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MODULE STRUCTURE OF CELLS IN
UNEQUAL-PARAMETER HECKE ALGEBRAS

THOMAS PIETRAHO

Abstract. A conjecture of Bonnafé, Geck, Iancu, and Lam parametrizes
Kazhdan-Lusztig left cells for unequal-parameter Hecke algebras in type Bn

by families of standard domino tableaux of arbitrary rank. Relying on a family

of properties outlined by Lusztig and the recent work of Bonnafé, we verify the

conjecture and describe the structure of each cell as a module for the underlying
Weyl group.

§1. Introduction

Consider a Coxeter system (W,S), a positive weight function L, and the
corresponding generic Iwahori-Hecke algebra H. As detailed by Lusztig in
[21], a choice of weight function gives rise to a partition of W into left, right,
and two-sided Kazhdan-Lusztig cells, each of which carries the structure of
an H-module as well as a representation of W. The cell decomposition of W

is understood for all finite Coxeter groups and all choices of weight functions
with the exception of type Bn. Focusing on this remaining case, we write
W = Wn. A weight function is then specified by a choice of two integer
parameters a and b assigned to the simple reflections in Wn:

�

b
� � �� � �

a a a

Given a, b �= 0, write s = b/a for their quotient. We have the following
description of cells due to Bonnafé, Geck, Iancu, and Lam. It is stated in
terms of a family of generalized Robinson-Schensted algorithms Gr which
define bijections between Wn and same-shape pairs of domino tableaux of
rank r.

Conjecture. ([3]) Consider a Weyl group Wn of type Bn with a weight
function L and parameter s defined as above.
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(1) When s /∈ N, let r = �s�. Two elements of Wn lie in the same Kazhdan-
Lusztig left cell whenever they share the same right tableau in the image
of Gr.

(2) When s ∈ N, let r = s − 1. Two elements of Wn lie in the same Kazhdan-
Lusztig left cell whenever their right tableaux in the image of Gr are
related by moving through a set of noncore open cycles.

Significant progress has been made in the verification of the above, which
is detailed in Section 3.3. Most recently, Bonnafé has shown that if a certain
family of statements conjectured by Lusztig is assumed to hold, then the
conjecture itself holds if s /∈ N; furthermore, if s ∈ N, then Kazhdan-Lusztig
left cells are unions of the sets described above (see [2]). We sharpen this
result and verify that the conjecture holds in the latter case as well.

We concurrently describe the representations carried by Kazhdan-Lusztig
left cells. The canonical parameter set for the irreducible characters of Wn

consists of ordered pairs of partitions (d, f) where the parts of d and f

sum to n. As detailed in Section 4.1, there is a natural identification of
this parameter set with the set of partitions Pr(n) of a fixed rank r. Since
Pr(n) corresponds exactly to the shapes of rank r domino tableaux, the
parametrization of Kazhdan-Lusztig left cells via standard tableaux of fixed
rank in the above conjecture suggests which representation should be carried
by each cell for every choice of weight function. Mainly, the irreducible
constituents of the representation carried by each cell should correspond to
the shapes of the rank r tableaux of its elements, with r determined from
the parameter s as in the above conjecture. We verify that this suggested
representation is indeed the one carried by each cell.

The approach here is based on Geck’s characterization of left cells as con-
structible representations, that is, those representations which are obtained
by successive truncated parabolic induction and tensoring with the sign rep-
resentation (see [9]). Section 2 details the general construction of Kazhdan-
Lusztig cells in an unequal-parameter Hecke algebra and extends a result of
Lusztig on the intersection of left and right cells to the unequal-parameter
setting. Section 3 details the situation in type Bn and the relevant com-
binatorics. Section 4 examines constructible representations and provides
a combinatorial description of truncated parabolic induction and tensoring
with sign, mimicking the work of McGovern [22] in the equal-parameter
case. The final section contains the proof of the main results.
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§2. Unequal-parameter Hecke algebras

To begin, a brief recounting of the definitions of unequal-parameter Hecke
algebras and the corresponding Kazhdan-Lusztig cells is given, following
[21].

2.1. Kazhdan-Lusztig cells
Consider a Coxeter system (W,S), and let � be the usual length func-

tion. A weight function L : W → Z satisfies L(xy) = L(x) + L(y) whenever
�(xy) = �(x) + �(y) and is uniquely determined by its values on S. We will
consider those weight functions which take positive values on all s ∈ S.

Let H be the generic Iwahori-Hecke algebra over A = Z[v, v−1] with param-
eters {vs | s ∈ S}, where vx = vL(x) for all x ∈ W. The algebra H is free over
A and has a basis {Tx | x ∈ W }. Multiplication in H takes the form

TsTx =

{
Tsx if �(sx) > �(x),

Tsx + (vs − v−1
s )Tx if �(sx) < �(x).

As in [21, Section 5.2], it is possible to construct a Kazhdan-Lusztig basis
of H, which we denote by {Cx | x ∈ W }. In terms of it, multiplication takes
the form

CxCy =
∑
z∈W

hxyzCz

for some hxyz ∈ A. Although we suppress it in the notation, all of these
notions depend on the specific choice of the weight function L.

Definition 2.1. Fix (W,S), a Coxeter system with a weight function L.
We will write y ≤L x if there exists s ∈ S such that Cy appears with a
nonzero coefficient in CsCx. By taking the transitive closure, this binary
relation defines a preorder on W, which we also denote by ≤L. Let y ≤R x

if and only if y−1 ≤L x−1, and define ≤L R as the preorder generated by ≤L
and ≤R.

Each of the above preorders defines equivalence relations which we denote
by ∼L, ∼R, and ∼L R, respectively. The resulting equivalence classes are
called the left, right, and two-sided Kazhdan-Lusztig cells of W. As described
in [21, Section 8.3], each Kazhdan-Lusztig cell gives rise to a representation
of H. If C is a Kazhdan-Lusztig left cell and x ∈ C, then define

[C]A =
⊕
y≤ Lx

ACy

/ ⊕
y≤ Lx,y /∈C

ACy.
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This is a quotient of two left ideals in H and, consequently, is itself a left
H-module; it does not depend on the specific choice of x ∈ C, is free over A,
and has a basis {ex | x ∈ C} indexed by elements of C with ex the image
of Cx in the above quotient. The action of H on [C]A is determined by

Cxey =
∑
z∈C

hxyzez

for x ∈ W and y ∈ C. Via the specialization (vs 	→ 1) for s ∈ S, this construc-
tion gives rise to an (HC = C[W ])-module, which we denote [C]. Note that,
in general, we cannot identify [C]A with [C] directly. However, if we let K be
the fraction field of the ring A and define HK = K ⊗A H, then by [15, Sec-
tions 8.1.7 and 9.3.5], we can identify HK -modules and the representations
of W. In what follows, we refer to C[W ]-modules simply as W -modules and
to [C] as the representation of W carried by C. A similar construction can
be used to define representations carried by the right and two-sided cells
of W.

2.2. A family of properties
The main results of this paper rely on a family of conjectures formulated

by Lusztig in [21, Section 14]. In the equal-parameter case, that is, when L

is a multiple of the length function �, a number of results about Kazhdan-
Lusztig cells depend on positivity results derived by geometric methods of
intersection cohomology. Unfortunately, this positivity does not hold for
unequal-parameter Hecke algebras (for examples, see [20, Section 6], [10,
Section 2.7]). As a substitute, Lusztig detailed a list of properties which
both axiomatize known equal-parameter results and outline methods of
approaching nonpositivity in general.

In order to list Lusztig’s conjectures, we must first define two integer-
valued functions on W. For any z ∈ W, let a(z) be the smallest nonnegative
integer so that hxyz ∈ va(z)

Z[v−1] for every x and y in W, and write γxyz−1

for the constant term of v−a(z)hxyz . If pxy is defined by Cy =
∑

x∈W pxyTx,
then [21, Section 5.4] shows that p1z is nonzero. We write

p1z = nzv
−Δ(z) + terms of smaller degree in v,

thereby defining a constant nz and integer Δ(z) for every z ∈ W. Finally,
let

D =
{
z ∈ W

∣∣ a(z) = Δ(z)
}
.
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Lusztig has conjectured that the following statements are true in the general
setting of unequal-parameter Hecke algebras.

P1. For any z ∈ W, we have a(z) ≤ Δ(z).
P2. If d ∈ D and x, y ∈ W satisfy γx,y,d �= 0, then x = y−1.
P3. If y ∈ W, there exists a unique d ∈ D such that γy−1,y,d �= 0.
P4. If z′ ≤L R z, then a(z′) ≥ a(z). Hence, if z′ ∼L R z, then a(z) = a(z′).
P5. If d ∈ D, y ∈ W, and γy−1,y,d �= 0, then γy−1,y,d = nd = ±1.
P6. If d ∈ D, then d2 = 1.
P7. For any x, y, z ∈ W, we have γx,y,z = γy,z,x.
P8. Let x, y, z ∈ W be such that γx,y,z �= 0. Then x ∼L y−1, y ∼L z−1, and

z ∼L x−1.
P9. If z′ ≤L z and a(z′) = a(z), then z′ ∼L z.

P10. If z′ ≤R z and a(z′) = a(z), then z′ ∼R z.
P11. If z′ ≤L R z and a(z′) = a(z), then z′ ∼L R z.
P12. Let I ⊆ S and WI be the parabolic subgroup defined by I . If y ∈ WI ,

then a(y) computed in terms of WI is equal to a(y) computed in
terms of W.

P13. Any left cell C of W contains a unique element d ∈ D. We have
γx−1,x,d �= 0 for all x ∈ C.

P14. For any z ∈ W, we have z ∼L R z−1.
P15. If v′ is an indeterminate and h′

xyz is obtained from hxyz via the sub-
stitution v 	→ v′, then whenever a(w) = a(y), we have

∑
y′

h′
wx′y′ hxy′y =

∑
y′

hxwy′ h′
y′x′y.

The statements P1–P15 are known to hold for finite Weyl groups in the
equal-parameter case by Kazhdan and Lusztig [17] and Springer [26]. If the
Coxeter system is of type I2(m), H3, or H4, they follow from Alvis [1] and
DuCloux [5]. In the unequal-parameter case, P1–P15 have been verified in
types I2(m) and F4 by Geck [13] and in the so-called asymptotic case of
type Bn by Geck and Iancu [14] and Geck [12], [13]. Although the geometric
approach from which the above follow in the equal-parameter case is not
available in the general unequal-parameter case, it seems that it may not
be required. At least in type A, Geck [11] has shown that P1–P15 hold via
elementary, purely algebraic methods.
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2.3. The asymptotic ring J

The goal of this section is to verify [19, Lemma 12.15] in our more general
setting. It begins with a brief discussion of Lusztig’s ring J , which can be
viewed as an asymptotic version of H. Although originally defined in the
equal-parameter case, its construction also makes sense in the setting of
unequal-parameter Hecke algebras under the assumption that the conjec-
tures P1–P15 hold. Using the methods developed in [21], J provides a way
of studying the left-cell representations of H.

Recall the integers γxyz defined for all x, y, and z in W as the constant
terms of va(z)hxyz−1 . Then J is the free abelian group with basis {tx | x ∈
W }. To endow it with a ring structure, define a bilinear product on J by

tx · ty =
∑
z∈W

γxyztz−1

for x and y in W. Conjectures P1–P15 allow us to state the following
results.

Theorem 2.2. ([21]) Assuming conjectures P1–P15, the following hold:
(1) J is an associative ring with identity element 1J =

∑
d∈ D ndtd;

(2) the group algebra C[W ] is isomorphic as a C-algebra to JC = C ⊗Z J.

Following [21, Section 20.2], we will write E♠ for the JC-module corre-
sponding to a C[W ]-module E. It shares its underlying space with E, while
the action of an element of JC is defined by the action of its image under
the isomorphism with C[W ]. Consider a left cell C of W, and define JC

C
to

be
⊕

x∈C Ctx. By P8, this is a left ideal in JC. Furthermore, we have the
following.

Theorem 2.3. ([21]) Assuming that the conjectures P1–P15 hold, the
JC-modules JC

C
and [C]♠ are isomorphic.

We are ready to address [19, Lemma 12.15]. Its original proof relies on
a characterization of left cells in terms of the dual bases {Cx} and {Dx}
stated in [19, index item 5.1.14]. This result in turn relies on positivity
properties which do not hold in the unequal-parameter case, and, therefore,
a new approach to the lemma is required. The idea of using J in the present
proof is due to Geck.

Lemma 2.4. Assume that conjectures P1–P15 hold. If C and C′ are two
left cells in W with respect to a weight function L, then

dim HomW ([C], [C′]) = |C ∩ C′ −1|.
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Proof. Let x ∈ C−1 ∩ C′, and define a map φx on JC
C

via φx(ty) = tytx.

With x and y as above, we can write

tytx =
∑

γyxztz−1 .

For γyxz �= 0, P8 implies that x ∼L z−1. Since x ∈ C′, this forces tytx to lie
in JC′

C
, and we have in fact defined a map φx : JC

C
→ JC′

C
.

As x runs over the set C−1 ∩ C′, the maps φx are linearly independent.
Assume that, for some constants ax, we have∑

x∈C−1∩C′

axφx = 0

and, consequently, ∑
x∈C−1∩C′

axtytx = 0

for all y ∈ C. In particular, if d is the unique element in D ∩ C guaranteed
by P13, then we also have∑

x∈C−1∩C′

axtdtx =
∑

x∈C−1∩C′

± axtx = 0,

where the first equality follows from P2, P5, P7, and P13. But this means
that ax = 0 for all relevant x or, in other words, that the φx are linearly inde-
pendent. We can therefore conclude that dim HomJC

(JC
C
, JC′

C
) ≥ |C−1 ∩ C′ |.

Since this inequality is true for all pairs of left cells C and C′ in W, we have∑
C,C′

dim HomJC
(JC

C, JC′
C ) ≥

∑
C,C′

|C−1 ∩ C′ |.

The right side of this inequality is just the order of W since each of its
elements lies in a unique left and a unique right cell. On the other hand, by
the correspondence resulting from Theorem 2.3, the left side is

dim HomJC

(∑
C

JC
C,

∑
C′

JC′
C

)
= dim HomW (RegW ,RegW ) = |W |.

Hence the original inequality must be in fact an equality, and the lemma
follows.

We immediately obtain the following corollary, whose proof is identical
to that of [19, Corollary 12.17].

Corollary 2.5. Assume that conjectures P1–P15 hold and that the
representations carried by the left cells of W with respect to a weight func-
tion L are multiplicity-free. Then C ∩ C−1 is the set of involutions in C.
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§3. Type Bn

The goal of this section is to detail the combinatorics of arbitrary-rank
standard domino tableaux necessary to describe Kazhdan-Lusztig cells in
type Bn.

3.1. Domino tableaux
Consider a partition p of a natural number n. We will view it as a Young

diagram Yp, a left-justified array of squares whose row lengths decrease
weakly. The square in row i and column j of Yp will be denoted sij , and a
pair of squares in Yp of the form {sij , si+1,j } or {sij , si,j+1} will be called a
domino. A domino is removable from Yp if deleting its underlying squares
leaves either another Young diagram containing the square s11 or the empty
set.

Successive deletions of removable dominos from a Young diagram Yp must
eventually terminate in a staircase partition containing

(
r+1
2

)
squares for

some nonnegative integer r. This number is determined entirely by the
underlying partition p and does not depend on the sequence of deletions
of removable dominos. We will write p ∈ Pr, and we will say that p is a
partition of rank r. The core of p is its underlying staircase partition.

Example 3.1. The partition p = [4,32,1] lies in the set P2. Below are its
Young diagram Yp and a domino tiling resulting from a sequence of deletions
of removable dominos exhibiting the underlying staircase partition:

Consider p ∈ Pr. It is a partition of the integer 2n +
(
r+1
2

)
for some n.

A standard domino tableau of rank r and shape p is a tiling of the noncore
squares of Yp by dominos, each of which is labeled by a unique integer from
{1, . . . , n} in such a way that the labels increase along its rows and columns.
We will write SDTr(p) for the set of standard domino tableaux of rank r

of shape p and SDTr(n) for the set of standard domino tableaux of rank r

which contain exactly n dominos.
For T ∈ SDTr(n), we will say that the square sij is variable if i + j ≡

r mod 2 and fixed otherwise. As discussed in [6] and [25], a choice of
fixed squares on a tableau T allows us to define two notions: a partition
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of its dominos into cycles and the operation of moving through a cycle.
The moving-through map, when applied to a cycle c in a tableau T , yields
another standard domino tableau MT (T, c), which differs from T only in
the labels of the variable squares of c. If c contains D(l, T ), the domino
in T with label l, then MT (T, c) is in some sense the minimally affected
standard domino tableau in which the label of the variable square in D(l, T )
is changed (see [25] for detailed definitions).

If the shape of MT (T, c) is the same as the shape of T , we will say that c

is a closed cycle. Otherwise, one square will be removed from T (or added to
its core), and one will be added. In this case, we will say the c is open and
denote the aforementioned squares as sb(c) and sf (c), respectively. Finally,
if sb(c) is adjacent to the core of T , we will say that c is a core open cycle.
We will write OC(T ) for the set of all open cycles of T and OC∗(T ) the
subset of noncore open cycles.

3.2. Generalized Robinson-Schensted algorithms
The Weyl group Wn of type Bn consists of the set of signed permutations

on n letters, which we write in one-line notation as w = (w1w2 · · · wn). For
each nonnegative integer r, there is an injective map

Gr : Wn → SDTr(n) × SDTr(n)

which is onto the subset of domino tableaux of the same shape (see [6] and
[27]). We will write Gr(x) = (Sr(x), Tr(x)) for the image of a permutation x,
and we will refer to the two components as the left and right tableaux of x.

Definition 3.2. Consider x, y ∈ Wn, and fix a nonnegative integer r. We
will say that

(1) x ≈ι
L y if Tr(y) = Tr(x); and

(2) x ≈L y if Tr(y) = MT (Tr(x),C) for some C ⊂ OC∗(Tr(x)).

We will call the equivalence classes defined by ≈ι
L irreducible combina-

torial left cells of rank r in W, and those defined by ≈L its reducible com-
binatorial left cells of rank r. In the irreducible case, we will say that the
combinatorial left cell is represented by the tableau Tr(x). In the reducible
case, we will say that the combinatorial left cell is represented by the set
{MT (Tr(x),C) | C ⊂ OC∗(Tr(x))} of standard domino tableaux.

3.3. Cells in type Bn

Consider the generators of Wn as in the following diagram:



32 THOMAS PIETRAHO

�

t
� � �� � �

s1 s2 sn−1

Define the weight function L by L(t) = b and L(si) = a for all i, and set
s = b/a. The following is a conjecture of Bonnafé, Geck, Iancu, and Lam
and appears in [3, Conjectures A, B, and D].

Conjecture 3.3. Consider a Weyl group of type Bn with a weight func-
tion L and parameter s defined as above.

(1) When s /∈ N, the Kazhdan-Lusztig left cells coincide with the irreducible
combinatorial left cells of rank �s�.

(2) When s ∈ N, the Kazhdan-Lusztig left cells coincide with the reducible
combinatorial left cells of rank s − 1.

This conjecture is well known to be true for s = 1 by the work of Garfinkle
[8] and has been verified when s > n − 1 by Bonnafé and Iancu [4]. It has
also been shown to hold for all values of s when n ≤ 6 (see [3]). Furthermore,
assuming P1–P15, Bonnafé [2] has shown the conjecture to be true in the
irreducible case and that, in the reducible case, Kazhdan-Lusztig left cells
are unions of the reducible combinatorial left cells.

§4. Constructible representations in type Bn

Geck [9] has shown that if Lusztig’s conjectures P1–P15 hold, then the
representations of W carried by the Kazhdan-Lusztig left cells of an unequal-
parameter Hecke algebra are precisely the constructible ones. Defined in
the unequal-parameter setting by Lusztig [21, Section 20.15], constructible
representations arise via truncated induction and tensoring with the sign
representation. The goal of this section is to give a combinatorial description
of the effects of these two operations on W-modules in type Bn. My approach
is based on the equal-parameter results of [22].

4.1. Irreducible Wn-modules
We restrict our attention to type Bn; write Wn for the corresponding

Weyl group, and define constants a, b, and s as in Section 3.3. Begin by
recalling the standard parametrization of irreducible Wn-modules. Let P 2

be the set of ordered pairs of partitions, and let P 2(n) be the subset of P 2

where the combined sum of the parts of both partitions is n.

Theorem 4.1. The set of irreducible representations of Wn is parame-
trized by P 2(n). If we write [(d, f)] for the representation corresponding to



MODULE STRUCTURE OF CELLS 33

(d, f) ∈ P 2(n), then
[(f t, dt)] ∼= [(d, f)] ⊗ sgn,

where pt denotes the transpose of the partition p.

In this form, the connection between irreducible Wn-modules and the
description of left cells in Conjecture 3.3 is not clear. To remedy this, we
would like to restate Theorem 4.1 in terms of partitions of arbitrary rank
which arise as shapes of the standard domino tableaux in this conjecture.
Thus let r = �s� if s /∈ N and r = s − 1 otherwise, and write ε = s − �s�. As
an intermediary to this goal, we define the notion of a symbol of defect t and
residue ε for a nonnegative integer t and 0 ≤ ε < 1 as an array of nonnegative
numbers of the form

Λ =
(

λ1 + ε λ2 + ε . . . λN+t + ε

μ1 μ2 . . . μN

)
,

where the (possibly empty) sequences {λi} and {μi} consist of integers and
are strictly increasing. If we define a related symbol by letting

Λ′ =
(

ε λ1 + 1 + ε λ2 + 2 + ε . . . λN+t + N + t + ε

0 μ1 + 1 . . . μN + N

)
,

then the binary relation defined by setting Λ ∼ Λ′ generates an equivalence
relation. We will write Symε

t for the set of its equivalence classes.
We describe two maps between symbols and partitions. A partition can

be used to construct a symbol in the following way. If p = (p1, p2, . . . , pk),
form p� = (p1, p2, . . . , pk′ ) by adding an additional zero term to p if the rank
of p has the same parity as k. Dividing the set {pi + k′ − i}k′

i=1 into its odd
and even parts yields two sequences,

{2μi + 1}N
i=1, {2λi}N+t

i=1 ,

for some nonnegative integer t. A symbol Λp of defect t and residue ε corre-
sponding to p can now be defined by arranging the integers λi and μi into
an array as above.

Given a symbol of defect t and residue ε, it is also possible to construct
an ordered pair of partitions. With Λ as above, let

dΛ = {λi − i + 1}N+t
i=1 , fΛ = {μi − i + 1}N

i=1.

Both constructions are well behaved with respect to the equivalence on
symbols defined above. The next theorem follows from [16, Section 2.7].
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Theorem 4.2. The maps p 	→ Λp and Λ 	→ (dΛ, fΛ) define bijections

Pr → Symε
r+1 → P 2

for all values of r and ε. Consequently, their composition yields a bijection
between Pr(n) and P 2(n).

This result allows us to custom tailor a parametrization of irreducible
Wn-modules to each value of the parameter s by defining r and ε as above.
Together with [21, Lemma 22.18], the present theorem implies the following
alternate parametrization of the representations of Wn in terms of symbols.
A parametrization in terms of partitions of rank r follows.

Corollary 4.3. If we fix values of the defect r and residue ε, then the set
of irreducible representations of Wn is parametrized by the set of equivalence
classes of symbols {Λ ∈ Symε

r+1 | parts of dΛ and fΛ sum to n}. Writing
[Λ] for the representation corresponding to Λ, we have

[Λ̄] = [Λ] ⊗ sgn,

where the symbol Λ̄ is defined from Λ by the following procedure. Write Λ
as above, and let τ be the integer part of its largest entry. Then the integer
parts of the top and bottom rows of Λ̄ consist of the complements of {τ − μi}i

and {τ − λi}i in [0, τ ] ∩ Z, respectively.

Corollary 4.4. If we fix a nonnegative integer r, then the set of irre-
ducible representations of Wn is parametrized by Pr(n). Writing [p] for the
representation corresponding to p ∈ Pr(n), we have

[pt] ∼= [p] ⊗ sgn,

where pt is the transpose of the partition p.

Example 4.5. Let s = 31
2 , so that r = 3 and ε = 1/2, and consider the

irreducible representation [((13), (1))] of W4. Then according to the above
parametrizations, [((13), (1))] = [(4,3,22)] = [Λ(4,3,22)], where

Λ[(4,3,22)] =
(

1
2 21

2 31
2 41

2

1

)
is a symbol of defect 3 and residue 1/2. Note that ((13), (1)) ∈ P 2(4),
(4,3,22) ∈ P2(4), and Λ(4,3,22) is a representative of a class in Symε

3 for
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ε = 1/2. Furthermore, [((13), (1))] ⊗ sgn = [((1), (3))] = [(4,3,22)] ⊗ sgn =
[(42,2,1)] = [Λ(4,3,22)] ⊗ sgn = [Λ(42,2,1)], where

Λ[(42,2,1)] =
(

1
2 11

2 21
2 41

2

3

)
.

We will need the following lemma, which holds for finite W whenever P1–
P15 hold. It is a combination of [21, Section 11.7] and [21, Section 21.5].

Lemma 4.6. Consider a Kazhdan-Lusztig left cell C ⊂ W, and let w0 be the
longest element of W. Then Cw0 is also a left cell in W, and [Cw0] ∼= C ⊗ sgn
as W-modules.

4.2. Truncated induction
We now turn to a combinatorial description of truncated induction in

terms of the above parameter sets. If π is a representation of WI , a para-
bolic subgroup of Wn, Lusztig [21, Section 20.15] defined a representation
JW

WI
(π) of W = Wn. Its precise definition depends on the parameters of the

underlying Hecke algebra, so it is natural to expect that this is manifested
in the combinatorics studied above. Following [22, Section 2] and [18], we
note that, because of the transitivity of truncated induction and because
the situation in type A is well understood, we need only to understand
how truncated induction works when WI is a maximal parabolic subgroup
whose type A component acts by the sign representation on π. Henceforth,
let WI be a maximal parabolic subgroup in Wn with factors W ′ of type Bm

and Sl of type Al−1, where m + l = n; furthermore, write sgnl for the sign
representation of Sl.

Truncated induction behaves well with respect to cell structure. In fact,
the following lemma is true for general W under the assumption that state-
ments P1–P15 of Section 2.1 hold.

Lemma 4.7. ([10]) Let C′ be a left cell of WI . Then we have

JW
WI

([C′]) ∼= [C],

where C is the left cell of W such that C′ ⊂ C.

Let us first provide a description of the situation in type Bn in terms
of symbols. Consider a symbol Λ′ of defect r + 1 and residue ε; via the
equivalence on symbols, we can assume that it has at least l entries. If the
set of l largest entries of Λ′ is uniquely defined, then let Λ be the symbol
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obtained by increasing each of the entries in this set by one. If it is not, then
let ΛI and ΛII be the two symbols obtained by increasing the largest l − 1
entries of Λ′ and then each of the two lth largest entries in turn by one.

Proposition 4.8. ([21]) The representation JW
WI

([Λ′] ⊗ sgnl) is [Λ] if the
set of l largest entries of Λ′ is uniquely defined, and [ΛI] + [ΛII] if it is not.
The former is always the case if [Λ′] is a symbol of residue ε �= 0.

It is not difficult to reformulate this result in terms of partitions of rank r.
Consider a partition p = (p1, p2, . . . , pk) ∈ Pr. We can assume that k ≥ l by
adding zero parts to p as necessary. Let k′ be the number of parts of p�.
Define

pI = (p1 + 2, . . . , pl + 2, pl+1, . . . , pk),

pII = (p1 + 2, . . . , pl−1 + 2, pl + 1, pl+1 + 1, pr+2, . . . , pk).

Note that both pI and pII are again partitions of rank r.

Corollary 4.9. The representation JW
WI

([p] ⊗ sgnl) produced by trun-
cated induction is [pI] whenever pl > pl+1, pl + r − l is odd, or ε �= 0. Other-
wise,

JW
WI

([p] ⊗ sgnl) = [pI] + [pII].

Proof. Using the results of Proposition 4.8, we have to check under what
conditions the set of l largest entries in a symbol Λ′ is uniquely defined
and then determine the preimages of the symbols ΛI and ΛII under the
map of Theorem 4.2. When ε �= 0, the l largest entries in Λ′ are uniquely
determined since all of its entries must be distinct. When ε = 0, there will
be an ambiguity in determining the l largest entries if and only if pl + k′ − l

and pl+1 + k′ − l − 1 are consecutive integers with the first one being odd.
Together with the observation that k′ is always of the opposite parity from r,
this gives us the conditions of the proposition. Determining the partitions
corresponding to ΛI and ΛII is then just a simple calculation.

Note that the parity conditions of the proposition imply that in the case
when JW

WI
([p] ⊗ sgnl) is reducible, the square sl,pl+1 of the Young diagrams

of pI and pII is fixed. In particular, this means that, when endowed with
the maximal label, the domino {sl,pl+1, sl,pl+2} constitutes an open cycle in
a domino tableau of shape pI. Its image under the moving-through map is
{sl+1,pl+1, sl,pl+1} with underlying partition pII. This observation leads to
the following.
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Lemma 4.10. Let n = m + l, and consider w′ = (w1w2 · · · wm) ∈ Wm.
Write T ′ = Tr(w′) for its right tableau of rank r, and define a set of parti-
tions

P
′ =

{
shapeMT (T ′,C)

∣∣ C ⊂ OC∗(T ′)
}

⊂ Pr(m).

Define the set P = {pI | p ∈ P
′ } ∪ {pII | p ∈ P

′ and pl = pl+1 with pl + r − l

even}. If w = (w1w2 · · · wmnn − 1 · · · m + 1) ∈ Wn with right tableau T =
Tr(w), then

P =
{
shapeMT (T,C)

∣∣ C ⊂ OC∗(T )
}

⊂ Pr(n).

Proof. The lemma relates the noncore open cycles in T ′ to the noncore
open cycles in T ; hence it follows from the description of the behavior of
cycles under domino insertion in [25, Section 3.6]. However, things are really
simpler than that. Note that T is obtained from T ′ by placing horizontal
dominos with labels m+1 through n at the end of its first l rows. Essentially,
there are four possibilities. We write sij for the left square of the domino
added to row i, and we let p = shapeT ′.

(1) Here sij = Sf (c) for a cycle c of T ′. Then the domino joins the cycle c,
and the final square of the new cycle is si,j+2.

(2) Here sij−1 = Sb(c) for a cycle c of T ′. Then the domino joins the cycle
c, and the beginning square of the new cycle is si,j+1.

(3) Here pi−1 = pi with pi+r − i odd. Then the dominos with labels m+i − 1
and m + i in T form a closed cycle in T .

(4) Here pl = pl+1 with pl + r − l even. Then the domino with label n forms
a singleton noncore open cycle in T that does not correspond to a cycle
in T ′.

If C ⊂ OC∗(T ′) and C̃ is the set of the corresponding cycles in T , then it
is clear from the above description that {shapeMT (T, C̃) | C ⊂ OC∗(T ′)} =
{pI | p ∈ P

′ }. If case (4) arises and T has an additional noncore open cycle c =
{n}, then {shapeMT (T, C̃ ∪ c) | C ⊂ OC∗(T ′)} = {pII | p ∈ P

′ }. The lemma
follows.

Example 4.11. Let s = 3 so that r = 2 and ε = 0, and consider the
partition (4,3,23) ∈ P2(5). It corresponds to the symbol

Λ[(4,3,23)] =
(

1 2 3 4
1

)
∈ Sym0

3.
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For l = 4, we have JW
WI

([(4,3,23)] ⊗ sgn4) = [(6,5,4,32)]+ [(6,5,42,2)]. Note
that both partitions lie in P2(9). In terms of symbols,

JW
WI

([Λ(4,3,23)] ⊗ sgn4) =
[(

2 3 4 5
1

)]
+

[(
1 3 4 5

2

)]
.

§5. Wn-module structure and standard domino tableaux

Viewing cells as constructible representations allows us to examine their
structure inductively. Using the description of truncated induction and ten-
soring with sign derived in Section 4, we describe the Wn-module carried
by each cell in terms of the parametrization of irreducible Wn-modules of
Section 4.1. First, we consider a few facts about combinatorial cells.

Lemma 5.1. Consider two combinatorial left cells C and C′ in Wn of
rank r represented by sets T and T

′ of rank r standard domino tableaux.
Then

|C ∩ C′ −1| = M,

where M is the number of tableaux in T whose shape matches the shape of
a tableau in T

′.

Proof. Suppose first that C and C′ are irreducible so that T = {T } and
T

′ = {T ′ }. If they are of the same shape, then the intersection C ∩ C′ −1 =
G−1

r (T ′, T ); otherwise, it is empty.
On the other hand, if C and C′ are reducible, then let J consist of

the tableaux in T whose shapes match the shape of a tableau in T
′, and

define |J | = M . Recall that by the definition of a combinatorial left cell,
T = {MT (T,C) | C ∈ OC∗ T } for some tableau T , and therefore T consists
of only tableaux of differing shapes. If T ∈ J , write T ′ for the unique tableau
in T

′ of the same shape as T . Then

C ∩ C′ −1 =
⋃
T ∈J

G−1
r (T ′, T ).

We can obtain a slightly better description of the intersection of a com-
binatorial left cell and a combinatorial right cell by recalling the definition
of an extended open cycle in a tableau relative to another tableau of the
same shape (see [7, Definition 2.3.1] or [24, Definition 2.4] for details). In
general, an extended open cycle is a union of open cycles.
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Corollary 5.2. Consider two reducible combinatorial left cells C and
C′ in Wn of rank r represented by sets T and T

′ of rank r standard domino
tableaux. If T ∈ T and T ′ ∈ T

′ are of the same shape and m is the number
of noncore extended open cycles in T relative to T ′, then

|C ∩ C′ −1| = 2m.

Proof. An extended open cycle in T relative to T ′ is a minimal set of
open cycles in T and T ′ such that moving through it produces another pair
of tableaux of the same shape. Consequently, moving through two different
extended open cycles are independent operations. Noting that

T =
{
MT (T,C)

∣∣ C ⊂ OC∗(T )
}
, T

′ =
{
MT (T ′,C)

∣∣ C ⊂ OC∗(T ′)
}
,

we have that a tableau-pair (S,S′) ∈ T × T
′ is the same shape if and only

if it differs from (T,T ′) by moving through a set of noncore extended open
cycles in T relative to T ′. Thus, if E is the set of noncore extended open
cycles in T relative to T ′, then

C ∩ C′ −1 =
⋃

D⊂E

G−1
r

(
MT ((T ′, T ),D)

)
,

from which the result follows.

Recall the parameter s derived from a weight function L in type Bn. We
will call a Kazhdan-Lusztig left cell in this setting a left cell of weight s.
Bonnafé [2] has shown that

• under the assumption that statements P1–P15 of Section 2.1 hold, when
s /∈ N, left cells of weight s are precisely the irreducible combinatorial left
cells of rank r = �s�, and

• when s ∈ N, left cells of weight s are unions of reducible combinatorial
left cells of rank r = s − 1.

In this way, as in Definition 3.2, we can say that a left cell of weight s is
represented by a set of standard domino tableaux of rank r. For noninteger s,
this set consists of the unique tableau representing the irreducible combina-
torial left cell, and in the latter, it is the union of the sets of tableaux rep-
resenting each of the reducible combinatorial cells in the Kazhdan-Lusztig
cell. In what follows, we assume that statements P1–P15 hold.
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Lemma 5.3. Suppose that C is a left cell of weight s and that C =
∐

i Di

is its decomposition into combinatorial left cells of rank r. If we let Ti be the
set of domino tableaux representing Di, then the set of shapes of tableaux
in Ti is disjoint from the set of shapes of tableaux in Tj whenever i �= j.

Proof. By Corollary 2.5, C ∩ C−1 consists of the involutions in C. The
set of involutions in each combinatorial cell Di consists of Di ∩ D

−1
i . This

forces Di ∩ D
−1
j = ∅ whenever i �= j, which can occur only if the set of

shapes of tableaux in Ti is disjoint from the set of shapes of tableaux in Tj

by Lemma 5.1.

Let us first show that the shapes of the standard domino tableaux of
rank r representing a left cell of weight s determine its Wn-module structure.

Definition 5.4. Suppose that T is a set of standard domino tableaux of
rank r. For T ∈ T, write pT ∈ Pr(n) for its underlying partition, and define

[T] =
⊕
T ∈T

[pT ].

Lemma 5.5. Suppose that C and C′ are left cells of weight s in Wn, and
suppose that

C =
∐
i≤c

Di, C′ =
∐
i≤d

D′
i

are their decompositions into combinatorial left cells of rank r. Suppose that
each Di and D′

i is represented by the set of rank r tableaux Ti and T
′
i,

respectively. Then [C] ∼= [C′] if and only if c = d and, suitably ordered, [Ti] ∼=
[T′

i] for all i.

Proof. For clarity, let us treat the integer and noninteger values of s sep-
arately. First, assume that s /∈ N so that c = d = 1, and take {T } = T1

and {T ′ } = T
′
1. By Lemmas 2.4 and 5.1, we have dimHomW ([C], [C]) =

dimHomW ([C′], [C′]) = 1. Furthermore, we have dimHomW ([C], [C′]) = |C ∩
C′ −1| = 1 if and only if the shapes of T and T ′ coincide; otherwise,
dimHomW ([C], [C′]) = 0. Lemma 5.5 follows.

Next, assume that s ∈ N. Suppose first that [C] ∼= [C′]. Then dimHom(C,

C) = dimHom(C′,C′) = dimHom(C,C′), and by Lemma 2.4, |C ∩ C−1| =
|C′ ∩ C′ −1| = |C ∩ C′ −1|. By Lemma 5.3, we have∑

i≤c

|Di ∩ D
−1
i | =

∑
i≤d

|D′
i ∩ D′

i
−1| =

∑
i,j

|Di ∩ D′
j

−1|.
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We can now use Corollary 5.2 to examine the terms of this equality. For
a combinatorial cell Di, there is at most one cell D′

i′ such that there are
Ti ∈ Ti and T ′

i′ ∈ T
′
i′ of the same shape, by Lemma 5.3. Let I be the set

of i for which this occurs. Let ci and di be the numbers of noncore open
cycles in Ti and T ′

i′ , and for each i ∈ I , let mi be the number of noncore
extended open cycles in Ti relative to T ′

i′ . Then mi ≤ ci, di′ with equality
if and only if the noncore extended open cycles are just the noncore open
cycles. By Corollary 5.2,

∑
i≤c |Di ∩ D

−1
i | =

∑
i≤c 2ci ,

∑
i≤d |D′

i ∩ D′
i

−1| =∑
i≤d 2di , and

∑
I |Di ∩ D′

i′
−1| =

∑
I 2mi . But the previous equation now

implies that mi = ci = di′ , c = d, I = {1, . . . , c}, and, by the definition of a
combinatorial left cell in our setting, [Ti] ∼= [T′

i′ ] for all i ∈ I .
Conversely, assume that c = d and [Ti] ∼= [T′

i] for all i, and choose tableaux
Ti ∈ Ti and T ′

i ∈ T
′
i of the same shape. By the definition of combinatorial

cells, there is a correspondence between the noncore open cycles of Ti and
those of T ′

i such that their beginning and final squares coincide, implying
that the set of noncore extended open cycles in Ti relative to T ′

i is precisely
the set of open cycles of Ti. Therefore, for each i we have |Di ∩ D

−1
i | =

|Di ∩ D′
i

−1|. Consequently, by Lemmas 5.3 and 2.4 and Corollary 5.2,

dimHom(C,C′) =
∑

i

|Di ∩ D′
i

−1| =
∑

i

|Di ∩ D
−1
i | = dimHom(C,C).

Reversing the roles of C and C′ above implies the desired result.

Theorem 5.6. Suppose that C is a left cell of weight s in Wn represented
by a set T of standard domino tableaux of rank r. Then [C] ∼= [T] as Wn-
modules.

Proof. In light of the result from Lemma 5.5, we can prove the theorem by
verifying that it holds for a representative of each isomorphism class of left
cells. Under our assumptions, the results of [9] hold, and left cell modules
coincide with constructible representations of Wn. Therefore, a represen-
tative of each isomorphism class of left cells can be obtained by repeated
truncated induction and tensoring with sign. Recall the description of irre-
ducible Wn-modules by partitions of rank r. Via Corollaries 4.4 and 4.9, we
have a description of both operations on the level of partitions. We verify
that the effect of truncated induction and tensoring with sign on the shapes
of the tableaux representing a left cell is the same, and the theorem follows
by induction.



42 THOMAS PIETRAHO

Let us treat the integer and noninteger values of s separately. First,
assume that s /∈ N, so that each left cell is represented by a single tableau.
Begin by investigating the effect on tensoring with sign. If [C] is a left cell
module and w ∈ C, then C is represented by the tableau Tr(w) of shape p.
By Lemma 4.6, Cw0 is also a left cell, and [Cw0] ∼= [C] ⊗ sgn. It is repre-
sented by the tableau Tr(ww0) = Tr(w)t of shape pt. By Corollary 4.4, if we
assume that [C] carries the irreducible module associated to the shape of its
representative tableau, then so does [Cw0] ∼= [C] ⊗ sgn.

For the case of truncated induction, consider a maximal parabolic sub-
group WI = Wm × Sl of Wn. Choose w′ = (w1w2 · · · wm) ∈ Wm, and let C′

be its left cell, represented by the tableau T ′ = Tr(w′). Let p = shapeT ′.
By Lemma 4.7, JW

WI
([C′] ⊗ sgnl) = [C] for a left cell C ⊂ Wn, and further-

more, the element w = (w1w2 · · · wmnn − 1 · · · m+1) ∈ C. Using the notation
of Corollary 4.9, the left cell C is represented by the tableau Tr(w) whose
shape is pI . By Corollary 4.9, if we assume that [C′] carries the irreducible
module associated to the shape of its representative tableau, then so does
[C] ∼= JW

WI
([C′] ⊗ sgnl).

Next assume that s ∈ N, so that each left cell is represented by a family
of rank r standard domino tableaux. Again, we begin by investigating the
effect on tensoring with sign. Suppose that C is a left cell represented by
the set T, and suppose that, for each T ∈ T, wT ∈ Wn is chosen so that
Tr(wT ) = T . By Lemma 4.6, Cw0 is also a left cell, and [Cw0] ∼= [C] ⊗ sgn.

It is represented by the set of tableaux Tr(wT w0) = Tr(wT )t (for T ∈ T),
which we write as T

t. By Corollary 4.4, if we assume that [C] carries the
module [T], then [Cw0] ∼= [C] ⊗ sgn carries the module [Tt].

For the case of truncated induction, again consider a maximal parabolic
subgroup WI = Wm × Sl of Wn. Let C′ be a left cell of Wm, and let C′ =

∐
i D

′
i

be its decomposition into combinatorial left cells. Suppose that D′
i is repre-

sented by the set T
′
i of domino tableaux, and let T

′ =
∐

i T
′
i. By definition

of combinatorial left cells, every T
′
i = {MT (T ′

i ,C) | C ⊂ OC∗(T ′
i )} for some

rank r standard domino tableau T ′
i . For each i, choose w̃i = (wi

1w
i
2 · · · wi

m) ∈
Wm with T ′

i = Tr(w̃i) so that w̃i ∈ D′
i. By Lemma 4.7, JW

WI
([C′] ⊗ sgnl) =

[C] for a left cell C ⊂ Wn. Furthermore, wi = (wi
1w

i
2 · · · wi

mnn − 1 · · · m +
1) ∈ C, and if Ti = Tr(wi), then C is represented by the set of tableaux
T =

∐
i{MT (Ti,C)|C ⊂ OC∗(Ti)}. Lemma 4.10 describes the shapes of the

tableaux in T in terms of the shapes of the tableaux in T
′. This, together

with Corollary 4.9, shows that if we assume that [C′] carries the module
[T′], then [C] ∼= JW

WI
([C′] ⊗ sgnl) carries the module [T].
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Corollary 5.7. Consider a Weyl group of type Bn with a weight func-
tion L and parameter s defined as above. If statements P1–P15 hold, then

(1) when s /∈ N, the Kazhdan-Lusztig left cells of weight s coincide with the
irreducible combinatorial left cells of rank �s�, and

(2) when s ∈ N, the Kazhdan-Lusztig left cells of weight s coincide with the
reducible combinatorial left cells of rank s − 1.

If the set T of standard domino tableaux represents the left cell C in Wn, then
[C] ∼= [T] as Wn-modules. Furthermore, if T ∈ T, then the number of elements
of C with right tableau T is the dimension of the irreducible constituent [pT ]
of [C].

Proof. The first part in the case s /∈ N is a result of Bonnafé [2]. To
verify it in the case s ∈ N, write a Kazhdan-Lusztig left cell C in terms of
combinatorial left cells as C =

∐
i∈I Di. Since [C] is constructible, the main

result of [23] shows that [C] ∼= [T̃] as Wn-modules where T̃ = {MT (T,C) |
C ⊂ OC∗(T )} for some standard domino tableau T of rank r. Let each Di be
represented by Ti = {MT (Ti,C) | C ⊂ OC∗(Ti)}, and write T =

∐
i∈I Ti. By

Theorem 5.6, [T] = [T̃]. This implies that for every i, the set of beginning and
ending squares of noncore open cycles in Ti is contained in the corresponding
set in T . However, the size of this set is constant for every partition in the
set of possible shapes of tableaux in [T]. By Lemma 5.3, the only way this
can occur is if |I| = 1, that is, if C consists of a single combinatorial cell.

Finally, we verify the last statement of the corollary. If s /∈ N, consider
a left cell C represented by the tableau T . Then dim[C] =

∑
|C ∩ C′ −1|, the

sum taken over all left cells C′ in Wn. But |C ∩ C′ −1| = 1 if and only if the
shapes of the tableaux representing C and C′ are the same; otherwise it is
zero. Since each left cell is represented by a unique tableau, the above sum
equals the number of tableaux of the same shape as T . This is the same
as the number of elements of C with right tableau T . If s ∈ N, consider left
cells C and C′. For w ∈ C ∩ C′ −1, [shapeTr(w)] must be a component of both
[C] and [C′]. Furthermore, each w ∈ C ∩ C′ −1 must have the right tableau
of a unique shape, establishing a bijection between C ∩ C′ −1 and the set of
irreducible modules common to [C] and [C′]. If we let C′ vary over all left
cells of Wn, the statement follows by Lemma 2.4.

It should be remarked that the above statement classifying the module
structure of left cells is not the strongest one could hope for. In the so-called
“asymptotic” case when s is sufficiently large, Geck [12, Section 5] has
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shown that, whenever the tableaux representing [C] and [C′] are equal, not
only are the underlying H-modules isomorphic, but the underlying structure
constants are also the same. More precisely, there is a bijection C → C′

sending x 	→ x′ such that

hw,x,y = hw,x′,y′ , for all w ∈ Wn and x, y ∈ C.

It would be interesting to know under what circumstances this stronger
statement holds for other values of s.
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[3] C. Bonnafé, M. Geck, L. Iancu, and T. Lam, On domino insertion and Kazhdan–
Lusztig cells in type Bn, to appear in Progr. Math., preprint.
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