2 = 0; d : x1 + x2 = 0:
Proof. Since3 = h0T (2); g1; g2i, we have the first half of this theorem. The def-

inition of the group3 in §3, the fundamental domain of3 in §5.3, and Theorem 1
lead to the latter half.

REMARK 2. (1) The two matrices appeared in Proposition 3 generate a subgroup
of GL3(Z) isomorphic to the dihedral group of order eight.
(2) By Proposition 3, we have

�
x2 � x1

x2 + x1

� � g1 =

�
1 �1

��
x2 � x1

x2 + x1

� ; �
x2 � x1

x2 + x1

� � g2 =

�
1

1

��
x2 � x1

x2 + x1

� :
The group generated by these matrices is isomorphic to the dihedral group of order
eight.

Proposition 4. The functions

2 �0;1 + i

0;0
� ; 2 �1 + i;1 + i

0;0
�

+2 �1 + i;0
0;0

� ; and 2 �1 + i;1 + i

0;0
�2 �1 + i;0

0;0
�

are invariant under the action of3.

Proof. Since2h 1+i ;1+i
0;0 i2h 1+i ;0

0;0 i and2h 0;1+i
0;0 i are non-negative by Fact 2, Fact 3

implies the identities of real valued functions:

2 �0;1 + i

0;0
�

=
1

2

q
x2

0 � x2
1 � x2

2 + x2
3;
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2 �1 + i;1 + i

0;0
�

+2 �1 + i;0
0;0

�
=

1p
2

�q
x2

0 + x2
1 � x2

2 � x2
3 +

q
x2

0 � x2
1 + x2

2 � x2
3

� ;
2 �1 + i;1 + i

0;0
�2 �1 + i;0

0;0
�

=
1

2

q�
x2

0 + x2
1 � x2

2 � x2
3

��
x2

0 � x2
1 + x2

2 � x2
3

�:
They are invariant under the action of3 by Proposition 3.

7. Automorphic functions for W

We would like to give an explicit embedding ofH3=W. Though we already found
an embedding ofH3=3, sinceW is a subgroupof 3, we must find new functions in-
variant under the action ofW, which are not invariant under3. In this section, we
construct such automorphic functions81;82 and 83 for W by utilizing theta func-
tions with characteristics inZ[i ]=2. We define these functions and show their funda-
mental properties in§7.1. We show in§7.2 that the groupsS00(1 + i ), W̆ =



W;W �

and W can be regarded as isotropy subgroups of some of these functions. An arith-
metical characterization of the Whitehead-link-complement group W is given in §7.3.

7.1. Fundamental properties ofΦ1;Φ2 and Φ3. Set

y1 = 2 � 0;1
1 + i;0

� ; y2 = 2 �1 + i;1
1 + i;0

� ; z1 = 2 �0;1
1;0

� ; z2 = 2 �1 + i;1
1;1 + i

� :
We define functions81;82 and83 as

81 = x3z1z2; 82 = (x2 � x1)y1 + (x2 + x1)y2; 83 =
�
x2

1 � x2
2

�
y1y2:

Theorem 3. The functions81;82 and 83 are invariant under the action of W.
Only the signs of them change by the action of g= I2 + 2( p q

r s ) 2 0(2) as follows:

81 � g = e[Re((1 +i )p + (1� i )s)]81; 82 � g = e[Re(r (1� i ))]82; 83 � g = 83:
Under the action of T, the function81 is invariant, and83 becomes�83.

REMARK 3. The function82 is transformed into (x2� x1)y1� (x2 + x1)y2 by the
action of T . This function is not invariant under the action ofW but invariant under
the action ofW = fḡ j g 2 Wg = T W T.

By Fact 1, we can easily get the following proposition, whichis a key to prove The-
orem 3.

Proposition 5. We have�
y1

y2

� � g1 =

�
1 0
0 �1

��
y1

y2

� ; �
z1

z2

� � g1 =

�
1 0
0 1

��
z1

z2

� ;
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�
y1

y2

� � g2 =

�
0 1
1 0

��
y1

y2

� ; �
z1

z2

� � g2 =

�
0 1�1 0

��
z1

z2

� :
By the action of g= I2 + 2( p q

r s ) 2 0(2), the functions y1; y2; z1 and z2 change as

y1 � g = e[Re(r (1� i ))]y1; z1 � g = e[Re(r )]z1;
y2 � g = e[Re(r (1� i ))]y2; z2 � g = e[Re((1 +i )p + r + (1� i )s)]z2:

By the action of elements T, 1 =
�

1 0
2 1

�
, 2 =

� �1 0
2 1

�
and 3 =

� �1 0
0 1

�
in 0T (2), the

signs of y1; y2; z1; z2 change as follows:

T 1 2 3

y1 + � � +
y2 � � � +
z1 + � � +
z2 + � + �

Proof of Theorem 3. Proposition 5 implies that the productz1z2 is invariant un-
der the action ofg1 and that its sign changes by the action ofg2. Proposition 3 im-
plies the same forx3. Thus81 = x3z1z2 is invariant under the action ofW.

Remark 2 (2) and Proposition 5 show that (x2� x1)y1 and (x2 + x1)y2 are invariant
under the action ofg1 and that they are interchanged by the action ofg2. Thus their
fundamental symmetric polynomials82 and83 are invariant under the action ofW.

Proposition 5 leads to transformation formulas for81;82 and83 with respect to0T (2), sincex1; x2; x3 are invariant under the action of0T (2).

REMARK 4. Representatives ofS00(1+i )=W can be given byfI2; 1; 2; 3g. The
elements [z 7! �z + 1]; [z 7! z + 1] and [z 7! �z] appeared in§4.1 are equivalent to1; 2 and 3 modulo W, respectively. These can be verified by using Theorem 5.

7.2. Isotropy subgroups. Let Isoj be the subgroup of3 = S0T
0 (1+i ) consisting

of elements which leave8 j invariant.

Theorem 4. We have

S00(1 + i ) = Iso3; W̆ = Iso1\ Iso3; W = Iso1\ Iso2\ Iso3;�
W̆ : W

�
=
�
W̆ : W

�
=
�
W : Ŵ

�
=
�

W : Ŵ
�

= 2;
where W̆ =



W;W �

and Ŵ = W \ W. The Whitehead-link-complement group W is
a normal subgroup of S00(1 + i ); the quotient group S00(1 + i )=W is isomorphic to
Z2 � Z2.
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REMARK 5. (1) The square of any element ofS00(1 + i ) belongs toW.
(2) The Whitehead-link-complement groupW is not a normal subgroup of3, since
T W T = W 6= W.

Proof. We first show thatS00(1 + i ) = Iso3. Note that the groupS00(1 + i ) is
generated byW and 0(2). Theorem 3 shows that83 is invariant under the action of
W and0(2). Thus we haveS00(1+i ) � Iso3. Theorem 3 also shows that83�T = �83,
which means thatT =2 Iso3. Since [3 : S00(1 + i )] = 2, we haveS00(1 + i ) = Iso3.

We next show thatW = Iso1\ Iso2\ Iso3. It is clear thatW � Iso1\ Iso2\ Iso3.
By Theorem 3, only the signs of81 and82 change by the action ofS00(1+i ) = Iso3,
we have [Iso3 : Iso1\ Iso3] = 2 and [Iso3 : Iso1\ Iso3] = 2. Since the element

�
1 �1

�
belongs to Iso2 but not to Iso1, we have

[Iso3 : Iso1\ Iso2\ Iso3] = 4:
The fact [S00(1 + i ) : W] = 4 shows thatW is equal to Iso1\ Iso2\ Iso3.

Since W is a subgroup ofS00(1 + i ) consisting of elements keeping81 and82

invariant (only the signs of81 and82 change by the action ofS00(1 + i )), W is a
normal subgroup ofS00(1 + i ) with S00(1 + i )=W ' Z2

2.
We finally show thatW = Iso1\ Iso3. SinceW = T W T and81 is invariant under

the actions ofW and T by Theorem 3, we haveW � Iso1. And we haveW � S00(1+
i ) = Iso3. Thus W̆ � Iso1\ Iso3. Since

W 3 g2 =

�
1 0

1� i 1

�
= g�1

2

�
1 0
2 1

� ;
we have82 � g2 = �82, which impliesg2 =2 W and W̆ ! W. Thus we have

S00(1 + i ) = Iso3 ! Iso1\ Iso3 � W̆ ! W:
The fact [S00(1 + i ) : W] = 4 shows that

Iso1\ Iso3 = W̆; �
W̆ : W

�
= 2:

Now it is clear that
�
W̆ : W

�
=
�
W : Ŵ

�
=
�

W : Ŵ
�

= 2.

Proposition 6. The functions(x2 � x1)y1 and (x2 + x1)y2 are invariant under the
action of Ŵ = W \ W. The groupŴ is a normal subgroup of3 of index16.

Proof. The function82 is the sum of these two functions, which are invariant
under the action ofW. The function82 � T is the difference of these functions, which
are invariant under the action ofW. Thus82 +82 � T and82 � 82 � T are invariant
under the action ofŴ.
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For g 2 S00(1 + i ); we have seen thatgWg�1 = W, which impliesgW g�1. Thus
we havegŴ g�1 = Ŵ. On the other hand, we haveT W T = W and TW T = W; these
imply TŴ T = Ŵ.

REMARK 6. The functions in Proposition 6 give a representation ofS00(1 + i ).
The representation matrices are

� �1 0
0 �1

� ; �
0 �1�1 0

�
;

this shows that the quotient groupS00(1 + i )=Ŵ is isomorphic to the dihedral group
of order eight.

7.3. An arithmetical characterization of the Whitehead-link-complement
group. The Whitehead-link-complement groupW is defined as the group generated
by two elementsg1 and g2. It is hard to decide whether a given 2�2-matrix is in W.
In this subsection, we give a criterion for elements ofSL2(Z[i ]) to belong toW. The
functions8 j play a key role. The main theorem of this subsection is the following.

Theorem 5. An element g= ( p q
r s ) 2 S00(1 + i ) satisfying Re(s) � 1 mod 2 be-

longs to W̆ =


W;W �

if and only if

Re(p) + Im(s)� (�1)Re(q)+Im(q)(Im(p) + Re(s)) +
�
(�1)Re(r ) + 1

�
Im(q)

2

� (Re(q) + Im(q))(Re(r ) + Im(r ))

2
mod 2:

The element g2 W̆ belongs to W if and only if

Re(p + q) +
Re(r )� (�1)Re(q)+Im(q) Im(r )

2
� 1 mod 2:

The element g2 W belongs toŴ = W \ W̄ if and only if r2 2Z[i ].

Note that, by multiplyingi I 2, we can always normalizeg so that

(1) Re(s) � 1 mod 2:
The rest of this subsection is devoted to a proof of this theorem. We study the action
of g 2 S00(1 + i ) on 81 and82. For any elementg 2 S00(1 + i ), sincer 2 (1 + i )Z[i ]
and det(g) = �1, we havep; s =2 (1 + i )Z[i ], i.e.,

Re(p) 6� Im(p) mod 2; Re(s) 6� Im(s) mod 2:
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By Fact 1 (1) and (3) (in§6.1) we may regard

(2) (g�)�1 as

�
s̄ �r̄�q̄ p̄

� ;
when we compute the action ofg 2 S00(1 + i ) on 2�ab�’s with characteristicb 2
(Z[i ]=2)2.

In order to prove the first statement of theorem, we give some lemmas which can
be proved by Fact 1 and straightforward calculations.

Lemma 3. We have

x3 � g = e[Re(r )]x3; g =

�
p q
r s

� 2 S00(1 + i ):
Lemma 4. For g 2 S00(1 + i ) satisfyingRe(s) � 1 mod 2, the function z1 � g is

given by

e
�

Re(r )

2

�
z1(z; t) if r 2 2Z[i ];

�e
�

Re(r + s) + Im(s)

2

�
z2(z; t) if r =2 2Z[i ]:

Lemma 5. For g 2 S00(1 + i ) satisfyingRe(s) � 1 mod 2, the function z2 � g is
given by

�e
�

Re(p + r + s)� Im(p� s)

2
+ Re(q)

�
z2 if r 2 2Z[i ]; q 2 (1 + i )Z[i ];

�e
�

Re(p� s) + Im(p + r + s)

2
+ Im(q)

�
z2 if r 2 2Z[i ]; q =2 (1 + i )Z[i ];

e
�

Re(p + r )� Im(p)

2

�
z1 if r =2 2Z[i ]; q 2 (1 + i )Z[i ];

e
�

Re(p) + Im(p + r )

2

�
z1 if r =2 2Z[i ]; q =2 (1 + i )Z[i ]:

Lemmas 3, 4, 5 yield the following proposition.

Proposition 7. An element g2 S00(1 +i ) satisfyingRe(s) � 1 mod 2belongs to

W;W �

= Iso1\ Iso3 if and only if

Re(p + s)� Im(p� s)

2
+ Re(q) � 1 mod 2 if q 2 (1 + i )Z[i ]; r 2 2Z[i ];

Re(p + s)� Im(p� s)

2
� 1 mod 2 if q 2 (1 + i )Z[i ]; r =2 2Z[i ];



AUTOMORPHIC FUNCTIONS FOR THEWHITEHEAD L INK 861

Re(p + r + s) + Im(p + r + s)

2
+ Im(q) � 0 mod 2 if q =2 (1 + i )Z[i ]; r 2 2Z[i ];

Re(p + r + s) + Im(p + r + s)

2
� 0 mod 2 if q =2 (1 + i )Z[i ]; r =2 2Z[i ]:

This proposition yields the first statement of Theorem 5.
We next give a necessary and sufficient condition forg 2 S00(1 + i ) to belong to

Iso2\ Iso3. Fact 1 and straightforward calculations imply the following.

Lemma 6. For an element g2 S00(1 + i ), if q 2 (1 + i )Z[i ] then

x2 � g = e[Re(q)]x2; x1 � g = e[Re(p + q + r + s)]x1;
if q =2 (1 + i )Z[i ] then

x2 � g = e[Re(p + q)]x1; x1 � g = e[Re(q + s)]x2:
Lemma 6 yields the following.

Lemma 7.�
x2 � x1

x2 + x1

� � g = A

�
x2 � x1

x2 + x1

� ; g =

�
p q
r s

� 2 S00(1 + i );
where2� 2 matrix A is given by�

1
1

�
if q 2 (1 + i )Z[i ]; Re(q) 2 2Z; Re(p + q + r + s) 2 2Z;

�� 1
1

�
if q 2 (1 + i )Z[i ]; Re(q) =2 2Z; Re(p + q + r + s) =2 2Z;

�
1

1

�
if q 2 (1 + i )Z[i ]; Re(q) 2 2Z; Re(p + q + r + s) =2 2Z;

�� 1
1

�
if q 2 (1 + i )Z[i ]; Re(q) =2 2Z; Re(p + q + r + s) 2 2Z;

�
1 �1

�
if q =2 (1 + i )Z[i ]; Re(p + q) =2 2Z; Re(q + s) =2 2Z;

�� 1 �1

�
if q =2 (1 + i )Z[i ]; Re(p + q) 2 2Z; Re(q + s) 2 2Z;

� �1
1

�
if q =2 (1 + i )Z[i ]; Re(p + q) =2 2Z; Re(q + s) 2 2Z;

�� �1
1

�
if q =2 (1 + i )Z[i ]; Re(p + q) 2 2Z; Re(q + s) =2 2Z:
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Fact 1 and straightforward calculations imply the following.

Lemma 8. By the action of an element g2 S00(1 + i ) satisfying Re(s) � 1
mod 2, y1 is transformed into

e
�

Re(r ) + Im(r )

2

�
y1 if r 2 2Z[i ]; �e

�
Re(r ) + Im(r )

2

�
y2 if r =2 2Z[i ];

and y2 is transformed into

�e
�
Re(p) +

Re(r ) + Im(r )

2

�
y2 if r 2 2Z[i ]; q 2 (1 + i )Z[i ];

�e
�
Im(p) +

�Re(r ) + Im(r )

2

�
y2 if r 2 2Z[i ]; q =2 (1 + i )Z[i ];

e
�
Re(p) +

Re(r ) + Im(r )

2

�
y1 if r =2 2Z[i ]; q 2 (1 + i )Z[i ];

e
�
Im(p) +

�Re(r ) + Im(r )

2

�
y1 if r =2 2Z[i ]; q =2 (1 + i )Z[i ]:

Lemma 8 implies the following Lemma.

Lemma 9.�
y1

y2

� � g = A

�
y1

y2

� ; g =

�
p q
r s

� 2 S00(1 + i ); Re(s) � 1 mod 2;
where2� 2 matrix A is given by�

1
1

�
if r 2 2(1 + i )Z[i ]; P =2 2Z;

�� 1
1

�
if r =2 2(1 + i )Z[i ]; r 2 2Z[i ]; P =2 2Z;

�
1

1

�
if r =2 2Z[i ]; Re(r ) + Im(r )

2
=2 2Z; P +

"Re(r ) + Im(r )

2
2 2Z;

�� 1
1

�
if r =2 2Z[i ]; Re(r ) + Im(r )

2
2 2Z; P +

"Re(r ) + Im(r )

2
=2 2Z;

�
1 �1

�
if r 2 2(1 + i )Z[i ]; P 2 2Z;

�� 1 �1

�
if r =2 2(1 + i )Z[i ]; r 2 2Z[i ]; P 2 2Z;

� �1
1

�
if r =2 2Z[i ]; Re(r ) + Im(r )

2
2 2Z; P +

"Re(r ) + Im(r )

2
2 2Z;
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�� �1
1

�
if r =2 2Z[i ]; Re(r ) + Im(r )

2
=2 2Z; P +

"Re(r ) + Im(r )

2
=2 2Z;

where" = (�1)Re(q)+Im(q) and P= Re(p + q) + Im(q).

Proposition 8. An element g2 S00(1 +i ) satisfyingRe(s) � 1 mod 2belongs to
Iso2 if and only if

Re(p + q) +
Re(r )� (�1)Re(q)+Im(q) Im(r )

2
� 1 mod 2:

Proof. Since only the sign of82 changes by the action ofg 2 S00(1 + i ), if�
x2�x1
x2+x1

�
is transformed intoA

�
x2�x1
x2+x1

�
by the action ofg then

� y1
y2

�
is transformed into�A

� y1
y2

�
by the action ofg, where A =

� �1 �1

� ; � �1�1

�
in Lemmas 7 and 9. Thus

g 2 S00(1 + i ) belongs to Iso2 if and only if the sign of the transformation matrixA
for the action ofg on

�
x2�x1
x2+x1

�
coincides with that on

� y1
y2

�
.

(1) the caseA = � � 1
1

�
.

By Lemma 7,g 2 S00(1 + i ) satisfies

q 2 (1 + i )Z[i ]; Re(q) + Re(p + q + r + s) 2 2Z;
i.e.,

Re(q) + Im(q) � 0 mod 2; Re(p + r ) � 1 mod 2:
By Lemma 9, we have

r 2 2Z[i ]; P = Re(p + q) + Im(q) =2 2Z:
The coincident condition for the signs is

Re(q) � Re(r ) + Im(r )

2
� Re(r ) + Im(r )

2
� Re(p + r ) + 1 mod 2:

Thus we have

Re(p + q) +
Re(r )� Im(r )

2
� 1 mod 2:

(2) the caseA = � � 1
1

�
.

By Lemma 7,g 2 S00(1 + i ) satisfies

q 2 (1 + i )Z[i ]; Re(q) + Re(p + q + r + s) =2 2Z;
i.e.,

Re(q) + Im(q) � 0 mod 2; Re(p + r ) � 0 mod 2:



864 K. MATSUMOTO, H. NISHI AND M. YOSHIDA

By Lemma 9, we haver =2 2Z[i ] and

Re(r ) + Im(r )

2
+ P +

"Re(r ) + Im(r )

2

= Re(p + q) + Im(q + r ) +

�
1 + (�1)Re(q)+Im(q)

�
Re(r )

2� Re(p + r ) + Im(r ) � Re(p) � 1 mod 2:
The coincident condition for the signs is

Re(q) � Re(r ) + Im(r )

2
+ 1� Re(r ) + Im(r )

2
� Re(p + r ) + 1 mod 2:

Thus we have

Re(p + q) +
Re(r )� Im(r )

2
� 1 mod 2:

(3) the caseA = � � 1 �1

�
.

By Lemma 7,g 2 S00(1 + i ) satisfies

q =2 (1 + i )Z[i ]; Re(p + q) + Re(q + s) 2 2Z;
i.e.,

Re(q) + Im(q) � 1 mod 2; Re(p) � 1 mod 2:
By Lemma 9, we have

r 2 2Z[i ]; P = Re(p + q) + Im(q) 2 2Z:
The coincident condition for the signs is

Re(p + q) + 1� Re(r ) + Im(r )

2
mod 2:

(4) the caseA = � � �1
1

�
.

By Lemma 7,g 2 S00(1 + i ) satisfies

q =2 (1 + i )Z[i ]; Re(p + q) + Re(q + s) =2 2Z;
i.e.,

Re(q) + Im(q) � 1 mod 2; Re(p) � 0 mod 2:
By Lemma 9, we haver =2 2Z[i ] and

Re(r ) + Im(r )

2
+ P +

"Re(r ) + Im(r )

2� Re(p + q) + Im(q + r ) � Re(p) � 0 mod 2:



AUTOMORPHIC FUNCTIONS FOR THEWHITEHEAD L INK 865

The coincident condition for the signs is

Re(p + q) + 1� Re(r ) + Im(r )

2
mod 2:

This proposition yields the second statement of Theorem 5. We show the last state-
ment of Theorem 5. The elementg 2 W satisfying Re(s) � 1 mod 2 belongs toŴ if
and only if the transformation matrixA for the action ofg on

�
x2�x1
x2+x1

�
is

�� 1
1

�
or � � 1 �1

� :
Thus we have the conditionr 2 2Z[i ], which is kept under the multiplicationi I 2 to g.

8. Embeddings of the quotient spaces

In the previous section, we constructed automorphic functions81; 82 and83 for
W. The map

H3 3 (z; t) 7! ��1; : : : ; �4; 81

x3
0

; 82

x2
0

; 83

x4
0

�

induces a mapH3=W ! R7, which is generically injective but not quite. In§8.1, we
construct, for eachj = 1;2;3, automorphic functionsf j 1; f j 2; : : : for W such that their
common zero isFk[Fl , wheref j; k; l g = f1;2;3g. Here the curvesF1; F2; F3 � H3 are
defined as theW-orbits of the fixed loci of the transformations1; 2; 3, respectively
(§4.2, Remark 4 in§7.1). These functions give, in§§8.2, 8.3 and 8.4, embeddings of
the quotient spacesH3=S00(1 + i );H3=W̆ and H3=W, respectively.

8.1. Automorphic functions for W vanishing along Fj . We useW-invariant
functions as follows:

f00 =
�
x2

2 � x2
1

�
y1y2 = 83;

f01 =
�
x2

2 � x2
1

�
z1z2z3z4;

f11 = x3z1z2 = 81;
f12 = x1x2z1z2;
f13 = x3

�
x2

2 � x2
1

�
z3z4;

f14 = x1x2
�
x2

2 � x2
1

�
z3z4;

f20 = (x2 � x1)z2z3 + (x2 + x1)z1z4;
f21 = z1z2f(x2 � x1)z1z3 + (x2 + x1)z2z4g;
f22 =

�
x2

2 � x2
1

�f(x2 � x1)z1z4 + (x2 + x1)z2z3g;
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f30 = (x2 � x1)y1 + (x2 + x1)y2 = 82;
f31 = (x2 � x1)z1z3 � (x2 + x1)z2z4;
f32 = z3z4f�(x2 � x1)z1z4 + (x2 + x1)z2z3g;

where

z3 = 2 � 0; i
1;0

� ; z4 = 2 � 1 + i; i
1;1 + i

� :
Set

f i j = fi j
Æ

x
deg(fi j )
0 ;

where deg(f ) denotes the total degree of the polynomialf with respect toxi ; y j ; zk.

Proposition 9. The functions fj p are invariant under the action of W. These func-
tions change the signs by the actions of1; 2 and 3 as in the table

1 2 3

f0 j + + +
f1 j + � �
f2 j � + �
f3 j � � +

This proposition can be obtained by Proposition 5 and the following lemma.

Lemma 10. We have�
z3

z4

� � g1 =

�
1 0
0 �1

��
z3

z4

� ; �
z3

z4

� � g2 =

�
0 �1
1 0

��
z3

z4

� :
By the action of T; 1; 2; 3 2 0T (2), the signs of z3; z4 change as

T 1 2 3

z3 + + + +
z4 � + � �

Proposition 2 and Fact 3 yield the following proposition, which is a key to study
the zero locus off j p.
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Proposition 10. We have

4z2
1 = 42�0;1

1;0
�2

= 22�0;0
0;0

�2�0;1+i

1+i;0
�

+22�0;1+i

0;0
�2� 0;0

1+i;0
��22�1+i;1+i

1+i;1+i

�2�1+i;0
0;1+i

�
= (x0 +x1 +x2 +x3)(x0�x1�x2 +x3);

4z2
2 = 42�1+i;1

1;1+i

�2

= �22�0;0
0;0

�2�0;1+i

1+i;0
�

+22�0;1+i

0;0
�2� 0;0

1+i;0
�

+22�1+i;1+i

1+i;1+i

�2�1+i;0
0;1+i

�
= (x0 +x1�x2�x3)(x0�x1 +x2�x3)

4z2
3 = 42� 0; i

1;0
�2

= 22�0;0
0;0

�2�0;1+i

1+i;0
�

+22�0;1+i

0;0
�2� 0;0

1+i;0
�

+22�1+i;1+i

1+i;1+i

�2�1+i;0
0;1+i

�
= (x0 +x1�x2 +x3)(x0�x1 +x2 +x3);

4z2
4 = 42� 1+i; i

1;1+i

�2

= �22�0;0
0;0

�2�0;1+i

1+i;0
�

+22�0;1+i

0;0
�2� 0;0

1+i;0
��22�1+i;1+i

1+i;1+i

�2�1+i;0
0;1+i

�
= (x0 +x1 +x2�x3)(x0�x1�x2�x3):
REMARK 7. The functionsz2

1+z2
2, z2

1z2
2, z2

3+z2
4, z2

3z2
4, z2

1z2
3+z2

2z2
4 and z2

1z2
4+z2

2z2
3 are

invariant under the action of3. They can be expressed in terms of�1; : : : ; �4 and x0:

z2
1 + z2

2 = z2
3 + z2

4 =
1

2

�
x2

0 � �1 + �3
�;

z2
1z2

2 =
1

16

��2
3 � 2

�
x2

0 + �1
��3 + 8�4x0 + x4

0 � 2x2
0�1 + �2

1 � 4�2
�;

z2
3z2

4 =
1

16

��2
3 � 2

�
x2

0 + �1
��3 � 8�4x0 + x4

0 � 2x2
0�1 + �2

1 � 4�2
�;

z2
1z2

3 + z2
2z2

4 =
1

8

��2
3 + 2

�
3x2

0 � �1
��3 + x4

0 � 2x2
0�1 + �2

1 � 4�2
�;

z2
1z2

4 + z2
2z2

3 =
1

8

��2
3 � 2

�
x2

0 + �1
��3 + x4

0 � 2x2
0�1 + �2

1 + 4�2
�:

REMARK 8. Proposition 10 implies

z2
1 � z2

2 = x0x3 � x1x2;
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z2
3 � z2

4 = x0x3 + x1x2;
z2

3 � z2
1 = z2

2 � z2
4 = x1x2;

z2
1 � z2

4 = z2
3 � z2

2 = x0x3;
z2

1z2
3 � z2

2z2
4 =

1

2
x0x3

�
x2

0 � x2
1 � x2

2 + x2
3

�;
�z2

1z2
4 + z2

2z2
3 =

1

2
x1x2

�
x2

0 � x2
1 � x2

2 + x2
3

�:
These functions are invariant under the action ofg1 and their signs change by the ac-
tion g2. The product ofx3 (resp.x1x2) and each of these is invariant under the action3 and can be expressed in terms of�1; : : : ; �4 and x0.

Theorem 6. The analytic sets V1;V2 and V3 of the ideals

I1 = h f11; f12; f13; f14i; I2 = h f21; f22i; I3 = h f31; f32i
are (set-theoretically) equal to F2 [ F3; F1 [ F3 and F1 [ F2, respectively.

Corollary 2. The analytic set Vjk of the idealshI j ; Iki is set-theoretically equal
to Fl for f j; k; l g = f1;2;3g.

Proof of Theorem 6. Since the setsF j are the fixed loci of j modulo W and
fkl are invariant under the action ofW, it is clear thatVj � Fk [ Fl for f j; k; l g =f1;2;3g. We first showV1 � F2 [ F3. Since we have

f 2
11 = x2

3

"1"2"3=1Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3);
f 2
12 = x2

1x2
2

"1"2"3=1Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3);
f 2
13 = x2

3

�
x2

2 � x2
1

�2 "1"2"3=�1Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3);
f 2
14 = x2

1x2
2

�
x2

2 � x2
1

�2 "1"2"3=�1Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3);
they are invariant also under the action of0T (2). So we express the common zeros of
them in terms ofx j . The twelve edges of the octahedron

Oct =
�
x = [x0; x1; x2; x3] 2 P3(R)

�� jx1j + jx2j + jx3j � x0
	;
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(recall that H3=0T (2) is realized asOct minus the vertices, in Theorem 1) and the
segments

fx 2 Oct j x1 = x3 = 0g; fx 2 Oct j x2 = x3 = 0g;
fx 2 Oct j x0 + x1 + x2 + x3 = x1 � x2 = 0g;
fx 2 Oct j x0 � x1 � x2 + x3 = x1 � x2 = 0g;
fx 2 Oct j x0 + x1 � x2 � x3 = x1 + x2 = 0g;
fx 2 Oct j x0 � x1 + x2 � x3 = x1 + x2 = 0g

come into the game. Theorem 1 shows thatV1 is the union of the inverse images of# ,
which coincides withF2 [ F3.

We next showV3 � F1 [ F2. Since we have

f31 � T = (x2 � x1)z1z3 + (x2 + x1)z2z4;
f32 � T = z3z4f(x2 � x1)z1z4 + (x2 + x1)z2z3g;

the products

f̃ 31 = ( f31)( f31 � T) = (x2 � x1)2z2
1z2

3 � (x2 + x1)2z2
2z2

4;
f̃ 32 = ( f32)( f32 � T) = z2

3z2
4

�
(x2 � x1)2z2

1z2
4 � (x2 + x1)2z2

2z2
3

	;
are invariant under the action of0T (2). We express the common zero off̃ 31 and f̃ 32

in terms of x j . By Proposition 10, we have

f̃ 31 = �1

4

�
x1x2x4

3 + 2x1x2
�
3x2

0 � x2
1 � x2

2

�
x2

3 � 2x0
�
x2

2 + x2
1

��
x2

0 � x2
1 � x2

2 + x2
3

�
x3

+ x1x2(x1 + x0 � x2)(x0 + x1 + x2)(x2 � x1 + x0)(x0 � x1 � x2)
�;

f̃ 32 = � 1

64
x1x2

�
x2

0 + x2
1 � x2

2 � x2
3

��
x2

0 � x2
1 + x2

2 � x2
3

�
� Y

"1"2"3=�1

(x0 + "1x1 + "2x2 + "3x3):
Thus V3 is a subset of the union of the common zeroes off̃ 31 and the factors off̃ 32.
We study the restriction off̃ 31 on the algebraic set of each factor off̃ 32. In the oc-
tahedronOct, the factorsx2

0 + x2
1 � x2

2 � x2
3 and x2

0 � x2
1 + x2

2 � x2
3 vanish only on

[x0; x1; x2; x3] = [1;0;0;�1]; [1;0;�1;0] and [1;0;0;�1]; [1;�1;0;0], respectively.
The functions f̃ 31 vanishes on these points. Onx j = 0, f̃ 31 reduces to

1

2
x0x2

k x3
�
x2

0 � x2
k + x2

3

�;
where f j; kg = f1;2g. On x0 + "1x1 + "2x2 + "3x3 = 0 ("1"2"3 = �1), f̃ 31 reduces to

"3x0(x1 � "3x2)2(x0 + "1x1)(x0 + "2x2)(x0 + "1x1 + "2x2):
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Thus the common zero of̃f 31 and f̃ 32 in the fundamental domainFD of H3=W in
Fig. 2 is the union ofF1[F2 and the geodesic joining (z; t) = (0;0); (�1+i;0) through
� =

�
(�1+i )

Æp
2;1=2� which is the inverse image of# of f[x0; x1; x2; x3] 2 Oct j x1 =

x3 = 0g. We have only to show thatf31 does not vanish on#�1f[x0; x1; x2; x3] 2 Oct j
x1 = x3 = 0g.

Since

(z1z2z3z4)2 =
Y

"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3);
the functionz1z2z3z4 never vanish in the interior ofFD. Thus we havez1z2z3z4 > 0
or z1z2z3z4 < 0 in the interior ofFD. Since f31 reduces to�x1(z1z3 + z2z4) on the set#�1f[x0; x1; x2; x3] 2 Oct j x2 = x3 = 0g included in F2 and f31 vanishes on this set, the
sign of z1z3 is different from that ofz2z4, which impliesz1z2z3z4 < 0 in the interior
of FD. On the other hand,f31 reduces tox2(z1z3 � z2z4) on the setf[x0; x1; x2; x3] 2
Oct j x1 = x3 = 0g. Since the sign ofz1z3 is different from that ofz2z4 in the interior
of FD, z1z3� z2z4 never vanish in the interior ofFD. Hence f31 never vanishes in the
interior of #�1f[x0; x1; x2; x3] 2 Oct j x1 = x3 = 0; x2 6= 0g.

We finally showV2 � F1 [ F3. Since we have

f21 � T = z1z2f(x2 � x1)z1z3 � (x2 + x1)z2z4g;
f22 � T =

�
x2

2 � x2
1

�f�(x2 � x1)z1z4 + (x2 + x1)z2z3g;
the products

f̃ 21 = ( f21)( f21 � T) = z2
1z2

2

�
(x2 � x1)2z2

1z2
3 � (x2 + x1)2z2

2z2
4

	;
f̃ 22 = ( f22)( f22 � T) =

�
x2

2 � x2
1

�2��(x2 � x1)2z2
1z2

4 + (x2 + x1)2z2
2z2

3

	;
are invariant under the action of0T (2). We express the common zero of them in terms
of x j . By Proposition 10, we have

f̃ 21 =
1

16
f̃ 31

"1"2"3=1Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3)

f̃ 22 =
1

4

�
x2

2 � x2
1

�2
x1x2

�
x2

0 + x2
1 � x2

2 � x2
3

��
x2

0 � x2
1 + x2

2 � x2
3

�:
Thus V2 is a subset of the union of the common zeroes off̃ 21 and the factors of

f̃ 22. We study the restriction of̃f 21 on the algebraic set of each factor off̃ 22. Since
we have studied the restriction of̃f 31 on the algebraic set of each factor off̃ 32, we
have only to consider the restriction of

z2
1z2

2 =
1

16

"1"2"3=1Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3)



AUTOMORPHIC FUNCTIONS FOR THEWHITEHEAD L INK 871

on the algebraic set of each factor off̃ 22 and that of f̃ 21 on the setsx1� x2 = 0. We
can see that the common zero off̃ 21 and f̃ 22 in FD is the union ofF1 [ F3 and the
geodesic joining (z; t) = (�1;0); (i;0) through� =

�
(�1 + i )

Æp
2;1=2� which is the

inverse image of# of f[x0; x1; x2; x3] 2 Oct j x2 = x3 = 0g. In order to show thatf21

does not vanish on#�1f[x0; x1; x2; x3] 2 Oct j x2 = x3 = 0g, follow the proof of the
non-vanishing of f31 on #�1f[x0; x1; x2; x3] 2 Oct j x1 = x3 = 0g.

8.2. An embedding ofH3=SΓ0(1 + i).

Theorem 7. The map

'0 : H3=S00(1 + i ) 3 (z; t) 7! (�1; : : : ; �4; f01) 2 R5

is injective, where f01 = f01=x6
0. Its image Image('0) is determined by the image

Image(�) under � : H3 3 (z; t) 7! (�1; : : : ; �4) and the relation

256f 2
01 =

�
x2

2 � x2
1

�2 Y
"1;"2;"3=�1

(x0 + "1x1 + "2x2 + "3x3)

=
��2

1 � 4�2
� Y
"3=�1

��2
3 � 2

�
x2

0 + �1
��3 + "38x0�4 + x4

0 � 2x2
0�1 + �2

1 � 4�2
�;

as a double cover ofImage(�) branching along its boundary.

If we replace f01 by f00, the map is injective as well, but the expression of the image
becomes a bit more complicated forf00.

Proof. Proposition 10 and Remark 7 give the expressionf 2
01 in terms of�1; : : : ; �4

and x0. Since the functionf01 is invariant under the action ofS00(1 + i ) and changes
its sign by the action ofT , the map'0 induces a double cover

Image('0) 3 (�1; : : : ; �4; f01) 7! (�1; : : : ; �4) 2 Image(�);
which ramifies along the zero locus of f01:

H3=S00(1 + i )
'0����! Image('0)??y ??y

H3=3 �����! Image(�)

The natural map (studied in§5.2 and§5.3) H3=S00(1 + i ) ! H3=3 is a double cover
of a 3-ball (minus two points) by a 3-sphere (minus two points) branching along the
boundary of the 3-ball. Thus we have only to show that the function f01 vanishes only
along the boundarya [ b[ c[ d of the 3-ballH3=3 (see Theorem 2).
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By Remark 2 (2), we have (x2+x1)�(g1T) = �(x2+x1). Thusx2+x1 vanishes on the
mirror f(z; t) 2 H3 j Im(z) = 1=2g of the reflectiong1T . By Theorem 1,x2+x1 vanishes
only on d in the fundamental domain in Fig. 10 (left). Similarly,x2�x1 vanishes only
on the mirrorc in the fundamental domain in Fig. 10 (left).

By Theorem 1 and Proposition 10,z1z2z3z4 vanishes only ona [ b in the funda-
mental domain in Fig. 10 (left).

We briefly observe the image Image('0). The two cusps1 and 0, and the points and � (defined in§4.1) are mapped to

1̄ := (0;0;1;0;0); 0̄ := (1;0;0;0;0); ̄ := (0;0;0;0;0); �̄ :=

�
1

2
; 1

16
;0;0;0� :

The imagesF̄1; F̄2 and F̄3 of the axesF1; F2 and F3 (see§4.2) are union of curves
joining these points:

F̄1 : �̄——–1̄——–̄; F̄2 : �̄——–0̄——–̄;
F̄3 : �̄——–0̄——–1̄——–̄:

Four of these curves come to each cusp. We parameterize thesecurves (0� t � 1)
and present them as follows:

F̄1

8><
>:

�̄ ! 1̄ (0;0; (1� t)2;0;0) as t ! 0;
̄ ! 1̄ �

t2

2
; t4

16
; (1� t)2;� t2(1� t)

4
;0� as t ! 0;

F̄3

8><
>:

0̄! 1̄ (t2;0; (1� t)2;0;0) as t ! 0;
̄ ! 1̄ �

t2

2
; t4

16
; (1� t)2; t2(1� t)

4
;0� as t ! 0;

and

F̄2

8>><
>>:

�̄ ! 0̄ ((1� t)2;0;0;0; (1� t)2t2(2� t)2) as t ! 0;
̄ ! 0̄

 
t2

4
;+�1� t

2

�2 ; t2

4

�
1� t

2

�2 ;0;0;0
!

as t ! 0;
F̄3

(
�̄ ! 0̄ ((1� t)2;0;0;0;�(1� t)2t2(2� t)2) as t ! 0;
1̄ ! 0̄ ((1� t)2;0; t2;0;0) as t ! 0:

These curves can be illustrated as in Fig. 12. Each of the two cusps1̄ and 0̄ is shown
as a hole. These holes can be deformed into sausages as in Fig.13. Note that this is
just the orbifoldH3=S00(1 + i ) shown in Fig. 8 (right), if we replace the curvesL1
andL0 by their tubular neighborhoods.
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∞

Fig. 12. Orbifold singularities in Image('0) and the cusps1̄
and 0̄

Fig. 13. The cusp-holes are deformed into two sausages

Recall that four of the orbifold-singular-loci stick into each cusp-hole, of which
boundary is a 2-sphere, and that the double cover of a 2-sphere branching at four
points is a torus.

8.3. An embedding ofH3
Æ

W̆.

Theorem 8. The map

'1 : H3ÆW̆ 3 (z; t) 7! ('0; f11; : : : ; f14) 2 R9

is injective, where f i j = fi j
Æ

x
deg(fi j )
0 . The products f1p f1q (1 � p � q � 4) can be ex-
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pressed as polynomials of x0, �1; : : : ; �4 and f01. The imageImage('0) together with
these relations determines the imageImage('1) under the map'1.

Proof. Each f1p is invariant under the action of̆W and its sign changes under
the action ofS00(1+i )

Æ
W̆. By Proposition 10 and Remark 7,f 2

11; : : : ; f 2
14 and f11 f12;

f13 f14 can be expressed in terms of� j and x0; they are invariant under the action of3. The product f1p f1q (p = 1;2, q = 3;4) is invariant under the action ofS00(1 + i )
by Proposition 9 and they can be expressed in terms ofx0; � j , and f01. Thus if one of
the values of f11; : : : ; f14 is not zero at a point (z; t) 2 H3, then this non-zero value
together with the image'0(z; t) determines the vector (f11(z; t); : : : ; f14(z; t)).

Thus we have the commutative diagram

H3
Æ

W̆
'1����! Image('1)??y ??y

H3=S00(1 + i )
'0����! Image('0)

of '0; '1 and the two (vertical) double covers. Since'0 is an isomorphism and the left
vertical map ramifies exactly alongF2[ F3 (§5.1, §5.2), the map'1 is injective thanks
to Theorem 6.

Though the embedding dimension is too high to see the shape ofthe image di-
rectly unfortunately, the theorem above and the argument in§5 asserts the following:
The boundary of a small neighborhood of the cusp'1(0) is a torus, which is the dou-
ble cover of that of the cusp'0(0); note that twoF2-curves and twoF3-curves stick
into '0(0). The boundary of a small neighborhood of the cusp'1(1) remains to be a
2-sphere; note that twoF1-curves and twoF3-curves stick into'0(1), and that four
F1-curves stick into'1(1).

Topologically, the sausageL0 in Fig. 13 (and Fig. 8 (right)) is covered by a doughnut,
a tubular neighborhood of the curveL0 in Fig. 7 (right).

8.4. An embedding ofH3=W.

Theorem 9. The map

' : H3=W 3 (z; t) 7! ('1; f21; f22; f31; f32) 2 R13

is injective, where f i j = fi j =xdeg(fi j )
0 . The products f2q f2r f3q f3r and f1p f2q f3r (p =

1; : : : ;4, q; r = 1;2) can be expressed as polynomials of x0, �1; : : : ; �4 and f01. The
image Image('1) together with these relations determines the imageImage(') under
the map'.
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Proof. By Proposition 10, the productsf2q f2r ; f3q f3r and f1p f2q f3r (p = 1; : : : ;4,
q; r = 1;2) are invariant under the action ofS00(1 + i ) by Proposition 9. They can be
expressed in terms ofx0, �1; : : : ; �4 and f01. For example,

f 2
22 =

��2
1 � 4�2

���
x2

1 + x2
2

��
z2

1z2
4 + z2

2z2
3

�� 2x1x2
�
z2

1z2
4 � z2

2z2
3

�
+ 2 f01

	;
f 2
31 =

�
x2

1 + x2
2

��
z2

1z2
3 + z2

2z2
4

�� 2x1x2
�
z2

1z2
3 � z2

2z2
4

�� 2 f01;
f31 f32 = z2

3z2
4

�
2x1x2

�
z2

1 � z2
2

�� �x2
1 + x2

2

��
z2

1 + z2
2

�	
+
�
z2

3 + z2
4

�
f01;

f21 f31 = z1z2 f̃ 31;
f22 f31 =

�
x2

1 + x2
2

��
x0 f13� f14

�� 2 f14
�
z2

1 + z2
2

�
+
�
x2

2 � x2
1

�2�
x0 f11 + f12

�;
f22 f32 = � 1

64

�
x2

0 + x2
1 � x2

2 � x2
3

��
x2

0 � x2
1 + x2

2 � x2
3

�
f14;

(Remark 7 and 8 help us to find these expressions.) So the values of f 2
21, f 2

22, f 2
31 and

f 2
32 at any point inH3 are determined by those ofx0; �1; : : : ; �4 and f01. Moreover, if

one of the values off21, f22, f31 and f32 is not zero at a point (z; t) 2 H3, then this
non-zero value together with the image'1(z; t) determines the vector

( f21(z; t); f22(z; t); f31(z; t); f32(z; t)):
Thus we have the commutative diagram

H3=W '����! Image(')??y ??y
H3
Æ

W̆
'1����! Image('1)

of '; '1 and the two (vertical) double covers. Since'1 is an isomorphism and the left
vertical map ramifies exactly alongF1 (§5.1), the map' is injective thanks to Corol-
lary 2.

Though the embedding dimension is too high to see the shape ofthe image di-
rectly unfortunately, the theorem above and the argument in§5 asserts the following:
The boundary of a small neighborhood of the cusp'(1) is a torus, which is the dou-
ble cover of that of the cusp'1(1); recall that fourF1-curves stick into'1(1). The
boundary of a small neighborhood of the cusp'(0) is a torus, which is the unbranched
double cover of that of the cusp'1(0), a torus.

Eventually, the two sausages in Fig. 13 (and Fig. 8 (right)) are covered by two
linked doughnuts, tubular neighborhoods of the curvesL0 and L1 in Fig. 1. Note that,
in the (high dimensional) ambient space, the two tori look asif they are not linked,
however they are linked in the Image(').
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