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Compressibility and Kolmogorov Complexity

Stephen Binns and Marie Nicholson

Abstract This paper continues the study of the metric topology on 2N that was
introduced by S. Binns. This topology is induced by a directional metric where
the distance from Y 2 2N to X 2 2N is given by

lim sup
n

C.X � n j Y � n/
n

:

This definition is closely related to the notions of effective Hausdorff and packing
dimensions. Here we establish that this is a path-connected topology on 2N and
that under it the functions X 7! dimH X and X 7! dimp X are continuous.

We also investigate the scalar multiplication operation that was introduced by
Binns. The multiplication of a real X 2 2N by an element ˛ 2 Œ0; 1� represents a
dilution of the information in X by a factor of ˛.

Our main result is to show that every regular real is the dilution of a real of
Hausdorff dimension 1. That is, that the information in every regular real can be
maximally compressed.

1 Introduction

One of the fundamental objects of study in information and computability theory is
the set of all infinite binary sequences. It has a similar role in these subjects as the
unit interval does in analysis. This set, elements of which are called reals, when
equipped with a standard metric,1 is referred to as the Cantor space, and we denote
it 2N. The standard metric provides the set of reals with a topology that is Hausdorff,
complete, compact, and totally disconnected—that is, any two elements of 2N can
be separated with clopen sets. In particular (and important for our purposes) it is far
from being path connected; there is no way under this topology to conceive of one
real transforming continuously into another.
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A natural path-connected topology can be given to 2N if every real is considered to
be a binary expansion of a real number in the interval Œ0; 1�. This is not a one-to-one
identification, however, since if � is any finite binary string, then

0 � �100000000000 � � � D 0 � �011111111111111 � � �

represent the same real number. If this causes technical issues in practice, it is often
dealt with by declaring any two such sequences equivalent and applying the topology
of Œ0; 1� onto the resulting set of equivalent classes in 2N (almost all of which will
have only one element anyway). Alternatively, one could drop any expectation that
the topology be Hausdorff and accept the fact that the two above sequences cannot
be separated by disjoint open sets.

In Binns [2] another metric was described that we argue is interesting and rele-
vant to the study of Kolmogorov complexity. It also induces a non-Hausdorff, path-
connected topology on 2N and is closely connected to the study of the effective di-
mensions of reals—specifically their effective Hausdorff and packing dimensions.
These dimensions arise naturally as effectivisations of classical notions and have
been studied in Mayordomo [7], Lutz [6], Athreya et al. [1], Downey and Green-
berg [3], Reimann [9], and elsewhere. We will usually drop the explicit qualifier and
simply speak of the Hausdorff or packing dimension of a real.

Effective dimensions have simple characterizations in terms of Kolmogorov com-
plexity, and we will take these characterizations as definitions. The Hausdorff and
packing dimensions of a real X are, respectively,

dimH X D lim inf
n

C.X � n/
n

; dimp X D lim sup
n

C.X � n/
n

;

where C.X � n/ is the plain Kolmogorov complexity of the first n bits of X . In
[1, Theorem 6.5] it is shown that all possible values of the dimension are realized
by some real. That is, that for all 0 6 ˛ 6 ˇ 6 1, there is an X 2 2N such that
dimH X D ˛ and dimp X D ˇ.

The metric from [2] that we will be working with here is technically a pseudo-
metric as it is possible for two distinct reals to be distance zero from each other. We
refer to it as the d -metric and introduce it first as a directed pseudometric2

d.X ! Y / D lim sup
n

C.Y � n j X � n/
n

;

with the pseudometric given by

d.X; Y / D max
®
d.X ! Y /; d.Y ! X/

¯
:

We will continue to stretch terminology somewhat by referring to d as a “metric.”
Two reals X , Y at distance zero from one another will be considered equivalent—
denoted X 'd Y .

Along with the topological structure induced on 2N by d , we also have a certain
amount of algebraic structure. This is produced by an associative scalar multiplica-
tion which was introduced in [2] and represents dilutions of the information in a real
X . We dilute the information in X by a factor ˛ 2 Œ0; 1� by adding strings of zeros
at defined positions in X . The result we denote by ˛X . The lower the value of ˛,
the more X is diluted: if ˛ D 0, then ˛X D 000000 � � � WD 0, and if ˛ D 1, then
˛X D X . These dilutions cohere well with dimensional and metric properties, as we
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show in Section 3:
dimH .˛X/ D ˛ dimH X and dimp.˛X/ D ˛ dimp X;

and, more generally,
d.˛X ! ˛Y / D ˛d.X ! Y /:

A distinguished subset of the reals—the so-called regular reals—discussed in [2],
[1], and Tricot [10] will also be considered in this paper. X is said to be regular if
dimH .X/ D dimp.X/: In this case we simply refer to dimX . It was proved in [2]
that if X is regular, then

d.˛X; ˇX/ D j˛ � ˇj dimX:
Regularity is preserved under scalar multiplication.

The relationship between scalar multiplication and the metric d allowed us in [2]
to introduce and investigate geometric properties such as the angle between two reals
and the projection of one real onto another.

In this paper we extend some of the results in [2], relaxing requirements of reg-
ularity and proving that d induces a path-connected topology on 2N. We also show
that the Hausdorff and packing dimension functions

dimH W 2
N
! Œ0; 1� and dimp W 2N ! Œ0; 1�

are continuous in the d -topology.
The main result, however, is one of compressibility. A real X is a .1=˛/-

compression of Y if Y 'd ˛X . We prove here that every regular real is maximally
compressible. That is, for every regular real X of dimension ˛ > 0 there is a regular
real Y of dimension 1 (unique up to d -equivalence) such that X 'd ˛Y:

The definition of d.X ! Y /, relying as it does on relative Kolmogorov complex-
ity, is related to other concepts that have been studied in this area. In particular, it is
similar to rK-reducibility as introduced by Downey, Hirschfeldt, and LaForte in [5].
If X and Y are reals, then we say X is rK-reducible to Y (X 6rK Y ) if there is a
d 2 N such that

8nC.X � n j Y � n/ 6 d:
It is immediate that if X 6rK Y , then d.Y ! X/ D 0. However, the converse is not
true. One easy way to see this is that if X 6rK Y , then X 6T Y (see [5]), which
is not necessarily true if we assume only that d.Y ! X/ D 0. (It is not difficult to
code any real A into X to obtain a real X1 �T X ˚ A and X1 'd X .)

Other reducibilities, defined in terms of Kolmogorov complexity and related con-
cepts, have also been extensively studied (see, e.g., the exposition in Downey and
Hirschfeldt [4, Chapter 9] or Nies [8, Chapter 5]). These indeed may also turn out
to have some relationship to the d -metric. The approach we take here and in [2],
however, does not emphasize reducibility relations and the resultant degree struc-
tures but rather investigates the metric topology generated by d . This we contend is
a novel approach to effective dimension theory, and we intend to extend and develop
the results contained here.

2 Definitions and Notation

We will follow [4] for the basic notation. The Cantor space of infinite binary se-
quences or reals is denoted 2N, and 2<N is the set of finite binary strings. We conven-
tionally denote elements of 2N by uppercase roman letters X , Y , and Z and denote
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elements of 2<N by lowercase Greek letters �; �; �; �, and so on. The length of a
binary string is denoted j� j. If n 2 N, then 0n is the string of n zeros, and we will
denote the infinite sequence of zeros by 0. If n 2 N, then we use logn to represent
the length of the standard binary expansion of n.
C.�/ denotes the plain Kolmogorov complexity of the string � . This will be

the only notion of complexity used in this paper; however, all the following results
regarding dimension apply equally to prefix-free complexity. C.�1; �2; : : : ; �n/ is
the complexity of

Ln
iD1 �i , and C.� j �/ is the complexity of � given � .

As is standard, �� refers to a minimal-length string that describes �—the first
string of minimal length on which the universal machine halts and outputs � . We
introduce the new notation .� j �/� to similarly denote the first string of minimal
length that outputs � when input into a fixed universal oracle machine given � as
oracle. Thus,

C.�/ D j��j and C.� j �/ D j.� j �/�j:

If � and � are two binary strings, then we denote their concatenation by �� . We
will often need to calculate the complexity of a sequence of concatenated strings, and
issues of deciding where one string ends and the next starts will arise. To deal with
this we let � be the string � with 2 log j� j bits appended to the beginning to indicate
the length of � . More precisely, if b1b2b3 � � � bn is the standard binary expansion of
j� j, then

� D b10b20b30 � � � 0bn1�:

The motivation here is that C.�1�2 � � � �n/ D C.�1; �2; : : : ; �n/˙O.1/:

Definition 2.1 Let X be any real. Then the effective Hausdorff dimension of X is

dimH X D lim inf
n

C.X � n/
n

:

The dual notion
dimp X D lim sup

n

C.X � n/
n

is the effective packing dimension of X . If these two dimensions are equal, that is,
if limn C.X � n/=n exists, then X is said to be a regular real and we refer to the
dimension of X and denote this dimX :

dimX D lim
n

C.X � n/
n

:

Definition 2.2 Let X; Y;Z 2 2N, and define

d.X ! Y / D lim sup
n

C.Y � n j X � n/
n

;

where C.Y � n j X � n/ is the Kolmogorov complexity of Y � n given X � n. The
function d obeys the triangle inequality in the direction of the arrow, that is,

d.X ! Y /C d.Y ! Z/ > d.X ! Y /:

See [2] for the proof of this fact and other details.

Notice that under this definition

dimp.X/ D d.0! X/:
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Definition 2.3 A metric can be formed from d by defining
d.X; Y / D max

®
d.X ! Y /; d.Y ! X/

¯
and by identifying reals that are distance zero from one another. We write X 'd Y
if d.X; Y / D 0.

2.1 Symmetry of information The next lemma is well known and will be used ex-
tensively. For a proof and historical reference, see [4].

Lemma 2.4 (Symmetry of information; Levin, Kolmogorov) If �; � 2 2<N, then
C.�; �/ D C.� j �/C C.�/˙O logC.�; �/:

We will also use the following two consequences.

Corollary 2.5 We have

lim inf
n

C.X � n j Y � n/
n

D lim inf
n

C.X � n; Y � n/ � C.Y � n/
n

;

and similarly for limit supremum.

Corollary 2.6 If �1; �2; : : : ; �n 2 2<N, then
C.�1; �2; : : : ; �n/ D C.�1/C C.�2 j �1/C C.�3 j �1; �2/C � � �

C C.�n j �1; �2; : : : ; �n�1/˙On logC.�1; �2; : : : ; �n/:

Proof The6-direction is derived by concatenating the required descriptions on the
right-hand side along with enough bits to distinguish them. On logC.�1; �2; : : : ; �n/
bits are sufficient for this purpose.

For the >-direction, take a fixed constant k such that for all �; � 2 2<N,
C.�; �/ > C.� j �/C C.�/ � k logC.�; �/;

and then repeatedly apply Lemma 2.4 starting with C
�
�n;
Ln�1
iD1 �i

�
.

2.2 Scalar multiplication Another concept that we will use repeatedly is that of a
dilution. It is a function from R � 2N to 2N that consists of interpolating zeros
into a real and consequently reducing its dimension. This we interpret as a scalar
multiplication, and if ˛ 2 Œ0; 1� and X 2 2N, we write ˛X for the dilution of X by a
factor ˛. The effective dimensions of X are scaled by a factor of ˛ as a result. We
now give an exact definition.

Notation 2.1 Let X 2 2N, ˛ 2 Œ0; 1�, and i 2 NC. Let pi .˛/ be the least natural
number k that minimizes j˛i � kj. We then have

˛i �
1

2
6 pi .˛/ 6 ˛i C

1

2

and limi pi .˛/=i D ˛:

Definition 2.7 (Scalar multiplication) If X 2 2N and ˛ 2 Œ0; 1�, then we let ˛X
be the real

�10
a1�20

a2�30
a3 � � � �i0

ai � � �;

where
1. X D �1�2�3 � � �;
2. j�i j D pi .˛/,
3. j�i0ai j D i .
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Notation 2.2 Later we will be considering initial segments of ˛X , so we intro-
duce some useful notation now. For every n, there exists a unique m D m.n/ and
� D �.n/ such that

˛X � n D �10a1�20
a2�30

a3 � � � �m0
am�;

where m is the largest possible integer such that
Pm
iD1 i D m.m C 1/=2 6 n. To

make the calculations more readable, we let
� M WD m.mC 1/=2 and
� Pm.˛/ WD

Pm
iD1 pi .˛/;

both of which are implicitly functions of n. We will also refer to the string
�1�2�3 � � � �m above as the bits of X in ˛X � M , and to the added zeros as the
padding bits. This notation will be used throughout the paper.

3 Basic Results

In this section we will prove some basic lemmas giving the relationship between the
scalar multiplication and the metric d .

Lemma 3.1 If ˛ 2 Œ0; 1�, X 2 2N, and n 2 N, and if m and Pm.˛/ are as in
Notation 2.2, then C.X � Pm.˛// D C.˛X � n/˙O.m logm/:

Proof With all the notation as stated, ˛X � n is of the form
�10

a1�20
a2�30

a3 � � � �m0
am�;

where j� j < mC 1 and �1�2�3 � � � �m� � X .
To describe ˛X � n it is sufficient to know X � Pm.˛/, the values of pi .˛/ for

i 6 m, and the string � . Each pi .˛/ 6 i 6 m, so O.m logm/ bits are sufficient to
describe all values of pi .˛/ for i 6 m. Therefore

C.˛X � n/ 6 C
�
X � Pm.˛/

�
CO.m logm/:

Similarly, to describe X � Pm.˛/, it is sufficient to describe ˛X � n and to
distinguish in ˛X � n the padding bits from the bits of X . To do this it is enough to
know the values of pi .˛/ for all i 6 m. Thus

C
�
X � Pm.˛/

�
6 C.˛X � n/CO.m logm/;

and consequently
C
�
X � Pm.˛/

�
D C.˛X � n/˙O.m logm/:

Lemma 3.2 Again using the above notation, limn Pm.˛/
n
D ˛.

Proof Recall that
˛i �

1

2
6 pi .˛/ 6 ˛i C

1

2
I

hence, by summing over all i 6 m,

˛M �
m

2
6 Pm.˛/ 6 ˛M C

m

2
:

Now dividing by n we get
˛M

n
�
m

2n
6
Pm.˛/

n
6
˛M

n
C
m

2n
:

As limn Mn D 1 and m D O.
p
n/, the result follows.
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Lemma 3.3 In the above notation

lim sup
n

C.X � Pm.˛//
Pm.˛/

D lim sup
n

C.X � n/
n

;

and similarly for lim infn C.X�Pm.˛//
Pm.˛/

:

Proof Let Œ�� W R ! N be the nearest integer function. The definition of Pm.˛/
suggests that Pm.˛/ should be close to Œ˛n�, and indeed it can be shown, using a
similar argument to that in Lemma 3.2 that

Œ˛n� D Pm.˛/˙O.m/:

The fact that ˛ 6 1 means that ¹Œ˛n� W n 2 Nº D N and therefore that

lim sup
n

C.X � n/
n

D lim sup
n

C.X � Œ˛n�/
Œ˛n�

6 lim sup
n

C.X � Pm.˛//˙O.m/

Pm.˛/˙O.m/

D lim sup
n

C.X � Pm.˛//
Pm.˛/

as Pm.˛/ D O.n/ and m D O.
p
n/. The proof for lim infn C.X�Pm.˛//

Pm.˛/
is identical.

Lemma 3.4 For all X 2 2N and ˛ 2 Œ0; 1�,

dimH .˛X/ D ˛ dimH .X/ and dimp.˛X/ D ˛ dimp.X/:

Proof Let n 2 N, and consider ˛X � n. Notice that, in Notation 2.2,
m.mC 1/=2 6 n and therefore

lim
n

O.m logm/
n

D 0: (1)

Now,

dimp.˛X/ D lim sup
n

C.˛X � n/
n

D lim sup
n

C.X � Pm.˛//˙O.m logm/
n

(by Lemma 3.1)

D lim sup
n

C.X � Pm.˛//
n

(by (1))

D lim
n

Pm.˛/

n
lim sup

n

C.X � Pm.˛//
Pm.˛/

D ˛ dimp.X/ (by Lemmas 3.2 and 3.3).

By a similar argument, dimH .˛X/ D ˛ dimH .X/. Hence if X is regular,
dim ˛X D ˛ dimX .

Lemma 3.5 IfX; Y 2 2N are regular and dim.X/ D dim.Y /, then d.X ! Y / D

d.Y ! X/:
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Proof Using the symmetry of information,

d.X ! Y / D lim sup
n

C.Y � n j X � n/
n

D lim sup
n

C.Y � n;X � n/ � C.X � n/
n

D lim sup
n

C.Y � n;X � n/
n

� lim
n

C.X � n/
n

(as X is regular)

D lim sup
n

C.X � n; Y � n/
n

� lim
n

C.Y � n/
n

(as dimX D dim Y )

D lim sup
n

C.X � n; Y � n/ � C.Y � n/
n

(as Y is regular)

D lim sup
n

C.Y � n j X � n/
n

D d.Y ! X/:

In [2] we proved that for reals X; Y with strong regularity properties (namely, being
mutually regular) that d.˛X ! ˛Y / D ˛d.X ! Y /:We significantly improve this
here by proving this for all pairs of reals. We need first the following lemma.

Lemma 3.6 Let X; Y 2 2N and ˛ 2 .0; 1�. If m D m.n/ and Pm.˛/ are as above
in Notation 2.2, then

lim sup
n

C.Y � Pm.˛/ j X � Pm.˛//
Pm.˛/

D lim sup
k

C.Y � k j X � k/
k

:

Proof Just from the definition of the limit supremum, we get

lim sup
n

C.Y � Pm.˛/ j X � Pm.˛//
Pm.˛/

6 lim sup
k

C.Y � k j X � k/
k

:

For the other direction, temporarily fix k 2 N, and let n be the largest positive
integer such that Pm.˛/ D Pm.n/.˛/ does not exceed k. Thus k < Pm.nC1/.˛/ 6
Pm.n/.˛/Cm.n/C 1 and k 6 Pm.˛/Cm. Symmetry of information then gives

C
�
Y � Pm.˛/ j X � Pm.˛/

�
D C

�
Y � Pm.˛/; X � Pm.˛/

�
� C

�
X � Pm.˛/

�
˙O logC

�
Y � Pm.˛/; X � Pm.˛/

�
:

But because Pm.˛/ 6 k 6 Pm.˛/Cm,

C
�
Y � Pm.˛/; X � Pm.˛/

�
CO.m/ > C.Y � k;X � k/

and
C
�
X � Pm.˛/

�
6 C.X � k/CO.logm/:

Therefore

C
�
Y � Pm.˛/; X � Pm.˛/

�
� C

�
X � Pm.˛/

�
> C.Y � k;X � k/ � C.X � k/ �O.m/:

From here, using symmetry of information, we can get

C
�
Y � Pm.˛/ j X � Pm.˛/

�
> C.Y � k j X � k/ �O.m/;

and the result follows.
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Theorem 3.7 If X; Y 2 2N and ˛ 2 Œ0; 1�, then d.˛X ! ˛Y / D ˛d.X ! Y /.

Proof If ˛ D 0, then the result is immediate. Assume ˛ > 0: Again using the
symmetry of information:

d.˛X ! ˛Y /

D lim sup
n

C.˛Y � n j ˛X � n/
n

D lim sup
n

C.˛Y � n; ˛X � n/ � C.˛X � n/
n

D lim sup
n

C.Y � Pm.˛/; X � Pm.˛// � C.X � Pm.˛//˙O.m logm/
n

;

using an argument similar to Lemma 3.1. Since limn O.m logm/
n

D 0, and using
Corollary 2.5,

d.˛X ! ˛Y / D lim sup
n

C.Y � Pm.˛/ j X � Pm.˛//
n

D lim sup
n

Pm.˛/

n
�
C.Y � Pm.˛/ j X � Pm.˛//

Pm.˛/

D ˛ lim sup
n

C.Y � Pm.˛/ j X � Pm.˛//
Pm.˛/

D ˛d.X ! Y / (by Lemma 3.6):

4 Topological Results

4.1 Path connectedness In [2] it was shown that for any regular real X , d.˛X !
ˇX/ D j˛ � ˇj dimX , and hence that the map ˛ 7! ˛X is continuous. Thus
every regular real is path connected to the point 0 and, by concatenation of
paths, to each other. We extend this to the set of all reals—proving not that
d.˛X ! ˇX/ D j˛ � ˇj dimX for nonregular X but merely that d.˛X ! ˇX/ 6
jˇ � ˛j. This is still sufficient to imply continuity but does not require that X be
regular.

Theorem 4.1 We have that 2N is path connected under the metric d .

Proof Let X be any (possibly irregular) element of 2N, and let ˛ < ˇ be elements
of Œ0; 1�. Consider d.ˇX ! ˛X/. For any n 2 N, ˇX � n will contain at least as
many bits of X as ˛X � n because ˛ < ˇ. So to describe ˛X � n given ˇX � n it
is sufficient to know the values of pi .˛/ and pi .ˇ/ for all i 6 m as in Notation 2.2.
As before this requires at most O.m logm/ bits. This term disappears in the limit, so
d.ˇX ! ˛X/ D 0.

Now, for the other direction, let XŒn;m� D hX.n/;X.nC 1/; : : : ; X.m� 1/i, and
consider d.˛X ! ˇX/. Then

d.˛X ! ˇX/ D lim sup
n

C.ˇX � n j ˛X � n/
n

6 lim sup
n

C.XŒPm.˛/; Pm.ˇ/�/CO.m logm/
n
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as to describe ˇX � n it is sufficient to describeX � Pm.˛/, XŒPm.˛/; Pm.ˇ/�, and
strings of padding bits given by a description of length O.m logm/. But

C
�
XŒPm.˛/; Pm.ˇ/�

�
6 Pm.ˇ/ � Pm.˛/CO.1/;

so

d.˛X ! ˇX/ 6 lim sup
n

Pm.ˇ/ � Pm.˛/CO.m logm/
n

D ˇ � ˛ (by Lemma 3.2).

4.2 Continuity theorems

Theorem 4.2 The functions

dimp W 2N �! Œ0; 1�

and
dimH W 2

N
�! Œ0; 1�

are continuous under the d -metric.

Proof For the first, let X; Y 2 2N. Then

C.Y � n/ 6 C.Y � n j X � n/C C.X � n/CO.logn/:

And so

lim sup
n

C.Y � n/
n

6 lim sup
n

C.Y � n j X � n/
n

C lim sup
n

C.X � n/
n

;

which means
dimp.Y / � dimp.X/ 6 d.X; Y /

from which the continuity of dimp follows.
For dimH the situation is only slightly more complicated. Fix X 2 2N and � > 0.

We show there is a ı such that for all Y 2 2N,

d.X; Y / < ı ! j dimH X � dimH Y j < �;

namely, ı D �=4. If Y is as above and if dimH X D ˛ and dimH Y D ˇ, then we
can find an N 2 N such that for all n > N ,

1.
C.X � n j Y � n/

n
<
�

4
;

2.
C.X � n/

n
> ˛ �

�

4
;

3.
3 logn
n

<
�

4
;

as d.Y ! X/ D lim supn
C.X�njY �n/

n
< �=4 and dimH X D lim infn C.X�n/

n
D ˛.

We can also find an m > N such that
C.Y � m/

m
< ˇ C

�

4

as lim infn C.Y �n/
n
D dimH Y D ˇ. Fix such an m; now using basic theory,

C.X � m/ 6 C.X � m j Y � m/C C.Y � m/C 3 logm
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and so
C.X � m/

m
6
C.X � m j Y � m/

m
C
C.Y � m/

m
C
3 logm
m

;

giving, using the bounds above, ˛ � ˇ < �. A symmetrical argument shows that
ˇ � ˛ < �, and the result follows.

Corollary 4.3 The set of regular reals is closed in the topology induced by the
d -metric.

Proof The irregularity function irreg W 2N ! Œ0; 1� defined by

irreg.X/ D dimp X � dimH X

is continuous by Theorem 4.2, and therefore the set of regular reals, ¹X 2 2N W
irreg.X/ D 0º, is closed.

Corollary 4.4 If X 'd Y , then dimH X D dimH Y and dimp X D dimp Y .

Proof If d.X; Y / < ı for all ı > 0, then dimp X � dimp Y < � for all � > 0, and
similarly for dimH X � dimH Y .

5 Compressibility of Reals

Theorem 5.1 Let X 2 2N be regular and of dimension ˛. Then there exists a
regular Y 2 2N of dimension 1 such that X 'd ˛Y . Furthermore, if ˛ > 0, then Y
is unique up to d -equivalence.

Proof If ˛ D 0, the result is immediate, so we suppose that ˛ > 0.
Let X 2 2N be regular. We will divide X into finite blocks of strings:

X D �1�2�3 � � �;

where j�i j D i for all i .
Let 1 D ��1 and iC1 D .�iC1 j �1; �2; : : : �i /

� where, as in Section 2,
.�iC1 j �1; �2; : : : �i /

� is a minimal length string that outputs �iC1 using �1; �2; : : : ; �i
as oracles. We now define Y to be

Y D 123 � � �;

where the notation � is as defined in Section 2. We will find it convenient to use the
notation

Xi D �1�2 � � � �i

and
Yi D 12 � � � i :

Notice that C.Xi / D C.�1; �2; : : : ; �i /˙O.1/ and that we can recover the strings
�1; �2; : : : ; �i uniformly from the string Yi . So

C.Xi j Yi / D O.1/: (2)

We will now establish some technical lemmas. First, we note that we can bound
jYi j in terms of the complexity of Xi .

Lemma 5.2 We have jYi j D C.Xi /˙Oi logC.Xi /:
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Proof Using Corollary 2.6:

C.Xi / D C.�1; �2; : : : ; �i /

> C.�1/C C.�2 j �1/C C.�3 j �1; �2/C � � � C C.�i j �1; �2; : : : ; �i�1/
�Oi logC.�1; �2; : : : ; �i /

> j1j C j2j C � � � C ji j �Oi logC.�1; �2; : : : ; �i /

D jYi j �O

iX
jD1

log jj j �Oi logC.�1; �2; : : : ; �i /

> jYi j �Oi logC.�1; �2; : : : ; �i /
D jYi j �Oi logC.Xi /;

we obtain the inequality

jYi j 6 C.Xi /COi logC.Xi /:

A similar argument will give us a lower bound on jYi j:

jYi j > C.Xi / �Oi logC.Xi /:

Next, we show that if X is regular, then limi jYi j

jXi j
D dim.X/: We note here that

Lemma 5.3, as stated, also applies to irregular X . This extra generalization will be
useful later.

Lemma 5.3 Let X 2 2N be arbitrary. Then lim supi
jYi j

jXi j
6 dimp.X/ and

lim inf i jYi j

jXi j
> dimH .X/.

Proof By Lemma 5.2, jYi j D C.Xi /˙Oi logC.Xi /. Dividing both sides by jXi j
and taking the limit supremum gives

lim sup
i

jYi j

jXi j
6 lim sup

i

�C.Xi /
jXi j

C
Oi logC.Xi /
jXi j

�
6 lim sup

i

C.Xi /

jXi j
C lim sup

i

Oi logC.Xi /
jXi j

D lim sup
i

C.Xi /

jXi j
(as jXi j D O.i2/)

6 dimp.X/:

Similarly,

lim inf
i

jYi j

jXi j
> lim inf

i

�C.Xi /
jXi j

�
Oi logC.Xi /
jXi j

�
> lim inf

i

C.Xi /

jXi j
C lim inf

i
�

Oi logC.Xi /
jXi j

D lim inf
i

C.Xi /

jXi j

> dimH .X/:

Every initial segment of Y is of the form Yi� for some unique i and � an initial
segment of iC1. In the next two lemmas we will calculate a lower bound on the
complexity of Yi�.
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Lemma 5.4 We have C.iC1 j Yi / > jiC1j � O log jiC1j � C.Yi /C C.Xi / �
O logC.Yi /.

Proof To calculate a bound on C.iC1 j Yi /, we begin by noting that

C.iC1 j Yi /C C.Yi j Xi /CO logC.Yi j Xi / > C.�iC1 j �1; �2; : : : ; �i /
D jiC1j

as, from a machine that computes iC1 given Yi and a machine that computes Yi
given Xi (and enough bits to tell them apart), we can easily construct a machine that,
given �1; �2; : : : ; �i , computes YiC1 and hence �iC1. Thus

C.iC1 j Yi / > jiC1j � C.Yi j Xi / �O logC.Yi j Xi /:

But we can also put a bound on the second term on the right-hand side, using sym-
metry of information and the fact that C.Yi ; Xi / D C.Yi /˙O.1/:

C.Yi j Xi / D C.Yi ; Xi / � C.Xi /˙O logC.Yi ; Xi /
D C.Yi / � C.Xi /˙O logC.Yi /:

And combining this with the previous equation gives

C.iC1 j Yi / > jiC1j � C.Yi /C C.Xi / �O logC.Yi /

or, equivalently,

C.iC1 j Yi / > jiC1j �O log jiC1j � C.Yi /C C.Xi / �O logC.Yi /;

as required.

Lemma 5.5 We have C.Yi�/ > jYi�j � O log jiC1j � Oi logC.Xi / �
O logC.Yi�/.

Proof Let iC1 D ��; then,

C.iC1 j Yi / D C.�� j Yi /

6 j.� j Yi /��j CO.1/

D C.� j Yi /CO logC.� j Yi /C j�j:

Therefore,

C.� j Yi / > C.iC1 j Yi / � j�j �O logC.� j Yi /
> jiC1j �O log jiC1j � C.Yi /C C.Xi /
�O logC.Yi / � j�j �O logC.� j Yi / from Lemma 5.4

D j�j �O log jiC1j � C.Yi /C C.Xi /
�O logC.Yi / �O logC.� j Yi /:

But then the symmetry of information again gives us

C.Yi�/ D C.Yi ; �/

> C.� j Yi /C C.Yi / �O logC.Yi�/
> j�j �O log jiC1j � C.Yi /C C.Xi /
�O logC.Yi / �O logC.� j Yi /C C.Yi / �O logC.Yi�/

D j�j �O log jiC1j C C.Xi / �O logC.Yi�/
(using the fact that C.� j Yi /; C.Yi / 6 C.Yi�/CO.1/)
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> j�j �O log jiC1j C jYi j �Oi logC.Xi / �O logC.Yi�/
(from Lemma 5.2)
> jYi�j �O log jiC1j �Oi logC.Xi / �O logC.Yi�/:

Now that we have completed these preparatory calculations, we can complete the
proof. We begin by proving that dim Y D 1. To do this it is enough to prove that
lim infn C.Y �n/

n
D 1. Every initial segment of Y is of the form Yi� for some unique

i and � an initial segment of iC1. Accordingly, we will calculate a lower bound
of C.Yi�/

jYi�j
in terms of i and show that this lower bound approaches 1 as i goes to

infinity.
By Lemma 5.5 we have a lower bound on C.Yi�/. Dividing both sides by jYi�j

gives

C.Yi�/

jYi�j
> 1 �

O log jiC1j
jYi�j

�
Oi logC.Xi /
jYi�j

�
O logC.Yi�/
jYi�j

:

Hence lim infn C.Yi�/
jYi�j

is greater than or equal to

1 � lim sup
n

O log jiC1j
jYi�j

� lim sup
n

Oi logC.Xi /
jYi�j

� lim sup
n

O logC.Yi�/
jYi�j

:

We now show that each term, except the first, on the right-hand side of the inequal-
ity vanishes as n (and hence i ) goes to infinity. This implies that the dimension
of Y exists and is equal to 1. This is easy to see in the case of the last term, as
C.Yi�/ 6 jYi�j C O.1/. In the case of the second term on the right-hand side,
notice that

jiC1j D C.�iC1 j �1; �2; : : : ; �i / 6 C.�iC1/ 6 j�iC1j CO.1/ D i C 1CO.1/:

This means
log jiC1j
jYi�j

6
log.i CO.1//

jYi j
6

log.i CO.1//

i
�! 0 as i �!1:

Lastly,

i logC.Xi /
jYi�j

6
i logC.Xi /
jYi j

6
i logC.Xi /

C.Xi / �Oi logC.Xi /
(from Lemma 5.2).

So, it is enough to show that lim supi
i logC.Xi /
C.Xi /

D 0. Now, because dimH X D ˛,
there is a function � bounded by 1 such that lim supn �.n/ D 0 and for all n 2 N,

C.X � n/
n

D ˛
�
1 � �.n/

�
: (3)

Hence

lim sup
i

i logC.Xi /
C.Xi /

D lim sup
i

i log˛.1 � �.jXi j//jXi j
˛.1 � �.jXi j//jXi j

6 lim sup
i

i log˛.1 � �.jXi j//
˛.1 � �.jXi j//jXi j

C lim sup
i

i log jXi j
˛.1 � �.jXi j//jXi j

:
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But the first term on the right-hand side gives

lim sup
i

i log˛.1 � �.jXi j//
˛.1 � �.jXi j//jXi j

6 lim sup
i

i

˛jXi j
� lim sup

i

log˛.1 � �.jXi j/
1 � �.jXi j/

D 0;

and similarly for the second term,

lim sup
i

i log jXi j
.1 � �.jXi j//jXi j

6 lim sup
i

i log jXi j
jXi j

� lim sup
i

1

.1 � �.jXi j//

D 0

(using the fact that jXi j D O.i2/ and lim supn �.n/ D 0).
We now show thatX 'd ˛Y . Notice that up to this point in the proof we have not

used the fact that X is regular, and we have only assumed in (3) that dimH X D ˛.
This allows us to easily generalize the result in the next section. We must now how-
ever make use of regularity. We will first show that d.˛Y ! X/ 6 dimp X �˛, and
then that Lemma 3.5 implies X 'd ˛Y as X and ˛Y are both regular.

For every n there exists a unique m and � such that X � n D Xm� where, as
before, m is the largest possible integer such that m.mC1/

2
6 n. Thus

d.˛Y ! X/

D lim sup
n

C.X � n j ˛Y � n/
n

6 lim sup
n

C.Xm� j Y � Pm.˛//CO.m logm/
n

6 lim sup
n

C.Xm� j Ym/C C.Ym j Y � Pm.˛//CO.m logm/
n

(O.logm/ bits used to distinguish the programs for the first two terms)

6 lim sup
n

C.Xm j Ym/C j�j C C.Ym j Y � Pm.˛//CO.m logm/
n

D lim sup
n

C.Xm j Ym/C C.Ym j Y � Pm.˛//CO.m logm/
n

; since j�j 6 m

6 lim sup
n

C.Xm j Ym/

n
C lim sup

n

C.Ym j Y � Pm.˛//
n

C lim sup
n

O.m logm/
n

:

Now, since

lim
n

C.Xm j Ym/

n
D 0 by (2)

and

lim
n

O.m logm/
n

D 0;

it remains to show that

lim sup
n

C.Ym j Y � Pm.˛//
n

D 0:

Now if m is such that Pm.˛/ > jYmj, then

C
�
Ym j Y � Pm.˛/

�
D O

�
log.Pm.˛/ � jYmj/

�
:
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From the second half of Lemma 5.3,

lim inf
m

jYmj

jXmj
> ˛;

but jXmj D m.mC1/
2

, so for all � > 0 and sufficiently large m,

jYmj > .˛ � �/
m.mC 1/

2
:

From the proof of Lemma 3.2,

Pm.˛/ 6 ˛M C
m

2
D ˛

m.mC 1/

2
C
m

2
:

So

Pm.˛/ � jYmj 6 �
m.mC 1/

2
C
m

2
;

and therefore

C
�
Ym j Y � Pm.˛/

�
6 O

�
log.m2/

�
D O.logm/:

Therefore the limit over all such m of C.YmjY �Pm.˛//
n

is zero.
On the other hand, if m is such that jYmj > Pm.˛/,

lim sup
n

C.Ym j Y � Pm.˛//
n

6 lim sup
n

jYmj � Pm.˛/CO.1/

n

D lim sup
n

jYmj

n
� ˛ (by Lemma 3.2)

6 lim sup
n

jYmj

jXmj
� lim sup

jXmj

n
� ˛

6 dimp X � ˛; (4)

the final line following from Lemma 5.3 and the fact that jXmj 6 n. The result now
follows as X is regular.

To complete the proof we must show that Y is unique up to d -equivalence.
Suppose there exist Y1, Y2 2 2N, both of dimension 1, such that X 'd ˛Y1
and X 'd ˛Y2. Then d.˛Y1; ˛Y2/ 6 d.˛Y1; X/ C d.X; ˛Y2/ D 0, and hence
˛Y1 'd ˛Y2. We know d.˛Y1; ˛Y2/ D ˛d.Y1; Y2/ by Lemma 3.7, and so
d.Y1; Y2/ D 0 whenever d.˛Y1; ˛Y2/ D 0. So we have Y1 'd Y2. Therefore Y is
unique up to d -equivalence.

5.1 Generalization to irregular reals

Theorem 5.6 If X 2 2N and Y is as defined in Theorem 5.1, then if dimH X D

˛ 6 ˇ D dimp X ,
d.X; ˛Y / D ˇ � ˛ D irreg.X/:

Furthermore, if Z is any regular real of dimension ˛, then

d.X;Z/ > d.X; ˛Y /:

Proof First note that from (4) in the proof of Theorem 5.1,

d.˛Y ! X/ 6 ˇ � ˛:
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But suppose now that d.˛Y ! X/ < ˇ � ˛. Let  D .ˇ�˛/�d.˛Y!X/
2

. Now

C.X � n/
n

6
C.X � n j ˛Y � n/

n
C
C.˛Y � n/

n
C
3 logn
n

: (5)

Similarly to Theorem 4.2, we can choose an m such that

1.
C.X � m/

m
> ˇ �



3
(as dimp X D ˇ),

2.
C.X � m j ˛Y � m/

m
< ˇ � ˛ �  (as d.˛Y ! X/ < ˇ � ˛ �  );

3.
3 logm
m

6


3
;

4.
C.˛Y � m/

m
6 ˛ C



3
(as dimp.˛Y / 6 ˛):

Then substituting into (5) we get

ˇ �


3
< .ˇ � ˛ � /C

�
˛ C



3

�
C


3
;

which gives a contradiction. Thus d.˛Y ! X/ D irreg.X/. But

d.X ! ˛Y / D lim sup
n

C.˛Y � n j X � n/
n

6 lim sup
n

C.X � n j ˛Y � n/
n

C
C.˛Y � n/

n
�
C.X � n/

n

6 d.˛Y ! X/C dimp ˛Y � dimH X

6 ˇ � ˛:

So d.X; ˛Y / D max¹d.X ! ˛Y /; d.˛Y ! X/º D irreg.X/:
Finally, let Z be regular and of dimension ˛. If we suppose d.Z ! X/ < ˇ � ˛,

then we can repeat the proof above with Z replacing ˛Y to get a contradiction
as the only assumption we made on ˛Y was that dimp ˛Y 6 ˛. Therefore
d.Z ! X/ > ˇ � ˛ and d.X;Z/ > ˇ � ˛ D d.X; ˛Y /.

6 Open Questions and Directions

This paper is part of an ongoing project to investigate the properties of 2N under
the d -metric. These properties are generally geometric in nature—arising from the
interplay between the scalar multiplication and the metric. The ultimate goal is to
get a thorough picture of the geometric structure of this space. We give a list here of
some open questions that will inform the general direction of our work.

Of course virtually any question one could ask about a general topological space,
one could ask about the d -topology. We limit questions here to ones we consider
most interesting and tractable.

1. Is 2N complete under the d -metric, that is, does every Cauchy sequence con-
verge?

2. Between any two points X , Y in 2N, does there exist a path between X and Y
whose length is exactly d.X; Y /? Is there a simple description of such a path
if it exists?

3. Given any two regular reals X and Y of the same dimension ˛, does there
exist a path from X to Y all of whose points have dimension ˛?
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4. Is 2N locally compact? Or perhaps more to the point: Does there exist any
point in 2N with a compact neighborhood?

5. What is the fundamental group and topological dimension of 2N?
There are also interesting computability theoretic questions that can be

asked. In particular, what role, if any, do the Martin-Löf random reals play in
this metric space?

6. Does every d -equivalence class of dimension 1 regular reals contain a ran-
dom?

7. If the answer to the last question is “no,” then is the set of randoms dense
(with respect to d ) in the set of reals of Hausdorff dimension 1?

Notes

1. The distance between binary sequences X and Y is 2�n, where n is the length of the
maximal initial segment that they have in common. The resulting topology has a basis
of clopen sets consisting of all sets of the form U� D ¹X 2 2

N W X � �º.

2. The terminology for weakenings of the metric space axioms is inconsistent in the liter-
ature; d could also be described as a quasi-pseudometric, a term we avoid. All that is
meant here is a function d W 2N � 2N ! RC [ ¹0º that obeys the triangle inequality in
the direction of the arrow.
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